KR102259639B1 - Porous Metal-Organic Framework encapsulated with metal nanoparticles and method for preparing the same - Google Patents

Porous Metal-Organic Framework encapsulated with metal nanoparticles and method for preparing the same Download PDF

Info

Publication number
KR102259639B1
KR102259639B1 KR1020200009065A KR20200009065A KR102259639B1 KR 102259639 B1 KR102259639 B1 KR 102259639B1 KR 1020200009065 A KR1020200009065 A KR 1020200009065A KR 20200009065 A KR20200009065 A KR 20200009065A KR 102259639 B1 KR102259639 B1 KR 102259639B1
Authority
KR
South Korea
Prior art keywords
mil
catalyst
metal
oil
oxygen
Prior art date
Application number
KR1020200009065A
Other languages
Korean (ko)
Inventor
이은열
듀 푸엉 판
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020200009065A priority Critical patent/KR102259639B1/en
Application granted granted Critical
Publication of KR102259639B1 publication Critical patent/KR102259639B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/126Acids containing more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method for preparing a catalyst for hydrodeoxygenation reaction through surface modification of a porous metal-organic framework in which metal nanoparticles for increasing the activity of the catalyst are fixed inside the pores of the porous metal-organic framework. The catalyst for hydrodeoxygenation reaction according to the present invention comprises various functional sites such as Bronsted acid sites and Lewis acid sites. By using the catalyst, it is possible to efficiently remove oxygen by adding hydrogen to an organic oxygen compound, so as to effectively produce a biofuel that can replace petroleum with a high yield, and the catalyst of the present invention is reusable and has the effect of exhibiting excellent catalytic activity even when reused.

Description

금속 나노입자가 고정된 다공성 금속-유기 골격체 및 이의 제조방법{Porous Metal-Organic Framework encapsulated with metal nanoparticles and method for preparing the same}Porous Metal-Organic Framework encapsulated with metal nanoparticles and method for preparing the same

본 발명은 금속 나노입자가 고정된 다공성 금속-유기 골격체 및 이의 제조방법에 관한 것으로, 보다 상세하게는 다공성 금속-유기 골격체의 기공 내부에 촉매의 활성을 높여주는 금속 나노입자가 고정된 다공성 금속-유기 골격체의 표면 개질을 통한 수첨탈산소 반응용 촉매의 제조방법에 관한 것이다.The present invention relates to a porous metal-organic framework to which metal nanoparticles are fixed, and a method for manufacturing the same, and more particularly, to a porous metal-organic framework to which metal nanoparticles are immobilized, which enhances the activity of a catalyst in the pores of the porous metal-organic framework. It relates to a method for preparing a catalyst for hydrodeoxygenation reaction through surface modification of a metal-organic framework.

최근 화석연료 고갈 및 유가 급등, 기후변화협약 이행 강화 등으로 인해 화석연료의 사용제한으로 재생가능한 바이오매스의 활용에 대한 관심이 급증하여, 특히, 나무, 생물 부산물 등 비식량 바이오매스의 이용에 대한 연구 개발이 활발히 진행되고 있다. 주로 셀룰로오스로 이루어진 식량 바이오매스와 구분되는 목질계 바이오매스는 전체 식물성 바이오매스의 95% 이상을 차지하고 비식량 자원 및 폐기물을 활용할 수 있어서 차세대 바이오매스로 많은 관심을 받고 있다. 목질계 바이오매스의 구성성분인 셀룰로오스, 헤미셀룰로오스, 리그닌 중 셀룰로오스, 헤미셀룰로오스는 식량성 자원처럼 활용이 가능하고 리그닌은 무작위페놀 고분자로서 석유에서 유래하는 모든 방향족 탄소 화합물을 대체할 수 있는 가능성이 있으나, 현재는 그 복잡한 구조로 인해 단순한 부산물로 인식하여 폐기되고 있어서 이를 활용할 방법을 찾는 연구 개발이 활발히 진행되고 있다. Recently, due to the depletion of fossil fuels, the sharp rise in oil prices, and the strengthening of the implementation of the Climate Change Convention, interest in the use of renewable biomass has increased rapidly due to restrictions on the use of fossil fuels. R&D is actively underway. Wood-based biomass, which is distinguished from food biomass composed mainly of cellulose, accounts for more than 95% of the total plant biomass and is receiving much attention as the next-generation biomass because it can utilize non-food resources and wastes. Cellulose, hemicellulose among the components of lignocellulosic biomass, cellulose and hemicellulose among lignin can be used as food resources, and lignin is a random phenolic polymer that has the potential to replace all aromatic carbon compounds derived from petroleum. Due to its complex structure, it is recognized as a simple by-product and discarded, so research and development to find a way to utilize it is actively underway.

다양한 바이오매스 원료로부터 고급 연료를 생산하는 다양한 화학적, 생물학적 방법이 제시되고 있으며, 모든 종류의 탄소화합물을 원료로 사용할 수 있는 방법으로는 열분해 방법이 있다. 열분해 또는 수열분해 방법은 다양한 바이오매스 종류에 활용할 수 있다는 장점이 있으나 생성된 열분해 산물, 또는 액체 열분해 오일이 높은 산소 함량으로 인해 석유 대체 연료로 부적합하다는 단점이 있다.Various chemical and biological methods for producing high-grade fuels from various biomass raw materials have been proposed, and pyrolysis is a method that can use all kinds of carbon compounds as raw materials. The pyrolysis or hydrothermal cracking method has the advantage that it can be used for various types of biomass, but has a disadvantage that the produced pyrolysis product or liquid pyrolysis oil is not suitable as an alternative fuel to petroleum due to its high oxygen content.

금속-유기 골격체(MOF, Metal-Organic framework)는 금속 뭉치와 유기리간드로 이루어진 3차원의 골격체이다. 금속과 유기리간드의 종류, 반응 조건 등에 따라 자가 조립하여 다양한 종류의 MOF가 형성된다. 금속 뭉치의 모양은 해당 금속이 선호하는 구조에 따라 달라지고 같은 금속이어도 리간드의 종류나 리간드의 작용기, 반응 조건에 따라 연결 방식이 달라져 다른 MOF가 형성될 수 있다. 리간드의 연결 방식이나 길이에 따라 마이크로 기공 혹은 메조 기공 등을 형성하며 내부의 기공을 이용하여 이산화탄소 포집, 수소 저장, 촉매, 탄화수소 분리매체, magnetism, 약물 전달 매체, 센서, 나노물질 합성 등 다양한 분야에 응용하기 위하여 활발히 연구되고 있다. A metal-organic framework (MOF) is a three-dimensional framework composed of a metal bundle and an organic ligand. Various types of MOFs are formed by self-assembly depending on the type of metal and organic ligand and reaction conditions. The shape of the metal bundle varies depending on the preferred structure of the metal, and even with the same metal, different MOFs can be formed because the connection method varies depending on the type of ligand, the functional group of the ligand, and the reaction conditions. It forms micropores or mesopores depending on the ligand's connection method and length, and is used in various fields such as carbon dioxide capture, hydrogen storage, catalyst, hydrocarbon separation medium, magnetism, drug delivery medium, sensor, and nanomaterial synthesis. It is being actively studied for application.

MILl-101(Cr)(MIL, Material Institut Lavoisier)은 Cr3+ 금속 뭉치와 BDC 다리 리간드로 이루어져있는 MOF이다. 금속 뭉치와 다리 리간드들이 모여 대형 사면체를 이루고 이 대형 사면체들이 MTN(Mobil Thirty-Nine) 형식의 구조를 이룬다. MIL-101(Cr)은 비표면적이 크다는 것 외에 공기 중에서 안정하며 특히 수분에 안정하다는 장점이 있고 기능화된 MIL-101(Cr)을 여러 번의 수분 흡착을 반복하여도 구조가 무너지지 않고 유지된다는 연구가 보고되어있다.MILl-101(Cr) (MIL, Material Institut Lavoisier) is a MOF composed of a Cr 3+ metal bundle and a BDC bridging ligand. Metal bundles and bridging ligands combine to form a large tetrahedron, and these large tetrahedra form a Mobil Thirty-Nine (MTN) type structure. In addition to having a large specific surface area, MIL-101(Cr) has the advantage of being stable in the air and especially stable in moisture. Research has shown that functionalized MIL-101(Cr) does not collapse even after repeated water adsorption several times. has been reported

이에 본 발명자들은 금속-유기 골격체 촉매를 인산에 함침하고, 금속-유기 골격체 기공 내부에 Pt와 같은 금속 나노입자를 고정한 결과, 브뢴스테드 산점, 루이스 산점과 같은 다양한 기능 사이트를 포함하고, 상기 촉매를 이용하면 수첨탈산소 전환율이 높고, 재사용 가능하며, 재사용 시에도 우수한 촉매 활성을 나타내는 것을 확인하고 본 발명을 완성하였다. Accordingly, the present inventors impregnated the metal-organic framework catalyst in phosphoric acid, and as a result of fixing metal nanoparticles such as Pt inside the pores of the metal-organic framework, it contains various functional sites such as Bronsted acid sites and Lewis acid sites, When the catalyst is used, it has been confirmed that the hydrodeoxygenation conversion rate is high, it is reusable, and exhibits excellent catalytic activity even when reused, and the present invention has been completed.

한국공개특허 제10-2017-0133092호Korean Patent Publication No. 10-2017-0133092

본 발명의 목적은 수첨탈산소 반응용 촉매의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method for preparing a catalyst for hydrodeoxygenation.

본 발명의 다른 목적은 상기 제조방법에 의해 제조된 수첨탈산소 반응용 촉매를 제공하는 것이다.Another object of the present invention is to provide a catalyst for hydrodeoxygenation reaction prepared by the above preparation method.

본 발명의 또 다른 목적은 C3-40의 산소 함유 탄화수소 화합물로부터 포화탄화수소로 개질하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for reforming a C 3-40 oxygen-containing hydrocarbon compound into a saturated hydrocarbon.

본 발명의 다른 목적은 상기 개질하는 방법에 의해 제조된 포화탄화수소를 제공하는 것이다. Another object of the present invention is to provide a saturated hydrocarbon prepared by the above reforming method.

본 발명의 또 다른 목적은 상기 포화탄화수소를 포함하는 바이오 연료를 제공하는 것이다.Another object of the present invention is to provide a biofuel containing the saturated hydrocarbon.

상기 목적을 달성하기 위하여,To achieve the above object,

본 발명은 금속-유기 골격체(metal-organic frameworks, MOF)에 인 전구체를 함침하는 단계(단계 1); 및The present invention relates to metal-organic frameworks (MOFs) impregnated with a phosphorus precursor (step 1); And

상기 인 전구체가 함침된 금속-유기 골격체의 미세기공에 금속 나노입자를 고정하는 단계(단계 2); 를 포함하는 수첨탈산소 반응용 촉매의 제조방법을 제공한다.fixing the metal nanoparticles to the micropores of the metal-organic framework impregnated with the phosphorus precursor (step 2); It provides a method for producing a catalyst for hydrodeoxygenation reaction comprising a.

또한, 본 발명은 상기 수첨탈산소 반응용 촉매의 제조방법에 의해 제조된 수첨탈산소 반응용 촉매를 제공한다.In addition, the present invention provides a catalyst for hydrodeoxygenation reaction prepared by the method for preparing the catalyst for hydrodeoxygenation reaction.

나아가 본 발명은 상기 수첨탈산소 반응용 촉매가 포함된 반응기에 C3-40의 산소 함유 탄화수소 화합물 및 수소 가스를 투입하면서 수첨탈산소화 반응을 수행하여 포화탄화수소 화합물을 얻는 단계;를 포함하는 C3-40의 산소 함유 탄화수소 화합물로부터 포화탄화수소로 개질하는 방법을 제공한다.Furthermore, the present invention provides a step of obtaining a saturated hydrocarbon compound by performing a hydrodeoxygenation reaction while introducing an oxygen-containing hydrocarbon compound of C 3-40 and hydrogen gas to the reactor including the catalyst for the hydrodeoxygenation reaction; C 3 including Provided is a method for reforming from a -40 oxygen-containing hydrocarbon compound to a saturated hydrocarbon.

더 나아가 본 발명은 상기 개질하는 방법에 의해 제조된 포화탄화수소를 제공한다. Furthermore, the present invention provides a saturated hydrocarbon prepared by the above reforming method.

또한, 본 발명은 상기 포화탄화수를 포함하는 바이오 연료를 제공한다.In addition, the present invention provides a biofuel containing the saturated hydrocarbon.

본 발명에 따른 수첨탈산소화 반응용 촉매는 브뢴스테드 산점, 루이스 산점과 같은 다양한 기능 사이트를 포함하고, 상기 촉매를 이용하면 효율적으로 유기산소화합물에 수소를 첨가하여 산소를 제거할 수 있어, 석유를 대체할 수 있는 바이오 연료를 높은 수율로 생산할 수 있으며, 본 발명의 제조방법에 다라 제조된 촉매는 재사용 가능하며, 재사용 시에도 우수한 촉매 활성을 나타내는 효과가 있다.The catalyst for hydrodeoxygenation according to the present invention includes various functional sites such as Bronsted acid sites and Lewis acid sites, and by using the catalyst, it is possible to efficiently remove oxygen by adding hydrogen to an organic oxygen compound, so that petroleum It is possible to produce a biofuel that can be replaced with a high yield, and the catalyst prepared according to the production method of the present invention is reusable, and has the effect of exhibiting excellent catalytic activity even when reused.

도 1은 본 발명의 Pt/P@MIL 촉매의 XRD 패턴을 확인한 결과이다.
도 2는 본 발명의 Pt/P@MIL 촉매의 흡착-탈착 등온선(a) 및 기공 사이즈(b)를 나타낸 것이다.
도 3은 본 발명의 Pt/P@MIL 촉매의 산 강도(acid strength)를 NH3 승온이탈(temperature-programmed desorption, TPD)로 확인한 결과이다.
도 4는 본 발명의 Pt/P@MIL 촉매에 대한 O 1s 코어 수준을 XPS 스펙트럼으로 나타낸 것이다.
도 5는 본 발명의 Pt/P@MIL 촉매의 FE-TEM 이미지 및 인산 처리 농도별 입자 사이즈 분포도(0mM(a), 60mM(b), 240mM(c), 480mM(d))를 나타낸 것이다.
도 6은 본 발명의 Pt/P@MIL 촉매의 4f XPS 스펙트럼을 나타낸 것이다.
도 7은 본 발명의 Pt/P@MIL 촉매의 올레산(OLA) 전환율, HDO 전환율 및 생성물 함량을 나타낸 것이다.
도 8은 인산 처리에 따른 nC17 및 nC18 생성물을 기반으로 하는 TOF(s-1)을 나타낸 것이다.
도 9는 본 발명의 Pt/P@MIL 촉매의 반응시간에 따른 HDO 전환율 및 생성물 선택도를 나타낸 것이다.
도 10은 HDO 반응 24시간 후 사용된 촉매의 FE-TEM 이미지 및 입자 크기 분포를 나타낸 것이다.
도 11은 본 발명의 Pt/P@MIL 촉매의 열중량 분석을 나타낸 것이다.
도 12는 루이스 산점에 흡착된 인산 분자의 가능한 결합 구조를 반응식으로 나타낸 것이다.
도 13은 본 발명의 Pt/P@MIL 촉매를 통한 올레산의 수첨탈산소 반응 경로를 반응식으로 나타낸 것이다.
1 is a result of confirming the XRD pattern of the Pt/P@MIL catalyst of the present invention.
2 shows the adsorption-desorption isotherms (a) and pore size (b) of the Pt/P@MIL catalyst of the present invention.
3 is a result of confirming the acid strength (acid strength) of the Pt / P@MIL catalyst of the present invention by NH 3 temperature-programmed desorption (TPD).
4 is an XPS spectrum showing the O 1s core level for the Pt/P@MIL catalyst of the present invention.
Figure 5 shows the FE-TEM image of the Pt / P@MIL catalyst of the present invention and the particle size distribution by phosphoric acid treatment concentration (0 mM (a), 60 mM (b), 240 mM (c), 480 mM (d)).
6 shows the 4f XPS spectrum of the Pt/P@MIL catalyst of the present invention.
7 shows the oleic acid (OLA) conversion, HDO conversion and product content of the Pt/P@MIL catalyst of the present invention.
8 shows TOF(s −1 ) based on nC17 and nC18 products following phosphoric acid treatment.
9 shows the HDO conversion and product selectivity according to the reaction time of the Pt/P@MIL catalyst of the present invention.
Figure 10 shows the FE-TEM image and particle size distribution of the catalyst used 24 hours after the HDO reaction.
11 shows the thermogravimetric analysis of the Pt/P@MIL catalyst of the present invention.
12 is a reaction scheme showing possible bonding structures of phosphate molecules adsorbed to Lewis acid sites.
13 is a reaction scheme showing the hydrodeoxygenation route of oleic acid through the Pt/P@MIL catalyst of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

수첨탈산소 반응용 촉매의 제조방법Preparation method of catalyst for hydrodeoxygenation reaction

본 발명은 금속-유기 골격체(metal-organic frameworks, MOF)에 인 전구체를 함침하는 단계(단계 1); 및The present invention relates to metal-organic frameworks (MOFs) impregnated with a phosphorus precursor (step 1); And

상기 인 전구체가 함침된 금속-유기 골격체의 미세기공에 금속 나노입자를 고정하는 단계(단계 2); 를 포함하는 수첨탈산소 반응용 촉매의 제조방법을 제공한다.fixing the metal nanoparticles to the micropores of the metal-organic framework impregnated with the phosphorus precursor (step 2); It provides a method for producing a catalyst for hydrodeoxygenation comprising a.

본 발명의 제조방법에 있어서, 상기 인 전구체는 인산(H3PO4), 인산암모늄((NH4)H2PO4), 인산이암모늄((NH4)2HPO4) 또는 인산삼암모늄((NH4)3PO4)을 사용할 수 있으며, 바람직하게 인산(H3PO4)을 사용하여 제조할 수 있다.In the preparation method of the present invention, the phosphorus precursor is phosphoric acid (H 3 PO 4 ), ammonium phosphate ((NH 4 )H 2 PO 4 ), diammonium phosphate ((NH 4 ) 2 HPO 4 ) or triammonium phosphate ( (NH 4 ) 3 PO 4 ) may be used, and preferably phosphoric acid (H 3 PO 4 ) may be used.

본 발명의 제조방법에 있어서, 상기 단계 1은 인 전구체를 60 내지 480mM의 농도로 함침하여 제조할 수 있고, 바람직하게는 60 내지 360mM의 농도로 함침하여 제조할 수 있고, 더욱 바람직하게는 230 내지 380mM의 농도로 함침하여 제조할 수 있고, 더욱 더 바람직하게 220 내지 260mM의 농도로 함침하여 제조할 수 있다. In the manufacturing method of the present invention, step 1 may be prepared by impregnating the phosphorus precursor at a concentration of 60 to 480 mM, preferably by impregnating at a concentration of 60 to 360 mM, more preferably 230 to It may be prepared by impregnation at a concentration of 380 mM, and even more preferably by impregnation at a concentration of 220 to 260 mM.

본 발명의 일실시예에 있어서, 상기 인 전구체 처리 농도가 220 내지 260mM의 농도 범위에서 브뢴스테드 산점이 가장 높게 증가하고(표 2참조), 올레산의 수소탈산소화 반응에서 포화탄화수소인 옥타데칸(octadecane) 및 헵타데칸(heptadecane)의 전환율이 가장 높은 것을 확인할 수 있다(도 7 참조).In an embodiment of the present invention, the Bronsted acid point increases the highest in the concentration range of the phosphorus precursor treatment concentration of 220 to 260 mM (see Table 2), and in the hydrodeoxygenation reaction of oleic acid, octadecane, a saturated hydrocarbon ( It can be seen that the conversion rates of octadecane) and heptadecane are the highest (see FIG. 7 ).

본 발명의 일실시예에 있어서, 상기 인 전구체 처리 농도가 높아짐에 따라 금속-유기 골격체가 갖는 산점의 강도 및 산점의 총량이 증가하게 되고, 이로 인해 수첨탈산소화 반응에서 유기산소화합물의 아실 C=O 결합이 활성화 되고, 상기 결합의 O 원자가 활성화 되어 수첨탈산소화 반응에 공급된 H에 의해 쉽게 공격을 받게 된다. 또한, 상기 탈카르보닐화(decarbonylation) 반응의 생성물인 일산화탄소(CO)는 금속-유기 골격체 미세기공에 고정된 금속 나노입자 활성점에 부정적인 영향을 미친다(도 3, 표 1, 표 3 참조).In one embodiment of the present invention, as the concentration of the phosphorus precursor treatment increases, the strength of the acid sites and the total amount of acid sites of the metal-organic framework increase, thereby causing the acyl C = of the organic oxygen compound in the hydrodeoxygenation reaction. The O bond is activated, and the O atom of the bond is activated to be easily attacked by the H supplied to the hydrodeoxygenation reaction. In addition, carbon monoxide (CO), a product of the decarbonylation reaction, has a negative effect on the metal nanoparticle active sites fixed in the micropores of the metal-organic framework (see Fig. 3, Table 1, Table 3). .

본 발명의 제조방법에 있어서, 상기 단계 2의 금속 나노입자는 팔라듐(Pd), 백금(Pt), 루테늄(Ru), 구리(Cu), 은(Ag) 또는 금(Au) 나노입자를 사용할 수 있으며, 바람직하게 백금(Pt) 나노입자를 사용하여 제조할 수 있다. In the manufacturing method of the present invention, as the metal nanoparticles of step 2, palladium (Pd), platinum (Pt), ruthenium (Ru), copper (Cu), silver (Ag) or gold (Au) nanoparticles may be used. and preferably, it can be prepared using platinum (Pt) nanoparticles.

본 발명의 제조방법에 있어서, 금속-유기 골격체는 MIL(Materials Institute Lavoisier)계 금속-유기 골격체이며, 상기 MIL계 금속-유기 골격체는 MIL-47, MIL-53, MIL-100, MIL-101, MIL-102, MIL-110, MIL-125, MIL-127 또는 이의 혼합물일 수 있으며, 바람직하게 MIL-101을 사용하여 제조할 수 있다. In the production method of the present invention, the metal-organic framework is a MIL (Materials Institute Lavoisier)-based metal-organic framework, and the MIL-based metal-organic framework is MIL-47, MIL-53, MIL-100, MIL. -101, MIL-102, MIL-110, MIL-125, MIL-127 or a mixture thereof may be used, and preferably MIL-101 may be used.

본 발명의 일실시예에 있어서, 상기 MIL-101은 탈이온수(deionized water)에 용해된 테레프탈산(terephthalic acid)에 리튬 아세테이트 다이하이드레이트(lithium acetate dihydrate)를 교반하며 첨가한 후, 금속염 분말을 혼합한 뒤, 결정화 반응을 수행하여 제조할 수 있다. In one embodiment of the present invention, the MIL-101 is added with stirring lithium acetate dihydrate to terephthalic acid dissolved in deionized water, followed by mixing the metal salt powder. Then, it can be prepared by performing a crystallization reaction.

본 발명의 일실시예에 있어서, 상기 결정화 반응은 전기가열, 초음파, 전자기파 또는 전기화학적 방법을 사용할 수 있다. In one embodiment of the present invention, the crystallization reaction may use electric heating, ultrasonic waves, electromagnetic waves or electrochemical methods.

본 발명의 일실시예에 있어서, 상기 금속염은 Fe, Al, Cr, Ti, Sc, Cu 또는 V을 각각 또는 혼합하여 사용할 수 있다. In an embodiment of the present invention, Fe, Al, Cr, Ti, Sc, Cu, or V may be used as the metal salt individually or in combination.

본 발명의 일실시예에 있어서, 상기 단계 2의 금속 나노입자를 고정화한 후, 이를 수소 분위기에서 환원시키는 단계를 더 포함할 수 있다. In an embodiment of the present invention, after immobilizing the metal nanoparticles of step 2, the method may further include reducing them in a hydrogen atmosphere.

본 발명의 제조방법에 있어서, 상기 인 전구체가 브뢴스테드 산점(Brønsted acid sites)이고, 상기 금속-유기 골격체가 루이스 산점(Lewis acid sites)으로 작용한다. In the manufacturing method of the present invention, the phosphorus precursor is Brønsted acid sites, and the metal-organic framework functions as Lewis acid sites.

본 발명의 일실시예에 있어서, 인 전구체의 농도가 증가함에 따라 브뢴스테드 산점이 증가하고, 상기 금속-유기 골격체의 중심 금속과 상기 인 전구체가 결합함에 따라 루이스 산점이 감소하게 된다(표 2참조).In one embodiment of the present invention, as the concentration of the phosphorus precursor increases, the Bronsted acid point increases, and as the central metal of the metal-organic framework and the phosphorus precursor bind, the Lewis acid point decreases (Table 1). see 2).

또한, 본 발명은 상기 제조방법에 의해 제조된 수첨탈산소 반응용 촉매를 제공한다. In addition, the present invention provides a catalyst for hydrodeoxygenation reaction prepared by the above production method.

본 발명의 일실시예에 있어서, 상기 수첨탈산소 반응용 촉매는 유기산소화합물을 출발물질로 하여, 수첨탈산소화 반응에 사용될 수 있다. In one embodiment of the present invention, the catalyst for the hydrodeoxygenation reaction may be used in the hydrodeoxygenation reaction using an organic oxygen compound as a starting material.

CC 3-403-40 의 산소 함유 탄화수소 화합물로부터 포화탄화수소로 개질하는 방법A method of reforming from oxygen-containing hydrocarbon compounds of

본 발명은 상기 본 발명의 제조방법에 따라 제조된 수첨탈산소 반응용 촉매가 포함된 반응기에 C3-40의 산소 함유 탄화수소 화합물 및 수소 가스를 투입하면서 수첨탈산소화 반응을 수행하여 포화탄화수소 화합물을 얻는 단계;를 포함하는 C3-40의 산소 함유 탄화수소 화합물로부터 포화탄화수소로 개질하는 방법을 제공한다. The present invention is a saturated hydrocarbon compound by performing a hydrodeoxygenation reaction while introducing a C 3-40 oxygen-containing hydrocarbon compound and hydrogen gas to a reactor containing a catalyst for hydrodeoxygenation reaction prepared according to the production method of the present invention It provides a method for reforming from a C 3-40 oxygen-containing hydrocarbon compound to a saturated hydrocarbon comprising the step of obtaining.

본 발명의 제조방법에 있어서, 상기 수소 가스의 유량은 10 내지 100 mL/min으로 공급할 수 있다. 상기 수소는 상기 수첨탈산소 촉매를 활성화시키기 위해 매우 중요한 요인으로 작용하여, 상기 범위를 벗어나는 경우 수소의 공급이 충분히 이루어지지 않아 촉매가 활성화 되지 않거나, 빠른 유속으로 인하여 충분한 접촉시간을 확보하지 못하는 문제점이 발생할 수 있다. In the manufacturing method of the present invention, the flow rate of the hydrogen gas may be supplied at 10 to 100 mL/min. The hydrogen acts as a very important factor to activate the hydrodeoxygenation catalyst, and when it is out of the above range, the catalyst is not activated because the supply of hydrogen is not made sufficiently, or a sufficient contact time cannot be secured due to the fast flow rate. This can happen.

본 발명의 제조방법에 있어서, 상기 수첨탈산소화반응은 250 내지 350℃, 1 내지 3MPa의 수소압력하에서 90 내지 150분간 수행하여 제조할 수 있다. 상기 250 내지 350℃의 범위에서 탈카르복실화, 탈카르보닐화, 수첨탈산소화 반응으로 C3-40의 산소 함유 탄화수소 화합물에 포함되어 있는 산소를 제거하여 주생성물이 포화탄화수소를 얻을 수 있다. In the manufacturing method of the present invention, the hydrodeoxygenation reaction may be prepared by performing the hydrodeoxygenation reaction for 90 to 150 minutes under a hydrogen pressure of 250 to 350 ℃, 1 to 3 MPa. In the range of 250 to 350 °C , oxygen contained in the C 3-40 oxygen-containing hydrocarbon compound is removed by decarboxylation, decarbonylation, and hydrodeoxygenation to obtain saturated hydrocarbons as the main product.

본 발명의 일실시예에 있어서, 상기 C3-40의 산소 함유 탄화수소 화합물은 팜유, 옥수수유, 해바라기유, 올리브유, 대두유, 유채류, 면실유, 미강유 및 야자유로 이루어지는 군으로부터 선택되는 1종 또는 이의 혼합물의 식물성 유지; 우지, 돈지, 양지 및 어유로 이루어지는 군으로부터 선택되는 1종 또는 이의 혼합물의 동물성 유지; 또는 이로부터 유리된 올레산, 팔미톨레산 및 에루크산으로 이루어지는 군으로부터 선택되는 1종 또는 이의 혼합물을 사용할 수 있다. In one embodiment of the present invention, the C 3-40 oxygen-containing hydrocarbon compound is at least one selected from the group consisting of palm oil, corn oil, sunflower oil, olive oil, soybean oil, rapeseed oil, cottonseed oil, rice bran oil and palm oil or its vegetable oils in the mixture; Animal fats and oils of one or a mixture thereof selected from the group consisting of tallow, pork, brisket and fish oil; Alternatively, one selected from the group consisting of oleic acid, palmitoleic acid and erucic acid, or a mixture thereof, may be used.

또한, 본 발명은 상기 개질하는 방법에 의해 제조된 포화탄화수소를 제공한다. In addition, the present invention provides a saturated hydrocarbon prepared by the above reforming method.

또한, 본 발명은 상기 포화탄화수소를 포함하는 바이오 연료를 제공한다. In addition, the present invention provides a biofuel containing the saturated hydrocarbon.

하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.The present invention will be described in more detail through the following examples. However, the following examples are only for embodiing the contents of the present invention, and the present invention is not limited thereto.

<실시예 1> 인산 처리에 의해 환원된 Pt/P@MIL 촉매의 제조<Example 1> Preparation of Pt/P@MIL catalyst reduced by phosphoric acid treatment

<1-1> MIL-101(Cr)의 제조<1-1> Preparation of MIL-101 (Cr)

MIL-101(Cr)은 아세테이트를 이용한 수열합성법으로 합성하였다. 보다 구체적으로, 0.664g의 테레프탈산(terephthalic acid, 98%, Sigma Aldrich)을 25 mL의 탈이온수 및 0.025g의 리튬아세테이트이수화물(Lithium acetate dihydrate, Sigma Aldrich)에 교반하면서 첨가한 후, 1.6g의 Cr(NO3)3·9H2O(99%, Sigma Aldrich)를 첨가하고 초음파하에서 15분간 분산시켰다. 이어서 혼합물을 테플론 라이너 오토클레이브(Teflon liner autoclave)로 옮기고 대류 오븐에서 12시간 동안 200℃에서 가열하여 결정화 반응을 수행하였다. 결정화 반응 후, 얻어진 녹색 고체 샘플을 80 ℃에서 탈이온수로 3회, 80 ℃에서 N,N-디메틸포름아마이드(N,N-Dimethylformamide, DMF)로 8시간(3회), 마지막으로 뜨거운 에탄올로 8시간(3회) 세척하고, 원심분리하여 고체 생성물을 분리하고, MIL-101(Cr)을 수득하였다. 수득한 생성물을 100℃에서 밤새 건조시켰다.MIL-101 (Cr) was synthesized by hydrothermal synthesis using acetate. More specifically, after adding 0.664 g of terephthalic acid (98%, Sigma Aldrich) to 25 mL of deionized water and 0.025 g of lithium acetate dihydrate (Sigma Aldrich) with stirring, 1.6 g of Cr (NO 3 ) 3 ·9H 2 O (99%, Sigma Aldrich) was added and dispersed under ultrasound for 15 minutes. The mixture was then transferred to a Teflon liner autoclave and heated in a convection oven at 200° C. for 12 hours to perform a crystallization reaction. After the crystallization reaction, the obtained green solid sample was treated with deionized water at 80 °C three times, N,N-dimethylformamide (DMF) at 80 °C for 8 hours (3 times), and finally with hot ethanol. After washing for 8 hours (3 times) and centrifugation, the solid product was isolated and MIL-101 (Cr) was obtained. The obtained product was dried at 100° C. overnight.

<1-2> H<1-2> H 33 POPO 44 @MIL-101(Cr) (P@MIL)의 제조Preparation of @MIL-101(Cr) (P@MIL)

상기 실시예 1-1에서 제조한 MIL-101(Cr)을 인산으로 처리하였다. 보다 구체적으로 30 내지 480mM의 농도의 오르쏘-인산(ortho-phosphoric acid, H3PO4, 89%, TCI, Japan, PA)이 포함된 DMF 용매(30mL)에 MIL-101(Cr)을 70℃에서 5시간 동안 천천히 교반하면서 침지시켜 제조하였다. 인산 침지가 완료된 후, 여과하고 진공 조건에서 DMF 및 에탄올로 세척한 다음 100℃에서 밤새 건조시켰다. P@MIL-xmM로 표시되었다(xmM은 30-480mM의 산 농도).MIL-101 (Cr) prepared in Example 1-1 was treated with phosphoric acid. More specifically, MIL-101 (Cr) 70 in a DMF solvent (30 mL) containing ortho-phosphoric acid (H 3 PO 4 , 89%, TCI, Japan, PA) at a concentration of 30 to 480 mM It was prepared by immersing it at ℃ with slow stirring for 5 hours. After phosphoric acid soaking was completed, it was filtered, washed with DMF and ethanol under vacuum conditions, and dried at 100° C. overnight. It is denoted as P@MIL-xmM (xmM is the acid concentration of 30-480 mM).

<1-3> Pt/H<1-3> Pt/H 33 POPO 44 @MIL-101(Cr) (Pt/P@MIL)의 제조Preparation of @MIL-101(Cr) (Pt/P@MIL)

이중용매방법(double solvent method, DSM)을 사용하여, Pt를 고정화하였다. 우선, 상기 실시예 1-2에서 제조한 P@MIL을 소수성 용매인 n-헥산에 실온에서 2시간동안 교반하면서 첨가하였다. 그 후, 친수성 용매인 금속 전구체 H2PtCl6 수용액을 2시간동안 연속적으로 교반하면서 상기 혼합물 용액에 천천히 적가하였다. 수득한 고체 생성물을 100℃에서 12시간 동안 건조시킨 후, 250℃에서 H2로 환원시켰다. 최종 생성물을 Pt/P@MIL-xmM(xmM은 30-480mM의 산 농도)로 표시하였다.Using the double solvent method (DSM), Pt was immobilized. First, P@MIL prepared in Example 1-2 was added to n-hexane as a hydrophobic solvent while stirring at room temperature for 2 hours. Thereafter, an aqueous solution of a metal precursor H 2 PtCl 6 as a hydrophilic solvent was slowly added dropwise to the mixture solution while continuously stirring for 2 hours. The obtained solid product was dried at 100° C. for 12 hours and then reduced at 250° C. with H 2 . The final product was expressed as Pt/P@MIL-xmM (xmM is an acid concentration of 30-480 mM).

<실험예 1> 촉매의 X-선 회절 피크(XRD) 확인<Experimental Example 1> X-ray diffraction peak (XRD) confirmation of the catalyst

X-선 회절패턴은 Cu Kα radiation source (λ=1.54 Å)를 사용하여 분말 X-선 회절 분광기(PXRD; MAC-18XHF, Rigaku, Japan)를 이용하였다. For the X-ray diffraction pattern, a powder X-ray diffraction spectrometer (PXRD; MAC-18XHF, Rigaku, Japan) was used using a Cu Kα radiation source (λ=1.54 Å).

Pt/P@MIL 촉매의 결정구조를 확인하기 위해 XRD를 확인한 결과, 도 1에 나타낸 바와 같이, 인산 및 Pt 금속을 고정하기 전-후에 MIL-101(Cr)의 회절 피크가 검출되어, MIL-101(Cr)의 결정구조가 열 처리 전후에도 남아있는 것을 확인하였다. 반면에, 실시예 1의 인산 처리한 촉매의 경우, 인산 농도가 증가함에 따라 피크 강도가 감소하고, 회절 피크의 위치가 더 높은 2세타 위치(2 Theta position)로 이동한 것을 확인하였으며, 이는 MIL-101(Cr) 구조의 Cr3+와 인산 사이의 상호작용을 나타낸다.As a result of checking XRD to confirm the crystal structure of the Pt/P@MIL catalyst, as shown in FIG. 1, the diffraction peak of MIL-101(Cr) was detected before and after fixing phosphoric acid and Pt metal, and MIL- It was confirmed that the crystal structure of 101(Cr) remained even before and after heat treatment. On the other hand, in the case of the phosphoric acid-treated catalyst of Example 1, the peak intensity decreased as the phosphoric acid concentration increased, and it was confirmed that the position of the diffraction peak was moved to a higher 2 Theta position, which -101 (Cr) represents the interaction between Cr + 3 and the phosphate of the structure.

<실험예 2> 촉매의 텍스처 특성<Experimental Example 2> Texture properties of catalyst

실시예 1의 Pt/P@MIL 촉매의 텍스처 특성은 77K에서 N2 다공성 측정법 (TriStar, Micromeritics, USA)을 사용하여 분석하였다. 분석 전에, 촉매를 150℃에서 12시간 동안 탈기시켰다. 비표면적 및 N2 흡착-탈착 등온선은 BET(Brunaune-Emmet-Teller) 방법을 사용하였다. 총 기공 부피는 0.98의 상대압력에서 N2 흡착에 의해 확인하였으며, 기공 크기 분포는 BJH(Barrett-Joyner-Halenda) 알고리즘에 의해 얻었다.The texture properties of the Pt/P@MIL catalyst of Example 1 were analyzed using N 2 porosimetry (TriStar, Micromeritics, USA) at 77K. Prior to analysis, the catalyst was degassed at 150° C. for 12 hours. The specific surface area and N 2 adsorption-desorption isotherms were measured using the Brunaune-Emmet-Teller (BET) method. The total pore volume was confirmed by N 2 adsorption at a relative pressure of 0.98, and the pore size distribution was obtained by the Barrett-Joyner-Halenda (BJH) algorithm.

Pt/P@MIL 촉매의 텍스처 특성을 도 2 및 표 1에 나타내었다. 도 2a에 나타낸 바와 같이, 인산을 처리하지 않은 Pt/MIL 촉매 및 인산을 처리한 Pt/P@MIL 촉매의 경우, IUPAC 분류에 따라 제Ⅰ형 등온선에 해당하며, 이는 상기 촉매가 미세 다공성 구조인 것을 나타낸다. 또한, MIL-101(Cr)은 3,521m2/g의 우수한 BET 표면적 및 2.39cm3/g의 높은 공극 부피를 갖는다. The texture properties of the Pt/P@MIL catalyst are shown in FIG. 2 and Table 1. As shown in Fig. 2a, the Pt/MIL catalyst without phosphoric acid and the Pt/P@MIL catalyst treated with phosphoric acid correspond to type I isotherms according to the IUPAC classification, which means that the catalyst has a microporous structure. indicates that In addition, MIL-101(Cr) has an excellent BET surface area of 3,521 m 2 /g and a high pore volume of 2.39 cm 3 /g.

또한, 인산 처리 농도가 증가함에 따라 Pt/P@MIL 촉매의 표면적 감소 및 기공 부피의 감소는 인산 분자(d=0.61nm)가 MIL-101(Cr) 골격체의 기공 시스템에 들어가 있는 것을 의미한다. 또한 도 2b에 나타낸 바와 같이, 상기 촉매의 기공 크기 분포 곡선은 산 첨가 후 0.7, 1.6 및 2.4nm를 중심으로 한 기공 직경에서 기공 부피 감소를 보여준다. 따라서, 다공성 분자의 강한 감소(표면적 및 기공 부피의 감소)는 훨씬 우수한 산 농도(480mM)에서 산 분자가 다공성 윈도우(다공성 구조에서 개방(open) 부위를 지칭)를 통과하고 기공의 일부를 점유하여 골격체를 덮기 때문에 발생한다. In addition, the decrease in the surface area and pore volume of the Pt/P@MIL catalyst with increasing phosphate concentration means that phosphate molecules (d=0.61 nm) enter the pore system of the MIL-101(Cr) framework. . Also, as shown in FIG. 2b, the pore size distribution curve of the catalyst shows a decrease in pore volume at pore diameters centered at 0.7, 1.6 and 2.4 nm after acid addition. Thus, the strong reduction of porous molecules (reduction of surface area and pore volume) is due to the fact that at a much better acid concentration (480 mM), the acid molecules pass through the porous window (referred to as open sites in the porous structure) and occupy part of the pores. Occurs because it covers the skeleton.

촉매catalyst B.E.T,
m2/g
BET,
m 2 /g
기공 부피,
cm3/g
pore volume,
cm 3 /g
CO흡수(uptake),
mmol/g
CO uptake,
mmol/g
% 금속 분산
(metal dispersion)
% metal dispersion
(metal dispersion)
TOF
(s-1)
TOF
(s -1 )
MIL-101(Cr)MIL-101(Cr) 35213521 2.392.39 -- -- 1%Pt/MIL-1011%Pt/MIL-101 34753475 2.352.35 8.258.25 32.132.1 0.060.06 1%Pt/P@MIL-30mM1%Pt/P@MIL-30mM 32343234 2.122.12 8.828.82 34.334.3 0.1050.105 1%Pt/P@MIL-60mM1%Pt/P@MIL-60mM 31093109 2.042.04 7.547.54 30.230.2 0.4650.465 1%Pt/P@MIL-120mM1%Pt/P@MIL-120mM 30483048 2.022.02 7.017.01 27.227.2 0.5660.566 1%Pt/P@MIL-240mM1%Pt/P@MIL-240mM 29372937 1.81.8 3.123.12 12.112.1 1.4911.491 1%Pt/P@MIL-480mM1%Pt/P@MIL-480mM 15441544 1.11.1 0.340.34 1.31.3 9.259.25

<실험예 3> 촉매의 산성도 특성(acidity property) 확인<Experimental Example 3> Confirmation of acidity property of the catalyst

촉매의 산성도(Acidity property)는 NH3-TPD를 사용하여 확인하였다. 실험에 사용된 장비는 열전도 검출기(thermal conductivity detector, TCD)가 장착된 Micromeritics AutoChem II 2920 자동 분석기가 사용되었다. TPD(Temperature Programmed Desorption)란 일정한 속도로 시료의 온도를 올리면서 탈착되는 기체의 성분을 분석하는 방법으로, 열중량분석(Thermal Gravimetric Analysis, TGA)에 의해 결정된 MIL-101(Cr)의 열안정성(도 11 참조)에 기초한다. Acidity property of the catalyst was confirmed using NH 3 -TPD. The equipment used in the experiment was a Micromeritics AutoChem II 2920 automatic analyzer equipped with a thermal conductivity detector (TCD). TPD (Temperature Programmed Desorption) is a method to analyze the components of the desorbed gas while raising the sample temperature at a constant rate. The thermal stability of MIL-101 (Cr) determined by Thermogravimetric Analysis (TGA) 11) is based.

먼저, 샘플을 250℃에서 2시간동안 헬륨 스트림에서 전처리하여 표면의 불순물을 제거하였다. 그 후, 100℃로 냉각시킨 후, 샘플을 1시간 동안 10% NH3/He(50 cm3/min)의 암모니아로 포화시켰다. 암모니아 탈착 단계는 2℃/min의 가열속도로 400℃까지 50 cm3/min의 헬륨을 사용하였다. First, the sample was pretreated in a helium stream at 250° C. for 2 hours to remove surface impurities. Then, after cooling to 100° C., the sample was saturated with ammonia in 10% NH 3 /He (50 cm 3 /min) for 1 hour. In the ammonia desorption step, 50 cm 3 /min of helium was used up to 400° C. at a heating rate of 2° C./min.

촉매의 산성도를 측정한 결과, 도 3 및 표 2에 나타낸 바와 같이, MIL-101(Cr) 및 Pt/P@MIL는 250℃, 290 내지 340℃ 및 385℃영역에서 3개의 피크가 노출되었으며, 이는 각각 약 루이스 산점, 중간 루이스 산점 및 중간 브뢴스테드 산점에 기인한다. As a result of measuring the acidity of the catalyst, as shown in Figure 3 and Table 2, MIL-101 (Cr) and Pt / P@MIL were exposed to three peaks in the 250 ℃, 290 to 340 ℃ and 385 ℃ region, This is due to the weak Lewis scattering, the medium Lewis scattering and the medium Brönsted scattering, respectively.

촉매catalyst 산점의 양(Amount of acid site)
(μmol/g)
Amount of acid site
(μmol/g)
산점의 총양
(Total amount of acid sites)
(μmol/g)
total of scattering
(Total amount of acid sites)
(μmol/g)
산성밀도
(Acidic density)
(μmol/m2)
acid density
(Acid density)
(μmol/m 2 )
Weak
(< 250 oC)
Weak
(< 250 o C)
Moderate
(250 - 350 oC)
Moderate
(250 - 350 o C)
Moderate
(> 350 oC)
Moderate
(> 350 o C)
1Pt/MIL101 1Pt/MIL101 28.028.0 49.549.5 75.075.0 152.5.0152.5.0 0.0500.050 1Pt/P@MIL-60mM1Pt/P@MIL-60mM 32.432.4 69.769.7 76.076.0 178.1178.1 0.0570.057 1Pt/P@MIL-120mM1Pt/P@MIL-120mM 15.315.3 61.461.4 86.486.4 163.3163.3 0.0540.054 1Pt/P@MIL-240mM1Pt/P@MIL-240mM 12.012.0 25.025.0 144.0144.0 181.0181.0 0.0620.062 1Pt/P@MIL-480mM1Pt/P@MIL-480mM - - 46.046.0 160.0160.0 206.0206.0 0.1330.133

기존의 MIL-101(Cr)과 비교할 때, 인산 처리농도가 높아짐에 따라, 산점들은 강한 산점 영역들로 이동되었음을 확인할 수 있고, 이것은 브뢴스테드 산도의 증가를 의미한다. 또한, 인산 처리 농도에 따른 약 루이스 산점의 감소는 루이스 산점이 인(phosphorous) 계열과 결합에 의해 불포화 금속 이온인 Cr3+의 골격체를 부분적으로 덮기 때문이며, 도 12의 반응식에 나타낸 바와 같이, 인산은 골격체 표면의 루이스 및 브뢴스테드 산성도에 따라 형성될 수 있고, 일부 -OH기를 통해서 브뢴스테드 산점을 도입할 수 있다.Compared with the existing MIL-101 (Cr), as the phosphoric acid treatment concentration increases, it can be confirmed that the acid sites are moved to the strong acid site regions, which means an increase in the Bronsted acidity. In addition, the decrease of the weak Lewis acid site according to the phosphoric acid treatment concentration is because the Lewis acid site partially covers the framework of Cr 3 + , which is an unsaturated metal ion, by bonding with a phosphorous series. Phosphoric acid can be formed depending on the Lewis and Brønsted acidity of the surface of the scaffold, and can introduce Brønsted acid sites through some -OH groups.

이를 확인하기 위해, Pt/P@MIL촉매에 대한 O 1s 코어 수준 및 XPS 스펙트럼을 분석하였다. XPS 측정은 샘플에서 원소의 산화물 상태를 결정하기 위해 Thermo Scientific K-Alpha 분광계를 사용하였다. 284.6 eV에서 결합에너지를 갖는 carbon C (1s) line을 기준으로 사용하여 결합 에너지를 조정하였다. 환원된 촉매를 3%의 가스 혼합물을 갖는 Ar 내에서 실온에서 2시간 동안 패시베이션(passivation)한 후 공기에 노출시켰다.To confirm this, the O 1s core level and XPS spectrum for the Pt/P@MIL catalyst were analyzed. XPS measurements were performed using a Thermo Scientific K-Alpha spectrometer to determine the oxide state of elements in a sample. The binding energy was adjusted using a carbon C (1s) line with a binding energy at 284.6 eV as a reference. The reduced catalyst was passivated in Ar with 3% gas mixture at room temperature for 2 hours and then exposed to air.

그 결과, 도 4에 나타낸 바와 같이, 분리되지 않은 피크는 530.1 eV에 위치하며 Cr-O에 할당되었으며, 인산 처리하지 않은 Pt/MIL(Cr)(529.7eV)보다 약간 높다. 반면, Pt/P@MIL 촉매의 경우 531.6eV에서 피크가 나타났으며, 이는 P-O-Cr, P=O … Cr 및 표면 Cr-OH 결합에 해당한다. As a result, as shown in Fig. 4, the unseparated peak is located at 530.1 eV and assigned to Cr-O, which is slightly higher than that of Pt/MIL(Cr) without phosphate treatment (529.7 eV). On the other hand, in the case of the Pt/P@MIL catalyst, a peak appeared at 531.6 eV, which is P-O-Cr, P=O … Corresponds to Cr and surface Cr-OH bonds.

<실험예 4> 촉매의 형태 및 입자 크기 분포 확인<Experimental Example 4> Confirmation of catalyst shape and particle size distribution

금속 입자의 입자 크기 및 분포는 FE-TEM(JEM-2100F, JEOL, Japan)에 의해 분석되었다. The particle size and distribution of metal particles were analyzed by FE-TEM (JEM-2100F, JEOL, Japan).

인산 처리 농도에 따른 Pt/P@MIL 촉매의 형태 및 입자 크기 분포는 도 5에 나타내었다. FE-TEM 이미지(도 5 상단)는 MIL-101(Cr)의 팔면체 구조를 나타내었고, Pt 금속은 지지체(MIL-101(Cr) 촉매) 상에 균일하게 분산되어 있으며, Pt 입자 대부분은 MIL-101의 다공성 공동(1.6nm 내지 2.4 nm)에 상응하는 1.5-2.5nm의 크기 범위로 분포되어 있으며, 인산처리하지 않은 Pt/MIL-101의 평균 크기는 1.72nm로 기록되어있다. The shape and particle size distribution of the Pt/P@MIL catalyst according to the phosphoric acid treatment concentration is shown in FIG. 5 . The FE-TEM image (top of Fig. 5) showed the octahedral structure of MIL-101(Cr), the Pt metal was uniformly dispersed on the support (MIL-101(Cr) catalyst), and most of the Pt particles were MIL- It is distributed in the size range of 1.5-2.5 nm, corresponding to the porous cavities of 101 (1.6 nm to 2.4 nm), and the average size of unphosphated Pt/MIL-101 is reported to be 1.72 nm.

상기 FE-TEM 결과는 인산 처리에 의해 Pt 금속 입자 크기 분포가 더 높은 값으로 변화하였으며, 여기에서 240mM 및 480mM의 경우 평균 크기가 각각 1.5 배 및 2.3배 증가한 것으로 나타났다. 반면에, 지지체(MIL-101(Cr) 촉매)와의 정전기적 상호작용으로 인해 촉매 외부 표면에는 Pt 입자가 관찰되지 않았으며, 이는 이중 용매 접근법으로 인한 지지체(MIL-101(Cr) 촉매) 상에 귀금속상(noble metal phase)의 효과적인 도입을 나타낸다.The FE-TEM result showed that the Pt metal particle size distribution was changed to a higher value by the phosphoric acid treatment, and the average size was increased by 1.5 times and 2.3 times, respectively, in the case of 240 mM and 480 mM. On the other hand, no Pt particles were observed on the outer surface of the catalyst due to the electrostatic interaction with the support (MIL-101(Cr) catalyst), which was on the support (MIL-101(Cr) catalyst) due to the dual solvent approach. It represents the effective introduction of a noble metal phase.

또한, 열전도 검출기(thermal conductivity detector, TCD)가 장착된 Micromeritics AutoChem II 2920 micro-flow 반응기를 사용한 CO 흡착 실험을 사용하여 Pt 분산을 확인하였다. 보다 구체적으로, 샘플(0.1g)을 U-튜브 석영 반응기에 로딩하고 촉매의 환원은 250 ℃에서 3시간동안 10% H2/Ar (50 cm3/min)로 수행하였고, Ar 하에서 50℃로 냉각하고 10% CO/He를 반응기에 펄싱하기 전에 안정화를 위해 상기 온도에서 1시간동안 유지한다. CO 흡수량은 샘플이 완전히 포화될 때까지 500mL의 10% CO/He를 가스를 투여하여 측정하였다. In addition, Pt dispersion was confirmed using a CO adsorption experiment using a Micromeritics AutoChem II 2920 micro-flow reactor equipped with a thermal conductivity detector (TCD). More specifically, a sample (0.1 g) was loaded into a U-tube quartz reactor and the reduction of the catalyst was carried out at 250° C. for 3 hours with 10% H 2 /Ar (50 cm 3 /min), and at 50° C. under Ar. Cool and hold for 1 hour at this temperature for stabilization before pulsing 10% CO/He into the reactor. CO uptake was measured by gassing 500 mL of 10% CO/He until the sample was completely saturated.

CO 흡착결과, 표 1에 나타낸 바와 같이, 인산을 처리하지 않은 Pt/MIL의 경우 Pt 분산은 32.1%이고, 인산 처리 농도 240mM 및 480mM에서 각각 12.1% 및 1.3%까지 현저히 감소한다. 상기 결과는 인산이 MIL-101(Cr) 촉매의 기공 내부에 도입된 Pt의 활성점 상으로 흡착된 CO 부위를 보완하고 차단하는 경향이 있음을 확인하였다.As a result of the CO adsorption, as shown in Table 1, in the case of Pt/MIL not treated with phosphoric acid, the Pt dispersion was 32.1%, and the Pt dispersion was significantly reduced to 12.1% and 1.3% at the phosphoric acid treatment concentrations of 240 mM and 480 mM, respectively. The above results confirmed that phosphoric acid tends to complement and block the CO site adsorbed onto the active site of Pt introduced into the pores of the MIL-101(Cr) catalyst.

따라서, Pt 입자 크기를 CO 화학흡착 및 TEM 측정으로 표 3에 나타내었다. 인산 처리하지 않거나, 낮은 농도의 인산으로 처리한 경우, Pt 금속의 평균 크기는 큰 차이가 없다. 그러나, 인산 처리 농도 360 mM의 경우 CO 흡착에 의해 결정된 Pt 입자 크기(7.8nm) 대 TEM에 의해 측정된 Pt 입자 크기(3.08nm)의 차이가 커진다. Therefore, the Pt particle size is shown in Table 3 by CO chemisorption and TEM measurement. There was no significant difference in the average size of the Pt metal in the case of no phosphate treatment or treatment with a low concentration of phosphoric acid. However, the difference between the Pt particle size determined by CO adsorption (7.8 nm) versus the Pt particle size measured by TEM (3.08 nm) becomes large for the phosphoric acid treatment concentration of 360 mM.

이러한 금속 분산의 감소는 60-480mM로 산 농도가 증가함에 따라 비표면적 및 기공 부피를 15-55% 감소시키기 때문이다. 또다른 이유는, 도 6에 나타낸 바와 같이, Pt4+에서 Pt금속으로의 환원공정이 38-42% 도달했을 때, 촉매의 환원이 완료되지 않았기 때문일 수 있다.This reduction in metal dispersion is because the specific surface area and pore volume decrease by 15-55% as the acid concentration increases to 60-480 mM. Another reason may be that, as shown in FIG. 6, when the reduction process from Pt 4+ to Pt metal reached 38-42%, the reduction of the catalyst was not completed.

촉매catalyst DCO, CO 화학흡착에 의해 결정된
Pt 입자 사이즈, nm
D CO, determined by CO chemisorption
Pt particle size, nm
DTEM, TEM에 의해 결정된
Pt 입자 사이즈, nm
D TEM , determined by TEM
Pt particle size, nm
1%Pt/MIL-1011%Pt/MIL-101 1.951.95 1.721.72 1%Pt/P@MIL-30mM1%Pt/P@MIL-30mM 1.971.97 2.072.07 1%Pt/P@MIL-60mM1%Pt/P@MIL-60mM 2.052.05 2.152.15 1%Pt/P@MIL-120mM1%Pt/P@MIL-120mM 2.312.31 2.272.27 1%Pt/P@MIL-240mM1%Pt/P@MIL-240mM 2.952.95 2.532.53 1%Pt/P@MIL-360mM1%Pt/P@MIL-360mM 7.87.8 3.083.08 1%Pt/P@MIL-480mM1%Pt/P@MIL-480mM -- 3.893.89

<실험예 5> 촉매의 활성 측정(Hydrodeoxygenation, HDO 활성 측정)<Experimental Example 5> Measurement of catalyst activity (hydrodeoxygenation, HDO activity measurement)

올레산의 HDO 전환은 고정층 연속 반응기(continuous fixed-bed reactor)에서 수행되었다. 반응 전에, 촉매를 250 ℃에서 3시간 동안 H2/Ar (60/20 cm3/분)의 혼합 가스로 환원시켰다. 각각의 실행에 대해, 데칸 (>99%, Aldrich) 중 5 wt%의 올레산 (98%, Aldrich)을 고압 펌프를 사용하여 0.15mL/min의 유속으로 공급하고 250℃에서 예열하였다. The HDO conversion of oleic acid was carried out in a continuous fixed-bed reactor. Before the reaction, the catalyst was reduced with a gas mixture of H 2 /Ar (60/20 cm 3 /min) at 250 °C for 3 hours. For each run, 5 wt % of oleic acid (98%, Aldrich) in decane (>99%, Aldrich) was fed using a high pressure pump at a flow rate of 0.15 mL/min and preheated at 250°C.

생성된 혼합물 증기를 관형 반응기에 들어가기 전에 H2 흐름(60 mL/min)과 혼합하였다. HDO 반응을 2시간 동안 300℃ 및 2MPa의 수소 압력에서 수행하였다. 에틸-글리콜-냉각 응축기 시스템을 사용하여 증기생성물을 약 -10℃에서 액상으로 응축시켰다. 질량 밸런스는 응축 후 반응기로 들어가는 반응물에 대한 액체 생성물의 중량비를 86.2% ± 1%로 결정하였다. 질량 손실은 비 응축 생성물, 응축기의 액체 유지 및 촉매 상에 코크 침착으로 인해 발생하였다. The resulting mixture vapor was mixed with a H 2 stream (60 mL/min) before entering the tubular reactor. The HDO reaction was carried out at 300° C. and a hydrogen pressure of 2 MPa for 2 hours. An ethyl-glycol-cooled condenser system was used to condense the vapor product to a liquid phase at about -10°C. The mass balance was determined to be 86.2% ± 1% by weight of the liquid product to the reactants entering the reactor after condensation. Mass loss occurred due to non-condensing products, liquid retention in the condenser and coke deposition on the catalyst.

액체 생성물을 매 20분 간격으로 수집하고 모세관 컬럼-HP 5MS(30m x 0.25mm x 0.25mm)을 사용하여 GC-MS (Agilent 7890B, USA)으로 분석하였다. 검출기 온도는 280℃로 설정하였고, GC 분석의 가열 속도는 초기 온도 100℃에서 8℃/min로 가열되고, 250℃에 도달하면 1분간 유지하였다. 정량적 데이터는 각 물질의 상대적 함량만 측정하여 얻을 수 있다. The liquid product was collected every 20 min and analyzed by GC-MS (Agilent 7890B, USA) using a capillary column-HP 5MS (30 m x 0.25 mm x 0.25 mm). The detector temperature was set at 280°C, and the heating rate of the GC analysis was heated at an initial temperature of 100°C at 8°C/min, and maintained at 250°C for 1 minute. Quantitative data can be obtained by measuring only the relative content of each substance.

올레산의 전환율, 탈산소화도(deoxygenation degree, XGOD) 및 생성물 분포는 하기 (1), (2) 및 (3)으로 계산하였다. The conversion rate of oleic acid, deoxygenation degree (XGOD) and product distribution were calculated as (1), (2) and (3) below.

여기서 C0OLA는 초기 올레산 농도이고(mol/L) COLA는 상이한 반응시간 (t, h)에서 올레산 농도이고, Ci는 HDO 생성물 스트림에서 생성물 i의 농도이다. where C 0OLA is the initial oleic acid concentration (mol/L), C OLA is the oleic acid concentration at different reaction times (t, h), and C i is the concentration of product i in the HDO product stream.

[식 1][Equation 1]

Figure 112020007984947-pat00001
Figure 112020007984947-pat00001

[식 2][Equation 2]

Figure 112020007984947-pat00002
Figure 112020007984947-pat00002

[식 3][Equation 3]

Figure 112020007984947-pat00003
Figure 112020007984947-pat00003

상이한 산(acid) 농도에서 촉매의 고유 활성을 비교하기 위해 하기 식 4를 사용하여 전이 주파수(turnover frequency) (s-1)를 계산하였다:To compare the intrinsic activity of catalysts at different acid concentrations, the turnover frequency (s −1 ) was calculated using Equation 4 below:

[식 4][Equation 4]

Figure 112020007984947-pat00004
Figure 112020007984947-pat00004

상기 실시예 1에서 제조한 Pt/P@MIL 촉매의 올레산 전환율 및 HDO 전환율을 도 7에 나타내었다. 도 7에 나타낸 바와 같이, 인산처리하지 않은 Pt/P@MIL 촉매는 HDO 전환율이 5% 미만으로 매우 낮은 촉매 성능을 나타내며, 올레산의 80%가 중간 생성물로서 스테아르산으로 전환된다. The oleic acid conversion and HDO conversion of the Pt/P@MIL catalyst prepared in Example 1 are shown in FIG. 7 . As shown in FIG. 7 , the non-phosphating Pt/P@MIL catalyst exhibits very low catalytic performance with an HDO conversion of less than 5%, and 80% of oleic acid is converted to stearic acid as an intermediate product.

반면에, 브뢴스테드 산점을 제공하는 공급원으로서 인산의 존재에 의해 HDO의 전환이 상당히 개선되었다. 인산(H3PO4)의 농도를 30에서 60mM로 증가시키면, 올레산의 HDO 전환은 15%(인산 농도 30mM)에서 57%(인산 농도 60mM)로 약 42% 증가되었다. 인산의 농도를 120mM 및 240mM로 증가할 경우, HDO 전환율은 11% 및 18.5% 증가한다. nC17/nC18의 비가 3.7인 240mM에서 가장 높은 HDO 전환율인 75%에 도달했다. 그러나, 너무 높은 인산 농도(360 및 480nm)에서 HDO 전환율은 MIL-101의 표면 특성의 부분적 손실 및 촉매 상의 금속 활성점의 감소로 인해 급격히 감소하는 경향이 있다.On the other hand, the conversion of HDO was significantly improved by the presence of phosphoric acid as a source providing the Brønsted acid site. When the concentration of phosphoric acid (H 3 PO 4 ) was increased from 30 to 60 mM, the HDO conversion of oleic acid was increased by about 42% from 15% (phosphoric acid concentration 30 mM) to 57% (phosphate concentration 60 mM). When the concentration of phosphoric acid was increased to 120 mM and 240 mM, the HDO conversion increased by 11% and 18.5%. The highest HDO conversion of 75% was reached at 240 mM with a nC17/nC18 ratio of 3.7. However, at too high phosphoric acid concentrations (360 and 480 nm), the HDO conversion tends to decrease rapidly due to partial loss of surface properties of MIL-101 and reduction of metal active sites on the catalyst.

생성물 분포에 기초하여 Pt/P@MIL 촉매상의 올레산의 탈산소화 반응에는 2가지 주요 경로가 있다. 첫번째 경로는, 올레산의 직접 수소-탈산소화, 즉 아실 C=O 결합의 산소원자가 친전자 산 지지체 중심으로 흡착되고 금속 활성점에서 해리된 H 원자에 의해 수소화되어 옥타데카놀을 형성한 다음 수소화 되어 옥타데칸(nC18)을 생성한다. 두번째 경로는, 헵타데칸(nC17)을 생성하기 위한 수소화-탈카르보닐화/탈카르복실화이다. 올레산의 -OH기는 먼저 금속 부위의 H2 분자로부터 분리된 H원자에 의해 수소화되어 중간체로서 H2O 및 옥타데칸을 형성한다. 이후의 화합물은 최종 생성물 스트림으로 기록되었지만 그 함량은 미미했다. 후속적으로, 중간체는 탈카르보닐화단계에 의해 헵타데칸으로 추가 변환된다. 이 경로는 올레산 또는 스테아르산의 직접적인 하이드로-탈카르복실화와 동시에 발생하여 헵타데칸 및 CO2를 형성할 수 있다. 올레산의 수소탈산소화 경로는 도 13에 나타내었다. There are two main routes for the deoxygenation of oleic acid on Pt/P@MIL catalysts based on product distribution. The first route is the direct hydrogen-deoxygenation of oleic acid, i.e., the oxygen atom of the acyl C=O bond is adsorbed to the center of the electrophilic acid support and is hydrogenated by the H atom dissociated at the metal active site to form octadecanol and then hydrogenated. Produces octadecane (nC18). The second route is hydrogenation-decarbonylation/decarboxylation to produce heptadecane (nC17). The -OH group of oleic acid is first hydrogenated by an H atom separated from the H 2 molecule of the metal moiety to form H 2 O and octadecane as intermediates. Subsequent compounds were recorded as final product streams, but their content was negligible. Subsequently, the intermediate is further converted to heptadecane by a decarbonylation step. This pathway can occur concurrently with the direct hydro-decarboxylation of oleic acid or stearic acid to form heptadecane and CO 2 . The hydrogen deoxygenation pathway of oleic acid is shown in FIG. 13 .

올레산의 HDO 반응을 위한 금속 활성점에 대한 인산 처리의 효과를 설명하기 위해, 올레산의 HDO 전환에서 금속 활성점에 대한 턴오버주파수(turnover frequencies, TOF)를 계산하였고, 이는 표 1에 표시된 것과 같이 CO 흡수 (μmol/g)를 사용하여 금속당 HDO 전환율로 정의하였다. In order to explain the effect of phosphoric acid treatment on the metal active sites for the HDO reaction of oleic acid, the turnover frequencies (TOF) for the metal active sites in the HDO conversion of oleic acid were calculated, as shown in Table 1. CO uptake (μmol/g) was used to define HDO conversion per metal.

인산 처리하지 않은 Pt/P@MIL 촉매의 TOF는 0.06s-1로, 기타 다른 문헌에서의 값과 동일하거나 유사하다. 다른 단일금속(Co, Ni, Pt, Pd)기반 촉매의 TOF(s-1)은 0.01~0.27 범위였다. 인산 처리하지 않은 Pt/P@MIL 촉매와 비교하여, 인산처리된 촉매는 30-240mM의 산 농도에서 1.5 내지 25배 더 높은 TOF(0.105 내지 1.49s-1)를 나타냈다. 특히, 480mM 농도의 인산으로 처리된 촉매의 TOF는 Pt 활성점 및 산점의 출현이 감소됨에 따라 높은 값을 갖는다(9.25 s-1). 따라서, 생성물 분포는 귀금속의 종류보다 산점에 더 의존적이다. The TOF of the Pt/P@MIL catalyst without phosphate treatment was 0.06s -1 , which is the same as or similar to the value in other literatures. TOF(s-1) of other single metal (Co, Ni, Pt, Pd)-based catalysts ranged from 0.01 to 0.27. Compared to the non-phosphating Pt/P@MIL catalyst, the phosphated catalyst exhibited 1.5 to 25 times higher TOF (0.105 to 1.49 s −1 ) at acid concentrations of 30-240 mM. In particular, the TOF of the catalyst treated with phosphoric acid at a concentration of 480 mM has a high value (9.25 s −1 ) as the appearance of Pt active sites and acid sites decreases. Therefore, the product distribution is more dependent on the acid site than the type of noble metal.

도 8에 나타낸 바와 같이, nC17/nC18 수율의 비는 인산처리 농도 의존적으로 증가하고, 이것은 탈카르복실화 반응이 중간 브뢴스테드 산점에 걸쳐 수첨탈산소화 반응에 지배적임을 나타낸다. 아실 C=O 결합 활성화는 HDO 반응의 주요 단계이며, 산점의 강도 및 분포에 따라 크게 달라진다. 따라서, 인산처리에 의한 산점의 증가는 상기 아실결합에서 O 원자가 활성화되어 H 원자에 의해 쉽게 공격된다. 이는 표 4에 나타낸 바와 같이, 상이한 종류의 산지지체를 갖는 Pt계 촉매에 대한 몇몇 연구결과와 일치한다. As shown in Figure 8, the ratio of nC17/nC18 yields increases in a phosphating concentration-dependent manner, indicating that the decarboxylation reaction dominates the hydrodeoxygenation reaction across the intermediate Brønsted acid site. Acyl C=O bond activation is a key step in the HDO reaction and is highly dependent on the intensity and distribution of acid sites. Therefore, the increase in acid sites by phosphate treatment activates the O atom in the acyl bond and is easily attacked by the H atom. This is consistent with the results of several studies on Pt-based catalysts with different types of acid supports, as shown in Table 4.

한편, 탈카르보닐화 생성물 CO는 Pt 금속 부위에 나쁜 영향을 준다. 인산의 존재는 CO 흡착 측정 결과와 같이, Pt 활성부위에서 CO 흡착하는 것을 방지할 수 있다. 상기 실험 결과 및 촉매 특성 결과에 따르면, Pt계 촉매의 HDO 성능 및 선택성은 처리된 산 농도에 크게 영향을 받는 것을 알 수 있다.On the other hand, the decarbonylation product CO adversely affects the Pt metal sites. The presence of phosphoric acid can prevent CO adsorption at the Pt active site, as shown in the CO adsorption measurement result. According to the experimental results and catalyst properties results, it can be seen that the HDO performance and selectivity of the Pt-based catalyst are greatly affected by the treated acid concentration.

촉매종류Catalyst type 조건Condition 전환율, %
(Conversion)
Conversion rate, %
(Conversion)
헵타데칸 선택도, %
(Hepadecane selectivity)
Heptadecane selectivity, %
(Hepadecane selectivity)
5%Pd/C5%Pd/C 300 oC, 1.5MPa300 o C, 1.5 MPa 5858 7575 1%Pt/γAl2O3 1%Pt/γAl 2 O 3 340 oC, 1.6MPa340 o C, 1.6 MPa 9898 76.676.6 5%Pt/γAl2O3 5%Pt/γAl 2 O 3 325oC, 2MPa325 o C, 2 MPa 46.246.2 6565 5%Pt/Ga-MOF5%Pt/Ga-MOF 320 oC, 2MPa320 o C, 2 MPa 9292 76.676.6 5%Pt/Al-MOF5%Pt/Al-MOF 320 oC, 2MPa320 o C, 2 MPa 9090 -- 5%Pt/Cu-MOF5%Pt/Cu-MOF 320 oC, 2MPa320 o C, 2 MPa 4646 -- 1%Pt/P@MIL-101(Cr)1%Pt/P@MIL-101(Cr) 300 oC, 2MPa300 o C, 2 MPa 9595 75.575.5

<실험예 6> 촉매 안정성 평가<Experimental Example 6> Catalyst stability evaluation

올레산의 수소탈산소화를 위한 Pt/P@MIL 촉매의 촉매 안정성은 300℃, 2MPa의 수소 및 24시간 동안 수행되었다. The catalyst stability of the Pt/P@MIL catalyst for the hydrodeoxygenation of oleic acid was performed at 300° C., 2 MPa of hydrogen, and 24 hours.

촉매 안정성 평가 결과, 도 9에 나타낸 바와 같이, HDO 전환율은 반응 2시간 후에 75%에 도달하였고, 24시간 동안 75-79%를 유지하였다. 생성물 스트림의 75%가 헵타데칸 및 옥타데칸(n-파라핀)이었으며, 더 짧은 탄화수소(C9-C16)를 포함하여 5-6%의 분해 산물은 산점에서 크래킹 반응으로 인한 결과이다. 산소 함유 생성물은 주로 스테아르산 및 옥타데칸올과 같은 비탈산소화된 화합물로 이루어졌으며, 생성물 스트림에서 18% 포함되어 있다. HDO 변환 및 생성물 분포는 반응시간 동안 변화 폭이 4% 범위로 안정됨을 알 수 있다. As a result of evaluation of catalyst stability, as shown in FIG. 9 , the HDO conversion reached 75% after 2 hours of reaction, and was maintained at 75-79% for 24 hours. 75% of the product stream was heptadecane and octadecane (n-paraffins) and 5-6% of the cracking products, including shorter hydrocarbons (C9-C16), are the result of cracking reactions at the acid point. The oxygen-containing product consists primarily of non-deoxygenated compounds such as stearic acid and octadecanol, comprising 18% in the product stream. It can be seen that the HDO conversion and product distribution are stable in the range of 4% change during the reaction time.

도 10에 나타낸 바와 같이, 촉매 안정성 평가 후, 폐 촉매의 평균 입자 크기 2.53에서 3.25nm로 증가되었으며, 이는 심각한 반응 조건에서 Pt 나노입자의 응집으로 인한 것이다. As shown in FIG. 10 , after the catalyst stability evaluation, the average particle size of the spent catalyst increased from 2.53 to 3.25 nm, which is due to aggregation of Pt nanoparticles under severe reaction conditions.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at around its preferred embodiments. Those of ordinary skill in the art to which the present invention pertains will be able to understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative point of view rather than a limiting point of view. The scope of the present invention is indicated in the claims rather than in the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (20)

MIL(Materials Institute Lavoisier)계 금속-유기 골격체(metal-organic frameworks, MOF)를 인산(H3PO4) 용액으로 전 처리하는 단계(단계 1); 및
상기 인산 용액으로 전 처리된 MIL계 금속-유기 골격체를 소수성 유기용매에 첨가하여 준비한 용액에, 백금(Pt) 수용액을 적가하며 교반시켜, 백금 나노입자를 MIL계 금속-유기 골격체의 미세기공에 고정하는 단계(단계 2);를 포함하고,
상기 단계 1의 인산 용액의 농도는 60 mM 내지 360 mM인 것을 특징으로 하는 수첨탈산소 반응용 촉매의 제조방법.
Pre-treating MIL (Materials Institute Lavoisier)-based metal-organic frameworks (MOF) with a phosphoric acid (H 3 PO 4 ) solution (step 1); and
Platinum (Pt) aqueous solution is added dropwise to a solution prepared by adding the MIL-based metal-organic framework pretreated with the phosphoric acid solution to a hydrophobic organic solvent, and stirring, so that the platinum nanoparticles are formed in the micropores of the MIL-based metal-organic framework Including the step of fixing to (step 2);
The method for producing a catalyst for hydrodeoxygenation, characterized in that the concentration of the phosphoric acid solution in step 1 is 60 mM to 360 mM.
제 1항에 있어서,
상기 인산 용액의 농도는 220 mM 내지 260 mM인 것을 특징으로 하는 제조방법.
The method of claim 1,
The concentration of the phosphoric acid solution is a manufacturing method, characterized in that 220 mM to 260 mM.
삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 금속-유기 골격체는 MIL-47, MIL-53, MIL-100, MIL-101, MIL-102, MIL-110, MIL-125, MIL-127 또는 이의 혼합물인 것을 특징으로 하는 제조방법.
The method of claim 1,
The metal-organic framework is MIL-47, MIL-53, MIL-100, MIL-101, MIL-102, MIL-110, MIL-125, MIL-127 or a mixture thereof.
제7항에 있어서,
상기 금속-유기 골격체는 MIL-101인 것을 특징으로 하는 제조방법.
The method of claim 7,
The metal-organic framework is a manufacturing method, characterized in that MIL-101.
제8항에 있어서,
상기 MIL-101은 탈이온수(deionized water)에 용해된 테레프탈산(terephthalic acid)에 리튬 아세테이트 다이하이드레이트(lithium acetate dihydrate)를 교반하며 첨가한 후, 금속염 분말을 혼합한 뒤, 결정화 반응을 수행하여 제조하는 것을 특징으로 하는 제조방법.
The method of claim 8,
The MIL-101 is prepared by adding lithium acetate dihydrate to terephthalic acid dissolved in deionized water with stirring, mixing the metal salt powder, and performing a crystallization reaction. A manufacturing method, characterized in that.
제9항에 있어서,
상기 결정화 반응은 전기가열, 초음파, 전자기파 또는 전기화학적 방법을 사용하는 것을 특징으로 하는 제조방법.
The method of claim 9,
The crystallization reaction is a manufacturing method, characterized in that using electric heating, ultrasonic waves, electromagnetic waves or electrochemical methods.
제9항에 있어서,
상기 금속염은 Fe, Al, Cr, Ti, Sc, Cu 및 V로 이루어진 군에서 선택된 1종 이상의 금속을 포함하는 것을 특징으로 하는 제조방법.
The method of claim 9,
The metal salt is a manufacturing method, characterized in that it comprises at least one metal selected from the group consisting of Fe, Al, Cr, Ti, Sc, Cu and V.
제1항에 있어서,
상기 단계 2 이후, 이를 수소 분위기에서 환원시키는 단계를 더 포함하는 것을 특징으로 하는 제조방법.
The method of claim 1,
After step 2, the method further comprising the step of reducing it in a hydrogen atmosphere.
제1항의 제조방법에 의해 제조된 수첨탈산소 반응용 촉매.A catalyst for hydrodeoxygenation reaction prepared by the method of claim 1. 제13항에 있어서,
상기 수첨탈산소 반응용 촉매는 유기산소화합물을 출발물질로 하여, 수첨탈산소화 반응에 사용되는 것을 특징으로 하는 수첨탈산소 반응용 촉매.
The method of claim 13,
The catalyst for hydrodeoxygenation reaction is a catalyst for hydrodeoxygenation reaction, characterized in that it is used in the hydrodeoxygenation reaction using an organic oxygen compound as a starting material.
제13항의 촉매가 포함된 반응기에 C3-40의 산소 함유 탄화수소 화합물 및 수소 가스를 투입하면서 수첨탈산소화 반응을 수행하여 포화탄화수소 화합물을 얻는 단계; 를 포함하는 C3-40의 산소 함유 탄화수소 화합물로부터 포화탄화수소로 개질하는 방법.15. A method comprising: obtaining a saturated hydrocarbon compound by performing a hydrodeoxygenation reaction while introducing an oxygen-containing hydrocarbon compound and hydrogen gas of C 3-40 into a reactor containing the catalyst of claim 13; A method of reforming from a C 3-40 oxygen-containing hydrocarbon compound containing a saturated hydrocarbon. 제15항에 있어서,
상기 수소 가스의 유량은 10 내지 100 mL/min인 것을 특징으로 하는 C3-40의 산소 함유 탄화수소 화합물로부터 포화탄화수소로 개질하는 방법.
The method of claim 15,
The flow rate of the hydrogen gas is a method of reforming from a C 3-40 oxygen-containing hydrocarbon compound to saturated hydrocarbon, characterized in that 10 to 100 mL / min.
제15항에 있어서,
상기 수첨탈산소화 반응은 250 내지 350℃, 1 내지 3MPa의 수소압력하에서 90 내지 150분간 수행하는 것을 특징으로 하는 C3-40의 산소 함유 탄화수소 화합물로부터 포화탄화수소로 개질하는 방법.
The method of claim 15,
The hydrodeoxygenation reaction is a method of reforming from a C 3-40 oxygen-containing hydrocarbon compound to a saturated hydrocarbon, characterized in that it is carried out for 90 to 150 minutes under a hydrogen pressure of 250 to 350 ° C. and 1 to 3 MPa.
제15항에 있어서,
상기 C3-40의 산소 함유 탄화수소 화합물은 팜유, 옥수수유, 해바라기유, 올리브유, 대두유, 유채류, 면실유, 미강유 및 야자유로 이루어지는 군으로부터 선택되는 1종 또는 이의 혼합물의 식물성 유지; 우지, 돈지, 양지 및 어유로 이루어지는 군으로부터 선택되는 1종 또는 이의 혼합물의 동물성 유지; 또는 이로부터 유리된 올레산, 팔미톨레산 및 에루크산으로 이루어지는 군으로부터 선택되는 1종 또는 이의 혼합물인 것을 특징으로 하는 C3-40의 산소 함유 탄화수소 화합물로부터 포화탄화수소로 개질하는 방법.
The method of claim 15,
The C 3-40 oxygen-containing hydrocarbon compound is selected from the group consisting of palm oil, corn oil, sunflower oil, olive oil, soybean oil, rapeseed oil, cottonseed oil, rice bran oil and palm oil, or a vegetable oil of a mixture thereof; Animal fats and oils of one or a mixture thereof selected from the group consisting of tallow, pork, brisket and fish oil; Or a method of modifying a saturated hydrocarbon from oleic acid, palmitoleic oxygen-containing hydrocarbon compounds, and C 3-40 resan according to one or characterized in that the mixture thereof selected from the group consisting of erucic acid in a glass therefrom.
삭제delete 삭제delete
KR1020200009065A 2020-01-23 2020-01-23 Porous Metal-Organic Framework encapsulated with metal nanoparticles and method for preparing the same KR102259639B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200009065A KR102259639B1 (en) 2020-01-23 2020-01-23 Porous Metal-Organic Framework encapsulated with metal nanoparticles and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200009065A KR102259639B1 (en) 2020-01-23 2020-01-23 Porous Metal-Organic Framework encapsulated with metal nanoparticles and method for preparing the same

Publications (1)

Publication Number Publication Date
KR102259639B1 true KR102259639B1 (en) 2021-06-02

Family

ID=76372516

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200009065A KR102259639B1 (en) 2020-01-23 2020-01-23 Porous Metal-Organic Framework encapsulated with metal nanoparticles and method for preparing the same

Country Status (1)

Country Link
KR (1) KR102259639B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669831A (en) * 2016-12-06 2017-05-17 北京林业大学 Preparation method and application of dual-functional hydrodeoxygenation catalyst
KR20170133092A (en) 2016-05-25 2017-12-05 한국과학기술연구원 Catalyst for hydrodeoxygenating oxygenates and method of preparing deoxygenated fuels using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170133092A (en) 2016-05-25 2017-12-05 한국과학기술연구원 Catalyst for hydrodeoxygenating oxygenates and method of preparing deoxygenated fuels using the same
CN106669831A (en) * 2016-12-06 2017-05-17 北京林业大学 Preparation method and application of dual-functional hydrodeoxygenation catalyst

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Applied Catalysis A: General, 2018, Vol.561, pp.1-6 *
Chem. Rev., 2015, Vol. 115, No.14, pp.6966-6997 *
Environmental Progress & Sustainable Energy, 2017, Vol. 36, No.4, pp.124-1233 *
J. Mater. Chem. A, 2015, Vol. 3, pp.17008-17015 *
Korean Chemical Society, 2013, Vol. 34, No. 6, pp.1625-1631 *

Similar Documents

Publication Publication Date Title
Sarkar et al. Integration of interfacial and alloy effects to modulate catalytic performance of metal–organic-framework-derived Cu–Pd nanocrystals toward hydrogenolysis of 5-hydroxymethylfurfural
Huang et al. Synergy effects between oxygen groups and defects in hydrodeoxygenation of biomass over a carbon nanosphere supported Pd catalyst
Song et al. Importance of size and distribution of Ni nanoparticles for the hydrodeoxygenation of microalgae oil
KR101396374B1 (en) Tungsten carbide catalyst supported on mesoporous carbon, preparation and application thereof
Phan et al. Phosphoric acid enhancement in a Pt-encapsulated Metal-Organic Framework (MOF) bifunctional catalyst for efficient hydro-deoxygenation of oleic acid from biomass
Liu et al. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon
Gong et al. In situ synthesis of highly dispersed Cu–Co bimetallic nanoparticles for tandem hydrogenation/rearrangement of bioderived furfural in aqueous-phase
Tayebee et al. Phosphotungstic acid grafted zeolite imidazolate framework as an effective heterogeneous nanocatalyst for the one‐pot solvent‐free synthesis of 3, 4‐dihydropyrimidinones
Li et al. Enhancing activity of Ni2P-based catalysts by a yolk–shell structure and transition metal-doping for catalytic transfer hydrogenation of vanillin
Song et al. Eco-friendly controllable synthesis of highly dispersed ZIF-8 embedded in porous Al2O3 and its hydrogenation properties after encapsulating Pt nanoparticles
EP2007675A2 (en) Carbonaceous materials
KR102116871B1 (en) Catalysts for depolymerization and hydrocracking of lignin, their preparation, and processes for preparing liquid biofuels from lignin compounds
Luo et al. Influence of reaction parameters on the catalytic performance of alkaline-treated zeolites in the novel synthesis of pyridine bases from glycerol and ammonia
Pendem et al. Metal–organic-framework derived Co–Pd bond is preferred over Fe–Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol
Tsou et al. Hydrophobic copper catalysts derived from copper phyllosilicates in the hydrogenation of levulinic acid to γ-valerolactone
Liu et al. Catalytic dehydration of glycerol to acrolein over unsupported MoP
Zhu et al. Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO 2 with abundant surface acid–base sites
Jiang et al. Metal–organic frameworks derived magnetic Fe3O4/C for catalytic transfer hydrogenation of furfural to furfuryl alcohol
Li et al. Renewable tar-derived Pd@ biocarbon for mild and efficient selectively hydrodeoxygenation of vanillin
Jalal et al. Pyrolysis temperature tunes the catalytic properties of CuBTC-derived carbon-embedded copper catalysts for partial hydrogenation
Hu et al. Direct Conversion of 5‐Hydroxymethylfurfural to Furanic Diether by Copper‐Loaded Hierarchically Structured ZSM‐5 Catalyst in a Fixed‐Bed Reactor
Ma et al. Catalytic conversion of glycerol to acrolein over MCM‐41 by the grafting of phosphorus species
Longo et al. Waste biomasses as precursors of catalytic supports in benzaldehyde hydrogenation
Kaewtrakulchai et al. Catalytic deoxygenation of palm oil over metal phosphides supported on palm fiber waste derived activated biochar for producing green diesel fuel
Gao et al. Catalytic dehydrogenation of ethanol over zinc-containing zeolites

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant