KR101861064B1 - Mortar composition for cross section ristirations and method for recovering the same thereof - Google Patents

Mortar composition for cross section ristirations and method for recovering the same thereof Download PDF

Info

Publication number
KR101861064B1
KR101861064B1 KR1020170153508A KR20170153508A KR101861064B1 KR 101861064 B1 KR101861064 B1 KR 101861064B1 KR 1020170153508 A KR1020170153508 A KR 1020170153508A KR 20170153508 A KR20170153508 A KR 20170153508A KR 101861064 B1 KR101861064 B1 KR 101861064B1
Authority
KR
South Korea
Prior art keywords
mortar composition
concrete
freezing
thawing
concrete structure
Prior art date
Application number
KR1020170153508A
Other languages
Korean (ko)
Inventor
정시영
Original Assignee
주식회사 한국리페어기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국리페어기술 filed Critical 주식회사 한국리페어기술
Priority to KR1020170153508A priority Critical patent/KR101861064B1/en
Application granted granted Critical
Publication of KR101861064B1 publication Critical patent/KR101861064B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/024Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/105Gaseous combustion products or dusts collected from waste incineration, e.g. sludge resulting from the purification of gaseous combustion products of waste incineration
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/34Flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/65Water proofers or repellants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a mortar composition for preventing salt damage and freezing and thawing and a repair method for a road gutter by salt damage and an end surface of a concrete structure suffering from neutralization and chemical damage using the same. An objective of the present invention is to provide a mortar composition for preventing salt damage and freezing and thawing and a repair method for a road gutter by salt damage and an end surface of a concrete structure suffering from neutralization and chemical damage using the same which can remove a degraded portion of concrete damaged by salt and freezing and thawing. The mortar composition for preventing salt damage and freezing and thawing and the repair method for a road gutter by salt damage and an end surface of a concrete structure suffering from neutralization and chemical damage using the same to remove a degradation portion of a concrete structure caused by salt damage and freezing and thawing, install attaching reinforcement hardware, and then apply a mortar composition for preventing salt damage and freezing and thawing. The mortar composition comprises 20-45 wt% of a cement component, 3-15 wt% of a rapid hardener, 5-20 wt% of an admixture, 25-55 wt% of silica filler, 1-5 wt% of latex, 0.01-0.3 wt% of a carbon nanotube mixed solution, 0.5-4 wt% of a polymer resin, 0.2-2 wt% of a superplasticizer, 0.01-0.8 wt% of amorphous steel fiber, 0.1-3 wt% of a water repellent, 0.2-2 wt% of a property enhancer, and 0.005-1 wt% of graphene oxide.

Description

염해 및 동결융해 방지용 모르타르 조성물과 이를 이용한 염해로 인한 도로측구, 중성화, 화학적 등으로 피해를 입은 콘크리트 구조물 단면보수공법{Mortar composition for cross section ristirations and method for recovering the same thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mortar composition for preventing corrosion and freezing and thawing of a concrete structure and a method for recovering the same from a road surface,

본 발명은 염해 및 동결융해 방지용 모르타르 조성물과 이를 이용한 염해로 인한 도로측구, 중성화, 화학적 등으로 피해를 입은 콘크리트 구조물 단면보수공법에 관한 것으로, 염화물의 침입, 동결융해로 의한 발생된 열화현상을 우수한 부착강도 및 압축강도를 구비한 염해 및 동결융해 방지용 모르타르 조성물에 의해 신속하게 보수할 수 있는 염해 및 동결융해 방지용 모르타르 조성물과 이를 이용한 염해로 인한 도로측구, 중성화, 화학적 등으로 피해를 입은 콘크리트 구조물 단면보수공법에 관한 것이다.The present invention relates to a mortar composition for preventing corrosion and freezing and thawing, and a method for repairing a concrete structure subjected to damage caused by road corrosion, neutralization, and chemical damage caused by salting thereof. A mortar composition for preventing corrosion and freezing and thawing which can be quickly repaired by a mortar composition for preventing the freezing and thawing with the adhesion strength and the compressive strength, and a concrete structure which is damaged by the road side, neutralization, Maintenance method.

콘크리트를 사용한 토목, 건축시설물은 국가의 기반 시설로서, 백년대계를 위한 국가 경제에 매우 중요한 역할을 수행하고 있다. 이러한 콘크리트 구조물은 반영구적으로 100 년 이상의 수명을 구비하고 있으나, 날로 심각해져가는 대기환경오염과 특히 염해, 중성화, 화학적부식 등으로 인한 콘크리트의 부식을 초래하고 이로 인하여 철근 콘크리트 주재료인 철근의 부식 하여 구조물의 수명을 현저히 단축되는 현상이 발생되고 있다. The civil engineering and building facilities using concrete are playing a very important role in the national economy for the centennial era as a national infrastructure. These concrete structures have semi-permanent lifetime of more than 100 years, but they cause corrosion of the concrete caused by increasingly serious atmospheric environment pollution, especially chloride, neutralization and chemical corrosion, and as a result, corrosion of reinforcing steel, which is the main material of reinforced concrete, There is a phenomenon that the life is remarkably shortened.

콘크리트의 주요구성 성분인 3CaOSiO2, 2CaOSiO2는 다음 식과 같이 물과 수화 반응하여 규산칼슘 수화물과 다량의 수산화칼슘을 생성하며, 이것을 화학식으로 표기하면 다음과 같다. 3CaOSiO 2 and 2CaOSiO 2, which are the main constituents of concrete, react with hydration with water to produce hydrated calcium silicate and a large amount of calcium hydroxide as shown in the following formula.

2(2CaOSiO2) + 3H2O → 3CaO2SiO23H2O + Ca(OH)2 2 (2CaOSiO 2) + 3H 2 O → 3CaO2SiO 2 3H 2 O + Ca (OH) 2

따라서 콘크리트내의 연속된 모세관 공극내에는 수산화칼슘의 포화수용액인 pH 12∼13의 알칼리용액으로 충만되어 있다. 이와 같은 알칼리성 환경에서는 철근표면은 얇은 부동태피막(두께 20∼60Å, γ- Fe2O3nH2O)이라고 불리는 보호피막으로 덮여있어 부식으로부터 보호되고 있어, 콘크리트에 매립되어 있는 철근은 일반적으로 부식되지 않는다.Therefore, continuous capillary pores in concrete are filled with an alkaline solution of pH 12-13, which is a saturated aqueous solution of calcium hydroxide. In such an alkaline environment, the surface of the reinforcing bar is covered with a protective coating called a thin passive coating (thickness of 20 to 60 Å, γ-Fe 2 O 3 nH 2 O), so that the reinforcing bars embedded in the concrete generally have corrosion It does not.

그러나 공기중의 탄산가스의 작용을 장기적으로 받게 될 경우, 콘크리트중의 수산화칼슘이 서서히 탄산칼슘으로 변하여 pH가 0.8∼10 정도로 낮아지게 되어 콘크리트가 알카리성을 상실하게 되며, 이와 같은 콘크리트의 탄산화 현상에 의한 알칼리성의 저하에 의해 콘크리트 중에서 철근의 부식이 급속하게 발생되게 된다. 또한, 콘크리트에 염화물이 침입하게 될 경우, 염화이온이 부동태피막을 파괴하게 되어 철근의 부식이 발생되고 있다. However, if the action of carbon dioxide in the air is received for a long period of time, the calcium hydroxide in the concrete gradually turns into calcium carbonate, and the pH is lowered to about 0.8 to 10, so that the concrete is lost in alkalinity. The corrosion of the reinforcing bars in the concrete is rapidly generated due to the deterioration of the alkalinity. In addition, when chlorides enter the concrete, chloride ion breaks the passive film and corrosion of the reinforcing bar occurs.

상기와 같이, 콘크리트중의 철근이 부식하면 부식생성물인 녹이 발생하여 원래 체적의 2∼3배에 달하게 되고, 이러한 팽창압에 의해 피복 콘크리트에 균열이 발생되므로, 표면콘크리트의 박리, 탈락, 철근과의 부착성저하, 강도저하가 발생되어 전체 콘크리트 구조물의 내력과 내구성이 상실되게 된다. As described above, when the reinforcing bars in the concrete are corroded, rust, which is a corrosion product, is generated to reach 2 to 3 times the original volume, and cracks are generated in the covered concrete due to such expansion pressure. Therefore, the surface concrete is peeled off, The strength and durability of the entire concrete structure are lost.

또한, 겨울철에 눈이 많이 내리면 도로에 염화칼슘을 도포하여 눈을 녹이는 것이 일반적인 제설 방법으로 널리 사용되고 있으나, 상기 염화칼슘은 콘크리트와 상극으로 염화칼슘 성분이 콘크리트에 침입하면, 콘크리트의 알카리성을 저하시켜 단시간에 콘크리트를 부식시키게 되어 콘크리트 구조물의 기능이 저하된다. In addition, although it is widely used as a general snow removal method to dissolve snow by applying calcium chloride on the road when a lot of snow is caught on the road in the winter, the calcium chloride is a concrete and an alkaline earth, and when the calcium chloride component penetrates into the concrete, the alkali of the concrete is lowered, And the function of the concrete structure is deteriorated.

또한, 겨울철에는 콘크리트가 동결 및 융해 작용으로 인해 콘크리트의 파손이 발생하기도 하고, 자동차의 배기가스에 오랜 기간 노출될 경우 중성화 현상으로 인해 내부 철근이 부식되고 콘크리트가 균열 또는 탈락되는 경우가 발생하기도 한다. In winter, concrete may be damaged due to frozen and thawed concrete, and if it is exposed to automobile exhaust gas for a long time, the inner reinforcing steel may be corroded due to neutralization phenomenon, and concrete may crack or fall off .

종래에는 상기와 같은 콘크리트 구조물의 열화부위를 보수 및 보강하기 위하여, 에폭시수지 모르타르와 폴리머시멘트 모르타르가 사용되어지고 있으나, 상기 에폭시수지 모르타르는 주제와 경화제의 배합비에 따라 작업성 및 가사시간이 달라져 성능에 큰 영향을 미치고 경화시 온도 의존성이 높아 저온시에는 경화가 어려우며 열팽창계수가 콘크리트의 2∼4배 정도 크기 때문에 고열·고온에 의한 변형량이 문제점이 있었다. 또한, 시중에 판매되어지지고 있는 폴리머 시멘트 모르타르는 에폭시수지 모르타르에 비하여 구체와의 일체화 특성은 우수하나 부착성 및 압축강도가 우수하지 못하여, 탈락현상이 발생되는 문제점이 있었다. 또한, 부착성 향상을 위하여 증점제를 첨가하고 있으나, 이와 같이 증점제가 첨가될 경우, 스프레이 장비를 이용한 기계 시공시 운송호스 내부의 표면과 마찰력이 증대되어 호스가 막힘은 몰론 토출량이 적어져 시공속도가 저하되는 등 여러가지 문제점이 있었다.Conventionally, epoxy resin mortar and polymer cement mortar have been used for repairing and reinforcing the deteriorated part of the concrete structure as described above. However, the epoxy resin mortar has various properties such as workability and pot life And it is hard to cure at low temperature due to high temperature dependency during curing. The thermal expansion coefficient is 2 to 4 times that of concrete, which causes a problem of deformation due to high temperature and high temperature. In addition, the polymer-cement mortar sold on the market has an excellent unity with the sphere as compared with the epoxy resin mortar, but has poor adhesion and compressive strength, resulting in a drop-off phenomenon. Also, when a thickener is added, a thickener is added to improve the adhesion. However, when the thickener is added, the surface of the transportation hose and the frictional force increase during the mechanical construction using the spray equipment, so that the hose is clogged, There are various problems such as deterioration.

등록특허공보 10-0643524(2006.11.01)Patent Registration No. 10-0643524 (November 11, 2006) 등록특허공보 10-0995244(2010.11.12)Patent Registration No. 10-0995244 (Nov. 12, 2010) 등록특허공보 10-0474665(205.02.23)Patent Registration No. 10-0474665 (Feb. 등록특허공보 10-1551842(2015.09.03)Patent Registration No. 10-1551842 (Feb.

본 발명의 목적은 염해, 동결융해로 피해를 입은 콘크리트 열화부위를 파취 하여 이를 신속하게 재생할 수 있는 염해 및 동결융해 방지용 모르타르 조성물과 이를 이용한 염해로 인한 도로측구, 중성화, 화학적 등으로 피해를 입은 콘크리트 구조물 단면보수공법을 제공하는 것이다.The object of the present invention is to provide a mortar composition for preventing corrosion and freeze-thawing which can detoxify and deteriorate concrete deteriorated areas damaged by salt corrosion, freezing and thawing, and concrete, And to provide a repair method of a structural section.

본 발명에 따른 염해 및 동결융해 방지용 모르타르 조성물과 이를 이용한 염해로 인한 도로측구, 중성화, 화학적 등으로 피해를 입은 콘크리트 구조물 단면보수공법은, 염해 및 동결융해로 인해 발생된 콘크리트 구조물의 열화부위를 제거하고, 부착강화 지지철물을 설치한 후, 염해 및 동결융해 방지용 모르타르 조성물이 도포되되, 상기 모르타르 조성물은 시멘트 성분 20∼45wt%, 속경재 3∼15wt%, 혼합재 5∼20wt%, 실리카 충전재 25∼55wt%, 라텍스 1.0∼5.0wt%, 탄소나노튜브 혼합액 0.01∼0.3wt%, 폴리머수지 0.5∼4.0wt%, 유동화제 0.2∼2.0wt%, 비정질강섬유 0.01∼0.8wt%, 발수제 0.1∼3.0wt%, 특성개선재 0.2∼2.0wt%, 그래핀 옥사이드 0.005∼1.0 wt%를 포함하도록 되어 있다. The mortar composition for preventing salting and freezing and thawing according to the present invention and the maintenance method of the concrete structure damaged by the road side, neutralization, and chemical damage due to salting using the mortar composition of the present invention can remove deterioration parts of the concrete structure caused by salting and freeze- The mortar composition comprises 20 to 45 wt% of a cement component, 3 to 15 wt% of a hardwood material, 5 to 20 wt% of a mixed material, 25 to 20 wt% of a silica filler, A water-repellent agent 0.1 to 3.0 wt%, a water-repellent agent 0.1 to 3.0 wt%, a water-repellent agent 0.1 to 3.0 wt%, a water-repellent agent 0.1 to 3.0 wt% 0.2 to 2.0 wt% of a property improving material, and 0.005 to 1.0 wt% of graphene oxide.

본 발명은 주 재료가 무기질계로 구성되어 있어, 우수한 부착성과 압축강도를 구비하고 있으며, 열화된 콘크리트 구조물을 원상태로 신속하게 재생시키는 효과가 있다. The present invention has an excellent adhesion and compressive strength because the main material is composed of an inorganic system and has an effect of rapidly regenerating a deteriorated concrete structure.

본 발명은 혼합재로 슬래그 미분말과 제지애쉬가 사용되도록 되어 있어, 내동해성 및 압축강도를 향상시키는 효과가 있다. The present invention is adapted to use a slag fine powder and a paper ash as a mixing material, and has an effect of improving anti-cracking and compressive strength.

본 발명은 탄소나노튜브 혼합액과 그래핀 옥사이드가 함께 첨가되도록 되어 있어, 미세공극구조가 치밀화되고, 이를 통해 수밀성 및 내구성이 강화될 뿐 아니라, 인장강도 및 부착강도의 향상에 의해 내부 미세균열이 저감되는 효과가 있다. In the present invention, the carbon nanotube mixed solution and the graphene oxide are added together, so that the fine pore structure is densified and water tightness and durability are enhanced. In addition, by improving tensile strength and adhesion strength, .

본 발명은 기존 콘크리트 열화부분 약 5cm 정도 제거한 후 기존 콘크리트 구조체 위에 도포되므로, 산업폐기물의 발생량이 저감되고, 이로 인한 환경오염이 방지되는 효과가 있다. Since the present invention is applied to the existing concrete structure after removing about 5 cm of the deteriorated portion of the existing concrete, the amount of the industrial waste generated is reduced and the environmental pollution due to this is reduced.

본 발명은 우수한 부착강도를 구비하고 있어, 신구접착제의 도포공정을 생략할 수 있다. Since the present invention has excellent adhesion strength, it is possible to omit the step of applying the old and new adhesives.

본 발명은 발수성 및 속경성을 구비하고 있어, 보수공사 기간이 단축되고, 이로 인해 차량통행이 원활하게 이루어질 수 있는 등 많은 효과가 있다. The present invention has water repellency and quick hardness, so that the repair work period is shortened, thereby allowing smooth passage of the vehicle.

도 1 은 본 발명에 보수공정을 보인 예시도FIG. 1 is an illustration showing a repairing process according to the present invention

본 발명에 따른 염해 및 동결융해 방지용 모르타르 조성물은, 시멘트 성분 20∼45wt%, 속경재 3∼15wt%, 혼합재 5∼20wt%, 실리카 충전재 25∼55wt%, 라텍스 1.0∼5.0wt%, 탄소나노튜브 혼합액 0.01∼0.3wt%, 폴리머수지 0.5∼4.0wt%, 유동화제 0.2∼2.0wt%, 비정질강섬유 0.01∼0.8wt%, 발수제 0.1∼3.0wt%, 특성개선재 0.2∼2.0wt%, 그래핀 옥사이드 0.005∼1.0 wt%를 포함한다. The mortar composition for preventing salting and freezing and thawing according to the present invention comprises 20 to 45 wt% of a cement component, 3 to 15 wt% of a high hardwood, 5 to 20 wt% of a mixture, 25 to 55 wt% of a silica filler, 1.0 to 5.0 wt% of a latex, A water-repellent agent of 0.1 to 3.0 wt%, a property improving agent of 0.2 to 2.0 wt%, a graphene oxide of 0.1 to 3.0 wt%, a polymer resin of 0.5 to 4.0 wt%, a fluidizing agent of 0.2 to 2.0 wt%, an amorphous steel fiber of 0.01 to 0.8 wt% 0.005 to 1.0 wt%.

상기 시멘트 성분은 경화체의 압축강도 및 휨강도 등 각종 기계적 강도를 확보하기 위하여 사용되는 주요 성분으로서 시멘트는 물과 반응을 하여 주요 수화 생성물인 칼슘 실리케이트 수화물 및 칼슘 알루미네이트 수화물을 생성시키게 됨으로서 단단하게 굳어지게 되는데, 이때 기계적 강도가 발휘되어 다양한 용도로 건축, 토목용 재료로서의 사용이 가능하게 된다. The cement component is a main component used for securing various mechanical strengths such as the compressive strength and the bending strength of the cured product, and the cement reacts with water to produce calcium hydrate and calcium aluminate hydrate, which are major hydration products, At this time, the mechanical strength is exhibited, and it becomes possible to use it as a material for construction and civil engineering for various purposes.

상기 시멘트는 보수 콘크리트의 용도에 따라서 1종에서 5종의 시멘트를 사용할 수 있으며, 특히 황산염이나 도로의 결빙을 해소하기 위하여 사용이 되는 염화칼슘에 대한 저항성을 높이기 위해서 5종 포틀랜드 시멘트인 내황산염 시멘트나 슬래그시멘트 등을 사용하는 것이 효과적이다. 또한 도로의 특성상 조기강도의 신속한 확보를 위해서는 조강시멘트 또는 알루미나 시멘트를 사용할 수도 있다.The cement can be used from one to five types of cement depending on the use of the repair concrete. Especially, in order to increase the resistance to calcium chloride used for solving freezing of sulphates and roads, 5 kinds of portland cement, It is effective to use slag cement or the like. In addition, crude steel cement or alumina cement may be used to quickly secure early strength due to the characteristics of the road.

상기 속경재는 주 구성광물이 C4A3 인 칼슘설포알루미네이트 화합물과 석고 및 CaO 또는 Ca(OH)2와 반응을 하여 에트링자이트(ettringite) 수화물이 사용될 수 있다. 상기 에트링자이트 수화물은 반응속도가 대단히 빠르기 때문에 경화체의 조기 강도의 신속한 발현이 가능하게 된다. 속경재로서는 이 칼슘설포알루미네이트와 석고계 뿐만이 아니라 알루미나시멘트와 초속경시멘트, 조강시멘트를 사용할 수도 있다. 이 속경재는 3wt% 미만일 경우에는 보수 콘크리트를 신속하게 경화시키는 역할을 하지 못하고, 15wt%를 초과할 경우에는 너무 급속하게 보수 콘크리트를 경화시키기 때문에 작업을 하기위한 소정의 시간 확보가 어렵게 되는 단점이 있다.The above-mentioned high hardness material may be an ettringite hydrate such that the main constituent mineral reacts with a calcium sulfoaluminate compound having C 4 A 3 , gypsum and CaO or Ca (OH) 2 . Since the above-mentioned etchringite hydrate has a very fast reaction speed, it is possible to rapidly express the early strength of the cured product. Alumina cement, ultrahigh speed cement, crude steel cement can be used not only for the calcium sulphoaluminate and the gypsum but also for the hard material. If the content of the core material is less than 3 wt%, it fails to rapidly cure the concrete, and if it exceeds 15 wt%, the concrete is cured too rapidly, which makes it difficult to secure a predetermined time for the operation have.

상기 혼합재는 황산염이나 염화칼슘에 대한 저항성을 높이고, 콘크리트의 공기량을 증진시켜 내동해성을 향상시키기 위한 것으로, 슬래그분말 또는 제지애쉬분말 또는 슬래그분말과 제지애쉬분말이 혼합된 혼합분말이 사용되며, 바람직하게는 슬래그분말과 제지애쉬분말이 혼합된 혼합분말이 사용된다. The mixed material is used for enhancing the resistance to sulfate or calcium chloride and improving the air resistance by increasing the air volume of the concrete. Mixed powder in which slag powder, paper ash powder or slag powder and paper ash powder are mixed is preferably used A mixed powder in which slag powder and paper ash powder are mixed is used.

상기 슬래그 분말은 장기 내구성 및 화학 저항성을 증진시킬 뿐 아니라, 알루미노실리케이트 성분을 풍부하게 함유하고 있어 잠재 수경성에 의해 콘크리트의 강도를 향상시킨다. The slag powder not only improves long-term durability and chemical resistance, but also abundantly contains an aluminosilicate component, which improves the strength of concrete by virtue of its latent hydraulic properties.

상기 제지 애쉬는 제지 공장에서 부산물로 발생되는 물질로서 열처리가 되어 분말도가 blaine 4,000∼7,000(㎠/g) 정도의 것이 사용된다. 상기 제지 애쉬는 수경성을 갖기 때문에 시멘트가 물과 반응하여 생성되는 Ca(OH)2 수화물과 반응을 함으로서 칼슘실리케이트 수화물(CaO-SiO2-H2O) 또는 칼슘알루미네이트 수화물(CaO-Al2O3-H2O)을 생성시켜 경화체의 구조가 치밀해짐으로서 강도가 증진될 뿐만 아니라 황산염이나 염화칼슘에 의한 침식 저항성을 향상시킨다. The paper ash is a material generated as a by-product in a paper mill and is heat treated to have a blaine of about 4,000 to 7,000 (cm 2 / g). Since the paper ash has hydraulicity, calcium silicate hydrate (CaO-SiO 2 -H 2 O) or calcium aluminate hydrate (CaO-Al 2 O) reacts with Ca (OH) 2 hydrate produced by the reaction of cement with water. 3 -H 2 O) is produced, so that the structure of the cured body becomes dense, thereby enhancing the strength and improving the erosion resistance by the sulfate or calcium chloride.

상기 제지애쉬는 5wt% 미만으로 첨가될 경우, 침식 저항성을 높이는데 효과적이지 못하고, 20wt% 이상인 경우에는 보수용 콘크리트 모르타르의 작업성이 크게 감소될 뿐만 아니라 압축강도와 같은 기계적 물성값을 감소시키게 되는 단점이 있다.When the paper ash is added in an amount of less than 5 wt%, it is not effective to increase the erosion resistance. When the paper ash is more than 20 wt%, not only the workability of the concrete mortar for repair is greatly reduced but also the mechanical property value such as compressive strength is decreased .

상기 혼합재는 5∼20wt%의 비율로 조합을 하여 사용하는 것이 효과적이다. 즉, 상기 혼합재가 5wt% 미만으로 첨가될 경우, 각종 염해 저항성을 높이는데 효과적이지 못하고, 20wt%를 초과하여 첨가될 경우에는 압축강도나 휨강도와 같은 콘크리트의 기계적 물성값을 감소시키게 되는 단점이 발생된다. It is effective to use the above mixed materials in combination at a ratio of 5 to 20 wt%. That is, when the mixed material is added in an amount of less than 5 wt%, it is not effective to increase resistance to various kinds of salt, and when it is added in an amount exceeding 20 wt%, a mechanical property value of concrete such as compressive strength and bending strength is decreased. .

특히, 상기 혼합재는 슬래그분말과 제지애쉬가 1 : 1∼2 의 혼합비율로 첨가되는 것이 바람직하다. 즉, 상기 제지애쉬는 황산염이나 염화칼슘에 의한 침식 저항성이 매우 우수하나, 반응이 느리게 진행되므로 조기강조가 지연되는 문제점이 있으나, 슬래그와 제지애쉬를 1 : 1∼2 의 중량비율로 혼합하여 첨가할 경우, 제지애쉬의 반응에 앞서 슬래그의 반응이 먼저 진행되어 강도증진이 유지된다. In particular, it is preferable that the slag powder and the paper ash are added at a mixing ratio of 1: 1 to 2. That is, the paper ash has excellent resistance to erosion by sulphate or calcium chloride, but has a problem of delaying early emphasis due to a slow reaction. However, when slag and paper ash are mixed at a weight ratio of 1: 1 to 2 , The reaction of the slag proceeds first before the reaction of the paper ash, and the strength enhancement is maintained.

또한, 상기 제지애쉬는 첨가량이 증가될 수록 유동성을 저하시키는 문제점이 발생되므로, 슬래그와 제지애쉬가 1 : 1∼2 의 중량비율로 혼합되어 첨가될 경우, 유동성이 개선되는 효과가 있다. In addition, since the paper ash has a problem that the fluidity is lowered as the addition amount is increased, the fluidity is improved when the slag and the paper ash are mixed in the weight ratio of 1: 1 to 2.

상기 실리카 충전재는, 5호 입도의 규사와 6호 입도의 규사를 혼합하여 사용하며, 6호 입도의 규사 비율이 증가할수록 보수 콘크리트의 작업성이 감소되는 경향이 있으므로, 6호 입도의 규사 40∼60wt%, 5호 입도의 규사 60∼40wt%의 비율로 혼합하여 사용되는 것이 가장 바람직하다.The silica filler is mixed with the silica sand of No. 5 and the silica sand of No. 6 and since the workability of the maintenance concrete tends to decrease as the silica sand ratio of No. 6 increases, 60 wt%, and silica powder having a No. 5 grain size of 60 to 40 wt%.

상기 라텍스는 경화 전 콘크리트의 유동성 증가, 작업성 개선 등의 효과가 있으며, 경화 후에는 표면 부착강도, 휨강도, 수밀성, 동결융해저항성 등을 향상시킨다. 상기 라텍스는 분말 또는 액상 라텍스가 첨가될 수 있으며, 바람직하게는 SB(Styrene-Bytaduebe) 라텍스 고형분 47∼50wt%, 물 50∼53wt% 로 이루어진 액상 라텍스가 첨가된다. The latex has an effect of increasing the fluidity of the pre-hardening concrete, improving the workability, and improving the surface adhesion strength, bending strength, water tightness, freeze-thaw resistance, etc. after curing. The latex may be added with powder or liquid latex, preferably a liquid latex composed of 47 to 50 wt% of SB (Styrene-Bytaduebe) latex solid and 50 to 53 wt% of water.

상기 라텍스는 1.0wt% 미만으로 첨가될 경우 부착강도가 감소되고, 5.0wt%를 초과하여 첨가될 경우 재료분리가 발생할 가능성이 크므로, 적정범위내에서 첨가되며, 바람직하게는 1.5∼3.5wt% 첨가된다. When the latex is added in an amount less than 1.0 wt%, the adhesive strength is decreased. When the latex is added in an amount exceeding 5.0 wt%, the possibility of material separation is high. Therefore, the latex is added in an appropriate range, preferably 1.5 to 3.5 wt% .

상기 탄소나노튜브 혼합액은 에폭시 수지 또는 SB 라텍스수지 또는 실리콘 수지 70∼99.9wt%에, 탄소나노튜브 0.1∼30wt% 가 첨가 분산된 것이 사용된다. The carbon nanotube mixture may be an epoxy resin, an SB latex resin, or a silicone resin containing 70 to 99.9 wt% of carbon nanotubes and 0.1 to 30 wt% of carbon nanotubes added and dispersed therein.

상기 탄소나노튜브(Carbon Nano Tube)는 흑연면(graphite sheet)이 나노크기의 직경으로 결함하여 원통형 튜브구조를 이룬 다중벽 탄소나노튜브가 첨가되며, 인장강도 11∼63GPa, 탄성계수 300∼1,000 ㎬을 구비한 것이 첨가된다. The carbon nanotubes have a tensile strength of 11 to 63 GPa and a modulus of elasticity of 300 to 1,000 g / m < 2 >. The carbon nanotubes are prepared by adding a multi-walled carbon nanotube having a cylindrical tube structure to a graphite sheet Is added.

이와 같은 탄소나노튜브는 C-S-H겔로 코팅된 나노 입자가 50㎚ 이하의 공극율을 감소시키면서 콘크리트 조성믈 내부 미세균열을 저감시켜 균열발생시기를 늦추는 역할을 한다. Such carbon nanotubes reduce the microcracks in the concrete composition while reducing the porosity of the nanoparticles coated with the C-S-H gel to less than 50 nm, thereby slowing the generation of cracks.

상기 SB 라텍스 또는 에폭시 수지 또는 실리콘 수지는 탄소나노튜브의 분산성을 향상시켜, 모르타르 조성물의 조기강도발현 및 내구성을 향상시키기 위한 것이다. The SB latex or the epoxy resin or the silicone resin improves the dispersibility of the carbon nanotubes and improves the early strength development and durability of the mortar composition.

또한, 상기 탄소나노튜브 혼합액은 초음파 처리에 의해 분산성이 향상되도록 한 것이 사용될 수 있다. 이때, 상기 초음파처리는 최대전력 700∼750W의 초음파 파쇄기에 의해, 40∼60% 출력진폭으로 3∼10초간 초음파 처리한 후, 10∼20 초동안 멈추는 과정을 30∼200분, 바람직하게는 약 60∼180분정도 반복한다. In addition, the carbon nanotube mixed solution may be one that improves the dispersibility by ultrasonic treatment. At this time, the ultrasonic treatment is performed by ultrasonic wave crusher having a maximum power of 700 to 750 W for 3 to 10 seconds at an output amplitude of 40 to 60%, and then the process of stopping for 10 to 20 seconds is performed for 30 to 200 minutes, Repeat for 60 to 180 minutes.

이와 같이 초음파처리된 탄소나노튜브 혼합액이 첨가된 모르타르 조성물은 초음파 처리되지 않은 탄소나노튜브 혼합액이 첨가된 모르타르 조성물과 대비할 경우, 압축강도 및 휨인장강도에 있어서, 약 10∼15% 정도의 강도향상 효과를 구비하게 된다. 즉, 상기 초음파처리된 탄소나노튜브 분산액은 적은 양의 탄소나노튜브의 혼입에 의해서도 강도발현이 이루어질 수 있으므로, 상기 탄소나노튜브 혼합액은 에폭시 수지 또는 SB 라텍스수지 또는 실리콘 수지 90∼99.9wt%, 탄소나노튜브 0.1∼10wt% 가 첨가되어 분산된 것이 사용될 수 있다. The mortar composition to which the ultrasonic treated carbon nanotube mixture is added has a strength improvement of about 10 to 15% in the compressive strength and the flexural tensile strength in comparison with the mortar composition to which the untonerated carbon nanotube mixture is added Effect. That is, since the ultrasound-treated carbon nanotube dispersion can exhibit strength by incorporation of a small amount of carbon nanotubes, the carbon nanotube mixture may contain 90 to 99.9 wt% of epoxy resin, SB latex resin or silicone resin, 0.1 to 10 wt% of nanotubes may be added and dispersed.

특히 초음파처리된 탄소나노튜브 분산액은 에폭시 수지에 탄소나노튜브가 함유된 것이 더욱 바람직하다. In particular, it is more preferable that the ultrasound-treated carbon nanotube dispersion liquid contains carbon nanotubes in the epoxy resin.

상기 그래핀 옥사이드는 콘크리트 조성물의 수밀성 및 내구성 강화를 위한 것으로, 에폭시(epoxy), 히드록실(hydroxyl), 락톤(lactone), 락톨(lactol), 케톤(ketone), 에스터(ester), 카르복실산(carboxylic) 등을 조합한 탄소재료 중 인장강도는 15∼45㎬, 탄성계수는 50∼220㎫ 인 것이 사용될 수 있다. The graphene oxide is used for enhancing the watertightness and durability of the concrete composition and may be selected from the group consisting of epoxy, hydroxyl, lactone, lactol, ketone, ester, a carbon material having a tensile strength of 15 to 45 GPa and an elastic modulus of 50 to 220 MPa can be used.

즉, 상기 그래핀 옥사이드는 에폭시(epoxy), 히드록실(hydroxyl), 락톤(lactone), 락톨(lactol), 케톤(ketone), 에스터(ester), 카르복실산(carboxylic) 그룹의 형태로 이루어진 것이 사용되며, 바람직하게는 에폭시 그룹 형태의 그래핀 옥사이드가 혼입된다. That is, the graphene oxide is in the form of an epoxy, hydroxyl, lactone, lactol, ketone, ester, or carboxylic acid group And graphene oxide, preferably in the form of an epoxy group, is incorporated.

상기 에폭시 그룹 형태의 그래핀 옥사이드는 에폭시 수지에 탄소나노튜브가 함유된 탄소나노튜브 분산액과 상호작용하여 분산성 및 강도증진 효과를 더욱 향상시키게 된다. The graphene oxide in the epoxy group form interacts with the carbon nanotube dispersion containing the carbon nanotubes in the epoxy resin to further improve the dispersibility and the strength enhancement effect.

즉, 본 발명은 에폭시 수지에 탄소나노튜브가 함유된 탄소나노튜브 분산액과 에폭시 그룹형태의 그래핀 옥사이드가 첨가되는 것이 바람직하며, 가장 바람직하게는 에폭시 수지에 탄소나노튜브가 함유되어 초음파 처리된 탄소나노튜브 분산액과 에폭시 그룹형태의 그래핀 옥사이드가 첨가된다. That is, it is preferable that the carbon nanotube dispersion containing the carbon nanotubes in the epoxy resin and the graphene oxide in the epoxy group form are added to the epoxy resin, and most preferably, the carbon nanotubes are contained in the epoxy resin, Nanotube dispersions and graphene oxide in the form of epoxy groups are added.

상기 그래핀 옥사이드는 0.05wt% 이상 혼입될 경우 C-S-H 겔포어의 부피가 2∼2.5배 증가하게 되어, 콘크리트의 미세공극구조가 밀실해지고, 콘크리트 균열발생제어에 효과적이다. 또한, 압축강도와 휨강도도 증가되어 내구성이 증진되는 효과가 있다. 상기 그래핀 옥사이드는 1 wt% 를 초과하여 혼입될 경우 슬럼프치가 감소하여 시공성의 확보가 어렵게 되므로, 적정범위내에서 혼입된다.When the graphene oxide is incorporated in an amount of 0.05 wt% or more, the volume of the C-S-H gel pores is increased by 2 to 2.5 times, so that the microporous structure of the concrete becomes loose and is effective in controlling the generation of concrete cracks. In addition, the compressive strength and the bending strength are also increased, so that the durability is improved. When the graphene oxide is incorporated in an amount exceeding 1 wt%, the slump value is reduced and it becomes difficult to ensure the workability.

상기 폴리머수지는 콘크리트나 콘크리트로 되어 있는 바탕면의 조건에 따라 크게 영향을 받지 않고 부착력을 높이기 위하여 첨가되는 것으로 아크릴계, EVA 계, 폴리비닐알콜계, 메틸메타클릴레이트계, 비닐아세테이트계, SBR 계 등이 사용될 수 있다.  The polymer resin is added to increase the adhesion without being greatly influenced by the condition of the base surface made of concrete or concrete. It is an acrylic resin, an EVA resin, a polyvinyl alcohol resin, a methyl methacrylate resin, a vinyl acetate resin, a SBR resin Etc. may be used.

상기 폴리머수지는 0.5wt% 미만으로 첨가될 경우, 부착력의 향상에 큰 효과가 없고 4.0wt%를 초과하여 첨가될 경우, 경화체의 강도 저하가 크게 발생할 뿐 아니라, 콘크리트의 점성이 증가하게 되어 표면의 깨끗한 마감 작업이 어렵게 되는 문제점이 발생된다. When the polymer resin is added in an amount of less than 0.5 wt%, it has no significant effect on the improvement of the adhesive strength. When the polymer resin is added in an amount exceeding 4.0 wt%, the strength of the cured product is considerably lowered and the viscosity of the concrete is increased. A problem that a clean finishing work becomes difficult becomes a problem.

상기 유동화제는 보수 콘크리트의 작업성을 향상시키고 혼합수량을 감소시키기 위하여 첨가하는 것으로, 멜라민계, 나프탈렌계, 카르복실계 유동화제를 1 또는 2개를 복합적으로 사용될 수 있다. The fluidizing agent is added to improve the workability of the maintenance concrete and to reduce the mixing water, and one or two melamine-based, naphthalene-based and carboxyl-based fluidizing agents may be used in combination.

상기 유동화제는 0.2wt% 미만 첨가시에는 유동성 증진효과가 미약하기 때문에 혼합수가 다량 사용이 되어 압축강도 및 휨강도의 감소를 유발시키며, 2wt%를 초과하여 첨가될 경우, 유동성의 증진에 더 큰 효과가 없을 뿐만 아니라 재료분리 현상 등을 초래된다. When the fluidizing agent is added in an amount less than 0.2 wt%, the effect of improving the fluidity is weak. Therefore, the mixed water is used in a large amount, causing a decrease in the compressive strength and the bending strength. When the fluidizing agent is added in an amount exceeding 2 wt% But also causes separation of materials and the like.

상기 비정질 강섬유는 콘크리트 조성물의 균열에 대한 저항성을 증가시키기 위한 것으로, 비정질강섬유는 길이가 길수록 콘크리트의 균열을 제어할 수 있으나, 염소이온투수저항성의 저하가 발생할 수 있으며, 형상비 및 혼입율에 따라 콘크리트의 인장강도 및 인장변형률 향상 정도가 달라지게 되므로, 길이 10∼50㎜, 두께 10∼80㎛, 폭 1∼5㎜, 형상비 100∼300인 것이 사용된다. 일예로 형상비 100 미만의 것이 사용되면, 인장강도 및 인장변형률이 현저하게 저하된다. The amorphous steel fiber is used to increase the resistance to cracking of the concrete composition. The amorphous steel fiber can control cracking of the concrete as the length of the amorphous steel fiber increases. However, the resistance to chlorine ion permeability may be lowered. The tensile strength and the degree of enhancement of the tensile strain are different. Therefore, a length of 10 to 50 mm, a thickness of 10 to 80 m, a width of 1 to 5 mm, and an aspect ratio of 100 to 300 is used. For example, when a material having an aspect ratio of less than 100 is used, the tensile strength and the tensile strain are remarkably lowered.

상기 발수재는 콘크리트가 경화된 후 물이 경화체 내부로 침투되어 들어감으로서 야기되는 구조물의 각종 열화를 방지하는 기능을 구비하도록 하기 위하여 첨가된다. 즉, 상기 발수재는 수분과 더불어 다양한 유해물질이 경화체 내부로 침투되거나 동절기에 물이 얼어서 발생되는 열화를 차단시키기 위한 목적으로 첨가되는 것으로, 스테아린산 금속염이나 올레인산, 실란계 등 액상이나 분말이 사용될 수 있으며, 바람직하게는 스테아린산염을 사용된다. 또한, 상기 스테아린산염은 금속염으로 칼슘염 또는 나트륨염이 사용될 수 있다.The water repellent material is added so as to have a function of preventing various deterioration of the structure caused by penetration of water into the cured product after the concrete is cured. That is, the water-repellent material is added for the purpose of blocking water or various harmful substances from penetrating into the cured body or blocking deterioration caused by freezing water in the winter season, and liquid phase or powder such as metal stearate, oleic acid, , Preferably stearate is used. In addition, the stearate may be a metal salt or a calcium salt or a sodium salt.

상기 발수재는 0.1wt% 미만으로 첨가될 경우, 물의 내부 확산을 감소시키는 효과가 미미하고, 3.0wt%를 초과하여 첨가될 경우, 시멘트의 혼합성이 감소되어 압축강도 및 모체와의 부착 성능이 크게 감소되는 현상이 발생된다. When the water-repellent material is added in an amount less than 0.1 wt%, the effect of reducing the internal diffusion of water is insignificant. When the water-repellent material is added in an amount exceeding 3.0 wt%, the mixing property of the cement decreases, A phenomenon of reduction occurs.

상기 특성개선제는 보수 콘크리트의 반응속도 및 보수성을 조절하기 위한 목적으로 첨가되는 것으로, 구연산, 소듐 글루코네이트, 주석산, 규불화염, 메틸셀루로스, 에틸셀루로스, 보릭애시드 등의 성분 중에서 2∼4가지가 조합되어 첨가될 수 있다. The property improving agent is added for the purpose of controlling the reaction rate and the water retentivity of the repair concrete. It is preferable that the property improving agent is added to 2 to 4 kinds of components such as citric acid, sodium gluconate, tartaric acid, silicic acid salt, methylcellulose, ethylcellulose and boric acid May be added in combination.

상기 특성 개선제는 0.2wt% 미만으로 첨가될 경우, 반응속도 조절에 영향이 없고, 2wt%를 초과하여 첨가될 경우, 보수 콘크리트의 응결시간이 매우 늦어지게 되어 시공 작업시간을 확보하기 어렵게 된다. When the characteristics improving agent is added in an amount less than 0.2 wt%, there is no influence on the control of the reaction rate. When the property improving agent is added in an amount exceeding 2 wt%, the setting time of the repair concrete becomes very slow.

상기와 같이 이루어지는 본 발명의 모르타르 조성물은 콘크리트 구조물에 대한 단면보수뿐 아니라, 도로 측구 보수용으로도 사용될 수 있다. 또한, 본 발명에 따른 모르타르 조성물은 염해 및 동결융해 방지에 한정되는 것이 아니라, 다양한 원인에 의해 발생된 콘크리트 구조물의 열화부위의 보수작업에 적용될 수 있다. The mortar composition of the present invention as described above can be used not only for the maintenance of a section of a concrete structure but also for maintenance of a road section. In addition, the mortar composition according to the present invention is not limited to the salt and freeze-thaw prevention, but can be applied to the repair work of the deteriorated part of the concrete structure caused by various causes.

이하 상기와 같이 이루어진 모르타르 조성물을 이용한 염해로 인한 도로측구, 중성화, 화학적 등으로 피해를 입은 콘크리트 구조물 단면보수공법을 설명하면 다음과 같다. Hereinafter, a method for repairing a section of a concrete structure damaged by road surface, neutralization, or chemical damage due to salting using the mortar composition as described above will be described.

도 1 은 본 발명에 따른 보수공정을 보인 예시도를 도시한 것으로, 본 발명에 따른 염해 및 동결융해 방지용 모르타르 조성물을 이용한 콘크리트 구조물 단면보수공법은, 염해 및 동결융해로 인해 발생된 콘크리트 구조물의 열화부위를 제거하고, 부착강화 지지철물을 설치한 후, 신구접착제를 도포한 다음, 염해 및 동결융해 방지용 모르타르 조성물을 도포하도록 되어 있다. 1 is a view illustrating an example of a repairing process according to the present invention. The concrete repairing method of a concrete structure using a mortar composition for preventing salting and freezing and thawing according to the present invention is characterized in that deterioration of a concrete structure The mortar composition for preventing salting and freezing and thawing is applied after applying a new and adhesive agent.

즉, 본 발명에 따른 단면보수공법은, That is, in the section repair method according to the present invention,

콘크리트 구조물(100)의 열화된 부분이 제거되는 표면처리단계;A surface treatment step in which the deteriorated portion of the concrete structure 100 is removed;

표면처리단계 후, 콘크리트 구조물의 표면보호부위(110)에 부착강화 지지철물(10)이 설치되는 철물설치단계;A step of installing a reinforcing supporting metal material 10 on the surface protecting part 110 of the concrete structure after the surface treatment step;

콘크리트 구조물의 표면보호부위(110)에 염해 및 동결융해 방지용 모르타르 조성물(20)을 도포하는 모르타르 도포단계;를 포함한다. And a mortar applying step of applying a mortar composition (20) for preventing salting and freezing and thawing to the surface protecting part (110) of the concrete structure.

또한, 본 발명은 철물설치단계 후, 표면보호부위의 이물질을 제거하고, 신구접착제(30)가 도포되는 접착제 도포단계;를 더 포함할 수 있다.In addition, the present invention may further include a step of removing the foreign matter on the surface protecting part and applying an adhesive to which the old and new adhesives 30 are applied, after the metal fitting step.

또한, 본 발명은 표면보호단계 후 표면을 세라믹 코팅재(40)로 마감처리하는 마감처리단계;를 더 포함할 수 있다. The present invention may further include a finishing step of finishing the surface with the ceramic coating material 40 after the surface protecting step.

상기 표면처리단계는 염해, 동결융해로 인해 발생된 표면콘크리트의 피복재 탈락, 조골재 노출, 물곰보 집중, 녹물오염, 들뜸부위 및 부식을 제거하는 단계로, 열화된 콘크리트 구조물의 표면을 파쇄기 등의 공구에 의해 완전 제거한다. 또한, 열화된 부분이 제거된 표면보호부위에 대한 이물질을 제거한다. The surface treatment step is a step of removing the cover material from the surface concrete caused by salt freezing, freezing and thawing, the exposure of the coarse aggregate, the concentration of the water puddle, the contamination of the greenery, the excavation site and the corrosion, and the surface of the deteriorated concrete structure is crushed by a tool Lt; / RTI > In addition, foreign matter to the surface protecting portion from which the deteriorated portion is removed is removed.

상기 철물고정단계는 치핑에 의해 열화부를 제거한 후, 드릴등의 공구에 의해 표면보호부위를 천공한 후, 부착강화 지지철물이 설치된다. In the steel fixing step, after the deteriorated portion is removed by chipping, the surface protecting portion is pierced by a tool such as a drill, and then an attachment reinforcing supporting metal is installed.

상기 접착제 도포단계는, 부착강화 지지철물이 설치된 표면보호부위의 이물질를 고압세정수에 의해 제거한다. 이때, 이물질 제거는 100∼150㎏/㎡의 고압세정기가 사용될 수 있다. 또한, 이물질이 완전제거되면, 로울러나 도료작업용 붓 또는 에어스프레이건 등을 사용하여 신구접착제 원액 그대로 0.32㎏f/㎠ 함침시켜 균일하게 도포 한다. The adhesive applying step removes a foreign matter on the surface protecting portion provided with the attachment reinforcing support metal by the high pressure washing water. At this time, a high-pressure scrubber of 100 to 150 kg / m < 2 > Further, when foreign matter is completely removed, using, for example, roller or brush coating work or an air spray gun is applied uniformly by impregnating the old and the new adhesive stock solution as 0.32㎏ f / ㎠.

상기 모르타르 도포단계는 본 발명에 따른 염해 및 동결융해 방지용 모르타르 조성물 즉, 시멘트 20∼45wt%, 속경재 3∼15wt%, 혼합재 5∼20wt%, 실리카 충전재 25∼55wt%, 라텍스 1.0∼5.0wt%, 탄소나노튜브 혼합액 0.01∼0.3wt%, 폴리머수지 0.5∼4.0wt%, 유동화제 0.2∼2.0wt%, 비정질강섬유 0.01∼0.8wt%, 발수제 0.1∼3.0wt%, 특성개선재 0.2∼2.0wt%, 그래핀 옥사이드 0.005∼1.0 wt%를 포함하는 염해 및 동결융해 방지용 모르타르 조성물이 도포된다. The mortar applying step is a step of applying the mortar composition for preventing salting and freezing and thawing according to the present invention, namely 20 to 45 wt% of cement, 3 to 15 wt% of a hardwood material, 5 to 20 wt% of a mixed material, 25 to 55 wt% of a silica filler, 1.0 to 5.0 wt% By weight of carbon nanotube mixture, 0.5 to 4.0% by weight of polymer resin, 0.2 to 2.0% by weight of fluidizing agent, 0.01 to 0.8% by weight of amorphous steel fiber, 0.1 to 3.0% by weight of water repellent agent, 0.2 to 2.0% , And 0.005 to 1.0 wt% of graphene oxide is applied to the mortar composition for preventing corrosion and freeze-thaw.

이때, 상기 염해 및 동결융해 방지용 모르타르 조성물은 손미장 등으로 1회 1.5㎝정도 도포하며 3㎝ 이상 도포시(3㎝ 도포시 66.2㎏/㎡) 2회에 걸쳐 도포한다.At this time, the mortar composition for preventing salting and freezing and thawing is applied 1.5 cm once by hand finishing or the like and applied twice over 3 cm (66.2 kg / m 2 when 3 cm is applied).

이하, 본 발명을 실시예에 의해 상세히 설명한다. Hereinafter, the present invention will be described in detail by way of examples.

실시예 1Example 1

시멘트(포틀랜드 시멘트) 25.8 wt%, 속경재(에트링자이트 수화물) 8 wt%, 슬래그 분말 9 wt%, 제지 애쉬(분말도 blaine 4,000∼7,000㎠/g) 9 wt%, 실리카 충진재(5호규사:6호규사 = 1 : 1) 40 wt%, 라텍스(고형분48wt%) 2.8 wt%, 탄소나노튜브 혼합액 0.2 wt%, 폴리머수지(폴리비닐알콜계) 2.0 wt%, 유동화제(나프탈렌계) 1.0 wt%, 비정질 강섬유 0.4 wt%, 발수재(스테아린산 금속염) 0.98 wt%, 특성개선제(메틸셀루로스:에틸셀루로스=1:1) 0.8 wt%, 그래핀 옥사이드 0.02 wt%로 이루어진 모르타르 조성물에 대하여 부착강도, 압축강도, 30% 염화칼슘 수용액 침지 후 압축강도비, 물흡수계수, 염화물이온 침투저항성 시험을 하였으며, 그 결과는 [표1]에 나타내었다. 이때, 상기 탄소나노튜브 혼합액은 에폭시 수지 92wt%, 탄소나노튜브 8wt% 가 첨가되어 분산된 것이 사용되었다. , 9 wt% of papermaking ash (blaine 4,000 ~ 7,000 ㎠ / g), silica filler (No. 5), 8 wt% of cement (portland cement), 8 wt% of hardwood (ettringite hydrate), 9 wt% of slag powder, (Naphthalene-based) polymer resin (polyvinyl alcohol-based), 0.2 wt% of carbon nanotubes mixture, 2.8 wt% of latex (solid content 48 wt% A mortar composition composed of 1.0 wt% of amorphous steel fiber, 0.4 wt% of amorphous steel fiber, 0.98 wt% of water repellent material (metal stearate), 0.8 wt% of a property improving agent (methylcellulose: ethylcellulose = 1: 1) and 0.02 wt% of graphene oxide The compressive strength, the compressive strength ratio after immersion in 30% aqueous calcium chloride solution, the water absorption coefficient and the chloride penetration resistance test were measured and the results are shown in Table 1. At this time, the mixture of carbon nanotubes was prepared by dispersing 92 wt% of epoxy resin and 8 wt% of carbon nanotubes.

상기의 시험은 KS F 4042에 규정된 콘크리트 구조물 보수용 폴리머 시멘트 콘크리트의 각종 품질시험 방법에 준하여 실험을 하였으며, 대비군은 국내에서 시판되고 있는 단면복구용 모르타르 제품을 대상으로 하였다.The above tests were carried out in accordance with various quality test methods of polymer cement concrete for repairing concrete structures specified in KS F 4042, and the prepared mortar products were researched in Korea.

[표1][Table 1]

Figure 112017114232016-pat00001
Figure 112017114232016-pat00001

실시예 2 Example 2

시멘트(포틀랜드 시멘트) 25.8 wt%, 속경재(에트링자이트 수화물) 8 wt%, 슬래그 분말 6 wt%, 제지 애쉬(분말도 blaine 4,000∼7,000㎠/g) 12 wt%, 실리카 충진재(5호규사:6호규사 = 1 : 1) 40 wt%, 라텍스(고형분48wt%) 2.8 wt%, 탄소나노튜브 혼합액 0.2 wt%, 폴리머수지(폴리비닐알콜계) 2.0 wt%, 유동화제(나프탈렌계) 1.0 wt%, 비정질 강섬유 0.4 wt%, 발수재(스테아린산 금속염) 0.98 wt%, 특성개선제(메틸셀루로스:에틸셀루로스=1:1) 0.8 wt%, 그래핀 옥사이드 0.02 wt%로 이루어진 모르타르 조성물에 대하여 부착강도, 압축강도, 30% 염화칼슘 수용액 침지 후 압축강도비를 측정하였으며, 그 결과는 [표2]에 나타내었다. 이때, 상기 탄소나노튜브 혼합액은 에폭시 수지 92wt%, 탄소나노튜브 8wt% 가 첨가되어 분산된 것이 사용되었다. , Silica filler (No. 5), cement (portland cement) 25.8 wt%, high hardwood (ettringite hydrate) 8 wt%, slag powder 6 wt%, paper ash (powder blaine 4,000-7,000 cm2 / g) (Naphthalene-based) polymer resin (polyvinyl alcohol-based), 0.2 wt% of carbon nanotubes mixture, 2.8 wt% of latex (solid content 48 wt% A mortar composition composed of 1.0 wt% of amorphous steel fiber, 0.4 wt% of amorphous steel fiber, 0.98 wt% of water repellent material (metal stearate), 0.8 wt% of a property improving agent (methylcellulose: ethylcellulose = 1: 1) and 0.02 wt% of graphene oxide The adhesive strength, compressive strength and compressive strength ratio after immersion in 30% aqueous calcium chloride solution were measured, and the results are shown in Table 2. At this time, the mixture of carbon nanotubes was prepared by dispersing 92 wt% of epoxy resin and 8 wt% of carbon nanotubes.

실시예 3 Example 3

시멘트(포틀랜드 시멘트) 25.8 wt%, 속경재(에트링자이트 수화물) 8 wt%, 슬래그 분말 6 wt%, 제지 애쉬(분말도 blaine 4,000∼7,000㎠/g) 12 wt%, 실리카 충진재(5호규사:6호규사 = 1 : 1) 40 wt%, 라텍스(고형분48wt%) 2.8 wt%, 탄소나노튜브 혼합액 0.2 wt%, 폴리머수지(폴리비닐알콜계) 2.0 wt%, 유동화제(나프탈렌계) 1.0 wt%, 비정질 강섬유 0.4 wt%, 발수재(스테아린산 금속염) 0.98 wt%, 특성개선제(메틸셀루로스:에틸셀루로스=1:1) 0.8 wt%, 그래핀 옥사이드 0.02 wt%로 이루어진 모르타르 조성물에 대하여 부착강도, 압축강도, 30% 염화칼슘 수용액 침지 후 압축강도비를 측정하였으며, 그 결과는 [표2]에 나타내었다. , Silica filler (No. 5), cement (portland cement) 25.8 wt%, high hardwood (ettringite hydrate) 8 wt%, slag powder 6 wt%, paper ash (powder blaine 4,000-7,000 cm2 / g) (Naphthalene-based) polymer resin (polyvinyl alcohol-based), 0.2 wt% of carbon nanotubes mixture, 2.8 wt% of latex (solid content 48 wt% A mortar composition composed of 1.0 wt% of amorphous steel fiber, 0.4 wt% of amorphous steel fiber, 0.98 wt% of water repellent material (metal stearate), 0.8 wt% of a property improving agent (methylcellulose: ethylcellulose = 1: 1) and 0.02 wt% of graphene oxide The adhesive strength, compressive strength and compressive strength ratio after immersion in 30% aqueous calcium chloride solution were measured, and the results are shown in Table 2.

이때, 상기 탄소나노튜브 혼합액은 에폭시 수지 92wt%, 탄소나노튜브 8wt% 가 혼합되고, 최대전력 750W의 초음파 파쇄기에 의해, 50% 출력진폭으로 5초간 초음파 처리한 후, 15초 동안 멈추는 과정이 60분동안 반복되어 초음파 처리된 것이 사용되었다. At this time, the carbon nanotube mixture was ultrasonically treated for 5 seconds at an output amplitude of 50% by using an ultrasonic wave crusher with a maximum power of 750 W, mixed with 92 wt% of epoxy resin and 8 wt% of carbon nanotube, and then stopped for 15 seconds. Min, were sonicated.

실시예 4 Example 4

시멘트(포틀랜드 시멘트) 25.8 wt%, 속경재(에트링자이트 수화물) 8 wt%, 슬래그 분말 6 wt%, 제지 애쉬(분말도 blaine 4,000∼7,000㎠/g) 12 wt%, 실리카 충진재(5호규사:6호규사 = 1 : 1) 40 wt%, 라텍스(고형분48wt%) 2.8 wt%, 탄소나노튜브 혼합액 0.22 wt%, 폴리머수지(폴리비닐알콜계) 2.0 wt%, 유동화제(나프탈렌계) 1.0 wt%, 비정질 강섬유 0.4 wt%, 발수재(스테아린산 금속염) 0.98 wt%, 특성개선제(메틸셀루로스:에틸셀루로스=1:1) 0.8 wt%로 이루어진 모르타르 조성물에 대하여 부착강도, 압축강도, 30% 염화칼슘 수용액 침지 후 압축강도비를 측정하였으며, 그 결과는 [표2]에 나타내었다. 이때, 상기 탄소나노튜브 혼합액은 에폭시 수지 92wt%, 탄소나노튜브 8wt% 가 첨가되어 분산된 것이 사용되었다. , Silica filler (No. 5), cement (portland cement) 25.8 wt%, high hardwood (ettringite hydrate) 8 wt%, slag powder 6 wt%, paper ash (powder blaine 4,000-7,000 cm2 / g) (Naphthalene-based) polymer resin (polyvinyl alcohol-based), 0.2 wt% of carbon nanotubes mixed solution, 2.8 wt% of latex (solid content 48 wt% The compressive strength, the compressive strength and the tensile strength were measured for a mortar composition composed of 1.0 wt% of an amorphous steel fiber, 0.4 wt% of an amorphous steel fiber, 0.98 wt% of a sponge material (metal stearate) and 0.8 wt% of a property improving agent (methylcellulose: ethylcellulose = 1: The compressive strength ratios after immersion in a 30% aqueous solution of calcium chloride were measured and the results are shown in Table 2. At this time, the mixture of carbon nanotubes was prepared by dispersing 92 wt% of epoxy resin and 8 wt% of carbon nanotubes.

[표2][Table 2]

Figure 112017114232016-pat00002
Figure 112017114232016-pat00002

위의 [표2]에서와 같이, 본 발명에 따른 염해 및 동결융해 방지용 모르타르 조성물은 대비군(시중판매용 단면복구용 모르타르 조성물)에 비해 물리적 물성값인 압축강도 및 부착강도가 우수할 뿐만 아니라, 특히 내구성과 관련이 깊은 물흡수 계수, 염화물이온 침투 저항성 시험결과 매우 우수한 효과가 있음을 알 수 있다. 특히, 본 발명에 따른 염해 및 동결융해 방지용 모르타르 조성물은 염화칼슘 수용액 침지 후 측정한 압축강도 비가 매우 우수함을 알 수 있다. As shown in [Table 2] above, the mortar composition for preventing salting and freezing and thawing according to the present invention is superior in compressive strength and adhesion strength, which are physical property values, as compared with the contrast group (commercial mortar composition for commercial sale) Durability-related water absorption coefficient and chloride ion penetration resistance test result showed very good effect. Particularly, the mortar composition for preventing corrosion and freeze-thawing according to the present invention shows excellent compressive strength ratio measured after immersion in an aqueous solution of calcium chloride.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims and their equivalents. Of course, such modifications are within the scope of the claims.

(10) : 부착강화 지지철물
(20) : 염해 및 동결융해방지 모르타르 조성물
(30) : 신구접착제
(40) : 세라믹 코팅재
(10): Attachment strengthening support hardware
(20): Mortar composition for preventing salting and freeze-thawing
(30): Adhesive
(40): Ceramic coating material

Claims (10)

시멘트 성분 20∼45wt%, 속경재 3∼15wt%, 혼합재 5∼20wt%, 실리카 충전재 25∼55wt%, 라텍스 1.0∼5.0wt%, 탄소나노튜브 혼합액 0.01∼0.3wt%, 폴리머수지 0.5∼4.0wt%, 유동화제 0.2∼2.0wt%, 비정질강섬유 0.01∼0.8wt%, 발수제 0.1∼3.0wt%, 특성개선재 0.2∼2.0wt%, 그래핀 옥사이드 0.005∼1.0 wt%를 포함하되,
상기 탄소나노튜브 혼합액은, 에폭시 수지 또는, SB 라텍스수지 또는, 실리콘 수지 70∼99.9wt%에, 탄소나노튜브 0.1∼30wt% 가 첨가 분산된 것이고,
상기 그래핀 옥사이드는 에폭시 그룹 형태의 그래핀 옥사이드인 것을 특징으로 하는 염해 및 동결융해 방지용 모르타르 조성물.
A mixture of 20 to 45 wt% of a cement component, 3 to 15 wt% of a high hardwood, 5 to 20 wt% of a mixed material, 25 to 55 wt% of a silica filler, 1.0 to 5.0 wt% of a latex, 0.01 to 0.3 wt% of a carbon nanotube mixed solution, %, A fluidizing agent of 0.2 to 2.0 wt%, an amorphous steel fiber of 0.01 to 0.8 wt%, a water repellent agent of 0.1 to 3.0 wt%, a property improving agent of 0.2 to 2.0 wt% and a graphene oxide of 0.005 to 1.0 wt%
The carbon nanotube mixture is prepared by adding and dispersing 0.1 to 30 wt% of carbon nanotubes to 70 to 99.9 wt% of an epoxy resin, an SB latex resin or a silicone resin,
Wherein said graphen oxide is graphen oxide in the form of an epoxy group.
청구항 1 에 있어서;
상기 혼합재는 슬래그분말과 제지애쉬분말이 혼합된 혼합분말로 이루어지되,
상기 제지 애쉬는 분말도 blaine 4,000∼7,000(㎠/g)으로 이루어진 것을 특징으로 하는 염해 및 동결융해 방지용 모르타르 조성물.
The method of claim 1,
Wherein the mixed material is a mixed powder in which the slag powder and the paper ash powder are mixed,
Wherein the paper ash has a blaine of 4,000 to 7,000 (㎠ / g) as a powder.
청구항 2 에 있어서;
슬래그분말과 제지애쉬는 1 : 1∼2 의 중량비로 혼합되는 것을 특징으로 하는 염해 및 동결융해 방지용 모르타르 조성물.
The method of claim 2,
Wherein the slag powder and the paper ash are mixed at a weight ratio of 1: 1 to 2.
청구항 1 에 있어서;
속경재는, 에트링자이트(ettringite) 수화물이고,
실리카 충전재는, 6호 입도의 규사 40∼60wt%, 5호 입도의 규사 60∼40wt%로 이루어지며,
라텍스는, SB(Styrene-Bytaduebe) 라텍스 고형분 47∼50wt%, 물 50∼53wt% 로 이루어진 액상 라텍스이고,
유동화제는 멜라민계, 나프탈렌계, 카르복실계 유동화제를 1 또는 2개가 복합적으로 이루어지며,
발수재는 스테아린산 금속염 또는 올레인산 또는 실란계로 이루어지며,
특성개선제 구연산, 소듐 글루코네이트, 주석산, 규불화염, 메틸셀루로스, 에틸셀루로스, 보릭애시드 로 이루어진 성분 중에서 2∼4가지가 조합된 것을 특징으로 하는 염해 및 동결융해 방지용 모르타르 조성물.
The method of claim 1,
The core material is an ettringite hydrate,
The silica filler is composed of 40 to 60 wt% of silica sand having a particle size of 6 and 60 to 40 wt% of silica sand having a particle size of 5,
The latex is a liquid latex composed of 47 to 50 wt% of a solid content of SB (Styrene-Bytaduebe) latex and 50 to 53 wt% of water,
The fluidizing agent is composed of one or two melamine-based, naphthalene-based, and carboxyl-based fluidizing agents,
The water repellent material is composed of a metal stearate or oleic acid or silane,
Characteristics improving agent A mortar composition for preventing salting and freeze-thawing, which comprises 2 to 4 kinds of components selected from the group consisting of citric acid, sodium gluconate, tartaric acid, silicofluoride, methylcellulose, ethylcellulose and boric acid.
삭제delete 청구항 1 에 있어서;
탄소나노튜브(Carbon Nano Tube)는 다중벽 탄소나노튜브가 첨가되되, 인장강도 11∼63GPa, 탄성계수 300∼1,000 ㎬ 의 것이 첨가되고,
그래핀 옥사이드는, 인장강도는 15∼45㎬, 탄성계수 50∼220㎫ 인 것이 첨가되는 것을 특징으로 하는 염해 및 동결융해 방지용 모르타르 조성물.
The method of claim 1,
A carbon nanotube (Carbon Nano Tube) is added with a multi-walled carbon nanotube, and has a tensile strength of 11 to 63 GPa and an elastic modulus of 300 to 1,000 것이.
Characterized in that graphene oxide has a tensile strength of 15 to 45 GPa and an elastic modulus of 50 to 220 MPa.
청구항 1 에 있어서,
탄소나노튜브 혼합액은, 최대전력 700∼750W의 초음파 파쇄기에 의해, 40∼60% 출력진폭으로 3∼10초간 초음파 처리된 후, 10∼20초 동안 멈추는 과정이 30∼200분 동안 반복되며 초음파 처리된 것을 특징으로 하는 염해 및 동결융해 방지용 모르타르 조성물.
The method according to claim 1,
The carbon nanotube mixture is ultrasonically treated with an ultrasonic wave crusher having a maximum power of 700 to 750 W for 3 to 10 seconds at an output amplitude of 40 to 60% and then stopped for 10 to 20 seconds for 30 to 200 minutes. By weight based on the weight of the mortar composition.
삭제delete 청구항 1 에 있어서;
비정질 강섬유는, 길이 10∼50㎜, 두께 10∼80㎛, 폭 1∼5㎜, 형상비 100∼300인 것을 특징으로 하는 염해 및 동결융해 방지용 모르타르 조성물.
The method of claim 1,
Wherein the amorphous steel fiber has a length of 10 to 50 mm, a thickness of 10 to 80 m, a width of 1 to 5 mm, and an aspect ratio of 100 to 300.
콘크리트 구조물의 열화된 부분이 제거되는 표면처리단계;
표면처리단계 후, 콘크리트 구조물의 표면보호부위에 부착강화 지지철물이 설치되는 철물설치단계;
콘크리트 구조물의 표면보호부위에 청구항 1, 2, 3, 4, 6, 7, 9 중 어느 한 항에 따른 염해 및 동결융해 방지용 모르타르 조성물이 도포되는 모르타르 도포단계;를 포함하는 것을 특징으로 하는 염해 및 동결융해 방지용 모르타르 조성물을 이용한 염해로 인한 도로측구, 중성화, 화학적 등으로 피해를 입은 콘크리트 구조물 단면보수공법.
A surface treatment step of removing a deteriorated portion of the concrete structure;
After the surface treatment step, a hard metal installation step in which an adhesion strengthening supporting metal material is installed on the surface protecting part of the concrete structure;
And a mortar applying step of applying a mortar composition according to any one of claims 1, 2, 3, 4, 6, 7, and 9 to the surface protecting part of the concrete structure. Repair Method of Concrete Structures Damaged by Road Side, Neutralization, and Chemical Damage due to Salt Damage by Freezing and Melting Mortar Composition.
KR1020170153508A 2017-11-17 2017-11-17 Mortar composition for cross section ristirations and method for recovering the same thereof KR101861064B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170153508A KR101861064B1 (en) 2017-11-17 2017-11-17 Mortar composition for cross section ristirations and method for recovering the same thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170153508A KR101861064B1 (en) 2017-11-17 2017-11-17 Mortar composition for cross section ristirations and method for recovering the same thereof

Publications (1)

Publication Number Publication Date
KR101861064B1 true KR101861064B1 (en) 2018-05-28

Family

ID=62451486

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170153508A KR101861064B1 (en) 2017-11-17 2017-11-17 Mortar composition for cross section ristirations and method for recovering the same thereof

Country Status (1)

Country Link
KR (1) KR101861064B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108947376A (en) * 2018-08-16 2018-12-07 北京天维宝辰化学产品有限公司 A kind of cement mortar and preparation method thereof
CN109056312A (en) * 2018-09-08 2018-12-21 佛山朝鸿新材料科技有限公司 A kind of preparation method of high intensity tyre repairing fluid
CN109320247A (en) * 2018-11-27 2019-02-12 哈尔滨工业大学(威海) A kind of preparation method of the micro-nano composite wave-suction material of BN/C based on melamine
CN109608134A (en) * 2018-12-29 2019-04-12 济南大学 A kind of cement plate and its semidry method preparation process
CN109704670A (en) * 2019-02-27 2019-05-03 南昌航空大学 A kind of graphene modified concrete
KR20200001778A (en) * 2018-06-28 2020-01-07 한국과학기술원 Ultra-high Performance Concrete Composition With Low Shrinkage And Method for Manufacturing Ultra-high Performance Concrete Using the Same
KR20200041407A (en) * 2018-10-11 2020-04-22 (주)제이엔티아이엔씨 Polymer mortar compositon for repairment
KR102164414B1 (en) 2020-03-17 2020-10-13 (주)옥련건설 Repair and reinforcement mortar with improved salt-resistance, Repair and reinforcement materials containing the same and Method of repair and reinforcement of concrete structure using the same
KR102169484B1 (en) * 2020-04-02 2020-10-26 지엘기술주식회사 Recovery method of concrete apparatus
KR102200658B1 (en) * 2020-04-01 2021-01-12 주식회사 한국리페어기술 Composites for protecting concrete constructions, and maintenance method of the concrete construction for preventing neutralization and corrosision caused by salts and chemicals using the same
KR102200657B1 (en) * 2020-04-13 2021-01-12 주식회사 한국리페어기술 Section recovery composites for concrete constructions, and section recovery method of the concrete construction for preventing neutralization and corrosision caused by salts and chemicals using the same
KR102218634B1 (en) * 2020-04-27 2021-02-23 주식회사 한국리페어기술 Section recovery composites for concrete constructions, and reinforcing method for ductile and anti-biotic concrete construction using the same
KR102276675B1 (en) * 2021-01-04 2021-07-14 주식회사 한국리페어기술 Section recovery composites for concrete constructions, and section recovery method of the concrete construction using the same
KR102291783B1 (en) * 2020-12-29 2021-08-25 (주)상봉이엔씨 Fast-hardening cement composition containing multi-walled carbon nanotubes, fast-hardening latex-modified concrete composition containing the same, and repair method of concrete structure using the same
CN115849850A (en) * 2022-11-24 2023-03-28 上海中南建筑材料有限公司 Nano two-component interface agent for renovating city renovation outer wall and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846159B1 (en) * 2007-12-21 2008-07-14 주식회사 승화이엔씨 A composition water soluble polymer for concrete structure section repair and surface recover
KR101094755B1 (en) * 2011-07-27 2011-12-16 이영진 Surface protecting composition for all damaged concrete constructions to repair and repairing method using thereof
KR101439502B1 (en) * 2011-08-01 2014-09-15 주식회사 포스코 Method for manufacturing amorphous steel fiber reinforced concrete
KR101466067B1 (en) * 2014-05-30 2014-11-28 주식회사 한국리페어기술 Water repellent composition for cross section restorations and method for recovering the same thereof
KR101637987B1 (en) * 2015-12-24 2016-07-08 김원희 Patching repair material and repairing method of deteriorated reinforced concrete structures
KR101737000B1 (en) * 2016-03-07 2017-05-17 정은숙 Method for repairing section of deteriorated concrete structure
KR20170111373A (en) * 2016-03-28 2017-10-12 한국세라믹기술원 Mortar using activated powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846159B1 (en) * 2007-12-21 2008-07-14 주식회사 승화이엔씨 A composition water soluble polymer for concrete structure section repair and surface recover
KR101094755B1 (en) * 2011-07-27 2011-12-16 이영진 Surface protecting composition for all damaged concrete constructions to repair and repairing method using thereof
KR101439502B1 (en) * 2011-08-01 2014-09-15 주식회사 포스코 Method for manufacturing amorphous steel fiber reinforced concrete
KR101466067B1 (en) * 2014-05-30 2014-11-28 주식회사 한국리페어기술 Water repellent composition for cross section restorations and method for recovering the same thereof
KR101637987B1 (en) * 2015-12-24 2016-07-08 김원희 Patching repair material and repairing method of deteriorated reinforced concrete structures
KR101737000B1 (en) * 2016-03-07 2017-05-17 정은숙 Method for repairing section of deteriorated concrete structure
KR20170111373A (en) * 2016-03-28 2017-10-12 한국세라믹기술원 Mortar using activated powder

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200001778A (en) * 2018-06-28 2020-01-07 한국과학기술원 Ultra-high Performance Concrete Composition With Low Shrinkage And Method for Manufacturing Ultra-high Performance Concrete Using the Same
KR102148007B1 (en) 2018-06-28 2020-08-25 한국과학기술원 Ultra-high Performance Concrete Composition With Low Shrinkage And Method for Manufacturing Ultra-high Performance Concrete Using the Same
CN108947376A (en) * 2018-08-16 2018-12-07 北京天维宝辰化学产品有限公司 A kind of cement mortar and preparation method thereof
CN109056312A (en) * 2018-09-08 2018-12-21 佛山朝鸿新材料科技有限公司 A kind of preparation method of high intensity tyre repairing fluid
KR102234156B1 (en) 2018-10-11 2021-04-01 한양대학교 에리카산학협력단 Polymer mortar compositon for repairment
KR20200041407A (en) * 2018-10-11 2020-04-22 (주)제이엔티아이엔씨 Polymer mortar compositon for repairment
CN109320247A (en) * 2018-11-27 2019-02-12 哈尔滨工业大学(威海) A kind of preparation method of the micro-nano composite wave-suction material of BN/C based on melamine
CN109608134A (en) * 2018-12-29 2019-04-12 济南大学 A kind of cement plate and its semidry method preparation process
CN109608134B (en) * 2018-12-29 2021-05-25 济南大学 Cement board and semi-dry method preparation process thereof
CN109704670A (en) * 2019-02-27 2019-05-03 南昌航空大学 A kind of graphene modified concrete
CN109704670B (en) * 2019-02-27 2021-09-14 南昌航空大学 Graphene modified concrete
KR102164414B1 (en) 2020-03-17 2020-10-13 (주)옥련건설 Repair and reinforcement mortar with improved salt-resistance, Repair and reinforcement materials containing the same and Method of repair and reinforcement of concrete structure using the same
KR102200658B1 (en) * 2020-04-01 2021-01-12 주식회사 한국리페어기술 Composites for protecting concrete constructions, and maintenance method of the concrete construction for preventing neutralization and corrosision caused by salts and chemicals using the same
KR102169484B1 (en) * 2020-04-02 2020-10-26 지엘기술주식회사 Recovery method of concrete apparatus
KR102200657B1 (en) * 2020-04-13 2021-01-12 주식회사 한국리페어기술 Section recovery composites for concrete constructions, and section recovery method of the concrete construction for preventing neutralization and corrosision caused by salts and chemicals using the same
KR102218634B1 (en) * 2020-04-27 2021-02-23 주식회사 한국리페어기술 Section recovery composites for concrete constructions, and reinforcing method for ductile and anti-biotic concrete construction using the same
KR102291783B1 (en) * 2020-12-29 2021-08-25 (주)상봉이엔씨 Fast-hardening cement composition containing multi-walled carbon nanotubes, fast-hardening latex-modified concrete composition containing the same, and repair method of concrete structure using the same
KR102276675B1 (en) * 2021-01-04 2021-07-14 주식회사 한국리페어기술 Section recovery composites for concrete constructions, and section recovery method of the concrete construction using the same
CN115849850A (en) * 2022-11-24 2023-03-28 上海中南建筑材料有限公司 Nano two-component interface agent for renovating city renovation outer wall and preparation method thereof
CN115849850B (en) * 2022-11-24 2024-04-26 上海中南建筑材料有限公司 Nanometer double-component interface agent for urban renovation of exterior wall and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101861064B1 (en) Mortar composition for cross section ristirations and method for recovering the same thereof
KR101801616B1 (en) Cement mortar composition for repairing the section of the concrete structure and repairing method of the concrete structure
KR100814962B1 (en) Mortar including natural minerals for recovering deteriorate parts in concrete and method for recovering the same thereof
KR102063011B1 (en) Mortar for reparing cross section of concrete structure and construction method for reparing cross section of concrete structure using the same
KR101355392B1 (en) Cement composite with improved acid proof and salt-resistance, mortar cement composite for repairing the concrete structure and repairing method of concrete structure using the mortar cement composite
KR101559572B1 (en) Repairing method for cross-section of reinforced concrete structures using functional mortar composition for cross-section repairment
KR101340856B1 (en) Cement mortar composite having improved durability and watertightness and repairing method of conctrete structure using the composite
KR101637987B1 (en) Patching repair material and repairing method of deteriorated reinforced concrete structures
KR101893060B1 (en) Mortar composition for repairing and reinforcing concrete structure, and method of repairing and reinforcing concrete structure using the same
KR101311699B1 (en) Composite for repairing concrete structure and repairing method of concrete structure using the composite
KR100895497B1 (en) The structure repair and reinforcement method for which a concrete structure neutralization, a cement mortar composition for damage from salt water prevention and this were used
KR101921929B1 (en) Functional cement mortar composition for repairing concrete structure and method for repairing concrete structure therewith
KR101446245B1 (en) Color cement mortar composition with excellent durability for repairing concrete structure and method for repairing concrete structure using the composition
KR101911316B1 (en) Eco-friendly color cement mortar composition for repairing concrete structure and method for repairing concrete structure therewith
KR102164414B1 (en) Repair and reinforcement mortar with improved salt-resistance, Repair and reinforcement materials containing the same and Method of repair and reinforcement of concrete structure using the same
KR101941179B1 (en) Composition for repairing and reinforcing concrete structure comprising high strength mortar, and method of repairing and reinforcing concrete structures using the same
KR101460498B1 (en) Compositions of self water absorbing type retentive and repair method for concrete structures using the same
KR101634367B1 (en) Concrete waterproofing method using resin mortar
KR101506913B1 (en) Mortar composition for reinforcement
KR101931158B1 (en) Mortar containing phosphoric acid-based ceramic resin composition and method for repairing and surface-protecting a concrete structure using the mortar
KR102158508B1 (en) Polymer Cement Mortar Composition for repair and reinforcement of concrete structure section using graphene and repair and reinforcement method of concrete structure using same
KR102373902B1 (en) Concrete mortar for repairing cross-section of concrete structure having sulfate and salt resistance and the method of repairing cross-section of concrete structure using the same
KR101166792B1 (en) Restroative mortar compositions for cross section restorations and repairing method of reinforced concrete using that
JP4842050B2 (en) Section repair material and section repair method
KR102266502B1 (en) Concrete section repair and reinforcement method

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
R401 Registration of restoration