KR101860848B1 - Composition for extruding building panel with fine particle of carbonized waste concrete of mineral carbonization process, manufacturing method of extruding building panel using thereof, and extruding panel - Google Patents

Composition for extruding building panel with fine particle of carbonized waste concrete of mineral carbonization process, manufacturing method of extruding building panel using thereof, and extruding panel Download PDF

Info

Publication number
KR101860848B1
KR101860848B1 KR1020170066201A KR20170066201A KR101860848B1 KR 101860848 B1 KR101860848 B1 KR 101860848B1 KR 1020170066201 A KR1020170066201 A KR 1020170066201A KR 20170066201 A KR20170066201 A KR 20170066201A KR 101860848 B1 KR101860848 B1 KR 101860848B1
Authority
KR
South Korea
Prior art keywords
waste concrete
weight
fine powder
panel
carbonated
Prior art date
Application number
KR1020170066201A
Other languages
Korean (ko)
Inventor
장원석
최윤수
오문세
박성용
김경민
김진만
이상민
최홍범
김연진
이철호
전종기
Original Assignee
한국지역난방공사
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지역난방공사, 공주대학교 산학협력단 filed Critical 한국지역난방공사
Priority to KR1020170066201A priority Critical patent/KR101860848B1/en
Application granted granted Critical
Publication of KR101860848B1 publication Critical patent/KR101860848B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/245Curing concrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/247Controlling the humidity during curing, setting or hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/02Cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/167Recycled materials, i.e. waste materials reused in the production of the same materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • C04B20/008Micro- or nanosized fillers, e.g. micronised fillers with particle size smaller than that of the hydraulic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/44Thickening, gelling or viscosity increasing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

The present invention relates to an extruded panel composition for a building, mixed with a fine powder of carbonized waste concrete in a mineral carbonization process, a manufacturing method for an extruded panel for a building using the same, and an extruded panel for a building. Specifically, the extruded panel used as a construction material is manufactured from a fine powder of carbonized waste concrete, which is a mineral carbonization matter in which calcium carbonate generated during the mineral carbonization process and waste concrete are mixed. Thus, the extruded panel has excellent economic feasibility by recycling the waste concrete which is construction waste and solves environment pollution problems by reducing the amount of waste. The extruded panel also has excellent durability, and the extruded panel composition has effects such as irradiation of far-infrared rays and anions.

Description

광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물과 이를 이용한 건축용 압출 패널의 제조 공법 및 건축용 압출 패널{COMPOSITION FOR EXTRUDING BUILDING PANEL WITH FINE PARTICLE OF CARBONIZED WASTE CONCRETE OF MINERAL CARBONIZATION PROCESS, MANUFACTURING METHOD OF EXTRUDING BUILDING PANEL USING THEREOF, AND EXTRUDING PANEL}TECHNICAL FIELD The present invention relates to an extrusion panel composition for architectural use mixed with carbonated waste concrete fine powder of a mineral carbonation process, and a method for manufacturing an extrusion panel for construction using the same, and an extrusion panel for construction using the same. BACKGROUND OF THE INVENTION EXTRUDING BUILDING PANEL USING THEREOF, AND EXTRUDING PANEL}

본 발명은 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물과 이를 이용한 건축용 압출 패널의 제조 공법 및 압출 패널에 관한 것으로서, 상세하게는 광물탄산화 과정에서 발생되는 탄산칼슘과 폐콘크리트가 혼합된 광물탄산화 물질인 탄산화된 폐콘크리트 미분말을 이용하여 건축자재에 필요한 압출 패널을 제조함으로써 건축폐기물인 폐콘크리트를 재활용하여 경제성이 뛰어날 뿐만 아니라 폐기물을 저감시켜 환경오염문제를 해결하고, 내구성이 뛰어난 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물과 이를 이용한 건축용 압출 패널의 제조 공법 및 압출 패널에 관한 것이다.The present invention relates to an extruded panel composition for construction mixed with carbonated waste concrete powder of a mineral carbonation process, and a method for manufacturing an extruded panel for construction using the same, and more particularly, to a method of manufacturing an extruded panel for construction using calcium carbonate and waste concrete By using the carbonated waste concrete fine powder that is mixed mineral carbonate, it is possible to recycle waste concrete, which is a construction waste, by manufacturing the extruded panel necessary for building materials, thereby solving the environmental pollution problem by reducing the waste as well as being economical. The present invention relates to an extruded panel composition for construction, in which carbonized waste concrete powder is mixed with a mineral carbonation process, and a manufacturing method and an extruded panel for a construction extruded panel.

산업의 발달과 함께 이산화탄소의 대기 중 농도증가로 인한 지구온난화 문제가 대두되고 있는데, 대기중 이산화탄소 농도가 증가하는 원인 중 가장 큰 원인은 에너지 산업에서 사용되는 석탄, 석유, 액화천연가스 등의 화석연료의 사용이다.With the development of industry, global warming problem is rising due to the increase of atmospheric concentration of carbon dioxide. The main cause of increase of atmospheric carbon dioxide concentration is fossil fuel such as coal, oil, liquefied natural gas .

산업화가 시작된 19세기 초반부터 대기 중에 이산화질소(CO2), 메탄(CH4), 이산화질소, 할로카본 등의 온실 가스농도가 증가하게 되었고 20세기 중반 이후 급속하게 증가하였다.From the beginning of industrialization in the early 19th century, the concentration of greenhouse gases such as nitrogen dioxide (CO 2 ), methane (CH 4 ), nitrogen dioxide and halocarbon increased in the atmosphere and rapidly increased since the middle of the 20th century.

이러한 온실가스의 증가로 인한 지구 온난화 형상이 가속화되면서 배출 및 처리에 대한 규제가 엄격해지고 있다. 1992년 6월 브라질 리우에서 열린 환경과 개발에 관한 UN회의를 통하여 지구온난화에 대한 국제적 관심이 점차로 높아지고 있으며, 미국과 일본을 포함한 선진국들은 2010년 지구온실가스 배출량을 1990년 대비 5.2% 감축하기로 합의하는 등 온실가스 저감 방안에 대한 국제적 합의가 이루어지고 있다. 특히 지구온난화현상을 야기하는 온실가스 중 80%정도를 차지하는 이산화탄소의 분리 및 고정은 더욱 중요한 문제로 대두되었다.As global warming is accelerated due to the increase of greenhouse gases, regulations on emission and treatment are becoming strict. Global concerns about global warming are increasingly being raised at the UN Conference on Environment and Development in Rio in Brazil in June 1992. Developed countries, including the United States and Japan, will cut global greenhouse gas emissions by 5.2% There is international consensus on how to reduce greenhouse gas emissions. Particularly, separation and fixing of carbon dioxide, which accounts for about 80% of greenhouse gases causing global warming phenomenon, became more important problem.

이산화탄소 배출량을 억제하기 위한 기술로는 배출감소를 위한 에너지 절약기술, 배출되는 이산화탄소의 분리회수기술, 이산화탄소를 이용하거나 고정화시키는 기술, 이산화탄소를 배출하지 않는 신재생 에너지기술 등이 있다.Techniques to reduce carbon dioxide emissions include energy saving technologies for reducing emissions, separation and recovery technologies for carbon dioxide emissions, technologies for using or fixing carbon dioxide, and renewable energy technologies for not emitting carbon dioxide.

지금까지 연구된 이산화탄소 분리회수기술로는 흡수법, 흡착법, 막분리법, 심냉법 등이 현실성 있는 대안으로 제시되고 있다. 특히, 흡수법은 대용량의 가스처리가 용이하고, 저농도의 가스 분리에 적합하기 때문에 대부분의 산업체 및 발전소에 적용이 용이하여 현재 상업 운전 중에 있다.As a carbon dioxide separation and recovery technology that has been studied so far, the absorption method, the adsorption method, the membrane separation method, and the deep sea cooling method are suggested as realistic alternatives. Particularly, the absorption method is easy to apply for large-volume gas treatment and is suitable for low-concentration gas separation, so that it can be easily applied to most industrial plants and power plants and is currently in commercial operation.

또한, 광물탄산화(Mineral carbonation) 기술은 배출원에서 포집된 이산화탄소(CO2)를 자연산 광물 또는 산업체에서 배출되는 무기계 산업부산물(Inorganic industrial waste)과 반응시켜 새로운 광물로 합성시키는 기술로 광물과 CO2를 반응시켜 탄산염 광물(CaCO3, MgCO3)로 만드는 기술이다. 생성된 탄산염은 안정하여 물에 잘 녹지 않으며, 대기 중 이산화탄소 방출이 불가능해 환경적으로도 해가 없는 광물로서 이산화탄소의 영구 저장 해결책을 제공할 수 있으며 또한 고형 탄산염은 건축 재료 등으로 사용할 수 있다.Mineral carbonation technology is a technique to synthesize carbon dioxide (CO 2 ) collected from a source with new mineral which reacts with inorganic industrial waste or inorganic industrial waste emitted from industry. It uses mineral and CO 2 (CaCO 3 , MgCO 3 ). The carbonate produced is stable, does not dissolve in water, and can not release atmospheric carbon dioxide. As a environmentally harmless mineral, it can provide a permanent storage solution of carbon dioxide. Solid carbonate can also be used as building materials.

콘크리트계 부산물은 골재를 제외하면, 광물탄산화 출발물질인 산화칼슘(CaO)을 20~60 중량% 정도를 함유하고 있어 광물탄산화에 적합한 재료이며, 광물탄산화 이후 생성되는 탄산염도 건설재료로서 활용이 가능하고, 또한 탄산염 회수 후 잔재물의 경우 높은 실리카 함량을 가지는 재료로서 천연자원을 대체할 수 있는 재료로서 활용이 가능성이 있다.Concrete-based by-products contain about 20 to 60% by weight of calcium oxide (CaO), which is a starting material for mineral carbonation, except for aggregates, and are suitable for mineral carbonation. And as a material having a high silica content in the case of a residue after the carbonate recovery, there is a possibility to utilize it as a material that can replace natural resources.

전국에서 발생하는 모든 콘크리트계 폐기물을 이용하여 광물탄산화하게 되면, 연간 691.7만 톤의 온실가스 저감효과를 얻을 수 있으므로 폐콘크리트를 이용한 광물탄산화는 온실가스 저감에 매우 유용한 수단이지만, 현재까지 폐콘크리트 기반의 광물탄산화 연구는 매우 제한적으로 이루어졌을 뿐만 아니라 광물탄산화 공정 후에 발생하는 반응생성물에 대한 활용 연구 또한 매우 미진한 실정이다. Mineral carbonation by using all the concrete wastes generated in the whole country can achieve 6,971,000 tons of greenhouse gas reduction effect per year. Therefore, mineral carbonation using waste concrete is a very useful means for reducing greenhouse gas. However, Mineral carbonation of minerals has been limited and research on the reaction products after minerals carbonation process has been very limited.

(선행기술 1) 국내 특허 등록공보 제10-0879247호(Prior art 1) Korean Patent Registration No. 10-0879247 (선행기술 2) 국내 특허 등록공보 제10-1659892호(Prior art 2) Korean Patent Registration No. 10-1659892

본 발명은 상기와 같은 요구에 부응하기 위한 것으로, 광물탄산화 과정에서 발생되는 탄산염 광물(CaCO3, MgCO3)과 폐콘크리트가 혼합된 광물탄산화 물질인 탄산화된 폐콘크리트 미분말을 이용하여 건축자재에 필요한 압출 패널을 제조하도록 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물과 이를 이용한 건축용 압출 패널의 제조 공법 및 압출 패널을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a carbonated mineral concrete which is a mineral carbonated material mixed with carbonate minerals (CaCO 3 , MgCO 3 ) The present invention has been made in view of the above problems, and it is an object of the present invention to provide an extruded panel composition for construction using mixed carbonated spent concrete powder of a mineral carbonation process for producing an extruded panel.

또한, 본 발명은 폐콘크리트 미분말과 이산화탄소를 반응시켜 물에 잘 녹지 않으며, 대기 중 이산화탄소 방출이 불가능해 환경적으로도 해가 없는 탄산염 광물(CaCO3, MgCO3)을 제조함으로써 이산화탄소의 영구 저장 해결책을 제공할 수 있으며, 생성된 탄산칼슘 침전물, 즉 탄산염 광물을 이용할 수 있도록 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 압출 패널용 조성물과 이를 이용한 압출 패널의 제조 공법 및 압출 패널을 제공하는데 다른 목적이 있다.The present invention also relates to a method for producing carbon dioxide minerals (CaCO 3 , MgCO 3 ) which does not dissolve in water by reacting waste concrete fine powder with carbon dioxide, And a carbonated mineral precipitate, that is, carbonate carbonate minerals can be utilized, and a method for manufacturing an extruded panel using the same, and an extrusion panel using the composition There is another purpose.

상기와 같은 목적을 달성하기 위한 본 발명의 특징은,According to an aspect of the present invention,

탄산화된 폐콘크리트 미분말을 포함한 분말계 재료 70~80중량%, 물 15~25중량%, 펄프 섬유 1~3중량%, 폴리프로필렌(PP) 섬유 0.5~2.0중량%, 증점제 0.5~2.0중량%를 혼합하는 것을 특징으로 한다.The pulp fiber is used in an amount of from 0.5 to 2.0% by weight and the thickener is used in an amount of from 0.5 to 2.0% by weight, the pulverized fibrous material containing 70 to 80% by weight of carbonated pulverized concrete powder, 15 to 25% .

그리고, 상기 분말계 재료는 입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 1종 보통 포틀랜드 시멘트 30~55중량%와, SiO2 함량 85중량%이고, 입자가 20~50㎛ 범위의 평균 입자 크기를 갖는 실리카 미분말 30~40중량%, 입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 상기 탄산화된 폐콘크리트 미분말 15~30중량%가 혼합되어 이루어진다.The powder-based material is characterized by comprising 30 to 55% by weight of one kind of ordinary Portland cement having an average particle size in the range of 15 to 75 mu m, an SiO2 content of 85% by weight, and an average particle size 30 to 40% by weight of the fine silica powder and 15 to 30% by weight of the carbonated waste concrete fine powder having an average particle size in the range of 15 to 75 占 퐉.

또한, 상기 증점제는 메틸셀룰로스(Methyl cellulose)계이다.The thickening agent is methyl cellulose.

또, 상기 탄산화된 폐콘크리트 미분말은 폐콘크리트 미분말이 5~20중량%, 물 80~95중량%로 혼합된 슬러지에 이산화탄소를 공급하여 탄산화시킨다.The carbonated waste concrete fine powder is carbonated by supplying carbon dioxide to sludge mixed with 5 to 20 wt% of pulverized concrete fine powder and 80 to 95 wt% of water.

이어서, 상기 탄산화된 폐콘크리트 미분말은 SiO2 43~46중량%, CaO 26~30중량%, Al2O3 11~13중량%, Fe2O3 5~6중량%, K2O 3~4중량%, MgO 2~3중량%, Na2O 1~2중량%, TiO2 0.5~0.7중량%, MnO 0.1~0.2중량%, 기타 성분 1.7~1.9중량%로 구성된다.Next, the carbonated waste concrete fine powder contains 43 to 46 wt% of SiO 2 , 26 to 30 wt% of CaO, 11 to 13 wt% of Al 2 O 3 , 5 to 6 wt% of Fe 2 O 3 , K 2 O 3 to 4 2 to 3 wt% of MgO, 1 to 2 wt% of Na 2 O, 0.5 to 0.7 wt% of TiO 2 , 0.1 to 0.2 wt% of MnO and 1.7 to 1.9 wt% of other components.

계속해서, 상기 탄산화된 폐콘크리트 미분말은 탄산화시 이산화탄소 제거율을 증대시키도록 내부에 스펀지 담체를 투입한다.Subsequently, the carbonized waste concrete fine powder is injected into the inside of the sponge carrier to increase the carbon dioxide removal rate during carbonation.

본 발명의 다른 특징은,According to another aspect of the present invention,

상기의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 이용한 압출 패널의 제조 공법에 있어서, 탄산화된 폐콘크리트 미분말을 포함한 분말계 재료 70~80중량%, 물 15~25중량%, 펄프 섬유 1~3중량%, 폴리프로필렌(PP) 섬유 0.5~2.0중량%, 증점제 0.5~2.0중량%를 혼합하는 혼합 공정과; 혼합물을 압출기에 넣어 압출 성형하는 성형 공정; 및 성형물을 양생시키는 양생 공정으로 이루어지는 것을 특징으로 한다.In the method of manufacturing an extruded panel using the extruded panel composition for architectural use mixed with carbonated waste concrete fine powder, 70 to 80% by weight of powdered material containing carbonated waste concrete fine powder, 15 to 25% by weight of water, To 3 wt%, polypropylene (PP) fiber 0.5 to 2.0 wt%, and thickener 0.5 to 2.0 wt%; A molding step of extruding the mixture into an extruder; And a curing step of curing the molded product.

그리고, 상기 혼합 공정은 탄산화된 폐콘크리트 미분말을 포함한 분말계 재료 70~80중량%, 펄프 섬유 1~3량%, 폴리프로필렌(PP) 섬유 0.5~2.0중량%, 증점제 0.5~2.0중량%를 3~5분간 1차 혼합하고, 물 15~25중량%를 투입하여 5~7분간 2차 혼합한다.The mixing step is carried out in such a manner that 70 to 80% by weight of powdered material containing carbonated waste concrete fine powder, 1 to 3% by weight of pulp fibers, 0.5 to 2.0% by weight of polypropylene (PP) fibers, 0.5 to 2.0% For 5 minutes, and 15 to 25% by weight of water are added thereto, followed by secondary mixing for 5 to 7 minutes.

또한, 상기 분말계 재료는 입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 1종 보통 포틀랜드 시멘트 30~55중량%와, SiO2 함량 85중량%이고, 입자가 20~50㎛ 범위의 평균 입자 크기를 갖는 실리카 미분말 30~40중량%, 입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 상기 탄산화된 폐콘크리트 미분말 15~30중량%가 혼합되어 이루어진다.Further, the powder-based material is characterized by comprising 30 to 55% by weight of one kind of ordinary Portland cement having an average particle size in the range of 15 to 75 占 퐉, 85% by weight of SiO2 and having an average particle size 30 to 40% by weight of the fine silica powder and 15 to 30% by weight of the carbonated waste concrete fine powder having an average particle size in the range of 15 to 75 占 퐉.

또, 상기 양생 공정은 온도 80℃, 상대습도 100%에서 증기 양생을 수행하거나, 10기압, 180℃에서 오토클레이브 양생을 수행한다.The curing step is performed by steam curing at a temperature of 80 ° C and a relative humidity of 100%, or autoclave curing at 10 ° C and 180 ° C.

본 발명의 또 다른 특징은,According to still another aspect of the present invention,

상기의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 이용한 건축용 압출 패널의 제조 공법에 의해 제조된 압출 패널을 특징으로 한다.And an extrusion panel manufactured by a manufacturing method of a building extrusion panel using the extrusion panel composition for construction mixed with the carbonated waste concrete fine powder.

상기와 같이 구성되는 본 발명인 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물과 이를 이용한 건축용 압출 패널의 제조 공법 및 압출 패널에 따르면, 광물탄산화 과정에서 발생되는 탄산칼슘과 폐콘크리트가 혼합된 광물탄산화 물질인 탄산화된 폐콘크리트 미분말을 이용하여 건축자재인 압출 패널을 제조함으로써 건축폐기물인 폐콘크리트를 재활용하여 경제성이 뛰어날 뿐만 아니라 폐기물을 저감시켜 환경오염문제를 해결하고, 내구성이 뛰어나며, 건축자재 조성물에 음이온, 원적외선 방사 등의 효과를 가질 수 있다.According to the present invention, the extrusion panel composition for construction mixed with the carbonated waste concrete fine powder of the mineral carbonation process of the present invention and the manufacturing method and extrusion panel for the construction extrusion panel using the same, calcium carbonate and waste concrete generated in the mineral carbonation process By manufacturing extruded panels, which are building materials, by using carbonated waste concrete fine powder, which is a mixed mineral carbonated material, waste concrete, which is a construction waste, is recycled to solve not only economical efficiency but also environmental pollution problem by reducing waste, The building material composition can have effects such as anion and far-infrared radiation.

또한, 본 발명에 따르면 폐콘크리트 미분말과 이산화탄소를 반응시켜 물에 잘 녹지 않으며, 대기 중 이산화탄소 방출이 불가능해 환경적으로도 해가 없는 탄산염 광물(CaCO3, MgCO3)을 제조함으로써 이산화탄소의 영구 저장 해결책을 제공할 수 있다.In addition, according to the present invention, it is possible to produce a carbonate mineral (CaCO 3 , MgCO 3 ) which does not dissolve in water due to the reaction of waste concrete fine powder with carbon dioxide and can not release atmospheric carbon dioxide, Solution.

또, 본 발명에 따르면 탄산염 광물을 직접 건설재료로서 활용이 가능하고, 탄산염 광물 회수 후 잔재물의 경우 높은 실리카 함량을 가지는 재료로서 천연자원을 대체할 수 있는 재료로서 활용할 수 있다.In addition, according to the present invention, a carbonate mineral can be directly used as a construction material, and as a material having a high silica content in the case of a residue after recovering a carbonate mineral, it can be utilized as a substitute for natural resources.

도 1은 본 발명에 따른 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 이용한 건축용 압출 패널의 제조 공법을 설명하기 위한 공정도이다.
도 2는 본 발명의 실험예에 적용된 광물 탄산화 반응기의 도면이다.
도 3은 폐콘크리트 저장조 상징액과 스펀지 담체 공급이 광물탄산화에 미치는 영향을 나타낸 그래프이다.
도 4는 광물 탄산화 반응기에 의해 생성된 탄산화된 폐콘크리트 미분말의 SEM 사진이다.
도 5는 본 발명의 실험예에 따른 관입저항 및 물/바인더 비를 나타낸 그래프이다.
도 6은 본 발명의 실험예에 따른 압축 강도를 나타낸 그래프이다.
도 7은 본 발명의 실험예에 따른 휨 강도를 나타낸 그래프이다.
도 8 및 도 9는 실리카 미분말과 폐콘크리트 미분말 원시료, 탄산화된 폐콘크리트 미분말을 대체한 각 배합의 대체율에 따른 C/S 몰비를 나타낸 그래프이다.
도 10은 본 발명의 실리카 미분말 대체 실험예에 따른 압축 강도를 나타낸 그래프이다.
도 11은 본 발명의 실리카 미분말 대체 실험예에 따른 휨 강도를 나타낸 그래프이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram for explaining a method for manufacturing an extrusion panel for a building using a composition for extruding panels for construction mixed with carbonated waste concrete powder of a mineral carbonation process according to the present invention. FIG.
2 is a view of a mineral carbonation reactor applied to an experimental example of the present invention.
FIG. 3 is a graph showing the influence of the waste concrete storage tank and sponge carrier supply on mineral carbonation.
4 is an SEM photograph of carbonated waste concrete fine powder produced by a mineral carbonation reactor.
5 is a graph showing penetration resistance and water / binder ratio according to an experimental example of the present invention.
6 is a graph showing the compressive strength according to the experimental example of the present invention.
7 is a graph showing the bending strength according to an experimental example of the present invention.
FIGS. 8 and 9 are graphs showing the C / S molar ratios according to substitution ratios of each compound substituting the silica fine powder, the waste concrete fine powder raw material sample and the carbonated waste concrete fine powder.
10 is a graph showing the compressive strength according to Experimental Examples for Replacing the Fine Silica Powder of the Present Invention.
11 is a graph showing the flexural strength according to the experimental example of substituting the fine silica powder of the present invention.

이하, 본 발명에 따른 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an extrusion panel composition for construction in which a carbonated waste concrete fine powder of a mineral carbonation process according to the present invention is mixed will be described in detail with reference to the accompanying drawings.

하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. The following terms are defined in consideration of the functions of the present invention, and these may be changed according to the intention of the user, the operator, or the like. Therefore, the definition should be based on the contents throughout this specification.

먼저, 본 발명에 따른 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 압출 패널용 조성물은 탄산화된 폐콘크리트 미분말을 포함한 분말계 재료 70~80중량%, 물 15~25중량%, 펄프 섬유 1~3중량%, 폴리프로필렌(PP) 섬유 0.5~2.0중량%, 증점제 0.5~2.0중량%를 혼합하여 이루어진다.First, the composition for the extrusion panel in which the carbonated waste concrete fine powder of the mineral carbonation process according to the present invention is mixed comprises 70 to 80% by weight of powdery material containing carbonated waste concrete fine powder, 15 to 25% by weight of water, 3 to 3 wt% of polypropylene (PP) fiber, 0.5 to 2.0 wt% of polypropylene (PP) fiber, and 0.5 to 2.0 wt% of a thickener.

그리고, 분말계 재료는 입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 1종 보통 포틀랜드 시멘트 30~55중량%와, SiO2 함량 85중량%이고, 입자가 20~50㎛ 범위의 평균 입자 크기를 갖는 실리카 미분말 30~40중량%, 입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 탄산화된 폐콘크리트 미분말 20~30중량%가 혼합되어 이루어진다.Then, the powder-based material is one kinds of ordinary Portland cement and 30-55% by weight, SiO 2 content 85% by weight, the particles have an average particle size of 20 ~ 50㎛ range particles have a mean particle size in the range 15 ~ 75 30 to 40% by weight of fine silica powder having a mean particle size in the range of 15 to 75 占 퐉, and 20 to 30% by weight of carbonated waste concrete fine powder having a particle size in the range of 15 to 75 占 퐉.

이때, 1종 보통 포틀랜드 시멘트는 KS L 5201에 준하는 시멘트로 입자가 15~75㎛ 범위의 평균 입자 크기를 가지며, 30~55중량%로 혼합되는 데, 30중량% 미만으로 혼합되면 강도가 약해지고, 55중량%를 초과하면 제조 원가가 상승되며, 바람직하게는 50중량%로 혼합된다.At this time, one kind of ordinary Portland cement is a cement according to KS L 5201, and the particles have an average particle size in the range of 15 to 75 μm and are mixed in 30 to 55% by weight. When they are mixed in less than 30% If it exceeds 55% by weight, the production cost is increased, preferably 50% by weight.

또한, 실리카 미분말(규사 미분)은 골재 생산공정에서 집진설비에 의해 포집된 것으로 25~35중량%로 혼합되는 데, 20중량% 미만으로 혼합되면 강도가 약해지고, 40중량%를 초과하면 제조 원가가 상승되며, 바람직하게는 37.5중량%로 혼합된다.In addition, the silica fine powder (silica fine powder) is collected by the dust collector in the aggregate production process and is mixed at 25 to 35% by weight. When mixed at less than 20% by weight, the strength is weakened. Preferably 37.5% by weight.

또, 광물탄산화 공정의 탄산화된 폐콘크리트 미분말은 폐콘크리트 미분말이 5~20중량%, 물 80~95중량%로 혼합된 슬러지 또는 레미콘 상징액에 이산화탄소를 공급하여 탄산화시켜 탄산염 광물(CaCO3, MgCO3)과 미반응된 폐콘크리트 미분말을 혼합하여 제조된 것으로서, 실리카 미분말과 10~30중량%로 혼합되면, 최적 수열합성조건을 만족하여 강도 증진에 기여하고, 30중량%를 초과하면 강도가 약해지며, 바람직하게는 12.5중량%로 혼합된다. 이때, 탄산화된 폐콘크리트 미분말은 SiO2 43~46중량%, CaO 26~30중량%, Al2O3 11~13중량%, Fe2O3 5~6중량%, K2O 3~4중량%, MgO 2~3중량%, Na2O 1~2중량%, TiO2 0.5~0.7중량%, MnO 0.1~0.2중량%, 기타 성분 1.7~1.9중량%로 구성되며, 바람직하게는 SiO2 44.8중량%, CaO 28.1중량%, Al2O3 12.3중량%, Fe2O3 5.49중량%, K2O 3.27중량%, MgO 2.27중량%, Na2O 1.17중량%, TiO2 0.635중량%, MnO 0.149중량%, 기타 성분 1.861중량%으로 구성된다. 또한, 탄산화된 폐콘크리트 미분말은 탄산화시 이산화탄소 제거율을 증대시키도록 내부에 스펀지 담체를 투입하는 것이 바람직하다.The carbonated waste concrete powder in the mineral carbonation process is carbonated by supplying carbon dioxide to sludge or remicon concentrate mixed with 5 to 20 wt% of pulverized concrete fine powder and 80 to 95 wt% of water to produce carbonated mineral (CaCO 3 , MgCO 3 ) And unreacted waste concrete fine powder and when mixed with 10-30% by weight of the fine silica powder, satisfies the optimum hydrothermal synthesis condition and contributes to the strength enhancement, and when it exceeds 30% by weight, the strength is weakened By weight, preferably 12.5% by weight. At this time, the carbonation waste concrete powder is SiO 2 43 ~ 46 wt%, CaO 26 ~ 30 wt%, Al 2 O 3 11 ~ 13 weight%, Fe 2 O 3 5 ~ 6 wt%, K 2 O 3 ~ 4 parts by weight %, MgO 2 ~ 3 wt%, Na 2 O 1 ~ 2 wt%, TiO 2 0.5 ~ 0.7 wt%, MnO 0.1 ~ 0.2 weight%, and others are constituents of 1.7 ~ 1.9% by weight, preferably SiO 2 44.8 weight%, CaO 28.1 wt%, Al 2 O 3 12.3 wt.%, Fe 2 O 3 5.49 wt.%, K 2 O 3.27 wt%, MgO 2.27% by weight, Na 2 O 1.17% by weight, TiO 2 0.635% by weight, MnO 0.149% by weight, and the other components 1.861% by weight. In addition, it is preferable to inject the sponge carrier into the inside of the carbonated waste concrete fine powder so as to increase the carbon dioxide removal rate during carbonation.

이어서, 펄프 섬유는 그 길이가 2㎜ 미만으로 압출 시 표면 마감을 매끄럽게 하고, 생산성을 높이며 압출제품의 휨강도를 증진시키도록 1~3중량%로 혼합되는 데, 1중량% 미만으로 혼합되면 효과가 미미하고, 3중량%를 초과하면 제조 원가가 상승되며, 바람직하게는 1.4중량%로 혼합된다. The pulp fibers are then mixed in an amount of from 1 to 3% by weight so that the length of the pulp fibers is less than 2 mm, so that the surface finish is smooth, the productivity is increased and the bending strength of the extruded product is enhanced. When the amount is more than 3% by weight, the production cost is increased, and preferably 1.4% by weight.

계속해서, 폴리프로필렌(PP) 섬유는 그 길이가 20㎜ 미만으로 압축 패널에서 균열을 방지하고, 고온 노출 시 내부 수증기의 통로역할을 하여 폭렬을 방지하며, 휨강도, 내충격성, 인성 등을 개선하여 내구성을 향상시키도록 0.5~2.0중량%로 혼합되는 데, 0.5중량% 미만으로 혼합되면 효과가 미미하고, 2중량%를 초과하면 제조 원가가 상승되며, 바람직하게는 0.6중량%로 혼합된다. Subsequently, the polypropylene (PP) fiber has a length of less than 20 mm to prevent cracking in the compression panel, prevent explosion by acting as a passage of internal water vapor at high temperature exposure, and improve bending strength, impact resistance and toughness If the content is less than 0.5% by weight, the effect is insignificant. If the content is more than 2% by weight, the production cost is increased, and preferably the content is 0.6% by weight.

한편, 증점제는 메틸셀룰로스(Methyl cellulose)계로서, 낮은 물/결합재 비에서 반죽 질기를 확보하도록 0.5~2.0중량%로 혼합되는 데, 0.5중량% 미만으로 혼합되면 효과가 미미하고, 2중량%를 초과하면 제조 원가가 상승되며, 바람직하게는 0.5중량%로 혼합된다.On the other hand, the thickening agent is a methyl cellulose system and is mixed in an amount of 0.5 to 2.0 wt% so as to ensure a kneading agent at a low water / binder ratio. When the amount is less than 0.5 wt%, the effect is insignificant, , The production cost is increased, and preferably 0.5 wt%.

이하, 본 발명에 따른 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 이용한 건축용 압출 패널의 제조 공법을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings, wherein like reference numerals refer to like elements, and wherein: FIG. 1 is a perspective view of a construction extrusion panel according to an embodiment of the present invention;

도 1은 본 발명에 따른 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 이용한 건축용 압출 패널의 제조 공법을 설명하기 위한 공정도이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram for explaining a method for manufacturing an extrusion panel for a building using a composition for extruding panels for construction mixed with carbonated waste concrete powder of a mineral carbonation process according to the present invention. FIG.

도 1을 참조하면, 본 발명에 따른 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 이용한 건축용 압출 패널의 제조 공법은 혼합 공정(S10)과, 성형 공정(S20) 및 양생 공정(S30)으로 이루어진다.Referring to FIG. 1, a method for manufacturing an extrusion panel for a building using a composition extrusion panel for construction mixed with carbonated waste concrete fine powder of a mineral carbonation process according to the present invention comprises a mixing step (S10), a molding step (S20) (S30).

《혼합 공정-S10》&Quot; Mixing process-S10 &

먼저, 탄산화된 폐콘크리트 미분말을 포함한 분말계 재료 70~80중량%, 물 15~25중량%, 펄프 섬유 1~3중량%, 폴리프로필렌(PP) 섬유 0.5~2.0중량%, 증점제 0.5~2.0중량%를 혼합한다. 이때, 혼합 공정(S10)은 탄산화된 폐콘크리트 미분말을 포함한 분말계 재료 70~80중량%, 펄프 섬유 1~3량%, 폴리프로필렌(PP) 섬유 0.5~2.0중량%, 증점제 0.5~2.0중량%를 3~5분간 1차 혼합하고(S11), 물 15~25중량%를 투입하여 5~7분간 2차 혼합한다(S12).First, 70 to 80% by weight of powdered material including carbonated waste concrete fine powder, 15 to 25% by weight of water, 1 to 3% by weight of pulp fiber, 0.5 to 2.0% by weight of polypropylene (PP) fiber, %. In the mixing step S10, 70 to 80% by weight of powdered material containing carbonated waste concrete fine powder, 1 to 3% by weight of pulp fibers, 0.5 to 2.0% by weight of polypropylene (PP) fibers, 0.5 to 2.0% (S11), and 15 to 25% by weight of water are added thereto, followed by secondary mixing for 5 to 7 minutes (S12).

또한, 분말계 재료는 분말도 3,000~4,000㎠/g의 범위를 갖는 1종 보통 포틀랜드 시멘트 30~55중량%와, SiO2 함량 85중량%이고, 입자가 20~50㎛ 범위의 평균 입자 크기를 갖는 실리카 미분말 30~40중량%, 입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 상기 탄산화된 폐콘크리트 미분말 20~30중량%가 혼합되어 이루어진다.Also, the powder-based material has 30 to 55% by weight of one kind of ordinary Portland cement having a powder range of 3,000 to 4,000 cm 2 / g, an SiO 2 content of 85% by weight and a particle having an average particle size in the range of 20 to 50 μm 30 to 40% by weight of fine silica powder, and 20 to 30% by weight of the carbonated waste concrete fine powder having an average particle size in the range of 15 to 75 占 퐉.

《성형 공정-S20》&Quot; Forming process-S20 "

혼합물의 혼합이 완료되면 혼합물을 압출기에 넣어 패널 형태로 압출 성형한다.When mixing of the mixture is completed, the mixture is extruded into a panel form.

《양생 공정-S30》"Curing Process-S30"

성형이 완료되면, 성형물을 양생시킨다. 이때, 양생 공정(S30)은 온도 80℃, 상대습도 100%에서 증기 양생을 수행하거나, 10기압, 180℃에서 오토클레이브 양생을 수행한다.When the molding is completed, the molded article is cured. At this time, the curing process (S30) is performed by steam curing at a temperature of 80 DEG C and a relative humidity of 100%, or autoclave curing at 10 atm and 180 DEG C.

《실험예》&Quot; Experimental Example &

먼저, 도 2에 도시된 광물 탄산화 반응기에 담겨진 폐콘크리트 저장조 상징액 400㎖에 스펀지 담체를 투입하여 용액 표면을 스펀지 담체로 덮은 후 5% 이산화탄소(CO2) 혼합가스 유량을 각각 200㎖/min, 400㎖/min, 800㎖/min로 주입하며, 광물탄산화 효율을 평가하였다.First, FIG mineral after covering the surface of the solution put into the sponge carrier to waste concrete reservoir supernatant 400㎖ contained in the carbonation reaction vessel with the sponge carrier 5% carbon dioxide (CO 2) 200㎖ / min, 400 to the mixed gas flow, respectively shown in Ml / min, 800 ml / min, and the mineral carbonation efficiency was evaluated.

도 3은 폐콘크리트 저장조 상징액과 스펀지 담체 공급이 광물탄산화에 미치는 영향을 나타낸 그래프이고, 도 4는 광물 탄산화 반응기에 의해 생성된 탄산화된 폐콘크리트 미분말의 SEM 사진이다.FIG. 3 is a graph showing the influence of the waste concrete tank and the sponge carrier on the mineral carbonation, and FIG. 4 is an SEM photograph of the carbonated waste concrete powder produced by the mineral carbonation reactor.

Figure 112017051113823-pat00001
Figure 112017051113823-pat00001

표 1과 도 3에 도시된 바와 같이 스펀지 담체를 이용하여 이산화탄소의 용액 내 체류시간 증가를 유도하면 광물탄산화 효율이 증가되는 것을 확인할 수 있고, 도 4와 같이 탄산화된 폐콘크리트 미분말이 생성을 확인할 수 있는 데, 이는 광물 탄산화 반응기를 이용하여 광물탄산화 공정에서 이산화탄소 제거능을 확인할 수 있다.As shown in Table 1 and FIG. 3, when the residence time in the solution of carbon dioxide was induced by using the sponge carrier, the mineral carbonation efficiency was increased, and it was confirmed that carbonated waste concrete fine powder was generated as shown in FIG. This can be confirmed by the mineral carbonation reactor in the mineral carbonation process.

1. 실험 계획1. Experimental Plan

본 실험 계획은 아래의 표 2에 나타낸 바와 같이 1종 보통 포틀랜트 시멘트(OPC)를 100% 사용한 배합을 기준(Control) 배합으로 설정하였으며, 또한 실리카 미분말, 폐콘크리트 미분말 및 본 발명에 따라 제조된 탄산화된 폐콘크리트 미분말(탄산칼슘 미분말과 폐콘크리트 미분말이 혼합된 상태)을 각각 질량의 25, 50중량%씩 대체하여 실험을 진행하였다. 각 재료의 화학 조성은 표 3에 나타낸 바와 같으며, 폐콘크리트 미분말과 탄산화된 폐콘크리트 미분말의 SiO2 함량이 45중량%로 높게 나타났다. 실험 배합의 경우 표 4에 나타낸 바와 같다. 이때, 탄산화된 폐콘크리트 미분말은 탄산화가 종료, 즉 투입되는 이산화탄소의 농도 변화가 없으면 폐콘크리트 미분말과 탄산화 과정에서 생성된 탄산칼슘이 존재되는 데, 이들을 물과 분리하여 탄산화된 폐콘크리트 미분말로 사용하였다. 이때, 별도의 탈수, 건조 과정과 분쇄 과정을 수행할 수 있다.As shown in the following Table 2, the experimental plan was set as a control mixture using 100% of the one kind of ordinary Portland cement (OPC), and also the fine powder of silica, the waste concrete fine powder, The experiment was carried out by replacing carbonated waste concrete fine powder (mixed state of calcium carbonate fine powder and waste concrete fine powder) by 25% and 50% by weight, respectively. The chemical composition of each material is shown in Table 3, and the SiO 2 content of the waste concrete fine powder and the carbonated waste concrete fine powder was as high as 45% by weight. Table 4 shows the experimental mixtures. At this time, in the case of carbonated waste concrete fine powder, there is a waste concrete fine powder and calcium carbonate generated in the carbonation process without carbon dioxide ending, that is, the carbon dioxide concentration is changed, and they are separated from water and used as carbonated waste concrete fine powder . At this time, separate dehydration, drying and pulverization processes can be performed.

Figure 112017051113823-pat00002
Figure 112017051113823-pat00002

Figure 112017051113823-pat00003
Figure 112017051113823-pat00003

Figure 112017051113823-pat00004
Figure 112017051113823-pat00004

2. 실험 결과2. Experimental results

2.1 관입저항2.1 Intrusion Resistance

도 5는 본 발명의 실험예에 따른 관입저항 및 물/바인더 비를 나타낸 그래프이다. 관입저항의 경우 압출 패널 성형시의 질기를 나타내는 것으로, 보형성과 연관이 된다. 배합에 따라 일정 수준의 관입저항을 위해 물/바인더 비가 일정한 값을 가지도록 하면서 물의 사용양을 조절하였다. 폐콘크리트를 사용한 압출 패널의 경우 도 3에 도시된 바와 같이 폐콘크리트의 상태 변화에 관계없이 실리카 미분말에 비해 물/바인더 비가 높게 나타나는 것을 확인할 수 있었다. 이는 결합재가 반응한 형태인 폐콘크리트 미분말의 공극이 많기 때문으로 판단된다. 탄산화된 폐콘크리트 미분말의 흡수율은 크게 변하지 않은 것으로 판단된다.5 is a graph showing penetration resistance and water / binder ratio according to an experimental example of the present invention. In the case of penetration resistance, it represents the quality of the extrusion panel molding, which is related to the formation of the reinforcement. The amount of water used was adjusted so that the water / binder ratio had a constant value for a certain level of penetration resistance according to the formulation. As shown in FIG. 3, the water / binder ratio of the extruded panel using the waste concrete was higher than that of the silica fine powder, regardless of the state of the waste concrete. This is probably due to the pores of the waste concrete fine powder in which the binder is reacted. It is considered that the absorption rate of carbonated waste concrete powder does not change much.

2.2 압축강도2.2 Compressive strength

도 6은 본 발명의 실험예에 따른 압축 강도를 나타낸 그래프이다. 그 결과 오토클레이브 양생에서 실리카 미분말의 대체율이 증가함에 따라 압축강도가 증가하는 경향을 나타냈으며, 이는 실리카 미분말의 대체율이 증가함에 따라 최적 CaO/SiO2 몰비에 가까워졌기 때문으로 판단된다. 폐콘크리트 미분말을 사용한 배합의 경우 모두 실리카 미분말을 사용한 배합에 비해 강도가 감소하는 것으로 나타났다. 하지만 탄산화된 폐콘크리트 미분말을 50% 대체시 기존의 폐콘크리트에 비해 강도가 다소 증가하는 것으로 나타나 실리카 미분말와의 혼합 사용을 위한 대체 재료로 사용 가능성이 있을 것으로 판단된다.6 is a graph showing the compressive strength according to the experimental example of the present invention. As a result, the compressive strength tended to increase with the substitution rate of silica fine powder in the autoclave curing. This is because it was close to the optimal CaO / SiO 2 molar ratio as the substitution ratio of the silica fine powder increased. In the case of using the waste concrete fine powder, the strength was decreased compared with the case of using the silica fine powder. However, when 50% of the carbonated waste concrete powder is replaced, the strength is somewhat increased as compared with the existing waste concrete. Therefore, it may be used as a substitute material for mixing with the fine silica powder.

2.3 휨강도2.3 Flexural strength

도 7은 본 발명의 실험예에 따른 휨 강도를 나타낸 그래프이다. 그 결과 오토클레이브 양생에서 압축강도 결과의 경향과 같이 실리카 미분말 50중량% 대체시 강도가 가장 높게 나타났다. 탄산화된 폐콘크리트 미분말을 50중량% 대체한 공시체의 경우 실리카 미분말 50중량% 대체한 공시체에 비해 휨강도 차이는 약 7㎫로 많은 차이가 나타났으나, 25중량% 대체시에는 실리카 미분말 25중량% 사용시와 약 2㎫의 차이로 다소 적게 나타나 사용 가능성이 있는 것으로 판단된다. 50중량% 대체시의 경우에는 낮은 휨강도를 발현한 것은 탄산화된 폐콘크리트 미분말의 실리카 함량이 고순도의 실리카 미분말에 비해 낮기 때문으로 판단된다.7 is a graph showing the bending strength according to an experimental example of the present invention. As a result, it showed the highest strength when replacing 50 wt% of silica fine powder like the tendency of compressive strength in autoclave curing. In the case of the specimens in which carbonated waste concrete fine powder was replaced by 50 wt%, the difference in flexural strength was about 7 MPa compared to the specimens in which the silica fine powder was replaced by 50 wt%. However, when 25 wt% And about 2 MPa, respectively, indicating that there is a possibility of use. It is considered that the lower bending strength was exhibited in the case of replacing 50% by weight because the silica content of carbonated waste concrete fine powder is lower than that of high purity silica fine powder.

탄산화된 폐콘크리트 미분말과 폐콘크리트 미분말의 경우 유사한 강도를 나타내었다. 이를 바탕으로 하였을 때 광물탄산화 공정이 결합재의 반응에 유해한 영향을 미치지 않는 것으로 판단된다. 또한 탄산화된 폐콘크리트 미분말의 경우 이산화탄소와 반응시킨 2차 부산물인 것에도 불구하고, 기존의 폐콘크리트 미분말과 동등한 강도발현을 나타낸 것에 가치가 있는 것으로 판단되고 있다.The carbonated waste concrete powder and waste concrete powder showed similar strength. Based on these results, it is concluded that the mineral carbonation process has no harmful effect on the reaction of binders. In addition, carbonated waste concrete fine powders are considered to be worthwhile to exhibit strength equivalent to that of conventional waste concrete fine powders, even though they are secondary byproducts reacted with carbon dioxide.

2.4 각 배합의 C/S 몰비(mole ratio)2.4 C / S mole ratio of each compound

도 8 및 도 9는 실리카 미분말과 폐콘크리트 미분말 원시료, 탄산화된 폐콘크리트 미분말을 대체한 각 배합의 대체율에 따른 C/S 몰비를 나타낸 것으로 적합한 수열합성조건을 예측하기 위한 그래프이다.8 and 9 are graphs showing the C / S molar ratios according to substitution ratios of the respective substitutes of the fine powder of silica, the waste concrete fine powder raw material and the carbonated waste concrete fine powder, and are graphs for predicting suitable hydrothermal synthesis conditions.

실험에 사용된 배합중 수열합성반응을 위한 각종 문헌에서 최적 C/S 몰비로 제시하고 있는 0.85~1.0 범위에 만족한 배합은 없는 것으로 나타났으며, 가장 높은 강도를 보인 실리카 미분말 50중량% 대체 배합이 C/S 몰비가 0.68로 가장 근접한 결과를 나타내었다. 폐콘크리트 미분말 원시료와 탄산화된 폐콘크리트 미분말을 사용한 배합의 경우 50중량%를 대체하여도 C/S 몰비가 1.6으로 높게 나타났으며, 도 8에 나타낸 바와 같이 폐콘크리트 미분말 원시료 및 탄산화된 폐콘크리트 미분말을 실리카 미분말의 25~50중량% 혼합하게 되면 최적 C/S 몰비 0.85~1.0 범위에 만족하는 것으로 나타났다.It was found that there was no satisfactory formulation in the range of 0.85 ~ 1.0 suggested by the optimal C / S molar ratio in various literature for the hydrothermal synthesis reaction among the compounds used in the experiment, and 50% by weight of the silica powder having the highest strength This C / S molar ratio was closest to 0.68. In the case of using the waste concrete fine powder raw material and the carbonated waste concrete fine powder, the C / S molar ratio was found to be as high as 1.6 even after replacing 50% by weight. As shown in FIG. 8, the waste concrete fine powder sample and the carbonated waste When the concrete fine powder is mixed with 25 to 50 wt% of the fine silica powder, the optimum C / S molar ratio satisfies the range of 0.85 to 1.0.

2.5.폐콘크리트의 실리카 미분말 대체 실험2.5 Replacement of Waste Concrete with Fine Particles of Silica

2.5.1 압축강도2.5.1 Compressive Strength

도 10은 본 발명의 실리카 미분말 대체 실험예에 따른 압축 강도를 나타낸 그래프로서, 1종 보통 포틀랜트 시멘트(OPC) 50중량%과, 실리카 미분말 50중량% 사용한 배합을 컨트롤(Control)로 설정하였고, 실리카 미분말 25, 50중량%를 폐콘크리트 미분말 원시료와 탄산화된 폐콘크리트 미분말로 대체한 압출 패널의 압축강도를 나타낸 그래프이다. 그 결과 기건 양생의 경우 폐콘크리트의 탄산화 여부에 관계없이 대체하였을 때, 미세하지만 강도가 증진하는 경향을 나타내었으며, 그 경향은 오토클레이브 양생에서 더 뚜렷하게 나타내었다. 폐콘크리트 미분말 원시료 50중량% 대체한 시편이 양생과정에서 균열로 인해 강도가 낮게 나타났지만, 폐콘크리트 미분말 원시료 25중량% 대체한 시편이 3.8㎫의 강도 증진을 보였다. 탄산화된 폐콘크리트 미분말 25중량%와 50중량%를 대체한 시편의 경우 유사한 강도를 나타냈으며, 기준배합의 시편에 비해 7㎫이상의 강도 증진을 보였다.10 is a graph showing the compressive strength according to Experimental Example of Alternative Silica Fine Powder of the Present Invention, wherein 50% by weight of one kind of ordinary Portland cement (OPC) and 50% by weight of fine silica powder were set as control, 25 is a graph showing the compressive strength of an extruded panel in which 25 wt% of fine silica powder is replaced with a waste concrete fine powder raw material sample and carbonated waste concrete fine powder. As a result, in case of curing cement, the tendency was shown to be slight but the tendency to increase with the substitution regardless of the carbonation of waste concrete, and this tendency was more evident in the autoclave curing. The strength of specimens replaced with 50 wt% waste concrete specimen was lowered due to cracking during curing, but the strength of specimens replaced with 25 wt% waste concrete specimen increased by 3.8 MPa. The strength of carbonated waste concrete specimens replacing 25 wt.% And 50 wt.% Of specimens was similar to that of standard specimens.

본 결과를 통해실리카 미분말의 25~50중량%를 폐콘크리트 미분말로 대체하여 혼합하게 되면 강도에서 유리한 결과가 나타나는 것을 확인하였으며, 그 중에서도 탄산화된 폐콘크리트 미분말을 사용하였을 때 더 높은 강도를 나타내었다. 이는 탄산화된 폐콘크리트 미분말의 경우 폐콘크리트 미분말 원시료와 비교하였을 때 SiO2 함량이 유사하여 수열합성반응에 의한 영향은 유사하게 나타나지만, 탄산화 반응에 의해 생성된 탄산칼슘의 크기가 상대적으로 좀 더 미세하여 충전재로서의 역할을 보다 더 잘 하기 때문인 것으로 판단된다.From the results, it was found that 25 ~ 50 wt% of the fine powder of silica was mixed with the waste concrete fine powder and the result was favorable in strength. Among them, the carbonated waste concrete powder showed higher strength when used. In the case of the carbonated waste concrete fine powder, the SiO 2 content is similar to that of the pulverized concrete fine powder sample, and the effect of the hydrothermal synthesis reaction is similar, but the size of the calcium carbonate produced by the carbonation reaction is relatively smaller This is because it plays a better role as a filler.

2.5.2 휨강도2.5.2 Flexural strength

도 11은 본 발명의 실리카 미분말 대체 실험예에 따른 휨 강도를 나타낸 그래프로서, 실리카 미분말의 각각 25, 50중량%를 폐콘크리트 미분말 원시료와 탄산화된 폐콘크리트 미분말을 대체한 압출 패널의 휨강도를 나타낸 그래프이다. 그 결과 압축강도와 유사한 경향을 보이며, 폐콘크리트 미분말을 대체사용하였을 때 강도가 증진하는 결과를 나타내었다. 다만 탄산화된 폐콘크리트 미분말 50중량% 대체한 시편의 경우 25중량%를 대체한 시편에 비해서는 낮은 강도 증진을 보이고 있는데, 이는 시편의 보형성에 의한 단면적 변화가 영향을 미친 것으로 판단된다.FIG. 11 is a graph showing the bending strength according to the experimental example of the fine silica powder of the present invention, in which 25 and 50% by weight of the fine powder of silica were replaced with the waste concrete fine powder sample and carbonated waste concrete fine powder, Graph. As a result, the compressive strength was similar to the compressive strength, and the strength was improved when the waste concrete fine powder was used alternatively. However, in the case of 50% by weight of carbonated waste concrete powder, the strength of the specimens replaced with 25% by weight of specimens was lower than that of specimens of 25% by weight.

휨강도의 결과에서도 압축강도의 결과와 같이 폐콘크리트 미분말을 대체시에 강도 증진에 긍정적인 영향을 미치는 것으로 나타났으며, 그 중 탄산화된 폐콘크리트 미분말을 대체하였을 때 강도 증진이 높게 나타났다.As a result of the compressive strength, the bending strength showed a positive effect on the strength enhancement when the waste concrete powder was replaced. Among them, the strength enhancement was high when the carbonated waste concrete powder was substituted.

3. 결론3. Conclusion

본 실험에서 광물탄산화 공정의 탄산화된 폐콘크리트 미분말을 실리카 재료로서의 사용 가능성을 평가하였다. 그 결과 고온ㅇ고압 조건에서 압축 및 휨강도는 실리카 미분말에 비해서 낮게 나타났지만, 폐콘크리트 미분말과 비교하였을 때는 동등하거나 그 이상의 강도가 나타났다.In this experiment, the possibility of using carbonated waste concrete powder as a silica material in the mineral carbonation process was evaluated. As a result, the compressive and flexural strengths were lower than those of silica fine powder at high temperature and high pressure condition, but they were equal or higher than those of waste concrete powder.

다음의 결과를 바탕으로 하였을 때, 탄산화된 폐콘크리트 미분말은 기존의 폐콘크리트와 같은 용도로 활용이 가능함을 확인하였고, 광물탄산화 공정이 결합재간의 반응에 유해한 영향을 미치지 않는 것을 확인할 수 있었다. 이와 같은 결과는 이산화탄소 포집 측면과 광물탄산화 공정에서 배출되는 2차 부산물의 재활용 측면 모두에서 긍정적인 효과를 가져 올 수 있는 결과이다.Based on the following results, it was confirmed that the carbonated waste concrete powder could be used for the same purpose as the existing waste concrete, and it was confirmed that the mineral carbonation process had no harmful effect on the reaction between the binders. These results can have positive effects on both carbon capture and recycling of secondary by-products from the mineral carbonation process.

본 발명은 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있으며 상기 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood, however, that the invention is not to be limited to the specific forms thereof, which are to be considered as being limited to the specific embodiments, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. .

Claims (11)

SiO2 43~46중량%, CaO 26~30중량%, Al2O3 11~13중량%, Fe2O3 5~6중량%, K2O 3~4중량%, MgO 2~3중량%, Na2O 1~2중량%, TiO2 0.5~0.7중량%, MnO 0.1~0.2중량%, 기타 성분 1.7~1.9중량%로 구성된 탄산화된 폐콘크리트 미분말을 포함한 분말계 재료 70~80중량%, 물 15~25중량%, 펄프 섬유 1~3중량%, 폴리프로필렌(PP) 섬유 0.5~2.0중량%, 증점제 0.5~2.0중량%를 혼합하는 것을 특징으로 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물.43 to 46 wt% of SiO 2 , 26 to 30 wt% of CaO, 11 to 13 wt% of Al 2 O 3 , 5 to 6 wt% of Fe 2 O 3, 4 to 4 wt% of K 2 O, 2 to 3 wt% 70 to 80% by weight of a powdered material containing carbonated waste concrete fine powder composed of 1 to 2% by weight of Na 2 O, 0.5 to 0.7% by weight of TiO 2 , 0.1 to 0.2% by weight of MnO and 1.7 to 1.9% The carbonated waste concrete fine powder of mineral carbonation process is characterized by mixing 15 to 25 wt% of water, 1 to 3 wt% of pulp fiber, 0.5 to 2.0 wt% of polypropylene (PP) fiber, and 0.5 to 2.0 wt% Mixed architectural extrusion panel composition. 제 1 항에 있어서,
상기 분말계 재료는,
입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 1종 보통 포틀랜드 시멘트 30~55중량%와, SiO2 함량 85중량%이고, 입자가 20~50㎛ 범위의 평균 입자 크기를 갖는 실리카 미분말 30~40중량%, 입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 상기 탄산화된 폐콘크리트 미분말 15~30중량%가 혼합되어 이루어지는 것을 특징으로 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물.
The method according to claim 1,
The powder-
30 to 55 wt.% Of one kind of ordinary Portland cement having an average particle size in the range of 15 to 75 mu m, an SiO2 content of 85 wt.%, And a fine silica powder having an average particle size in the range of 20 to 50 mu m And 15 to 30% by weight of the carbonated waste concrete fine powder having an average particle size in the range of 15 to 75 占 퐉 are mixed with each other. The carbonitrided waste concrete extruded panel Composition.
제 1 항에 있어서,
상기 증점제는,
메틸셀룰로스(Methyl cellulose)계인 것을 특징으로 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물.
The method according to claim 1,
Preferably,
The present invention relates to an extrusion panel composition for architectural use mixed with carbonated waste concrete fine powder of a mineral carbonation process, characterized in that it is methyl cellulose.
제 1 항에 있어서,
상기 탄산화된 폐콘크리트 미분말은,
폐콘크리트 미분말이 5~20중량%, 물 80~95중량%로 혼합된 슬러지 또는 레미콘 상징액에 이산화탄소를 공급하여 탄산화시킨 것을 특징으로 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물.
The method according to claim 1,
The carbonated waste concrete fine powder may be,
Wherein the waste concrete fine powder is carbonated by supplying carbon dioxide to 5 to 20 wt% of water and 80 to 95 wt% of water in a sludge or remicon supernatant liquid, characterized in that the mineral carbonation process comprises carbonated waste concrete fine powder .
삭제delete 제 1 항에 있어서,
상기 탄산화된 폐콘크리트 미분말은,
탄산화시 이산화탄소 제거율을 증대시키도록 내부에 스펀지 담체를 투입하는 것을 특징으로 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물.
The method according to claim 1,
The carbonated waste concrete fine powder may be,
Wherein the sponge carrier is introduced into the interior of the extruded panel to increase the carbon dioxide removal rate during carbonation.
제 1 항의 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 이용한 건축용 압출 패널의 제조 공법에 있어서,
SiO2 43~46중량%, CaO 26~30중량%, Al2O3 11~13중량%, Fe2O3 5~6중량%, K2O 3~4중량%, MgO 2~3중량%, Na2O 1~2중량%, TiO2 0.5~0.7중량%, MnO 0.1~0.2중량%, 기타 성분 1.7~1.9중량%로 구성된 탄산화된 폐콘크리트 미분말을 포함한 분말계 재료 70~80중량%, 물 15~25중량%, 펄프 섬유 1~3중량%, 폴리프로필렌(PP) 섬유 0.5~2.0중량%, 증점제 0.5~2.0중량%를 혼합하는 혼합 공정과;
혼합물을 압출기에 넣어 압출 성형하는 성형 공정; 및
성형물을 양생시키는 양생 공정으로 이루어지는 것을 특징으로 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널용 조성물을 이용한 건축용 압출 패널의 제조 공법.
A manufacturing method of a building extrusion panel using the extrusion panel composition for construction mixed with the carbonated waste concrete fine powder of the mineral carbonation process of claim 1,
43 to 46 wt% of SiO 2 , 26 to 30 wt% of CaO, 11 to 13 wt% of Al 2 O 3 , 5 to 6 wt% of Fe 2 O 3, 4 to 4 wt% of K 2 O, 2 to 3 wt% 70 to 80% by weight of a powdered material containing carbonated waste concrete fine powder composed of 1 to 2% by weight of Na 2 O, 0.5 to 0.7% by weight of TiO 2 , 0.1 to 0.2% by weight of MnO and 1.7 to 1.9% A mixing step of mixing 15 to 25% by weight of water, 1 to 3% by weight of pulp fibers, 0.5 to 2.0% by weight of polypropylene (PP) fibers and 0.5 to 2.0% by weight of a thickener;
A molding step of extruding the mixture into an extruder; And
And a curing step of curing the molded product. The method for manufacturing the extruded panel for building using the composition for the extrusion panel for construction mixed with the carbonated waste concrete fine powder of mineral carbonation process.
제 7 항에 있어서,
상기 혼합 공정은,
탄산화된 폐콘크리트 미분말을 포함한 분말계 재료 70~80중량%, 펄프 섬유 1~3량%, 폴리프로필렌(PP) 섬유 0.5~2.0중량%, 증점제 0.5~2.0중량%를 3~5분간 1차 혼합하고, 물 15~25중량%를 투입하여 5~7분간 2차 혼합하는 것을 특징으로 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널용 조성물을 이용한 건축용 압출 패널의 제조 공법.
8. The method of claim 7,
In the mixing step,
A primary mixing of 3 to 5 minutes for 70 to 80% by weight of powdered material containing carbonated waste concrete fine powder, 1 to 3% by weight of pulp fibers, 0.5 to 2.0% by weight of polypropylene (PP) And 15 to 25% by weight of water is added thereto and the mixture is mixed for 5 to 7 minutes. The method for manufacturing the extruded panel for building using the composition for extrusion panel for construction mixed with the carbonated waste concrete fine powder.
제 8 항에 있어서,
상기 분말계 재료는,
입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 1종 보통 포틀랜드 시멘트 30~55중량%와, SiO2 함량 85중량%이고, 입자가 20~50㎛ 범위의 평균 입자 크기를 갖는 실리카 미분말 30~40중량%, 입자가 15~75㎛ 범위의 평균 입자 크기를 갖는 상기 탄산화된 폐콘크리트 미분말 15~30중량%가 혼합되어 이루어지는 것을 특징으로 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 이용한 건축용 압출 패널의 제조 공법.
9. The method of claim 8,
The powder-
30 to 55 wt.% Of one kind of ordinary Portland cement having an average particle size in the range of 15 to 75 mu m, an SiO2 content of 85 wt.%, And a fine silica powder having an average particle size in the range of 20 to 50 mu m And 15 to 30% by weight of the carbonated waste concrete fine powder having an average particle size in the range of 15 to 75 占 퐉 are mixed with each other. The carbonitrided waste concrete extruded panel (Manufacturing method of extruded panel for building using composition).
제 7 항에 있어서,
상기 양생 공정은,
온도 80℃, 상대습도 100%에서 증기 양생을 수행하거나, 10기압, 180℃에서 오토클레이브 양생을 수행하는 것을 특징으로 하는 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 이용한 건축용 압출 패널의 제조 공법.
8. The method of claim 7,
In the curing step,
Wherein the steam curing is carried out at a temperature of 80 ° C and a relative humidity of 100% or an autoclave curing is carried out at 10 atm and 180 ° C, or in a construction using an extruded panel composition for building mixed with carbonated waste concrete fine powder Manufacturing method of extruded panel.
제 7 항의 광물탄산화 공정의 탄산화된 폐콘크리트 미분말이 혼합된 건축용 압출 패널 조성물을 이용한 건축용 압출 패널의 제조 공법에 의해 제조된 압출 패널.An extrusion panel manufactured by a manufacturing method of a building extrusion panel using the extrusion panel composition for construction mixed with the carbonated waste concrete fine powder of the mineral carbonation process of claim 7.
KR1020170066201A 2017-05-29 2017-05-29 Composition for extruding building panel with fine particle of carbonized waste concrete of mineral carbonization process, manufacturing method of extruding building panel using thereof, and extruding panel KR101860848B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170066201A KR101860848B1 (en) 2017-05-29 2017-05-29 Composition for extruding building panel with fine particle of carbonized waste concrete of mineral carbonization process, manufacturing method of extruding building panel using thereof, and extruding panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170066201A KR101860848B1 (en) 2017-05-29 2017-05-29 Composition for extruding building panel with fine particle of carbonized waste concrete of mineral carbonization process, manufacturing method of extruding building panel using thereof, and extruding panel

Publications (1)

Publication Number Publication Date
KR101860848B1 true KR101860848B1 (en) 2018-05-28

Family

ID=62451491

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170066201A KR101860848B1 (en) 2017-05-29 2017-05-29 Composition for extruding building panel with fine particle of carbonized waste concrete of mineral carbonization process, manufacturing method of extruding building panel using thereof, and extruding panel

Country Status (1)

Country Link
KR (1) KR101860848B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140797A (en) * 1998-11-09 2000-05-23 Nkk Corp Functional stone material for civil engineering/building
KR101234923B1 (en) * 2012-09-10 2013-02-19 주식회사 벽산 Concrete panel composition for compression molding, comprising crushed stone powder, and panel compression-molded therefrom
KR20130130512A (en) * 2012-05-22 2013-12-02 대형환경 주식회사 Method for carbon dioxide fixation using waste concrete powders
JP2014117636A (en) * 2012-12-13 2014-06-30 Sumitomo Osaka Cement Co Ltd Method for using cement-containing waste material
KR20160057798A (en) * 2014-11-14 2016-05-24 한국건설기술연구원 Method for Manufacturing an Extrusion Panel Using High Strength Concrete Binder Composition for Steam Curing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140797A (en) * 1998-11-09 2000-05-23 Nkk Corp Functional stone material for civil engineering/building
KR20130130512A (en) * 2012-05-22 2013-12-02 대형환경 주식회사 Method for carbon dioxide fixation using waste concrete powders
KR101234923B1 (en) * 2012-09-10 2013-02-19 주식회사 벽산 Concrete panel composition for compression molding, comprising crushed stone powder, and panel compression-molded therefrom
JP2014117636A (en) * 2012-12-13 2014-06-30 Sumitomo Osaka Cement Co Ltd Method for using cement-containing waste material
KR20160057798A (en) * 2014-11-14 2016-05-24 한국건설기술연구원 Method for Manufacturing an Extrusion Panel Using High Strength Concrete Binder Composition for Steam Curing

Similar Documents

Publication Publication Date Title
Wang et al. Roles of biochar and CO2 curing in sustainable magnesia cement-based composites
CN101337685B (en) Process for producing calcium carbonate by absorbing carbon dioxide with ardealite decompose slag
KR101815018B1 (en) Manufacturing method of eco-friendly Building materials using oyster shell and eco-friendly Building materials
Jankovský et al. Study on pozzolana activity of wheat straw ash as potential admixture for blended cements
KR101749831B1 (en) Lightweight geopolymer using fly ash highly containing unburned carbon contents and red mud and manufacturing method for the same
CN103664072A (en) Calcium silicate board produced from industrial waste slag and production process thereof
KR101339332B1 (en) A Non-sintering Binder Having Bottom Ash
KR101543307B1 (en) Method of manufacture and Environment-Friendly Quarry Landfill filler of occurred in the circulating fluidized bed boiler using gas desulfurization gypsum
KR101787416B1 (en) Artificial aggregates with self-hardening properties comprising mine powders with high specific gravity and fluidized-bed boiler ashes and Manufacturing method thereof
WO2020173906A1 (en) A composite
KR101410056B1 (en) A Concrete Using Non-sintering Binder Having Bottom Ash
KR101831971B1 (en) Preparing method for complex calcium carbonate using coal ash
KR101331057B1 (en) Solidified agent to strengthen stratum
KR101271605B1 (en) The Synthesis of Precipitated Calcium Carbonate (PCC) Using Paper Mill Sludge Incineration Fly Ash and Improving Methods of Optical Property by Its Application to Recycled Paper
KR20110032882A (en) Non-sintering binder using fly-ash and a concrete composition using thereof
KR20120124933A (en) Alkali activated gypsum-slag cement composition and concrete constructing method using the same
CN1214030A (en) Method of waste stabilization via chemically bonded phosphate ceramics, structural materials incorporating potassium phosphate ceramics
KR101265828B1 (en) Method for the Fixation of Carbon Dioxide and the Synthesis of Calcium Carbonate by using Gypsum Board Waste
KR101860848B1 (en) Composition for extruding building panel with fine particle of carbonized waste concrete of mineral carbonization process, manufacturing method of extruding building panel using thereof, and extruding panel
RU2005122501A (en) FILLING FOR COVERAGE SLAG, METHOD OF ITS PRODUCTION AND APPLICATION
CN115677248B (en) Carbon-fixing lightweight aggregate and preparation method thereof
KR101182607B1 (en) Dehydration material of sludge with high water containing rate and method of the same using
KR100713686B1 (en) Porous material of calcium silicate used waste concrete powder
KR100301277B1 (en) A method of producing filler using electric arc furnace dust fly ash and bottom ash and ascon containing the same
KR101535275B1 (en) Composition for the preparation of geopolymer using waste coal ash and the preparation method of the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant