KR101860541B1 - Method for producing crosslinked polymer electrolyte composite membranes, the composite membranes produced thereby and energy storage device comprising the composite membranes - Google Patents

Method for producing crosslinked polymer electrolyte composite membranes, the composite membranes produced thereby and energy storage device comprising the composite membranes Download PDF

Info

Publication number
KR101860541B1
KR101860541B1 KR1020160110146A KR20160110146A KR101860541B1 KR 101860541 B1 KR101860541 B1 KR 101860541B1 KR 1020160110146 A KR1020160110146 A KR 1020160110146A KR 20160110146 A KR20160110146 A KR 20160110146A KR 101860541 B1 KR101860541 B1 KR 101860541B1
Authority
KR
South Korea
Prior art keywords
conductive polymer
sulfonated
ether
membrane
solution
Prior art date
Application number
KR1020160110146A
Other languages
Korean (ko)
Other versions
KR20180024268A (en
Inventor
정호영
임민화
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020160110146A priority Critical patent/KR101860541B1/en
Publication of KR20180024268A publication Critical patent/KR20180024268A/en
Application granted granted Critical
Publication of KR101860541B1 publication Critical patent/KR101860541B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 가교 고분자복합막 및 그 제조방법에 대한 것으로, 보다 구체적으로는 양이온전도성고분자와 음이온전도성고분자간 이온가교를 통해 상호결합특성을 갖고 향상된 강도와 내구성을 가질 뿐만 아니라 다단계로 이루어지는 전해질막의 합성 공정을 대폭적으로 줄이면서도 높은 합성 수율을 얻을 수 있는 가교고분자전해질 복합막 제조방법, 그 방법으로 제조된 복합막 및 상기 복합막을 포함하는 에너지저장장치에 대한 것이다. The present invention relates to a crosslinked polymer composite membrane and a method for producing the same, and more particularly, to a crosslinked polymer composite membrane having an improved strength and durability with mutual bonding properties through ionic crosslinking between a cation conductive polymer and an anionic conductive polymer, A composite membrane produced by the method, and an energy storage device comprising the composite membrane. [0002] The present invention relates to a composite membrane,

Description

가교고분자전해질 복합막 제조방법, 그 방법으로 제조된 복합막 및 상기 복합막을 포함하는 에너지저장장치{Method for producing crosslinked polymer electrolyte composite membranes, the composite membranes produced thereby and energy storage device comprising the composite membranes}FIELD OF THE INVENTION [0001] The present invention relates to a crosslinked polymer electrolyte composite membrane, a composite membrane prepared by the method, and an energy storage device comprising the composite membrane,

본 발명은 가교 고분자복합막 및 그 제조방법에 대한 것으로, 보다 구체적으로는 양이온전도성고분자와 음이온전도성고분자간 이온가교를 통해 상호결합특성을 갖고 향상된 강도와 내구성을 가질 뿐만 아니라 다단계로 이루어지는 전해질막의 합성 공정을 대폭적으로 줄이면서도 높은 합성 수율을 얻을 수 있는 가교고분자전해질 복합막 제조방법, 그 방법으로 제조된 복합막 및 상기 복합막을 포함하는 에너지저장장치에 대한 것이다. The present invention relates to a crosslinked polymer composite membrane and a method for producing the same, and more particularly, to a crosslinked polymer composite membrane having an improved strength and durability with mutual bonding properties through ionic crosslinking between a cation conductive polymer and an anionic conductive polymer, A composite membrane produced by the method, and an energy storage device comprising the composite membrane. [0002] The present invention relates to a composite membrane,

최근, 환경문제, 에너지원의 고갈과 더불어 연료전지 자동차의 실용화와 더불어, 높은 에너지 효율을 가지며 상온에서 작동이 가능하면서도 신뢰성이 있는 고성능 연료전지의 개발이 절실히 요구되어 있다. 이에 연료전지의 효율을 증가시킬 수 있는 고분자전해질막의 개발 또한 요구되고 있다.In recent years, development of a high performance fuel cell having high energy efficiency, operation at room temperature, and reliability has been urgently required along with exhaustion of environmental problems and energy sources, commercialization of fuel cell vehicle, and so on. Accordingly, development of a polymer electrolyte membrane capable of increasing the efficiency of a fuel cell is also required.

현재 사용되는 고분자 전해질막은 주로 나피온(Nafion, DuPont사 제조의 상품명), 프레미온(Flemion, Asahi Glass사 제조의 상품명), 아시프렉스(Asiplex, Asahi Chemical사 제조의 상품명) 및 다우 XUS(Dow XUS, Dow Chemical사 제조의 상품명) 전해질막과 같은 퍼플루오로설포네이트 아이오노머막(perfluorosulfonate ionomer membrane)이 많이 사용되고 있으나, 그 가격이 상당히 고가이기 때문에 상기 고분자 전해질막을 상용화하는데 상당한 부담요인으로 작용하고 있다.Currently used polymer electrolyte membranes are mainly composed of Nafion (a trade name of DuPont), Flemion (a trade name of Asahi Glass), Asiplex (trade name of Asahi Chemical), and Dow XUS , A perfluorosulfonate ionomer membrane such as an electrolyte membrane manufactured by Dow Chemical Co., Ltd.) is widely used, but it is a considerable burden in commercialization of the polymer electrolyte membrane because its cost is considerably high .

한편, 이러한 부담요인을 해소하기 위한 방편으로, 가격이 상대적으로 저렴하며 다양하게 상업적 응용이 가능한 폴리에테르에테르케톤(polyether ether ketone), 폴리술폰(polysulfone), 폴리이미드(polyimide) 등의 탄화수소계 고분자에 대한 연구가 활발히 진행중이다. 위 고분자를 술폰화 반응으로 이온 전도성 고분자로 제조한 후 전해질 막으로 캐스팅하는 방법으로 연료전지 전해질 막으로 적용하고 있다In order to solve these burdens, a hydrocarbon-based polymer such as polyether ether ketone, polysulfone, and polyimide, which is relatively inexpensive and has various commercial applications, Is being actively researched. The polymer is prepared by ion-conducting polymer by sulphonation reaction and then cast into an electrolyte membrane, which is applied as a fuel cell electrolyte membrane

또한, 위의 탄화수소계 고분자의 가장 큰 단점인 내산화환원성과 열적/기계적 안정성을 개선시키고 막 전극 접합체(MEA) 제조 시에 과도한 팽윤에 의한 전극과의 낮은 접합성을 개선하기 위한 방편으로 테플론과 같이 기계적, 열적, 내 산화성이 우수한 다공성 지지체에 과불소계 혹은 탄화수소계 고분자를 그 기공에 함침시켜 복합막을 제작하는 방법이 제시되고 있다. 상용화된 예로 W.L. Gore & Associates사의 Gore-select 는 20~40㎛의 얇은 두께와 뛰어난 기계적, 전기화학적 물성을 나타낸다.In order to improve the oxidation resistance and thermal / mechanical stability, which are the biggest disadvantages of the above hydrocarbon-based polymers, and to improve the low bonding property with the electrode due to excessive swelling during the production of the membrane electrode assembly (MEA) A method of fabricating a composite membrane by impregnating pores of a perfluorocompound or a hydrocarbon-based polymer on a porous support having excellent mechanical, thermal, and oxidation resistance has been proposed. A commercially available example is W.L. Gore & Associates' Gore-select exhibits excellent mechanical and electrochemical properties with a thickness of 20 to 40 μm.

상술한 바와 같은 복합막을 제조하기 위하여, 나피온 대신 탄화수소계 단량체인 스티렌을 디비닐벤젠 가교제과 함께 테플론, 폴리에틸렌(PE), 폴리비닐리덴디플루오라이드(PVDF) 등의 다양한 다공성 지지체에 함침시켜 가교한 후 술폰화시키는 방법과 아크릴술폰산단량체와 수용성 가교제를 상기와 같이 다공성 지지체에 함침시켜 가교하여 전해질 막을 제조하는 방법 등이 제시되고 있다.In order to produce the composite membrane as described above, styrene which is a hydrocarbon monomer instead of Nafion is impregnated with various polyvinyl supports such as Teflon, polyethylene (PE) and polyvinylidene difluoride (PVDF) together with a divinylbenzene crosslinking agent, And a method of producing an electrolyte membrane by impregnating a porous support with an acrylic sulfonic acid monomer and a water soluble crosslinking agent as described above and crosslinking the electrolyte membrane.

스티렌-디비닐벤젠 가교 전해질막은 건조한 상태가 되면, 취성의 증가로 부서지게 되어 박막화나 복합막 등의 형태로 대량생산 및 전극으로 가공 시에 기계적 안정성이 뒤떨어진다는 결점을 갖고 있다. 또한, 아크릴술폰산 가교 전해질 세공충진막은 내구성이 취약하기 때문에 탄화수소계 고분자막은 이러한 결점으로 인해 광범위한 상용화가 되지 못하는 단점이 있는 것으로 알려져 있다.The styrene-divinylbenzene crosslinked electrolyte membrane is disadvantageous in that it becomes brittle with an increase in brittleness when it is in a dry state, resulting in mass production in the form of a thin film or a composite membrane and mechanical stability in processing into an electrode. In addition, since the acryl sulfonic acid crosslinked electrolyte pore filling membrane has poor durability, it is known that the hydrocarbon-based polymer membrane can not be widely commercialized due to such drawbacks.

본 발명자는 상기와 같은 문제점을 해결하기 위해 연구 노력한 결과, 강도 및 내구성이 향상된 특성을 갖는 가교 고분자전해질복합막을 합성 공정을 대폭적으로 줄이면서도 높은 합성 수율로 제조할 수 있는 기술을 개발함으로써 본 발명을 완성하였다. As a result of efforts to solve the above problems, the present inventors have found that a crosslinked polymer electrolyte composite membrane having improved strength and durability can be produced at a high synthesis yield while greatly reducing the synthesis process, Completed.

따라서, 본 발명의 목적은 양이온전도성고분자 및 음이온전도성고분자의 이온가교로 인한 상호결합특성을 갖는 구조를 통해 기존의 고분자 전해질 막보다 50% 이상 향상된 강도와 내구성을 나타낼 수 있고, 고온의 물이 직접 접촉하는 조건에서도 뛰어난 치수안정성과 40 MPa 이상의 높은 기계적 강도를 구현할 수 있는 가교 고분자전해질복합막을 제공하는 것이다. Accordingly, it is an object of the present invention to provide a polymer electrolyte membrane which can exhibit a strength and durability that is 50% or more higher than that of a conventional polymer electrolyte membrane through a structure having mutual binding characteristics due to ionic crosslinking between the cation conductive polymer and the anionic conductive polymer, And to provide a crosslinked polymer electrolyte composite membrane capable of realizing excellent dimensional stability and high mechanical strength of 40 MPa or more even in a contacting condition.

본 발명의 다른 목적은 양이온전도성고분자와 음이온전도성고분자를 용해시켜 단량체가 아니라 고분자상태로 이온 가교시키는 방법을 통해 합성 공정을 대폭적으로 줄이면서도 높은 합성 수율로 제조할 수 있어 제조원가를 절감할 수 있는 가교 고분자전해질복합막제조방법을 제공하는 것이다. Another object of the present invention is to provide a method for preparing a polymer electrolyte membrane which can dissolve a cation conductive polymer and an anionic conductive polymer to form an ionic crosslinking structure in a polymer state instead of a monomer, And a method for producing a polymer electrolyte composite membrane.

본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.

상술된 본 발명의 목적을 달성하기 위해, 본 발명은 양이온전도성고분자를 용매에 용해시켜 양이온전도성고분자용액을 준비하는 단계; 음이온전도성고분자를 용매에 용해시켜 음이온전도성고분자용액을 준비하는 단계; 및 상기 양이온전도성고분자용액, 음이온전도성고분자용액 및 가교제를 혼합하여 가교시켜 제막전구체용액을 형성시키는 가교단계;를 포함하는 가교 고분자전해질 복합막 제조방법을 제공한다.In order to accomplish the objects of the present invention described above, the present invention provides a method for preparing a cationic conductive polymer solution, comprising: preparing a cationic conductive polymer solution by dissolving the cationic conductive polymer in a solvent; Preparing an anionic conductive polymer solution by dissolving an anionic conductive polymer in a solvent; And a crosslinking step of mixing and crosslinking the cationic conductive polymer solution, the anion conductive polymer solution and the crosslinking agent to form a solution precursor solution.

바람직한 실시예에 있어서, 상기 양이온전도성고분자는 술폰화 폴리이미드(sulfonated polyimide, S-PI), 술폰화 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화 폴리에테르에테르케톤(sulfonated poly etheretherketone, S-PEEK), 술폰화 폴리벤즈이미다졸(sulfonated polybenz imidazole, S-PBI), 술폰화 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화 폴리포스파젠(sulfonated polyphosphazene) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상이다. In a preferred embodiment, the cationic conducting polymer is selected from the group consisting of sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone S-PEEK), sulfonated polybenzimidazole (S-PBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS) Sulfonated polyphosphazene, and combinations thereof.

바람직한 실시예에 있어서, 상기 음이온전도성고분자는 Im-bPPO, Chloromethylated bPPO, poly(1-allyl-3-methylimidazolium chloride and methyl methacrylate), ETFE-g-PDMAEMA(ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate), cardo-polyetherketone, chloromethylated/quaternized poly (phthalazinone ether ketone), ethylene-tetrafluoroethylene-dimethylamino ethyl methacrylate (DMAEMA), quaternary ammonium functionalized PAES, quaternary benzyl trimethylammonium, quaternized poly(phthalazinone ether sulfone ketone) 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상이다. In a preferred embodiment, the anionically conductive polymer is selected from the group consisting of Im-bPPO, Chloromethylated bPPO, poly (1-allyl-3-methylimidazolium chloride and methyl methacrylate), ETFE-g-PDMAEMA (ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate) , chloromethylated / quaternized poly (phthalazinone ether ketone), ethylene-tetrafluoroethylene-dimethylamino ethyl methacrylate (DMAEMA), quaternary ammonium functionalized PAES, quaternary benzyl trimethylammonium and quaternized poly (phthalazinone ether sulfone ketone) Or more.

바람직한 실시예에 있어서, 상기 용매는 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올을 포함하는 알콜계 용매; 디에틸에테르, 디프로필에테르, 디부틸에테르, 부틸에틸에테르, 테트라하이드로퓨란을 포함하는 에테르계 용매; 에틸렌글리콜, 프로필렌글리콜, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노부틸에테르을 포함하는 알콜 에테르계 용매; 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 시클로헥사논을 포함하는 케톤계 용매; N-메틸-2-피릴리디논, 2-피릴리디논, N-메틸포름아미드, N,N-디메틸포름아미드를 포함하는 아미드계 용매; 디메틸술폭사이드, 디에틸술폭사이드를 포함하는 술폭사이드계 용매; 디에틸술폰, 테트라메틸렌 술폰를 포함하는 술폰계 용매; 아세토니트릴, 벤조니트릴을 포함하는 니트릴 용매; 알킬아민, 시클릭 아민, 아로마틱 아민을 포함하는 아민계 용매; 메틸 부틸레이트, 에틸부틸레이트, 프로필프로피오네이트를 포함하는 에스테르계 용매; 에틸 아세테이트, 부틸아세테이트를 포함하는 카르복실산 에스테르계 용매; 벤젠, 에틸벤젠, 클로로벤젠, 톨루엔, 자일렌을 포함하는 방향족 탄화수소계 용매; 헥산, 헵탄, 시클로헥산을 포함하는 지방족 탄화수소계 용매; 클로로포름, 테트라클로로에틸렌, 카본테트라클로라이드, 디클로로메탄, 디클로로에탄을 포함하는 할로겐화된 탄화수소계 용매; 프로필렌 카보네이트, 에틸렌 카보네이트, 디메틸카보네이트, 디부틸카보네이트, 에틸메틸카보네이트, 디부틸카보네이트, 니트로메탄, 니트로벤젠으로 구성된 군에서 선택되는 어느 하나 이상이다.In a preferred embodiment, the solvent is an alcoholic solvent comprising methanol, ethanol, propanol, isopropanol, butanol, isobutanol; Ether-based solvents including diethyl ether, dipropyl ether, dibutyl ether, butyl ethyl ether, and tetrahydrofuran; Alcohol ether solvents including ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monobutyl ether; Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; An amide-based solvent including N-methyl-2-pyrrolidinone, 2-pyrrolidinone, N-methylformamide and N, N-dimethylformamide; A sulfoxide-based solvent containing dimethylsulfoxide and diethylsulfoxide; Diethylsulfone, and tetramethylene sulfone; Nitrile solvents including acetonitrile, benzonitrile; Amine-based solvents including alkylamines, cyclic amines, and aromatic amines; Ester solvents including methyl butyrate, ethyl butyrate and propyl propionate; A carboxylic acid ester-based solvent containing ethyl acetate and butyl acetate; Aromatic hydrocarbon solvents including benzene, ethylbenzene, chlorobenzene, toluene and xylene; An aliphatic hydrocarbon-based solvent including hexane, heptane, and cyclohexane; Halogenated hydrocarbon-based solvents including chloroform, tetrachlorethylene, carbon tetrachloride, dichloromethane, and dichloroethane; Propylene carbonate, ethylene carbonate, dimethyl carbonate, dibutyl carbonate, ethyl methyl carbonate, dibutyl carbonate, nitromethane, and nitrobenzene.

바람직한 실시예에 있어서, 상기 가교단계에서 사용되는 가교제는 dichloro xylene, Xylylenediamine, o-Xylylenediamine dihydrochloride, Xylylenediamine /acrylonitrile adduct, 2,3,5,6-tetramethyl-1,4-xylylenediamine dihydro chloride, 2,5-dimethyl-1,4- xylylenediamine dihydrochloride로 구성된 그룹에서 선택되는 어느 하나 이상이다. In a preferred embodiment, the crosslinking agent used in the crosslinking step is selected from the group consisting of dichloro xylene, xylylenediamine, o-xylylenediamine dihydrochloride, xylylenediamine / acrylonitrile adduct, 2,3,5,6-tetramethyl-1,4-xylylenediamine dihydrochloride, -dimethyl-1,4-xylylenediamine dihydrochloride.

바람직한 실시예에 있어서, 상기 가교단계는 상기 양이온전도성고분자용액, 상기 음이온전도성고분자용액, 및 가교제를 혼합한 후 35~45℃에서 교반하여 수행된다. In a preferred embodiment, the crosslinking step is carried out by mixing the cationic conductive polymer solution, the anionic conductive polymer solution, and the crosslinking agent, followed by stirring at 35 to 45 ° C.

바람직한 실시예에 있어서, 상기 가교단계에서 형성된 제막전구체용액으로 가교고분자복합막을 제조하는 제막단계를 더 포함한다. In a preferred embodiment, the method further comprises a film-forming step of producing a crosslinked polymer composite membrane with the film-forming precursor solution formed in the crosslinking step.

바람직한 실시예에 있어서, 상기 제막단계는 상기 제막전구체용액을 평판에 캐스팅하여 전구체막을 형성하는 단계; 캐스팅된 전구체막을 건조시켜 상기 전구체막에 포함된 용매 및 가교제를 제거하는 건조단계; 및 건조된 전구체막을 염기성수용액에 침지하는 단계;를 포함하여 수행된다. In a preferred embodiment, the film-forming step includes casting the film-forming precursor solution on a flat plate to form a precursor film; A drying step of drying the cast precursor film to remove the solvent and the cross-linking agent contained in the precursor film; And immersing the dried precursor film in a basic aqueous solution.

또한, 본 발명은 양이온전도성고분자, 음이온전도성고분자 및 상기 양이온전도성고분자와 음이온전도성고분자간에 형성된 1개 이상의 이온가교결합으로 구성된 단위결합유닛; 및 상기 단위결합유닛 간에 형성되는 다수개의 이온가교결합;을 포함하는 가교 고분자전해질 복합막을 제공한다.The present invention also relates to a polymer electrolyte fuel cell comprising a cationically conductive polymer, an anionic conductive polymer, and a unit bonding unit comprising at least one ionic crosslinking formed between the cationic conductive polymer and the anionic conductive polymer; And a plurality of ionic crosslinks formed between the unit coupling units.

바람직한 실시예에 있어서, 상기 양이온전도성고분자는 술폰화 폴리이미드(sulfonated polyimide, S-PI), 술폰화 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화 폴리에테르에테르케톤(sulfonated poly etheretherketone, S-PEEK), 술폰화 폴리벤즈이미다졸(sulfonated polybenz imidazole, S-PBI), 술폰화 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화 폴리포스파젠(sulfonated polyphosphazene) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상이다. In a preferred embodiment, the cationic conducting polymer is selected from the group consisting of sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone S-PEEK), sulfonated polybenzimidazole (S-PBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS) Sulfonated polyphosphazene, and combinations thereof.

바람직한 실시예에 있어서, 상기 음이온전도성고분자는 Im-bPPO, Chloromethylated bPPO, poly(1-allyl-3-methylimidazolium chloride and methyl methacrylate), ETFE-g-PDMAEMA(ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate), cardo-polyetherketone, chloromethylated/quaternized poly (phthalazinone ether ketone), ethylene-tetrafluoroethylene-dimethyl aminoethyl methacrylate (DMAEMA), quaternary ammonium functionalized PAES, quaternary benzyl trimethylammonium, quaternized poly(phthalazinone ether sulfone ketone) 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상이다. In a preferred embodiment, the anionically conductive polymer is selected from the group consisting of Im-bPPO, Chloromethylated bPPO, poly (1-allyl-3-methylimidazolium chloride and methyl methacrylate), ETFE-g-PDMAEMA (ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate) , chloromethylated / quaternized poly (phthalazinone ether ketone), ethylene-tetrafluoroethylene-dimethyl aminoethyl methacrylate (DMAEMA), quaternary ammonium functionalized PAES, quaternary benzyl trimethylammonium, quaternized poly (phthalazinone ether sulfone ketone) Or more.

바람직한 실시예에 있어서, VO2+ 이온 투과도가 4.0ㅧ10-9㎠/min이하이다. In a preferred embodiment, the VO 2+ ion permeability is 4.0 ㅧ 10 -9 ㎠ / min or less.

바람직한 실시예에 있어서, 40 MPa 이상의 기계적 강도를 갖는다. In a preferred embodiment, it has a mechanical strength of at least 40 MPa.

또한, 본 발명은 상술된 어느 하나의 제조방법으로 제조된 가교 고분자전해질 복합막 또는 상술된 어느 하나의 가교 고분자전해질 복합막을 포함하는 에너지저장장치를 제공한다.The present invention also provides an energy storage device comprising a crosslinked polymer electrolyte composite membrane produced by any one of the above-described production methods or any one of the crosslinked polymer electrolyte composite membranes described above.

바람직한 실시예에 있어서, 상기 에너지저장장치는 레독스흐름전지 또는 연료전지인 것을 특징으로 하는 에너지저장장치를 제공한다. In a preferred embodiment, the energy storage device is a redox flow cell or a fuel cell.

본 발명은 다음과 같은 우수한 효과를 갖는다.The present invention has the following excellent effects.

먼저, 본 발명의 가교 고분자전해질복합막은 양이온전도성고분자 및 음이온전도성고분자의 이온가교로 인한 상호결합특성을 갖는 구조를 통해 기존의 고분자 전해질 막보다 50% 이상 향상된 강도와 내구성을 나타낼 수 있고, 고온의 물이 직접 접촉하는 조건에서도 뛰어난 치수안정성과 40 MPa 이상의 높은 기계적 강도를 구현할 수 있다.First, the crosslinked polymer electrolyte composite membrane of the present invention can exhibit strength and durability that is 50% or more higher than that of the conventional polymer electrolyte membrane through a structure having mutual bonding properties due to ionic crosslinking between the cation conductive polymer and the anionic conductive polymer, It is possible to realize excellent dimensional stability and high mechanical strength of 40 MPa or more even under direct contact with water.

또한, 본 발명의 가교 고분자전해질복합막제조방법에 의하면 양이온전도성고분자와 음이온전도성고분자를 용해시켜 단량체가 아니라 고분자상태로 이온 가교시키는 방법을 통해 합성 공정을 대폭적으로 줄이면서도 높은 합성 수율로 제조할 수 있어 제조원가를 절감할 수 있다. In addition, according to the method for producing a crosslinked polymer electrolyte composite membrane of the present invention, by dissolving a cationic conductive polymer and an anionic conductive polymer, ion bridging in a polymer state rather than a monomer is achieved, a synthesis process can be greatly reduced and a high synthesis yield can be obtained The manufacturing cost can be reduced.

본 발명의 이러한 기술적 효과는 이상에서 언급한 범위만으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 실시를 위한 구체적 내용의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 효과 역시 당연히 포함된다.Although the present invention has been fully described by way of example with reference to the accompanying drawings, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Of course.

도 1은 본 발명의 일 실시예에 따른 가교 고분자전해질복합막을 구성하는 단위결합유닛의 일부를 보여주는 화학식이다.
도 2는 본 발명의 일 실시예에 따른 가교 고분자전해질복합막의 이온전도도를 측정한 결과를 도시한 그래프이다.
도 3은 본 발명의 일 실시예에 따른 가교 고분자전해질복합막의 인장강도를 측정한 결과를 도시한 그래프이다.
도 4는 본 발명의 다른 실시예에 따른 가교 고분자전해질복합막을 포함하는 바나듐레독스흐름전지의 모식도이다.
도 5는 도 4에서 측정된 바나듐이온의 투과도 측정결과를 도시한 그래프이다.
도 6은 도 4에서 Coulombic efficiency를 측정한 결과를 도시한 그래프이다.
FIG. 1 is a view showing a part of a unit bonding unit constituting a crosslinked polymer electrolyte composite membrane according to an embodiment of the present invention.
2 is a graph showing the results of measurement of ionic conductivity of a crosslinked polymer electrolyte composite membrane according to an embodiment of the present invention.
3 is a graph showing the results of measuring the tensile strength of a crosslinked polymer electrolyte composite membrane according to an embodiment of the present invention.
4 is a schematic view of a vanadium redox flow cell including a crosslinked polymer electrolyte composite membrane according to another embodiment of the present invention.
FIG. 5 is a graph showing a result of measuring the permeability of vanadium ions measured in FIG.
FIG. 6 is a graph showing a result of measuring the Coulombic efficiency in FIG.

본 발명에서 사용하는 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms "comprising" or "having ", and the like, are intended to specify the presence of stated features, integers, steps, operations, elements, parts, or combinations thereof, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, parts, or combinations thereof.

제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다. The terms first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the meaning of the context in the relevant art and, unless expressly defined in the present invention, are to be interpreted as an ideal or overly formal sense Do not.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical structure of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like reference numerals used to describe the present invention throughout the specification denote like elements.

본 발명의 기술적 특징은 양이온전도성고분자와 음이온전도성고분자를 용해시켜 단량체가 아니라 고분자상태로 이온 가교시키는 방법을 통해 합성 공정을 대폭적으로 줄이면서도 높은 합성 수율로 제조할 수 있어 제조원가를 절감할 수 있는 제조방법 및 양이온전도성고분자 및 음이온전도성고분자의 이온가교로 인한 상호결합특성을 갖는 구조를 통해 기존의 고분자 전해질 막보다 50% 이상 향상된 강도와 내구성을 나타낼 수 있고, 고온의 물이 직접 접촉하는 조건에서도 뛰어난 치수안정성과 40 MPa 이상의 높은 기계적 강도를 구현할 수 있는 가교고분자막에 있다. The technical feature of the present invention is that a method of dissolving a cationic conductive polymer and an anionic conductive polymer in a polymer state instead of a monomer to form an ionically crosslinked polymer can be manufactured at a high synthesis yield with a greatly reduced synthesis process, Method and a structure having a mutual bonding property due to the ionic crosslinking of the cationic conductive polymer and the anionic conductive polymer can exhibit a strength and durability that is 50% or more higher than that of the conventional polymer electrolyte membrane and excellent Dimensional stability and high mechanical strength of 40 MPa or more.

따라서, 본 발명의 가교 고분자전해질 복합막 제조방법은 양이온전도성고분자를 용매에 용해시켜 양이온전도성고분자용액을 준비하는 단계; 음이온전도성고분자를 용매에 용해시켜 음이온전도성고분자용액을 준비하는 단계; 및 상기 양이온전도성고분자용액, 음이온전도성고분자용액 및 가교제를 혼합하여 가교시켜 제막전구체용액을 형성시키는 가교단계;를 포함한다. 이 때 양이온전도성고분자 및 음이온전도성고분자를 용해시키기 위해 사용되는 용매는 가교단계에서 원활한 가교반응을 위해 동일하거나 적어도 유사한 물리, 화학적 특성을 갖는 동종의 용매일 수 있다. Accordingly, the method for preparing a composite polymer electrolyte membrane of the present invention comprises: preparing a solution of a cationic conductive polymer by dissolving the cationic conductive polymer in a solvent; Preparing an anionic conductive polymer solution by dissolving an anionic conductive polymer in a solvent; And a cross-linking step of mixing the cation-conductive polymer solution, the anion-conducting polymer solution and the cross-linking agent and crosslinking them to form a film-forming precursor solution. At this time, the solvent used for dissolving the cationic conductive polymer and the anionic conductive polymer may be the same or at least the same kind of solvent having similar physical and chemical properties for smooth crosslinking reaction in the crosslinking step.

본 발명에서 양이온전도성고분자는 공지된 모든 양이온전도성고분자가 사용될 수 있지만, 일 구현예로서 술폰화된 탄화수소계고분자 특히 술폰화 폴리이미드(sulfonated polyimide, S-PI), 술폰화 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화 폴리에테르에테르케톤(sulfonated polyetheretherketone, S-PEEK), 술폰화 폴리벤즈이미다졸(sulfonated polybenzimidazole, S-PBI), 술폰화 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화 폴리포스파젠(sulfonated polyphosphazene) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다. In the present invention, the cationic conductive polymer may be any known cationic conductive polymer. However, in one embodiment, the cationic conductive polymer may be a sulfonated hydrocarbon-based polymer, particularly sulfonated polyimide (S-PI), sulfonated polyarylether sulfone polyaryl ether sulfone (S-PAES), sulfonated polyetheretherketone (S-PEEK), sulfonated polybenzimidazole (S-PBI), sulfonated polysulfone A sulfonated polystyrene (S-PS), a sulfonated polyphosphazene, and a combination thereof.

음이온전도성고분자도 공지된 모든 음이온전도성고분자가 사용될 수 있지만, 일 구현예로서 Im-bPPO, Chloromethylated bPPO, poly(1-allyl-3- methylimidazolium chloride and methyl methacrylate), ETFE-g-PDMAEMA(ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate), cardo-polyetherketone, chloromethylated/quaternized poly(phthalazinone ether ketone), ethylene- tetrafluoroethylene-dimethylaminoethyl methacrylate (DMAEMA), quaternary ammonium functionalized PAES, quaternary benzyl trimethylammonium, quaternized poly(phthalazinone ether sulfone ketone) 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있을 것이다.As an anionic conductive polymer, any known anion conductive polymer may be used. However, in one embodiment, the anionic conductive polymer may be an im-bPPO, a chloromethylated bPPO, a poly (1-allyl-3-methylimidazolium chloride and methyl methacrylate), an ethylene- (dimethylaminoethyl methacrylate), cardo-polyetherketone, chloromethylated / quaternized poly (phthalazinone ether ketone), ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate (DMAEMA), quaternary ammonium functionalized PAES, quaternary benzyl trimethylammonium and quaternized poly It may be any one or more selected from the group.

양이온전도성고분자 및 음이온전도성고분자를 용해시키는 용매로는 양이온전도성고분자 및 음이온전도성고분자를 동시에 용해시킬 수 있기만 하면 공지된 모든 용매가 사용될 수 있다. 일 구현예로서 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올을 포함하는 알콜계 용매; 디에틸에테르, 디프로필에테르, 디부틸에테르, 부틸에틸에테르, 테트라하이드로퓨란을 포함하는 에테르계 용매; 에틸렌글리콜, 프로필렌글리콜, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노부틸에테르을 포함하는 알콜 에테르계 용매; 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 시클로헥사논을 포함하는 케톤계 용매; N-메틸-2-피릴리디논, 2-피릴리디논, N-메틸포름아미드, N,N-디메틸포름아미드를 포함하는 아미드계 용매; 디메틸술폭사이드, 디에틸술폭사이드를 포함하는 술폭사이드계 용매; 디에틸술폰, 테트라메틸렌 술폰를 포함하는 술폰계 용매; 아세토니트릴, 벤조니트릴을 포함하는 니트릴 용매; 알킬아민, 시클릭 아민, 아로마틱 아민을 포함하는 아민계 용매; 메틸 부틸레이트, 에틸부틸레이트, 프로필프로피오네이트를 포함하는 에스테르계 용매; 에틸 아세테이트, 부틸아세테이트를 포함하는 카르복실산 에스테르계 용매; 벤젠, 에틸벤젠, 클로로벤젠, 톨루엔, 자일렌을 포함하는 방향족 탄화수소계 용매; 헥산, 헵탄, 시클로헥산을 포함하는 지방족 탄화수소계 용매; 클로로포름, 테트라클로로에틸렌, 카본테트라클로라이드, 디클로로메탄, 디클로로에탄을 포함하는 할로겐화된 탄화수소계 용매; 프로필렌 카보네이트, 에틸렌 카보네이트, 디메틸카보네이트, 디부틸카보네이트, 에틸메틸카보네이트, 디부틸카보네이트, 니트로메탄, 니트로벤젠으로 구성된 군에서 선택되는 어느 하나 이상인 것이 바람직할 수 있다.As the solvent for dissolving the cationic conductive polymer and the anionic conductive polymer, any known solvent may be used as long as it can simultaneously dissolve the cationic conductive polymer and the anionic conductive polymer. In one embodiment, the alcohol-based solvent includes methanol, ethanol, propanol, isopropanol, butanol, and isobutanol; Ether-based solvents including diethyl ether, dipropyl ether, dibutyl ether, butyl ethyl ether, and tetrahydrofuran; Alcohol ether solvents including ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monobutyl ether; Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; An amide-based solvent including N-methyl-2-pyrrolidinone, 2-pyrrolidinone, N-methylformamide and N, N-dimethylformamide; A sulfoxide-based solvent containing dimethylsulfoxide and diethylsulfoxide; Diethylsulfone, and tetramethylene sulfone; Nitrile solvents including acetonitrile, benzonitrile; Amine-based solvents including alkylamines, cyclic amines, and aromatic amines; Ester solvents including methyl butyrate, ethyl butyrate and propyl propionate; A carboxylic acid ester-based solvent containing ethyl acetate and butyl acetate; Aromatic hydrocarbon solvents including benzene, ethylbenzene, chlorobenzene, toluene and xylene; An aliphatic hydrocarbon-based solvent including hexane, heptane, and cyclohexane; Halogenated hydrocarbon-based solvents including chloroform, tetrachlorethylene, carbon tetrachloride, dichloromethane, and dichloroethane; Propylene carbonate, ethylene carbonate, dimethyl carbonate, dibutyl carbonate, ethyl methyl carbonate, dibutyl carbonate, nitromethane, and nitrobenzene.

양이온전도성고분자용액 및 음이온전도성고분자용액을 준비하는 단계는 순서에 무관하게 수행될 수 있는데, 구입하거나 직접 제조하여 얻어진 양이온전도성고분자 및 음이온전도성고분자를 동일한 용매에 각각 완전히 용해시켜 양이온전도성고분자용액 및 음이온전도성고분자용액을 개별적으로 준비한다. 여기서, 용매와 양이온전도성고분자 또는 음이온전도성고분자의 배합비는 용매 100중량부를 기준으로 각각의 고분자는 5 내지 30중량부일 수 있다. 배합비는 실험적으로 결정된 것으로 고분자의 중량이 5중량부 미만이거나 30중량부를 초과하게 되면 제막단계에서 가교 고분자전해질막이 잘 형성되지 않았다.The step of preparing the cation conductive polymer solution and the solution of the anionic conductive polymer may be carried out in any order. The cation conductive polymer and the anionic conductive polymer obtained by the purchase or direct preparation are completely dissolved in the same solvent, Prepare the conductive polymer solution separately. Here, the mixing ratio of the solvent and the cationic conductive polymer or the anionic conductive polymer may be 5 to 30 parts by weight based on 100 parts by weight of the solvent. The blending ratio was experimentally determined. When the weight of the polymer was less than 5 parts by weight or more than 30 parts by weight, the crosslinked polymer electrolyte membrane was not formed well in the film forming step.

가교단계는 준비된 양이온전도성고분자용액, 음이온전도성고분자용액, 및 가교제를 하나의 반응기에 넣고 혼합한 후 35~45℃에서 수 시간 내지 수 십시간 동안 교반하여 수행될 수 있는데, 이 때 사용되는 가교제는 양이온전도성고분자와 음이온전도성고분자 사이에서 가교결합을 형성할 수 있기만 하면 공지된 모든 가교제가 사용될 수 있다. 일 구현예로서 dichloro xylene, Xylylenediamine, o-Xylylenediamine dihydrochloride, Xylylenediamine/acrylonitrile adduct, 2,3,5,6-tetramethyl-1,4-xylylenediamine dihydrochloride, 2,5-dimethyl-1,4- xylylenediamine dihydrochloride로 구성된 그룹에서 선택되는 어느 하나 이상일 수 있다. The crosslinking step may be carried out by mixing the prepared cation conductive polymer solution, the anion conductive polymer solution, and the crosslinking agent in a single reactor and mixing and stirring at 35 to 45 ° C for several hours to several tens of hours. Any known cross-linking agent can be used as long as it can form a cross-link between the cation-conducting polymer and the anion-conducting polymer. One embodiment comprises dichloro xylene, xylylenediamine, o-xylylenediamine dihydrochloride, xylylenediamine / acrylonitrile adduct, 2,3,5,6-tetramethyl-1,4-xylylenediamine dihydrochloride, 2,5-dimethyl-1,4-xylylenediamine dihydrochloride May be any one or more selected from the group.

한편, 본 발명의 교고분자복합막 제조방법은 제막단계를 더 포함할 수 있는데, 제막단계는 가교단계에서 형성된 제막전구체용액으로 가교고분자복합막을 제조하는 단계이다. 일 구현예로서 제막전구체용액을 평판에 캐스팅하여 전구체막을 형성하는 단계; 캐스팅된 전구체막을 건조시켜 상기 전구체막에 포함된 용매 및 가교제를 제거하는 건조단계; 및 건조된 전구체막을 염기성수용액에 침지하는 단계;를 포함하여 수행될 수 있다.Meanwhile, the method for producing a crosslinked polymer composite membrane of the present invention may further include a membrane formation step, wherein the membrane formation step is a step of producing a crosslinked polymer composite membrane using a membrane precursor solution formed in the crosslinking step. In one embodiment, a precursor film is formed by casting a film forming precursor solution on a flat plate; A drying step of drying the cast precursor film to remove the solvent and the cross-linking agent contained in the precursor film; And immersing the dried precursor film in a basic aqueous solution.

다음으로, 본 발명의 가교 고분자전해질 복합막은 양이온전도성고분자, 음이온전도성고분자 및 상기 양이온전도성고분자와 음이온전도성고분자간에 형성된 1개 이상의 이온가교결합으로 구성된 단위결합유닛; 및 단위결합유닛 간에 형성되는 다수개의 이온가교결합;을 포함한다. Next, the crosslinked polymer electrolyte composite membrane of the present invention comprises a cation-conducting polymer, an anion-conducting polymer, and a unit bonding unit comprising at least one ion-crosslinked bond formed between the cation-conducting polymer and the anion-conducting polymer; And a plurality of ionic bridges formed between the unit bonding units.

여기서, 단위결합유닛을 구성하는 양이온전도성고분자 및 음이온전도성고분자는 제한되지 않지만 일 구현예로서 상술된 양이온전도성고분자 및 음이온전도성고분자일 수 있다. 보다 구체적으로는 단위결합유닛이 도 1에 도시된 바와 같이 구현될 수 있을 것이다. Here, the cation-conducting polymer and the anion-conducting polymer constituting the unit-bonding unit are not limited, but may be the cation-conducting polymer and the anion-conducting polymer described above as an embodiment. More specifically, a unit combining unit may be implemented as shown in FIG.

따라서, 본 발명의 가교 고분자전해질 복합막은 다수의 단위결합유닛이 반복되어 이루어지고, 다수의 단위결합유닛 간에도 상호적으로 다수의 이온가교결합이 형성되므로 40 MPa 이상의 매우 강한 기계적 강도는 물론, VO2+ 이온 투과도가 4.0ㅧ10-9㎠/min이하로 현저히 낮아지는 특성을 나타낸다. Therefore, the crosslinked polymer electrolyte composite membrane of the present invention has a very strong mechanical strength of 40 MPa or more as well as VO 2 + Ion permeability is significantly lowered to 4.0 ㅧ 10 -9 ㎠ / min or less.

이와 같이, 본 발명의 가교 고분자전해질복합막은 기존의 고분자 전해질 막과 비교해 50% 이상 향상된 강도와 내구성을 나타낼 수 있으며, 고온의 물이 직접 접촉하는 조건에서도 뛰어난 치수안정성과 40 MPa 이상의 높은 기계적 강도를 구현할 수 있으므로, 본 발명의 가교 고분자전해질복합막을 포함하는 레독스흐름전지 나 연료전지와 같은 에너지저장장치는 장기성능이 향상될 수 있을 것이다. As described above, the crosslinked polymer electrolyte composite membrane of the present invention can exhibit strength and durability improved by 50% or more as compared with conventional polymer electrolyte membranes, and exhibits excellent dimensional stability and mechanical strength of 40 MPa or more even under direct contact with high temperature water Therefore, the energy storage device such as the redox flow cell or the fuel cell including the crosslinked polymer electrolyte composite membrane of the present invention can improve the long-term performance.

실시예 1Example 1

1. 양이온전도성을 갖는 고분자 용액 준비1. Preparation of Polymer Solution Having Cationic Conductivity

부피 300 ml 3구 비커에 10 g의 PPO와 Chloroform을 넣고 3 wt% 용액을 만들고 강하게 교반한 후, 상기 제조된 용액에 Chloroform에 용해된 5 wt%의 CSA 용액을 만들어 24시간 동안 상온에서 적하시켜 강하게 교반시켰다. 얻어진 고체 설폰화폴리페닐렌옥사이드 (sulfonated polyphenylene oxide; sPPO)를 증류수에 세척하고 건조 후 NMP에 용해하여 10 wt%의 양이온 고분자 용액을 준비하였다.A 3 wt% solution of PPO and Chloroform was added to a 300 ml volume three-necked beaker. A 3 wt% solution was prepared and stirred vigorously. A 5 wt% CSA solution dissolved in Chloroform was prepared and dripped at room temperature for 24 hours Strongly stirred. The resulting sulfonated polyphenylene oxide (sPPO) was washed with distilled water, dried and dissolved in NMP to prepare a 10 wt% cationic polymer solution.

2. 음이온전도성을 갖는 고분자 용액 준비2. Preparation of Polymer Solution Having Anionic Conductivity

① 방향족 탄화수소계 고분자를 브롬화 하는 브롬화단계(1) Bromination step of brominating an aromatic hydrocarbon-based polymer

용매인 Chlorobenzene 100cc에 용질인 PPO (polyphenylene oxide) 12g를 20분 동안 3구 반응기에서 용해한 후, N-bromosuccinimide(NBS) 9.8g과 AIBN 0.5g을 넣고 교반한다. 이때, 반응기내 교반 속도는 최대한 빠르게하여, 반응시간 3.5시간 동안 진행한다. 7시간 경과 후, 반응기의 온도를 140℃에서 3시간 이상 유지해주었다. 반응물을 비커에 넣은 상태에서 ice water에 20분 동안 넣고 교반한 후에 이소프로필알콜(IPA) 500cc에 침전 후 필터링을 진행하였다. IPA 세척 과정을 한 번 더 진행하고 나서, 반응물을 Chloroform 120cc에 침전 시켜서 재분해 시켰다. 상기 용액을 IPA에서 침전 과정과 필터링을 통해, 브롬화된 방향족 탄화수소계 고분자 즉 B-PPO(또는 BPPO)를 얻었다. 얻어진 B-PPO는 진공상태하의 55℃의 오븐에서 하루 동안 건조시켰다. 음이온전도성 고분자 용액을 준비하기 위해 3g B-PPO, 17g NMP, 0.42cc 이미다졸을 40℃ hot-plate에서 12시간 동안 교반하여 10 wt%의 음이온전도성 고분자 용액을 얻었다. 12 g of PPO (polyphenylene oxide) is dissolved in 100 cc of chlorobenzene as a solvent in a three-necked reactor for 20 minutes. Then, 9.8 g of N-bromosuccinimide (NBS) and 0.5 g of AIBN are added and stirred. At this time, the stirring speed in the reactor is maximized to proceed for 3.5 hours. After 7 hours, the temperature of the reactor was maintained at 140 占 폚 for 3 hours or more. The reaction mixture was placed in a beaker for 20 minutes in ice water. After stirring, the mixture was precipitated in 500 cc of isopropyl alcohol (IPA) and filtered. The IPA washing process was performed one more time, and then the reaction was resolved by precipitating in 120 cc of Chloroform. The solution was subjected to IPA precipitation and filtration to obtain a brominated aromatic hydrocarbon polymer, i.e., B-PPO (or BPPO). The obtained B-PPO was dried in an oven at 55 캜 under vacuum for a day. To prepare the anionic conductive polymer solution, 3 g of B-PPO, 17 g of NMP and 0.42 cc of imidazole were stirred in a hot-plate at 40 ° C. for 12 hours to obtain an anionic conductive polymer solution of 10 wt%.

3. 가교 단계 3. Cross-linking step

준비된 양이온전도성고분자용액 10g, 음이온전도성고분자용액 10g 및 0.5g dichloro-p-xylene을 혼합해서 40℃ hot-plate에서 24시간 동안 교반하여 제막전구체용액을 얻었다.10 g of the prepared cation-conductive polymer solution, 10 g of the anionic conductive polymer solution and 0.5 g of dichloro-p-xylene were mixed and stirred for 24 hours at 40 ° C in a hot-plate to obtain a solution precursor solution.

4. 제막단계(가교 고분자전해질 복합막 형성단계)4. Film-forming step (crosslinked polymer electrolyte composite film forming step)

만들어진 제막전구체용액을 유리판 위에 캐스팅한 후 50℃ 오븐에서 6시간동안 넣어서 건조하여 전구체막을 형성하였다. 그 후 형성된 전구체막을 20℃씩 올려가면서 24시간동안 180℃에서 건조시켰다. 최종적으로 건조된 전구체막을 1M NaOH 수용액에 24시간 침지시켜서 가교 고분자전해질 복합막(Crosslinked membrane)을 제조하였다.The prepared precursor solution was cast on a glass plate, and then dried in an oven at 50 ° C. for 6 hours to form a precursor film. Thereafter, the precursor film formed was dried at 180 DEG C for 24 hours while being raised at 20 DEG C. [ The finally dried precursor membrane was immersed in a 1M NaOH aqueous solution for 24 hours to prepare a crosslinked polymer electrolyte membrane (Crosslinked membrane).

실험예 1 Experimental Example 1

실시예에서 제조된 가교 고분자전해질 복합막을 상온의 증류수에 24시간 침지한 다음, 막 표면의 물을 제거하지 않고 이온전도도 셀을 고정시키고 전극 사이에 막을 넣은 후, 20 kHz ~ 100 mHz 교류 임피던스 측정을 실시하여 막의 이온 전도도를 측정하고 그 결과를 도 2에 도시하였다.The crosslinked polyelectrolyte composite membrane prepared in the example was immersed in distilled water at room temperature for 24 hours. The ion conductive cell was fixed without removing the water on the surface of the membrane, the membrane was inserted between the electrodes, and the AC impedance of 20 kHz to 100 mHz was measured The ionic conductivity of the membrane was measured and the results are shown in FIG.

Nafion 212 및 가교 고분자전해질 복합막(Crosslinked membrane)의 온도별 이온전도도를 측정한 그래프인 도 2로부터 Nafion 212가 가교 고분자전해질 복합막(Crosslinked membrane)보다 높은 이온전도도를 가지고 있었지만 온도변화에 따른 편차가 가교 고분자전해질 복합막(Crosslinked membrane)에 비해 매우 큰 것을 보여준다. 또한, 가교 고분자전해질 복합막(Crosslinked membrane)은 DBr은 약 50%, DS는 약 28%의 수치를 보이며 함수량이 대체로 낮게 측정되어 이온전도도 또한 낮게 산출되는 경향이 있었다. From FIG. 2, which is a graph of ion conductivity of Nafion 212 and crosslinked membrane, Nafion 212 has higher ionic conductivity than crosslinked membrane, Crosslinked membrane is much larger than that of crosslinked membrane. Crosslinked membrane showed DBR of about 50% and DS of about 28%, and the water content was measured to be low, and the ion conductivity tended to be low.

실험예 2Experimental Example 2

가교 고분자전해질 복합막(Crosslinked membrane)의 인장력(kpsi)을 ASTM 882에 기재된 방법에 따라 측정하였고, 그 결과를 도 3에 나타내었다. 여기서, 기계적 강도는 측정 조건에 따라 많은 영향을 받는데, 실험은 100 mm/min로 진행되었다. The tensile force (kpsi) of the crosslinked polymer electrolyte membrane (Crosslinked membrane) was measured according to the method described in ASTM 882, and the results are shown in FIG. Here, the mechanical strength is greatly influenced by the measurement conditions, and the experiment was conducted at 100 mm / min.

Nafion 212와 가교 고분자전해질 복합막(Crosslinked membrane)의 인장강도를 측정한 결과인 도 3으로부터, 가교 고분자전해질 복합막은 Nafion 212에 비해 매우 높은 tensile strength 특성을 보여주는 것을 알 수 있다.From FIG. 3, which is a result of measurement of the tensile strength of Nafion 212 and crosslinked polymer electrolyte membrane (crosslinked membrane), it can be seen that the crosslinked polymer electrolyte composite membrane exhibits a very high tensile strength characteristic as compared with Nafion 212.

실시예 2Example 2

실시예 1에서 얻어진 가교 고분자전해질 복합막(Crosslinked membrane)을 포함하는 도 4에 도시된 배터리시스템(857 redox cell test system, Scribner associated)을 이용하여 바나듐 레독스흐름전지(Crosslinked membrane)제조하였다.A crosslinked membrane was prepared using the battery system (857 redox cell test system, Scribner associated) shown in FIG. 4 including the crosslinked polymer electrolyte composite membrane (Crosslinked membrane) obtained in Example 1.

비교예Comparative Example

가교 고분자전해질 복합막(Crosslinked membrane)이 아니라 Nafion 212 막을 포하한 것을 제외하면 실시예2와 동일한 방법으로 비교예 바나듐 레독스흐름전지(Nafion 212)을 제조하였다.A comparative vanadium redox flow cell (Nafion 212) was prepared in the same manner as in Example 2, except that a Nafion 212 membrane was used instead of a crosslinked polymer electrolyte composite membrane (Crosslinked membrane).

실험예 3 Experimental Example 3

실시예2 및 비교예에서 제조된 가교 고분자전해질 복합막 및 Nafion 212 막을 포함하는 배터리시스템을 이용하여 가교 고분자전해질 복합막 및 Nafion 212 막의 투과도를 측정하였다. 장비 구성은 셀 테스트와 동일하며, 탱크에 각기 다른 솔루션을 넣어 준비하였다. 전자적 평형을 맞추기 위하여 한쪽 탱크에는 1.5M의 MgSO4이 3M H2SO4에 녹아 있는 용액을 넣었으며, 다른 한 쪽에는 1.5M의 VOSO4에 녹아 있는 용액을 넣고 실험을 진행하였다. 1, 2, 4, 8, 12, 24시간 간격으로 황산마그네슘 솔루션이 들어있는 탱크의 용액을 샘플링 하였다. UV를 이용하여 투과된 VO2+ 양을 측정하였으며, 측정시 이용된 파장은 765.5nm 이다. 투과량은 하기 식으로 계산하였고, 그 결과를 하기 표 1 및 도 5에 나타내었다. Permeability of the crosslinked polymer electrolyte composite membrane and the Nafion 212 membrane was measured using the battery system comprising the crosslinked polymer electrolyte composite membrane and the Nafion 212 membrane prepared in Example 2 and Comparative Example. The equipment configuration is the same as the cell test, and the tank is equipped with different solutions. In order to achieve electronic equilibrium, 1.5M MgSO4 solution in 3M H2SO4 solution was added to one tank and the solution was dissolved in 1.5M VOSO4 solution in the other tank. A solution of the tank containing the magnesium sulfate solution at 1, 2, 4, 8, 12, and 24 hour intervals was sampled. The amount of transmitted VO 2+ was measured using UV, and the wavelength used in the measurement was 765.5 nm. The permeation amount was calculated by the following formula, and the results are shown in Table 1 and FIG.

Figure 112016083956811-pat00001
Figure 112016083956811-pat00001

여기서, 투과도(Permeability) 실험은 VRFB용 전해액 용기 한쪽(A)에는 1.5M VOSO4/3.0M H2SO4, 반대쪽(B)에는 1.5M MgSO4/3.0M H2SO4 용액을 넣고 단위셀 조립 후 양쪽 전해액을 셀 쪽으로 펌핑해주면서 시간 별로 (B)용액을 채취하여 농도변화를 측정하였다. Here, the transmission rate (Permeability) The experiment electrolyte vessel for one VRFB (A) has 1.5M VOSO 4 /3.0MH 2 SO 4, the other end (B) is put into a 1.5M MgSO 4 /3.0MH 2 SO 4 solution and a unit cell assembled Both solutions were pumped to the cell side and the concentration was measured by taking the solution (B) over time.

Nafion 212Nafion 212 sPPOsPPO Im-bPPOIm-bPPO Crosslinked membraneCrosslinked membrane Permeability
(cm2/min)
Permeability
(cm < 2 > / min)
1.41×10-6 1.41 × 10 -6 5.41×10-9 5.41 × 10 -9 1.75×10-8 1.75 × 10 -8 4.03×10-9 4.03 × 10 -9

Nafion 212, sPPO, Im-bPPO 및 가교 고분자전해질 복합막의 VO2+ 이온의 Permeability와 시간별 VO2+(V(Ⅴ))의 농도변화를 보여주는 하기 표 1 및 도 5로부터, Nafion 212의 경우 Permeability가 1.41×10-6 cm2/min으로 측정되었고 sPPO, Im-bPPO, 가교 고분자전해질 복합막은 각각 5.41×10-9, 1.75×10-8, 4.03×10-9, cm2/min으로 가교 고분자전해질 복합막은 Nafion 212은 물론 다른 탄화수소계고분자막에 비해서도 VO2+ 이온의 투과도가 매우 낮음을 확인하였다.Nafion 212, sPPO, Im-bPPO, and VO 2+ ions of the crosslinked polymer electrolyte composite membrane From Table 1 and FIG. 5 showing the change in the permeability and the concentration of VO 2+ (V (V)) over time, the permeability was measured as 1.41 × 10 -6 cm 2 / min for Nafion 212 and sPPO, Im-bPPO, The polymer electrolyte composite membranes were 5.41 × 10 -9 , 1.75 × 10 -8 , 4.03 × 10 -9 , cm 2 / min. The cross-linked polymer electrolyte membranes showed very low permeation of VO 2+ ions compared to Nafion 212 and other hydrocarbon-based polymer membranes.

실험예 4 Experimental Example 4

실시예2 에서 얻어진 바나듐 레독스흐름전지(Crosslinked membrane) 및 비교예에서 얻어진 비교예 바나듐 레독스흐름전지(Nafion 212)를 대상으로 바나듐 레독스흐름전지(RFB) 충방전 싸이클 실험을 40 mA/㎠로 진행하고, Coulombic efficiency, CE)에 대해 측정한 결과를 도 6 에 나타내었다. A cyclic voltammogram of a vanadium redox flow cell (RFB) was carried out on a crosslinked membrane obtained in Example 2 and a comparative vanadium redox flow cell (Nafion 212) obtained in Comparative Example under a condition of 40 mA / cm 2 And Coulombic efficiency (CE) was measured. The results are shown in FIG.

각 효율을 비교해본 결과, 도 6에 도시된 바와 같이 CE에서 Crosslinked membrane의 효율이 Nafion 212보다 높았음을 알 수 있다. As shown in FIG. 6, the efficiency of the crosslinked membrane was higher than that of Nafion 212 in CE.

도 6으로부터, 나피온을 이온교환막으로 사용하는 비교예 바나듐 레독스흐름전지(Nafion 212)에 비해 본 발명의 고분자 전해질 복합막을 이온교환막으로 사용하는 레독스흐름전지(crosslinked membrane)가 셀 성능을 향상시킬 뿐만 아니라 장기 운전 성능 역시 향상될 수 있음을 확인할 수 있다.From FIG. 6, it can be seen that the crosslinked membrane using the polymer electrolyte composite membrane of the present invention as an ion exchange membrane, compared to the vanadium redox flow cell (Nafion 212), which uses Nafion as an ion exchange membrane, And the long-term operation performance can be improved as well.

상술된 실험결과들은 본 발명의 고분자 전해질 복합막이 레독스 흐름전지에 사용된 경우만을 예시하였으나, 다른 종류의 이차전지 또는 연료전지와 같은 에너지저장장치에 사용할 경우에도 셀 성능을 향상시킬 뿐만 아니라 장기 운전 성능 역시 향상될 수 있음이 예측될 수 있다.The above-described experimental results illustrate only the case where the polymer electrolyte composite membrane of the present invention is used in a redox flow cell. However, even when used in an energy storage device such as another kind of secondary battery or a fuel cell, It can be predicted that performance can also be improved.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Various changes and modifications will be possible.

Claims (15)

양이온전도성고분자를 용매에 용해시켜 양이온전도성고분자용액을 준비하는 단계; 음이온전도성고분자를 용매에 용해시켜 음이온전도성고분자용액을 준비하는 단계; 및 상기 양이온전도성고분자용액, 음이온전도성고분자용액 및 가교제를 혼합하여 가교시켜 제막전구체용액을 형성시키는 가교단계;를 포함하는데,
상기 양이온전도성고분자는 술폰화 폴리이미드(sulfonated polyimide, S-PI), 술폰화 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화 폴리에테르에테르케톤(sulfonated polyetheretherketone, S-PEEK), 술폰화 폴리벤즈이미다졸(sulfonated polybenzimidazole, S-PBI), 술폰화 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화 폴리포스파젠(sulfonated polyphosphazene), 술폰화 폴리페닐렌옥사이드(sulfonated polyphenylene oxide, S-PPO) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상이고,
상기 음이온전도성고분자는 Im-bPPO, Chloromethylated bPPO, poly(1-allyl-3-methylimidazolium chloride and methyl methacrylate), ETFE-g-PDMAEMA(ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate), cardo-polyetherketone, chloromethylated/quaternized poly(phthalazinone ether ketone), ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate (DMAEMA), quaternary ammonium functionalized PAES, quaternary benzyl trimethylammonium, quaternized poly(phthalazinone ether sulfone ketone) 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상이며,
상기 가교단계에서 사용되는 가교제는 dichloro xylene, Xylylenediamine, o-Xylylenediamine dihydrochloride, Xylylenediamine/acrylonitrile adduct, 2,3,5,6-tetramethyl-1,4-xylylenediamine dihydrochloride, 2,5-dimethyl-1,4- xylylenediamine dihydrochloride로 구성된 그룹에서 선택되는 어느 하나 이상이고,
상기 가교단계는 상기 양이온전도성고분자용액, 상기 음이온전도성고분자용액, 및 가교제를 혼합한 후 35~45℃에서 교반하여 수행되는 것을 특징으로 하는 가교고분자전해질 복합막 제조방법.
Preparing a cationic conductive polymer solution by dissolving the cationic conductive polymer in a solvent; Preparing an anionic conductive polymer solution by dissolving an anionic conductive polymer in a solvent; And a cross-linking step of mixing and crosslinking the cation-conductive polymer solution, the anion-conducting polymer solution and the cross-linking agent to form a solution precursor solution,
The cationic conductive polymer may be at least one selected from the group consisting of sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (S-PEEK) Sulfonated polybenzimidazole (S-PBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene, Poly (phenylene oxide) (S-PPO), and combinations thereof.
The anionic conductive polymer may be selected from the group consisting of Im-bPPO, Chloromethylated bPPO, poly (1-allyl-3-methylimidazolium chloride and methyl methacrylate), ETFE-g-PDMAEMA (ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate), cardo-polyetherketone, chloromethylated / quaternized poly phthalazinone ether ketone), ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate (DMAEMA), quaternary ammonium functionalized PAES, quaternary benzyl trimethylammonium, quaternized poly (phthalazinone ether sulfone ketone)
The crosslinking agent used in the crosslinking step may be selected from the group consisting of dichloro xylene, xylylenediamine, o-xylylenediamine dihydrochloride, xylylenediamine / acrylonitrile adduct, 2,3,5,6-tetramethyl-1,4-xylylenediamine dihydrochloride, xylylenediamine dihydrochloride, and more preferably at least one selected from the group consisting of xylylenediamine dihydrochloride,
Wherein the crosslinking step is performed by mixing the cationic conductive polymer solution, the anionic conductive polymer solution, and the crosslinking agent, followed by stirring at 35 to 45 ° C.
삭제delete 삭제delete 제 1 항에 있어서,
상기 용매는 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올을 포함하는 알콜계 용매; 디에틸에테르, 디프로필에테르, 디부틸에테르, 부틸에틸에테르, 테트라하이드로퓨란을 포함하는 에테르계 용매; 에틸렌글리콜, 프로필렌글리콜, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노부틸에테르을 포함하는 알콜 에테르계 용매; 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 시클로헥사논을 포함하는 케톤계 용매; N-메틸-2-피릴리디논, 2-피릴리디논, N-메틸포름아미드, N,N-디메틸포름아미드를 포함하는 아미드계 용매; 디메틸술폭사이드, 디에틸술폭사이드를 포함하는 술폭사이드계 용매; 디에틸술폰, 테트라메틸렌 술폰를 포함하는 술폰계 용매; 아세토니트릴, 벤조니트릴을 포함하는 니트릴 용매; 알킬아민, 시클릭 아민, 아로마틱 아민을 포함하는 아민계 용매; 메틸 부틸레이트, 에틸부틸레이트, 프로필프로피오네이트를 포함하는 에스테르계 용매; 에틸 아세테이트, 부틸아세테이트를 포함하는 카르복실산 에스테르계 용매; 벤젠, 에틸벤젠, 클로로벤젠, 톨루엔, 자일렌을 포함하는 방향족 탄화수소계 용매; 헥산, 헵탄, 시클로헥산을 포함하는 지방족 탄화수소계 용매; 클로로포름, 테트라클로로에틸렌, 카본테트라클로라이드, 디클로로메탄, 디클로로에탄을 포함하는 할로겐화된 탄화수소계 용매; 프로필렌 카보네이트, 에틸렌 카보네이트, 디메틸카보네이트, 디부틸카보네이트, 에틸메틸카보네이트, 디부틸카보네이트, 니트로메탄, 니트로벤젠으로 구성된 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 가교 고분자전해질 복합막 제조방법.
The method according to claim 1,
The solvent may be an alcohol-based solvent including methanol, ethanol, propanol, isopropanol, butanol, and isobutanol; Ether-based solvents including diethyl ether, dipropyl ether, dibutyl ether, butyl ethyl ether, and tetrahydrofuran; Alcohol ether solvents including ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monobutyl ether; Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; An amide-based solvent including N-methyl-2-pyrrolidinone, 2-pyrrolidinone, N-methylformamide and N, N-dimethylformamide; A sulfoxide-based solvent containing dimethylsulfoxide and diethylsulfoxide; Diethylsulfone, and tetramethylene sulfone; Nitrile solvents including acetonitrile, benzonitrile; Amine-based solvents including alkylamines, cyclic amines, and aromatic amines; Ester solvents including methyl butyrate, ethyl butyrate and propyl propionate; A carboxylic acid ester-based solvent containing ethyl acetate and butyl acetate; Aromatic hydrocarbon solvents including benzene, ethylbenzene, chlorobenzene, toluene and xylene; An aliphatic hydrocarbon-based solvent including hexane, heptane, and cyclohexane; Halogenated hydrocarbon-based solvents including chloroform, tetrachlorethylene, carbon tetrachloride, dichloromethane, and dichloroethane; Wherein the polymer electrolyte membrane is at least one selected from the group consisting of propylene carbonate, ethylene carbonate, dimethyl carbonate, dibutyl carbonate, ethyl methyl carbonate, dibutyl carbonate, nitromethane and nitrobenzene.
삭제delete 삭제delete 제 1 항에 있어서,
상기 가교단계에서 형성된 제막전구체용액으로 가교고분자복합막을 제조하는 제막단계를 더 포함하는 것을 특징으로 하는 가교고분자전해질 복합막 제조방법.
The method according to claim 1,
Further comprising a film forming step of producing a crosslinked polymer composite membrane using the film forming precursor solution formed in the crosslinking step.
제 7 항에 있어서,
상기 제막단계는 상기 제막전구체용액을 평판에 캐스팅하여 전구체막을 형성하는 단계; 캐스팅된 전구체막을 건조시켜 상기 전구체막에 포함된 용매 및 가교제를 제거하는 건조단계; 및 건조된 전구체막을 염기성수용액에 침지하는 단계;를 포함하여 수행되는 것을 특징으로 하는 가교고분자전해질 복합막 제조방법.
8. The method of claim 7,
Forming a precursor film by casting the film forming precursor solution on a flat plate; A drying step of drying the cast precursor film to remove the solvent and the cross-linking agent contained in the precursor film; And a step of immersing the dried precursor membrane in a basic aqueous solution.
양이온전도성고분자, 음이온전도성고분자 및 상기 양이온전도성고분자와 음이온전도성고분자간에 형성된 1개 이상의 이온가교결합으로 구성된 단위결합유닛; 및
상기 단위결합유닛 간에 형성되는 다수개의 이온가교결합;을 포함하는데,
상기 양이온전도성고분자는 술폰화 폴리이미드(sulfonated polyimide, S-PI), 술폰화 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화 폴리에테르에테르케톤(sulfonated polyetheretherketone, S-PEEK), 술폰화 폴리벤즈이미다졸(sulfonated polybenzimidazole, S-PBI), 술폰화 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화 폴리포스파젠(sulfonated polyphosphazene), 술폰화 폴리페닐렌옥사이드(sulfonated polyphenylene oxide, S-PPO) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상이고,
상기 음이온전도성고분자는 Im-bPPO, Chloromethylated bPPO, poly(1-allyl-3-methylimidazolium chloride and methyl methacrylate), ETFE-g-PDMAEMA(ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate), cardo-polyetherketone, chloromethylated/quaternized poly(phthalazinone ether ketone), ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate (DMAEMA), quaternary ammonium functionalized PAES, quaternary benzyl trimethylammonium, quaternized poly(phthalazinone ether sulfone ketone) 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 이상이며,
VO2+ 이온 투과도가 4.0×10-9㎠/min이하이고, 40 MPa 이상의 기계적 강도를 갖는 것을 특징으로 하는 가교 고분자전해질 복합막.
A unit bonding unit comprising at least one cationic conductive polymer, an anionic conductive polymer, and at least one ionic crosslinking formed between the cationic conductive polymer and the anionic conductive polymer; And
And a plurality of ionic crosslinks formed between the unit binding units,
The cationic conductive polymer may be at least one selected from the group consisting of sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (S-PEEK) Sulfonated polybenzimidazole (S-PBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene, Poly (phenylene oxide) (S-PPO), and combinations thereof.
The anionic conductive polymer may be selected from the group consisting of Im-bPPO, Chloromethylated bPPO, poly (1-allyl-3-methylimidazolium chloride and methyl methacrylate), ETFE-g-PDMAEMA (ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate), cardo-polyetherketone, chloromethylated / quaternized poly phthalazinone ether ketone), ethylene-tetrafluoroethylene-dimethylaminoethyl methacrylate (DMAEMA), quaternary ammonium functionalized PAES, quaternary benzyl trimethylammonium, quaternized poly (phthalazinone ether sulfone ketone)
Wherein the membrane has a VO 2+ ion permeability of 4.0 × 10 -9 cm 2 / min or less and a mechanical strength of 40 MPa or more.
삭제delete 삭제delete 삭제delete 삭제delete 제 1 항, 제 4 항, 제 7 항, 제 8 항 중 어느 한 항의 제조방법으로 제조된 가교 고분자전해질 복합막 또는 제 9 항의 가교 고분자전해질 복합막을 포함하는 에너지저장장치.
9. An energy storage device comprising a crosslinked polymer electrolyte composite membrane produced by the method of any one of claims 1, 4, 7, and 8 or a crosslinked polymer electrolyte composite membrane of claim 9.
제 14 항에 있어서,
상기 에너지저장장치는 레독스흐름전지 또는 연료전지인 것을 특징으로 하는 에너지저장장치.
15. The method of claim 14,
Wherein the energy storage device is a redox flow cell or a fuel cell.
KR1020160110146A 2016-08-29 2016-08-29 Method for producing crosslinked polymer electrolyte composite membranes, the composite membranes produced thereby and energy storage device comprising the composite membranes KR101860541B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160110146A KR101860541B1 (en) 2016-08-29 2016-08-29 Method for producing crosslinked polymer electrolyte composite membranes, the composite membranes produced thereby and energy storage device comprising the composite membranes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160110146A KR101860541B1 (en) 2016-08-29 2016-08-29 Method for producing crosslinked polymer electrolyte composite membranes, the composite membranes produced thereby and energy storage device comprising the composite membranes

Publications (2)

Publication Number Publication Date
KR20180024268A KR20180024268A (en) 2018-03-08
KR101860541B1 true KR101860541B1 (en) 2018-05-23

Family

ID=61725755

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160110146A KR101860541B1 (en) 2016-08-29 2016-08-29 Method for producing crosslinked polymer electrolyte composite membranes, the composite membranes produced thereby and energy storage device comprising the composite membranes

Country Status (1)

Country Link
KR (1) KR101860541B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102014970B1 (en) * 2018-07-27 2019-08-27 인천대학교 산학협력단 Anion exchange membrane and method for preparing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393695B (en) * 2020-05-21 2022-08-12 西南科技大学 Preparation method of self-crosslinking sulfonated polyimide membrane
KR20230090577A (en) * 2021-12-15 2023-06-22 코오롱인더스트리 주식회사 Polymer electrolyte membrane, method for manufacturing the same and membraneelectrode assembly comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028292A1 (en) 2004-09-10 2006-03-16 Tokuyama Corporation Separation membrane for fuel battery and process for producing the same
KR101433133B1 (en) 2011-03-31 2014-08-25 코오롱인더스트리 주식회사 Polymer Electrolyte Membrane for Fuel Cell and Method for Manufacturing the Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028292A1 (en) 2004-09-10 2006-03-16 Tokuyama Corporation Separation membrane for fuel battery and process for producing the same
KR101433133B1 (en) 2011-03-31 2014-08-25 코오롱인더스트리 주식회사 Polymer Electrolyte Membrane for Fuel Cell and Method for Manufacturing the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102014970B1 (en) * 2018-07-27 2019-08-27 인천대학교 산학협력단 Anion exchange membrane and method for preparing the same

Also Published As

Publication number Publication date
KR20180024268A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
Zhang et al. Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery
Ding et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications
Xi et al. Effect of degree of sulfonation and casting solvent on sulfonated poly (ether ether ketone) membrane for vanadium redox flow battery
Miyatake et al. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications
Maurya et al. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries
Ge et al. Current challenges and perspectives of polymer electrolyte membranes
US7550216B2 (en) Composite solid polymer electrolyte membranes
Yan et al. Quaternary phosphonium-functionalized poly (ether ether ketone) as highly conductive and alkali-stable hydroxide exchange membrane for fuel cells
Wycisk et al. New developments in proton conducting membranes for fuel cells
KR102048064B1 (en) Method of preparing ion-exchange membrane using chemical modification and ion-exchange membrane produced by the same method
EP2490279A1 (en) Aromatic polymer ion exchange membrane and its complex membrane and its application for acidic electrolyte flow energy storage battery
EP2450907B1 (en) Alkaline single ion conductors with high conductivity and transference number and methods for preparing the same
JP2003528420A (en) Composite solid polymer electrolyte membrane
KR101802285B1 (en) Ion Exchange Membrane and Method for Manufacturing the Same
US10003096B2 (en) Polymer electrolyte membrane, membrane-electrode assembly comprising the same and fuel cell comprising the same
KR101860541B1 (en) Method for producing crosslinked polymer electrolyte composite membranes, the composite membranes produced thereby and energy storage device comprising the composite membranes
Roh et al. Investigation on physico-chemical and electrochemical performance of poly (phenylene oxide)-based anion exchange membrane for vanadium redox flow battery systems
US10374246B2 (en) Ion exchange membrane and manufacturing method therefor
KR20180003925A (en) Reinforced-Composite Electrolyte Membrane Comprising Porous Polymer Substrate And Manufacturing Method Thereof
Li et al. Development of a crosslinked pore-filling membrane with an extremely low swelling ratio and methanol crossover for direct methanol fuel cells
Hu et al. Nanoscale solid superacid-coupled polybenzimidazole membrane with high ion selectivity for flow batteries
KR101655409B1 (en) Crosslinked Polymer Blend Catio Exchange Membrane and Manufacturing Method of th Same
US10847827B2 (en) Ion conductor, method for preparing same, and ion-exchange membrane, membrane-electrode assembly and fuel cell comprising same
KR20120009789A (en) Proton-conducting polymer, polymer electrolyte membrane comprising polymer, cation-exchange resin comprising polymer, cation-exchange membrane comprising polymer, method for preparing polymer
CN109103483B (en) Amphoteric ion membrane for all-vanadium redox flow battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant