KR101857187B1 - Catalyst for hydrodeoxygenating oxygenates and method of preparing deoxygenated fuels using the same - Google Patents

Catalyst for hydrodeoxygenating oxygenates and method of preparing deoxygenated fuels using the same Download PDF

Info

Publication number
KR101857187B1
KR101857187B1 KR1020160064088A KR20160064088A KR101857187B1 KR 101857187 B1 KR101857187 B1 KR 101857187B1 KR 1020160064088 A KR1020160064088 A KR 1020160064088A KR 20160064088 A KR20160064088 A KR 20160064088A KR 101857187 B1 KR101857187 B1 KR 101857187B1
Authority
KR
South Korea
Prior art keywords
catalyst
hydrocarbon compound
titanium
carrier
oxygen
Prior art date
Application number
KR1020160064088A
Other languages
Korean (ko)
Other versions
KR20170133092A (en
Inventor
김인호
아뎁 드위아트모코 아디드
하정명
최재욱
서동진
박종민
윤영현
제정호
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020160064088A priority Critical patent/KR101857187B1/en
Publication of KR20170133092A publication Critical patent/KR20170133092A/en
Application granted granted Critical
Publication of KR101857187B1 publication Critical patent/KR101857187B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J32/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/06Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 티타니아-텅스텐-지르코늄 산화물 담체; 및 상기 담체에 담지된 금속입자를 포함하는 수첨탈산소 반응용 촉매 및 이의 제조방법에 관한 것이다. 또한, 본 발명은 상기 수첨탈산소 반응용 촉매를 이용하여 함산소 화합물로부터 수소를 첨가하고 산소를 제거하여, 석유를 대체할 수 있는 바이오 연료를 제조하는 방법에 관한 것이다.The present invention relates to a titania-tungsten-zirconium oxide carrier; And metal particles supported on the support, and a process for producing the catalyst. The present invention also relates to a method for producing a biofuel that can replace petroleum by adding hydrogen from an oxygen-containing compound and removing oxygen by using the catalyst for hydrocracking reaction.

Description

함산소 화합물의 수첨탈산소 반응용 촉매 및 이를 이용한 탈산소 연료 제조 방법{Catalyst for hydrodeoxygenating oxygenates and method of preparing deoxygenated fuels using the same}Technical Field [0001] The present invention relates to a catalyst for hydrocracking of oxygen-containing compounds and a method for preparing deoxygenated fuels using the same,

본 명세서에는 수첨탈산소 반응용 촉매 및 이의 제조방법과 상기 촉매를 이용한 바이오 연료의 제조방법이 개시된다.A catalyst for hydrocracking reaction, a method for producing the same, and a method for producing a biofuel using the catalyst are disclosed in this specification.

최근 화석연료 고갈 및 유가 급등, 기후변화협약 이행 강화 등으로 인해 화석연료의 사용제한으로 재생가능한 바이오매스의 활용에 대한 관심이 급증하여, 특히, 나무, 생물 부산물 등 비식량 바이오매스의 이용에 대한 연구 개발이 활발히 진행되고 있다. 주로 셀룰로오스로 이루어진 식량 바이오매스와 구분되는 목질계 바이오매스는 전체 식물성 바이오매스의 95% 이상을 차지하고 비식량 자원 및 폐기물을 활용할 수 있어서 차세대 바이오매스로 많은 관심을 받고 있다. 목질계 바이오매스의 구성성분인 셀룰로오스, 헤미셀룰로오스, 리그닌 중 셀룰로오스, 헤미셀룰로오스는 식량성 자원처럼 활용이 가능하고 리그닌은 무작위페놀 고분자로서 석유에서 유래하는 모든 방향족 탄소 화합물을 대체할 수 있는 가능성이 있으나, 현재는 그 복잡한 구조로 인해 단순한 부산물로 인식하여 폐기되고 있어서 이를 활용할 방법을 찾는 연구 개발이 활발히 진행되고 있다. Recently, due to the depletion of fossil fuels, soaring oil prices, and the strengthening of the implementation of the Convention on Climate Change, interest in the use of renewable biomass has increased due to restrictions on the use of fossil fuels. Especially, the use of non-food biomass such as wood, Research and development are actively proceeding. Ligneous biomass, which is distinguished from food biomass consisting mainly of cellulose, accounts for more than 95% of total plant biomass and can utilize non-food resources and waste, which is attracting much attention as next generation biomass. Cellulose, hemicellulose, cellulose in cellulosic materials such as hemicellulose, hemicellulose and hemicellulose, which are constituents of woody biomass, can be used as food resources, and lignin is a random phenol polymer and is likely to replace all aromatic carbon compounds derived from petroleum. However, Has been recognized as a simple byproduct due to its complicated structure and discarded, and research and development are actively pursued to find a way to utilize it.

다양한 바이오매스 원료로부터 고급 연료를 생산하는 다양한 화학적, 생물학적 방법이 제시되고 있으며, 모든 종류의 탄소화합물을 원료로 사용할 수 있는 방법으로는 열분해 방법이 있다. 열분해 또는 수열분해 방법은 다양한 바이오매스 종류에 활용할 수 있다는 장점이 있으나 생성된 열분해 산물, 또는 액체 열분해 오일이 높은 산소 함량으로 인해 석유 대체 연료로 부적합하다는 단점이 있다. Various chemical and biological methods for producing high-quality fuels from various biomass feedstocks have been proposed, and pyrolysis methods are available as a method for using all kinds of carbon compounds as feedstocks. The pyrolysis or hydrothermal decomposition method has an advantage that it can be applied to various kinds of biomass, but the generated pyrolysis product or liquid pyrolysis oil is disadvantageous as an alternative petroleum fuel due to high oxygen content.

대한민국특허등록공보 제1305907호Korean Patent Registration No. 1305907

일 측면에서, 본 발명은 상기 수첨탈산소 반응에 사용하기 위한 촉매를 제공하는 것을 목적으로 한다.In one aspect, the present invention is directed to providing a catalyst for use in the hydrochemical oxygenation reaction.

일 측면에서, 본 발명은 상기 촉매를 사용하여 수첨탈산소 반응과 같이 수소를 첨가하여 산소를 제거하는 공정을 통해 바이오 연료를 생산하는 방법을 제공하는 것을 목적으로 한다. In one aspect, the present invention provides a method for producing biofuel through a process of removing oxygen by adding hydrogen such as hydrocracking oxygen using the catalyst.

상기와 같은 목적을 해결하기 위하여 본 발명의 일 관점은 티타늄-텅스텐-지르코늄 산화물(Titanium-Tungsten-Zirconium oxide, TiO2/WO3/ZrO2) 담체; 및 상기 담체에 담지된 금속입자를 포함하는 수첨탈산소 반응용 촉매를 제공한다.According to an aspect of the present invention, there is provided a titanium-tungsten-zirconium oxide (TiO 2 / WO 3 / ZrO 2 ) carrier; And a metal particle supported on the support.

본 발명의 일 관점은, 금속 전구체 수용액을 상기 티타늄-텅스텐-지르코늄 산화물 담체와 혼합하여 함침시키는 단계; 및 상기 금속 전구체 수용액을 함침시킨 담체를 공기 중에서 소성하는 단계를 포함하는 상기 수첨탈산소 반응용 촉매의 제조방법을 제공한다.In one aspect of the present invention, there is provided a method for producing a titanium-tungsten-zirconium oxide support, comprising: impregnating a metal precursor aqueous solution with the titanium-tungsten- And calcining the carrier impregnated with the metal precursor aqueous solution in air. The present invention also provides a method for producing the catalyst for hydrocracking reaction.

또한, 본 발명의 일 관점은 상기 수첨탈산소 반응용 촉매를 함산소 탄화수소 화합물을 포함하는 바이오매스에 가하여 산소 탄화수소 화합물로부터 탈산소 탄화수소 화합물을 제조하는 단계를 포함하는 바이오연료의 제조방법을 제공한다.Another aspect of the present invention provides a method for producing a biofuel comprising the step of adding a catalyst for hydrocracking reaction to a biomass containing an oxygen-containing hydrocarbon compound to prepare a deoxy-hydrocarbon compound from the oxygen-hydrocarbon compound .

본 발명의 수첨탈산소 반응용 촉매는 수첨탈산소(hydrodeoxygenation) 반응 중 코크 또는 타르의 생성을 억제하여 반응을 촉진시킬 수 있다. 따라서, 상기 촉매를 이용하면 효율적으로 함산소 화합물에 수소를 첨가하여 산소를 제거할 수 있어, 석유를 대체할 수 있는 바이오 연료를 높은 수율로 효과적으로 생산할 수 있다.The catalyst for hydrocracking reaction of the present invention can promote the reaction by inhibiting the formation of coke or tar during the hydrodeoxygenation reaction. Therefore, using the catalyst effectively removes oxygen by adding hydrogen to oxygen-containing compounds, thereby effectively producing biofuel that can replace petroleum with high yield.

도 1 은 본 발명의 일 실시예에 따른 바이오 연료 제조방법에 사용되는 연속식 수첨탈산소 반응기의 구성을 도식화한 것이다.FIG. 1 is a schematic diagram illustrating the construction of a continuous hydrocracking oxygenator used in a method for manufacturing a biofuel according to an embodiment of the present invention. Referring to FIG.

본 명세서에서, 용어 "함산소 화합물" 또는 "함산소 탄화수소 화합물"은 산소 원자를 분자 구조 내에 포함하는 탄화수소 화합물을 의미한다.In this specification, the term " oxygen-containing compound "or" oxygen-containing hydrocarbon compound "means a hydrocarbon compound containing an oxygen atom in its molecular structure.

본 명세서에서, 용어 "탈산소 탄화수소 화합물"은 "함산소 화합물"로부터 산소가 일부 또는 전부 제거된 화합물"을 의미한다.As used herein, the term "deoxygenated hydrocarbon compound" means a compound in which some or all of oxygen has been removed from " oxygenated compound ".

이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail in order to facilitate the present invention by those skilled in the art.

본 발명의 일 실시예는 담체; 및 상기 담체에 담지된 금속입자를 포함하는 수첨탈산소 반응용 촉매를 제공할 수 있다. One embodiment of the present invention includes a carrier; And a catalyst for hydrocracking reaction comprising the metal particles supported on the support.

일 실시예로서 상기 담체는 지르코니아 기반 담체일 수 있으며, 보다 구체적으로는 티타늄-텅스텐-지르코늄 산화물(Titanium-Tungsten-Zirconium oxide, TiO2/WO3/ZrO2) 담체일 수 있다. 티타늄을 첨가함으로써 촉매의 탈산소 능력을 향상시킬 수 있다.In one embodiment, the support may be a zirconia-based support, and more specifically, a titanium-tungsten-zirconium oxide (TiO 2 / WO 3 / ZrO 2 ) support. By adding titanium, the deoxidizing ability of the catalyst can be improved.

이에, 본 발명의 일 실시예는 티타늄-텅스텐-지르코늄 산화물 담체; 및 상기 담체에 담지된 금속입자를 포함하는 수첨탈산소 반응용 촉매를 제공할 수 있다.Accordingly, an embodiment of the present invention provides a titanium-tungsten-zirconium oxide carrier; And a catalyst for hydrocracking reaction comprising the metal particles supported on the support.

일 실시예로서 상기 금속 입자는 수소화 반응의 촉매로서 작용할 수 있는 금속 촉매라면 특별히 제한되지 않는다. 예를 들어 상기 금속 입자는 백금(Pt), 루테늄(Ru), 팔라듐(Pd), 로듐(Rh) 및 이리듐(Ir)으로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다. 구체적으로 상기 금속 전구체는 루테늄(Ru) 및 백금(Pt) 중 하나 이상일 수 있고, 더욱 구체적으로는 루테늄(Ru)일 수 있다.In one embodiment, the metal particles are not particularly limited as long as they are metal catalysts that can act as catalysts for the hydrogenation reaction. For example, the metal particles may include at least one selected from the group consisting of platinum (Pt), ruthenium (Ru), palladium (Pd), rhodium (Rh), and iridium (Ir). Specifically, the metal precursor may be at least one of ruthenium (Ru) and platinum (Pt), and more specifically may be ruthenium (Ru).

다른 일 실시예로서, 상기 금속입자는 구리(Cu), 니켈(Ni) 및 코발트(Co)로 이루어진 군에서 선택된 하나 이상을 포함하는 전이금속일 수 있다.In another embodiment, the metal particles may be a transition metal including at least one selected from the group consisting of copper (Cu), nickel (Ni), and cobalt (Co).

본 발명의 일 실시예에서 상기 촉매는 상기 금속입자를 촉매 총 중량에 대하여 0.01 내지 10 중량%로 포함할 수 있다. 구체적으로, 상기 금속입자를 1 내지 5중량%로 포함할 수 있다. 금속의 함량이 0.01 중량% 미만이면 전환율, 수율 등으로 측정되는 촉매 반응성이 저하되고, 10 중량% 초과이면 금속 함량이 높아서 촉매 제조 비용이 높아질 수 있다.In one embodiment of the present invention, the catalyst may contain the metal particles in an amount of 0.01 to 10% by weight based on the total weight of the catalyst. Specifically, the metal particles may be contained in an amount of 1 to 5% by weight. If the content of the metal is less than 0.01% by weight, the catalytic activity measured by the conversion rate, the yield and the like is lowered. If the content of the metal is more than 10% by weight, the metal content is high.

본 발명의 일 실시예에서 상기 촉매는 상기 담체의 티타늄 산화물을 촉매 총 중량에 대하여 0.01 이상 10 중량%로 포함할 수 있다. 구체적으로, 상기 티타늄 산화물을 0.01 내지 4 중량%로 포함할 수 있다. 티타늄 산화물의 함량이 0.01 중량% 미만이면 티타늄 산화물의 효과가 미미하고, 10 중량% 초과이면 티타늄-텅스텐-지르코늄의 복합 효과가 잘 나타나지 않는다.In one embodiment of the present invention, the catalyst may contain titanium oxide of the carrier in an amount of 0.01 to 10 wt% based on the total weight of the catalyst. Specifically, the titanium oxide may be contained in an amount of 0.01 to 4% by weight. If the content of titanium oxide is less than 0.01 wt%, the effect of titanium oxide is insignificant. If it exceeds 10 wt%, the composite effect of titanium-tungsten-zirconium does not appear well.

일 실시예에서 상기 촉매는 상기 담체의 텅스텐 산화물을 촉매 총 중량에 대하여 5 내지 30 중량%로 포함할 수 있다. 일 실시예에서 상기 촉매는 상기 담체의 지르코늄 산화물을 촉매 총 중량에 대하여 50 내지 94 중량%로 포함할 수 있다. In one embodiment, the catalyst may comprise tungsten oxide of the carrier in an amount of 5 to 30 wt% based on the total weight of the catalyst. In one embodiment, the catalyst may comprise zirconium oxide of the carrier in an amount of 50 to 94 wt% based on the total weight of the catalyst.

또한, 본 발명의 일 실시예는 상기 수첨탈산소 반응용 촉매의 제조방법으로, 금속 전구체 수용액을 상기 티타늄-텅스텐-지르코늄 산화물 담체와 혼합하여 함침시키는 단계; 및 상기 금속 전구체 수용액을 함침시킨 담체를 공기 중에서 소성하는 단계를 포함할 수 있다.According to another embodiment of the present invention, there is provided a method of preparing the catalyst for hydrocracking reaction, comprising the steps of: mixing a metal precursor aqueous solution with the titanium-tungsten-zirconium oxide carrier; And firing the carrier impregnated with the metal precursor aqueous solution in air.

일 실시예로서 상기 금속 전구체는 예를 들어 상기 금속 전구체는 루테늄(Ru) 전구체, 백금(Pt) 전구체, 팔라듐(Pd) 전구체, 로듐(Rh) 전구체 및 이리듐(Ir) 전구체로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다. 구체적으로 상기 금속 전구체는 루테늄(Ru) 전구체 및 백금(Pt) 전구체 중 하나 이상일 수 있고, 더욱 구체적으로는 루테늄(Ru) 전구체일 수 있다. In one embodiment, the metal precursor is selected from the group consisting of, for example, a ruthenium (Ru) precursor, a platinum (Pt) precursor, a palladium (Pd) precursor, a rhodium (Rh) precursor, and an iridium And may include one or more. Specifically, the metal precursor may be at least one of a ruthenium (Ru) precursor and a platinum (Pt) precursor, and more specifically, a ruthenium (Ru) precursor.

다른 일 실시예로서, 상기 금속 전구체는 구리(Cu) 전구체, 니켈(Ni) 전구체 및 코발트(Co) 전구체로 이루어진 군에서 선택된 하나 이상의 전이금속 전구체를 포함할 수 있다.In another embodiment, the metal precursor may include at least one transition metal precursor selected from the group consisting of a copper (Cu) precursor, a nickel (Ni) precursor, and a cobalt (Co) precursor.

일 실시예로서 상기 금속 전구체는 금속 염화물 또는 금속 염소산일 수 있으나, 수소화 반응의 촉매로서 작용할 수 있는 금속 촉매의 전단계 물질이라면 특별히 제한되지 않는다.In one embodiment, the metal precursor may be a metal chloride or metal chlorate, but is not limited as long as it is a precursor of a metal catalyst that can act as a catalyst for a hydrogenation reaction.

일 실시예로서 상기 금속 전구체 수용액을 함침시킨 담체를 공기 중에서 소성하는 단계는 상기 금속 전구체 수용액을 함침시킨 담체를 공기 중에서 약 200 내지 600℃로 약 1시간 내지 3시간 동안 소성하는 것일 수 있다. 구체적으로, 상기 소성온도는 약 300 내지 500℃일 수 있으며, 소성시간은 약 30분 내지 200분일 수 있다.In one embodiment, in the step of firing the carrier impregnated with the metal precursor aqueous solution, the carrier impregnated with the metal precursor aqueous solution may be fired in the air at a temperature of about 200 to 600 ° C for about 1 hour to 3 hours. Specifically, the firing temperature may be about 300 to 500 ° C, and the firing time may be about 30 minutes to 200 minutes.

본 발명의 일 실시예에 따른 상기 제조방법은 금속 전구체 수용액을 티타늄-텅스텐-지르코늄 산화물 담체와 혼합하여 함침시키는 단계 이전에 티타늄-텅스텐-지르코늄 산화물 담체를 제조하는 단계를 더 포함할 수 있다.The method may further include a step of preparing a titanium-tungsten-zirconium oxide support before mixing the metal precursor aqueous solution with the titanium-tungsten-zirconium oxide support.

일 실시예로서 상기 티타늄-텅스텐-지르코늄 산화물 담체를 제조하는 단계는, 지르코늄 수산화물(zirconium hydroxide), 암모늄 메타텅스테이트 수화물(ammonium metatungstate hydrate)을 이온교환수와 혼합하여 반응시킨 후 소성하는 단계; 및 상기 소성물을 암모늄 티타닐 옥살레이트 일수화물(ammonium titanyl oxalate monohydrate)와 혼합한 후 소성하는 단계를 포함할 수 있다.In one embodiment, the step of preparing the titanium-tungsten-zirconium oxide support comprises mixing zirconium hydroxide and ammonium metatungstate hydrate with ion-exchanged water, reacting and mixing the mixture; And mixing the fired product with ammonium titanyl oxalate monohydrate and then firing the mixture.

본 발명의 상기 제조방법은, 일 실시예로서 상기 금속 전구체 수용액을 함침시킨 담체를 공기 중에서 소성한 후, 이를 수소 분위기에서 환원시키는 단계를 더 포함할 수 있다. 일 실시예로서 상기 환원 단계는 수소 분위기에서 약 200 내지 500℃로 약 1시간 내지 5시간 동안 진행될 수 있다. 또는, 보다 구체적으로 약 300 내지 450℃에서 약 1시간 내지 3시간 동안 진행될 수 있다.The method of the present invention may further include a step of calcining a carrier impregnated with the metal precursor aqueous solution in air and reducing the metal precursor in a hydrogen atmosphere. In one embodiment, the reducing step may be conducted at about 200 to 500 ° C in a hydrogen atmosphere for about 1 hour to 5 hours. Or more specifically about 300 to 450 < 0 > C for about 1 hour to 3 hours.

본 발명의 일 실시예들에서 상기 촉매는 수첨탈산소 반응에서 산촉매로서 산소 원자를 끌어당겨서 제거하는 역할을 한다. 이때 티타니아가 산소 원자를 더 효율적으로 끌어당기게 해줌으로써 촉매의 탈산소 효율을 높일 수 있다.In one embodiment of the present invention, the catalyst serves to withdraw oxygen atoms as acid catalysts in the hydrocracking reaction. At this time, the efficiency of the deoxidation of the catalyst can be increased by allowing the titania to draw oxygen atoms more efficiently.

이에, 본 발명의 일 실시예는 상기 수첨탈산소 반응용 촉매를 함산소 탄화수소 화합물을 포함하는 바이오매스에 가하여 산소 탄화수소 화합물로부터 탈산소 탄화수소 화합물을 제조하는 단계를 포함하는 바이오연료의 제조방법을 제공할 수 있다.Accordingly, an embodiment of the present invention provides a method for producing a biofuel comprising the step of adding a catalyst for hydrocracking reaction to a biomass containing an oxygen-containing hydrocarbon compound to prepare a deoxy-hydrocarbon compound from the oxygen-hydrocarbon compound can do.

상기 제조방법은, 일 실시예로서 반응기 내에 함산소 탄화수소 화합물을 포함하는 바이오매스를 투입하는 단계; 및 상기 반응기 내에 상기 수첨탈산소 반응용 촉매를 가하여 수첨탈산소 반응을 통해 탈산소 탄화수소 화합물을 제조하는 단계를 포함할 수 있다.In one embodiment, the method comprises the steps of injecting a biomass containing an oxygen-containing hydrocarbon compound into a reactor; And adding the catalyst for hydrocracking to the reactor to produce a deoxy-hydrocarbon compound through a hydrocracking reaction.

일 실시예로서, 상기 함산소 탄화수소 화합물을 포함하는 바이오매스는 함산소 탄화수소 화합물을 포함하는 바이오매스라면 제한되지 않으며, 상기 바이오매스 유래 증기, 기체, 액체 등을 모두 포함할 수 있다. 상기 함산소 탄화수소 화합물을 포함하는 바이오매스는 예를 들어 바이오매스 열분해 오일을 포함할 수 있다.In one embodiment, the biomass including the oxygen-containing hydrocarbon compound is not limited as long as it is a biomass including an oxygen-containing hydrocarbon compound, and may include all of the biomass-derived vapor, gas, and liquid. The biomass including the oxygen-containing hydrocarbon compound may include, for example, a biomass pyrolysis oil.

일 실시예로서, 상기 탈산소 탄화수소 화합물은 함산소 탄화수소 화합물로부터 산소가 일부 또는 전부 제거된 화합물을 의미하며, 사이클로헥산(C6H12), 메틸사이클로헥산(CH3C6H11), 벤젠(C5H10) 및 메틸사이클로펜탄(CH3C5H9)으로 이루어진 군에서 선택되는 하나 이상의 화합물을 포함할 수 있다. In one embodiment, the deoxy-hydrocarbon compound means a compound in which oxygen is partially or completely removed from an oxygen-containing hydrocarbon compound. The deoxidized hydrocarbon compound may be a compound selected from the group consisting of cyclohexane (C 6 H 12 ), methylcyclohexane (CH 3 C 6 H 11 ) (C 5 H 10 ), and methylcyclopentane (CH 3 C 5 H 9 ).

또한, 상기 탈산소 탄화수소 화합물을 제조하는 단계는 일 실시예로서 수소 기체를 투입하는 단계를 포함할 수 있다.Also, the step of preparing the deoxygenated hydrocarbon compound may include a step of introducing hydrogen gas as one embodiment.

일 실시예로서 상기 탈산소 탄화수소 화합물을 제조하는 단계는 반응기를 일정 반응온도, 반응압력으로 높여 수첨탈산소 반응을 진행하는 것일 수 있으며, 그 결과 산소 원자가 일부 또는 전부 제거된 탈산소 탄화수소 화합물이 생성될 수 있다.In one embodiment, the step of preparing the deoxygenated hydrocarbon compound may be carried out by raising the temperature of the reactor to a certain reaction temperature and a reaction pressure to conduct a hydrocracking reaction. As a result, a deoxygenated hydrocarbon compound in which oxygen atoms are partially or completely removed .

일 실시예에 따르면, 상기 탈산소 탄화수소 화합물을 제조하는 단계에서 상기 수첨탈산소 반응은 200 내지 450℃의 온도에서 진행되는 것일 수 있고, 구체적으로는 250 내지 400℃의 온도일 수 있다. 온도가 200℃ 미만이면 수첨탈산소 반응 활성이 거의 없으며, 450℃ 초과이면 높은 온도로 인해 반응기 운전이 어려워진다.According to one embodiment, in the step of producing the deoxygenated hydrocarbon compound, the hydrocracking reaction may be carried out at a temperature of 200 to 450 ° C, and more specifically, a temperature of 250 to 400 ° C. If the temperature is lower than 200 ° C, there is almost no hydrocracking activity. If the temperature is higher than 450 ° C, the reactor is difficult to operate due to the high temperature.

또한 일 실시예에 따르면, 상기 탈산소 탄화수소 화합물을 제조하는 단계에서 상기 수첨탈산소 반응은 20 내지 150 bar의 압력에서 진행되는 것일 수 있고, 구체적으로는 30 내지 60 bar의 압력일 수 있다. 압력이 20 bar 미만이면 수소 농도 부족으로 촉매 반응성이 낮아지고, 150 bar 초과이면 높은 압력 때문에 반응기 제작 비용이 높아진다.According to one embodiment, in the step of preparing the deoxygenated hydrocarbon compound, the hydrocracking reaction may be carried out at a pressure of 20 to 150 bar, and more specifically, a pressure of 30 to 60 bar. If the pressure is less than 20 bar, the catalytic reactivity is lowered due to the lack of hydrogen concentration. If the pressure is more than 150 bar, the reactor cost is increased due to the high pressure.

본 발명의 일 실시예에서 사용되는 상기 반응기는 특별히 제한되지 않으나, 예를 들어 고온에서 작동하는 고압 반응기 일 수 있으며, 대량생산을 위한 연속식 반응기일 수도 있고, 회분식 반응기일 수도 있다. 도 1에 본 발명의 일실시예로 사용될 수 있는 연속식 반응기를 나타내었다. The reactor used in one embodiment of the present invention is not particularly limited, but may be, for example, a high-pressure reactor operating at a high temperature, a continuous reactor for mass production, or a batch reactor. Figure 1 shows a continuous reactor which can be used as an embodiment of the present invention.

도 1을 참조로 설명하면, 상기 연속식 반응기는 백프레셔레귤레이터(Back pressure regulator)와 가열 장치가 연결된 고압반응기(30), 함산소화합물 원료 주입용 용기(10), 수소 가스 주입용 고압 실린더(20), 반응후 생성물의 냉각 및 포집을 위한 냉각 장치(40), 최종 생성물을 저장하는 저장 장치(50)를 포함할 수 있다.1, the continuous reactor includes a high-pressure reactor 30 connected with a back pressure regulator and a heating device, a vessel 10 for injecting oxygen-containing compound feedstock, a high-pressure cylinder 20, a cooling device 40 for cooling and collecting the product after the reaction, and a storage device 50 for storing the final product.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for illustrating the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

[제조예 1] 티타늄-텅스텐-지르코늄 산화물 담체에 담지된 Ru 나노입자 촉매 제조[Preparation Example 1] Preparation of Ru nanoparticle catalyst supported on titanium-tungsten-zirconium oxide carrier

지르코늄 수산화물 (zirconium hydroxide) 4 g, 암모늄 메타텅스테이트 수화물(ammonium metatungstate hydrate) 0.5 g을 이온교환수 50 g과 혼합하고 고압 반응기에서 180℃에서 12시간 동안 처리하였다. 이후 고체 생성물을 2시간 동안 800 ℃에서 소성하였다. 소성후 암모늄 티타닐 옥살레이트 일수화물(ammonium titanyl oxalate monohydrate)를 비율대로 혼합하고 60℃에서 건조하고 550℃에서 2시간 동안 소성하여 각각 0, 2, 4 및 6 중량%의 Ti가 첨가된 티타늄-텅스텐-지르코늄 산화물 담체를 생성하였다. 생성된 담체에 루테늄 전구체(Ruthenium chloride hydrate) 0.35 g을 이온교환수 60 g에 용해시킨 수용액을 함침시키고 소성하여 3 중량%의 Ru가 담지된 촉매를 제조하였다.4 g of zirconium hydroxide and 0.5 g of ammonium metatungstate hydrate were mixed with 50 g of ion-exchanged water and treated at 180 ° C. for 12 hours in a high-pressure reactor. The solid product was then calcined at 800 DEG C for 2 hours. After the calcination, ammonium titanyl oxalate monohydrate was mixed in proportions, dried at 60 ° C. and calcined at 550 ° C. for 2 hours to obtain titanium-boron-doped TiO 2 doped with 0, 2, 4 and 6 wt% Tungsten-zirconium oxide support. An aqueous solution in which 0.35 g of a ruthenium chloride hydrate was dissolved in 60 g of ion exchange water was impregnated into the resulting support and fired to prepare a catalyst carrying 3% by weight of Ru.

상기 각 0, 2, 4 및 6 중량%의 Ti가 첨가된 티타늄-텅스텐-지르코늄 산화물 담체에 Ru가 담지된 촉매를 350℃에서 2시간 동안 수소 분위기에서 환원하였다.The catalyst carrying Ru on the titanium-tungsten-zirconium oxide support to which 0, 2, 4 and 6 wt% Ti was added was reduced in a hydrogen atmosphere at 350 ° C for 2 hours.

[제조예 2] 바이오매스 열분해 오일의 수첨탈산소 반응[Production Example 2] Hydrophobic reaction of biomass pyrolysis oil

고정층 반응기(내부 지름 1.8 cm, 길이 14 cm)를 사용하여 바이오매스 열분해 오일의 수첨탈산소 반응을 수행하였다. 반응기내 압력은 back-pressure regulator (BPR)로 조절하였다. 반응 온도는 300 - 350℃, 반응 압력은 100 bar로 유지하였다. 반응 후 얻어진 액체, 고체 혼합물을 따로 수거하여 무게를 측정하고 분석하였다.The hydrocracking reaction of the biomass pyrolysis oil was carried out using a fixed bed reactor (inner diameter 1.8 cm, length 14 cm). The pressure in the reactor was controlled by a back-pressure regulator (BPR). The reaction temperature was maintained at 300 - 350 ℃ and the reaction pressure was maintained at 100 bar. The liquid and solid mixture obtained after the reaction were collected separately and weighed and analyzed.

아래 표 1은 본 발명의 비교예인 다양한 촉매들에 대한 350℃에서 반응 결과이다. Table 1 below shows the reaction results at 350 ° C for various catalysts which are comparative examples of the present invention.

촉매catalyst 오일 수율 (g/g feed)Oil yield (g / g feed) 코크 생성량 (g/g feed)Coke production (g / g feed) O/C비 (atom/atom)O / C ratio (atom / atom) H/C비 (atom/atom)H / C ratio (atom / atom) 비교예 1Comparative Example 1 반응전Before reaction -- -- 0.3750.375 1.941.94 비교예 2Comparative Example 2 3 wt% Ru/WZr3 wt% Ru / WZr 0.380.38 0.030.03 0.010.01 1.921.92 비교예 3Comparative Example 3 5 wt% Ru/SiO2-Al2O3 5 wt% Ru / SiO 2 -Al 2 O 3 0.240.24 0.050.05 0.010.01 1.851.85 비교예 4Comparative Example 4 5 wt% Pt/C5 wt% Pt / C 0.170.17 0.160.16 0.060.06 2.002.00 비교예 5Comparative Example 5 5 wt% Ru/C5 wt% Ru / C 오일층 생성되지 않음Oil layer not formed -- -- --

아래 표 2는 본 발명의 일 실시예로서 상기 [제조예 1]에서 제조된 티타니아가 첨가된 텅스텐-지르코니아 담체에 담지된 Ru 촉매를 각각 300℃에서 반응시킨 결과이다. Table 2 below shows the results of reaction of the Ru catalyst supported on the titania-added tungsten-zirconia carrier prepared in [Preparation Example 1] at 300 ° C as one embodiment of the present invention.

촉매catalyst 오일 수율 (g/g feed)Oil yield (g / g feed) 코크 생성량 (g/g feed)Coke production (g / g feed) O/C비 (atom/atom)O / C ratio (atom / atom) H/C비 (atom/atom)H / C ratio (atom / atom) 비교예 1Comparative Example 1 반응전Before reaction -- -- 0.3750.375 1.941.94 비교예 2Comparative Example 2 3wt% Ru/WZr3wt% Ru / WZr 0.300.30 0.150.15 0.1310.131 1.701.70 실시예 1Example 1 3wt% Ru/Ti(2)/WZr3 wt% Ru / Ti (2) / WZr 0.330.33 0.080.08 0.1240.124 1.731.73 실시예 2Example 2 3wt% Ru/Ti(4)/WZr3 wt% Ru / Ti (4) / WZr 0.340.34 0.120.12 0.1370.137 1.571.57 실시예 3Example 3 3wt% Ru/Ti(6)/WZr3 wt% Ru / Ti (6) / WZr 0.310.31 0.160.16 0.2310.231 1.581.58

본 발명의 일 실시예에 따른 티타늄-텅스텐-지르코늄 산화물 담체에 담지된 금속 입자 촉매가 촉매 총 중량에 대하여 3중량%의 Ru가 텅스텐-지르코니아 담체에 담지된 촉매(비교예 2)보다 낮은 O/C비 또는 높은 산소 제거 효율을 나타내었다. 실시예 1 내지 3 중 티타늄이 2 중량% 첨가된 실시예 1의 경우 가장 낮은 산소 함량에 도달하여, 수첨탈산소 반응이 효과적으로 진행하였음을 확인할 수 있다.The metal particle catalyst supported on the titanium-tungsten-zirconium oxide support according to an embodiment of the present invention has a lower O / N ratio than that of the catalyst in which 3 wt% of Ru is supported on the tungsten-zirconia carrier relative to the total weight of the catalyst (Comparative Example 2) C ratio or high oxygen removal efficiency. In the case of Example 1 in which 2% by weight of titanium was added in Examples 1 to 3, the lowest oxygen content was reached, and it was confirmed that the hydrocracking reaction proceeded effectively.

10: 원료 주입용 용기
20: 수소 가스 주입용 고압 실린더
30: 고압반응기
40: 냉각 장치
50: 저장 장치
10: Container for raw material injection
20: High pressure cylinder for hydrogen gas injection
30: High-pressure reactor
40: cooling device
50: Storage device

Claims (17)

수첨탈산소 반응용 촉매로서,
상기 촉매는 티타늄이 첨가제로 담체에 첨가된 티타늄-텅스텐-지르코늄 산화물(Titanium-Tungsten-Zirconium oxide, TiO2/WO3/ZrO2) 담체; 및 상기 담체에 담지된 금속입자를 포함하고,
상기 촉매는 상기 담체의 티타늄 산화물을 촉매 총 중량에 대하여 0.01 내지 4 중량%로 포함하는 수첨탈산소 반응용 촉매.
As a catalyst for hydrothermal reaction,
The catalyst is a titanium-tungsten-zirconium oxide (TiO 2 / WO 3 / ZrO 2 ) carrier in which titanium is added to the carrier as an additive; And metal particles supported on the carrier,
Wherein the catalyst comprises titanium oxide of the carrier in an amount of 0.01 to 4% by weight based on the total weight of the catalyst.
제1항에 있어서, 상기 금속입자는 백금(Pt), 루테늄(Ru), 팔라듐(Pd), 로듐(Rh) 및 이리듐(Ir)으로 이루어진 군에서 선택된 하나 이상을 포함하는, 수첨탈산소 반응용 촉매.The method according to claim 1, wherein the metal particles include at least one selected from the group consisting of platinum (Pt), ruthenium (Ru), palladium (Pd), rhodium (Rh), and iridium (Ir) catalyst. 제1항에 있어서, 상기 금속입자는 구리(Cu), 니켈(Ni) 및 코발트(Co)로 이루어진 군에서 선택된 하나 이상을 포함하는, 수첨탈산소 반응용 촉매.The catalyst for hydrothermal reaction according to claim 1, wherein the metal particles comprise at least one selected from the group consisting of copper (Cu), nickel (Ni) and cobalt (Co). 제 1 항에 있어서, 상기 촉매는 상기 금속입자를 촉매 총 중량에 대하여 0.01 내지 10 중량%로 포함하는, 수첨탈산소 반응용 촉매.The catalyst for hydrothermal reaction according to claim 1, wherein the catalyst comprises 0.01 to 10% by weight of the metal particles based on the total weight of the catalyst. 제1항에 있어서, 상기 촉매는 상기 담체의 티타늄 산화물을 촉매 총 중량에 대하여 0.01 이상 2 중량%로 포함하는, 수첨탈산소 반응용 촉매.The catalyst for hydrothermal reaction according to claim 1, wherein the catalyst comprises titanium oxide of the carrier in an amount of 0.01 to 2 wt% based on the total weight of the catalyst. 제1항 내지 제5항 중 어느 한 항의 수첨탈산소 반응용 촉매의 제조방법으로,
금속 전구체 수용액을 티타늄-텅스텐-지르코늄 산화물(Titanium-Tungsten-Zirconium oxide, TiO2/WO3/ZrO2) 담체와 혼합하여 함침시키는 단계; 및
상기 금속 전구체 수용액을 함침시킨 담체를 공기 중에서 소성하는 단계;
를 포함하는, 수첨탈산소 반응용 촉매의 제조방법.
A process for producing a catalyst for hydrothermal reaction according to any one of claims 1 to 5,
Impregnating the metal precursor aqueous solution with titanium-tungsten-zirconium oxide (TiO 2 / WO 3 / ZrO 2 ) carrier; And
Firing the carrier impregnated with the metal precursor aqueous solution in air;
And a catalyst for hydrothermal reaction.
제6항에 있어서, 상기 금속 전구체는 백금(Pt), 루테늄(Ru), 팔라듐(Pd), 로듐(Rh) 및 이리듐(Ir)으로 이루어진 군에서 선택된 하나 이상의 염화물 또는 염소산인, 수첨탈산소 반응용 촉매의 제조방법.The method of claim 6, wherein the metal precursor is one or more chlorides or chlorates selected from the group consisting of platinum (Pt), ruthenium (Ru), palladium (Pd), rhodium (Rh), and iridium (Ir) Gt; 제6항에 있어서, 상기 금속 전구체는 구리(Cu), 니켈(Ni) 및 코발트(Co)로 이루어진 군에서 선택된 하나 이상의 염화물 또는 염소산인, 수첨탈산소 반응용 촉매의 제조방법.The method according to claim 6, wherein the metal precursor is at least one chloride or chloric acid selected from the group consisting of copper (Cu), nickel (Ni), and cobalt (Co). 제6항에서, 상기 제조방법은 상기 금속 전구체 수용액을 함침시킨 담체를 공기 중에서 소성한 후, 이를 수소 분위기에서 환원시키는 단계를 더 포함하는, 수첨탈산소 반응용 촉매의 제조방법.[7] The method of claim 6, wherein the method further comprises reducing the metal precursor solution in a hydrogen atmosphere after firing the carrier impregnated with the metal precursor solution in air. 제6항에서, 상기 제조방법은 금속 전구체 수용액을 티타늄-텅스텐-지르코늄 산화물 담체와 혼합하여 함침시키는 단계 이전에 티타늄-텅스텐-지르코늄 산화물 담체를 제조하는 단계를 더 포함하고,
상기 티타늄-텅스텐-지르코늄 산화물 담체를 제조하는 단계는,
지르코늄 수산화물(zirconium hydroxide), 암모늄 메타텅스테이트 수화물(ammonium metatungstate hydrate)을 이온교환수와 혼합하여 반응시킨 후 소성하는 단계; 및
상기 소성물을 암모늄 티타닐 옥살레이트 일수화물(ammonium titanyl oxalate monohydrate)와 혼합한 후 소성하는 단계;
를 포함하는, 수첨탈산소 반응용 촉매의 제조방법.
The method of claim 6, further comprising the step of preparing a titanium-tungsten-zirconium oxide support before impregnating the metal precursor aqueous solution with the titanium-tungsten-zirconium oxide support,
The step of preparing the titanium-tungsten-zirconium oxide support comprises:
Zirconium hydroxide, and ammonium metatungstate hydrate are mixed with ion exchange water and reacted; And
Mixing the calcined material with ammonium titanyl oxalate monohydrate and then calcining;
And a catalyst for hydrothermal reaction.
제1항 내지 제5항 중 어느 한 항의 수첨탈산소 반응용 촉매를 함산소 탄화수소 화합물을 포함하는 바이오매스에 가하여 산소 탄화수소 화합물로부터 탈산소 탄화수소 화합물을 제조하는 단계를 포함하는 바이오연료의 제조방법.A process for producing a biofuel comprising the step of adding a catalyst for hydrocracking reaction according to any one of claims 1 to 5 to a biomass containing an oxygen-containing hydrocarbon compound to prepare a deoxy-hydrocarbon compound from the oxygen-hydrocarbon compound. 제11항에 있어서, 상기 제조방법은,
반응기 내에 함산소 탄화수소 화합물을 포함하는 바이오매스를 투입하는 단계; 및
상기 반응기 내에 상기 제1항 내지 제5항 중 어느 한 항의 수첨탈산소 반응용 촉매를 가하여 수첨탈산소 반응을 통해 탈산소 탄화수소 화합물을 제조하는 단계;
를 포함하는 바이오 연료의 제조방법.
The method according to claim 11,
Introducing a biomass containing an oxygen-containing hydrocarbon compound into the reactor; And
Adding a catalyst for hydrotreating oxygen reaction according to any one of claims 1 to 5 into the reactor to produce a deoxygenated hydrocarbon compound through a hydrocracking reaction;
≪ / RTI >
제11항에 있어서, 상기 함산소 탄화수소 화합물을 포함하는 바이오매스는 바이오매스 열분해 오일을 포함하는, 바이오 연료의 제조방법.12. The method of claim 11, wherein the biomass comprising the oxygen-containing hydrocarbon compound comprises a biomass pyrolysis oil. 제11항에 있어서, 탈산소 탄화수소 화합물은 사이클로헥산(C6H12), 메틸사이클로헥산(CH3C6H11), 벤젠(C5H10) 및 메틸사이클로펜탄(CH3C5H9)으로 이루어진 군에서 선택되는 하나 이상의 화합물을 포함하는, 바이오 연료의 제조방법.The method of claim 11 wherein the deoxygenation hydrocarbon compounds cyclohexane (C 6 H 12), methylcyclohexane (CH 3 C 6 H 11) , benzene (C 5 H 10) and methyl cyclopentane (CH 3 C 5 H 9 ≪ RTI ID = 0.0 > 1, < / RTI > 제12항에 있어서, 상기 탈산소 탄화수소 화합물을 제조하는 단계는 수소 기체를 투입하는 단계를 포함하는, 바이오 연료의 제조방법.13. The method of claim 12, wherein the step of preparing the deoxygenated hydrocarbon compound comprises the step of introducing hydrogen gas. 제12항에 있어서, 상기 탈산소 탄화수소 화합물을 제조하는 단계는 200 내지 450℃의 온도에서 수첨탈산소 반응을 진행하는 것을 포함하는, 바이오 연료의 제조방법.13. The method according to claim 12, wherein the step of preparing the deoxygenated hydrocarbon compound comprises performing a hydrocracking reaction at a temperature of 200 to 450 ° C. 제12항에 있어서, 상기 탈산소 탄화수소 화합물을 제조하는 단계는 20 내지 150 bar의 압력에서 수첨탈산소 반응을 진행하는 것을 포함하는, 바이오 연료의 제조방법.13. The method of claim 12, wherein the step of producing the deoxygenated hydrocarbon compound comprises conducting a hydrocracking reaction at a pressure of 20 to 150 bar.
KR1020160064088A 2016-05-25 2016-05-25 Catalyst for hydrodeoxygenating oxygenates and method of preparing deoxygenated fuels using the same KR101857187B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160064088A KR101857187B1 (en) 2016-05-25 2016-05-25 Catalyst for hydrodeoxygenating oxygenates and method of preparing deoxygenated fuels using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160064088A KR101857187B1 (en) 2016-05-25 2016-05-25 Catalyst for hydrodeoxygenating oxygenates and method of preparing deoxygenated fuels using the same

Publications (2)

Publication Number Publication Date
KR20170133092A KR20170133092A (en) 2017-12-05
KR101857187B1 true KR101857187B1 (en) 2018-05-11

Family

ID=60921090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160064088A KR101857187B1 (en) 2016-05-25 2016-05-25 Catalyst for hydrodeoxygenating oxygenates and method of preparing deoxygenated fuels using the same

Country Status (1)

Country Link
KR (1) KR101857187B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10953387B2 (en) 2018-06-18 2021-03-23 Korea Institute Of Science And Technology Calcium salts-supported metal catalyst, method for preparing the same, and method for hydrodeoxygenation reaction of oxygenates using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102259639B1 (en) 2020-01-23 2021-06-02 경희대학교 산학협력단 Porous Metal-Organic Framework encapsulated with metal nanoparticles and method for preparing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916129B1 (en) * 2008-03-20 2009-09-08 재단법인서울대학교산학협력재단 Nickel catalyst supported on zirconia-titania complex metal oxides, preparation method thereof and the production method of hydrogen by autothermal reforming of ethanol using said catalyst
KR101336981B1 (en) * 2011-10-19 2013-12-04 고려대학교 산학협력단 The method of aromatic compounds production using tungsten oxide titania catalyst for hydrodeoxygenation of Guaiacol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916129B1 (en) * 2008-03-20 2009-09-08 재단법인서울대학교산학협력재단 Nickel catalyst supported on zirconia-titania complex metal oxides, preparation method thereof and the production method of hydrogen by autothermal reforming of ethanol using said catalyst
KR101336981B1 (en) * 2011-10-19 2013-12-04 고려대학교 산학협력단 The method of aromatic compounds production using tungsten oxide titania catalyst for hydrodeoxygenation of Guaiacol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10953387B2 (en) 2018-06-18 2021-03-23 Korea Institute Of Science And Technology Calcium salts-supported metal catalyst, method for preparing the same, and method for hydrodeoxygenation reaction of oxygenates using the same
US11583833B2 (en) 2018-06-18 2023-02-21 Korea Institute Of Science And Technology Calcium salts-supported metal catalyst, method for preparing the same, and method for hydrodeoxygenation reaction of oxygenates using the same

Also Published As

Publication number Publication date
KR20170133092A (en) 2017-12-05

Similar Documents

Publication Publication Date Title
JP5575911B2 (en) Method for preparing ethylene glycol from polyvalent compounds
KR101571129B1 (en) method for preparing catalyst for hydrodeoxygenation and method for preparing biofuel using the same
Shao et al. Selective conversion of furfural into diols over Co-based catalysts: Importance of the coordination of hydrogenation sites and basic sites
Wu et al. Enhancing hydrodeoxygenation of bio-oil via bimetallic Ni-V catalysts modified by cross-surface migrated-carbon from biochar
Liu et al. Ru–MnO x Interaction for Efficient Hydrodeoxygenation of Levulinic Acid and Its Derivatives
Zhao et al. Efficient hydrodeoxygenation of lignin-derived bio-oil to hydrocarbon fuels over bifunctional RuCoWx/NC catalysts
Lang et al. Toward value-added arenes from lignin-derived phenolic compounds via catalytic hydrodeoxygenation
Ashman et al. Silver nitrate in situ upgrades pyrolysis biofuels from brewer’s spent grain via biotemplating
KR101857187B1 (en) Catalyst for hydrodeoxygenating oxygenates and method of preparing deoxygenated fuels using the same
Cai et al. Improving conversion of methyl palmitate to diesel-like fuel through catalytic deoxygenation with B2O3-modified ZrO2
CN112076749A (en) Catalyst for preparing liquid fuel by hydrogenating and deoxidizing lignin oil and preparation method and application thereof
Arandiyan et al. Perovskite Catalysts for Biomass Valorization
Du et al. Xylitol Production from Xylose by Catalytic Hydrogenation over an Efficient Cu–Ni/SiO2 Bimetallic Catalyst
KR101953218B1 (en) Method of two-step reaction of producing deoxygenated fuels from oxygenated hydrocarbons
KR101900444B1 (en) Catalyst for depolymerizing lignin and method for preparing hydrocarbon compounds using the same
KR102183308B1 (en) Method for deoxygenating of oxygenated hydrocarbons using hydrogenation catalyst and hydrodeoxygenation
KR101732120B1 (en) Method of producing hydrogen from cellulose
Rana et al. One-pot reductive etherification of 5-hydroxymethylfurfural into biofuel (2, 5-bis (propoxymethyl) furan (BPMF)) using mixed catalyst ZrO (OH) 2 and Zr-Hβ
KR102231862B1 (en) Catalysts for bio-oil hydrotreating
KR101827931B1 (en) Catalysts for producing high carbon number hydrocarbons from phenolic compounds using one-pot reaction
JP2015067800A (en) Manufacturing method of hydrocarbon
KR102079120B1 (en) Calcium salts-supported metal catalyst, method for preparing the same, and method for hydrodeoxygenation reaction of oxygenates using the same
KR101821182B1 (en) Catalyst for hydrodeoxygenation and method for preparing biofuel using the same
KR102613061B1 (en) Catalyst for Hydrodeoxygenating Oxygenated Compounds and Method for Preparing Bionaphtha from Biomass Using the Same
CN114573527B (en) Method for preparing 2, 5-dimethylolfuran by transferring and hydrogenating 5-hydroxymethylfurfural

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant