KR101844486B1 - 스키턴 분석 방법 및 그를 위한 장치 - Google Patents

스키턴 분석 방법 및 그를 위한 장치 Download PDF

Info

Publication number
KR101844486B1
KR101844486B1 KR1020160174323A KR20160174323A KR101844486B1 KR 101844486 B1 KR101844486 B1 KR 101844486B1 KR 1020160174323 A KR1020160174323 A KR 1020160174323A KR 20160174323 A KR20160174323 A KR 20160174323A KR 101844486 B1 KR101844486 B1 KR 101844486B1
Authority
KR
South Korea
Prior art keywords
analysis data
information
measurement subject
coaching
analysis
Prior art date
Application number
KR1020160174323A
Other languages
English (en)
Other versions
KR20170077794A (ko
Inventor
장영재
유광재
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of KR20170077794A publication Critical patent/KR20170077794A/ko
Application granted granted Critical
Publication of KR101844486B1 publication Critical patent/KR101844486B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/18Training appliances or apparatus for special sports for skiing
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/836Sensors arranged on the body of the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2244/00Sports without balls
    • A63B2244/19Skiing

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

스키턴 분석 방법 및 그를 위한 장치를 개시한다.
측정 대상자에 부착된 센서를 이용하여 스키턴의 특징, 안정성 등을 분석하고, 분석결과에 근거하여 자가 코칭정보를 생성하여 측정 대상자의 훈련 및 코칭에 활용되도록 하는 스키턴 분석 방법 및 그를 위한 장치에 관한 것이다.

Description

스키턴 분석 방법 및 그를 위한 장치{Method and Apparatus for Analyzing Ski-Turn}
본 실시예는 스키턴 분석 방법 및 그를 위한 장치에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
동계 스포츠의 하나인 스키에서는 선수의 자세, 동작 및 안정성을 파악하기 위한 다양한 연구가 진행되고 있다. 스키 동작의 퍼포먼스 요소들을 분석하기 위해 족압력센서 기반 디바이스(예: Moticon)가 활용되고 있다. 하지만, 선수들은 안정적인 스키 컨트롤을 위해 빈틈없이 타이트하도록 발 모양에 맞는 메모리폼 부츠를 사용하기 때문에, 주로 인솔형태인 디바이스가 부츠에 삽입될 경우 이물감을 느껴 최고의 퍼포먼스를 내는데 큰 방해요소로 작용한다.
또한, 족압력센서가 측정을 하는 부위는 설면 과의 마찰과 진동이 격렬하게 작용하는 스키플레이트와 가장 가까운 위치이기 때문에, 센서데이터에 상당한 잡음(Noise)가 잡혀 세밀함을 요구하는 분석을 하기에는 큰 어려움이 있다. 또한, 땀이 많이 배출되는 깔창에 설치됨으로 청결을 유지하기가 어렵고 상당한 압력을 견뎌야 하므로 센서 고장이 자주 발생한다는 문제점이 있다.
본 실시예는 측정 대상자에 부착된 센서를 이용하여 스키턴의 특징, 안정성 등을 분석하고, 분석결과에 근거하여 자가 코칭정보를 생성하여 측정 대상자의 훈련 및 코칭에 활용되도록 하는 스키턴 분석 방법 및 그를 위한 장치를 제공하는 데 주된 목적이 있다.
본 실시예의 일 측면에 의하면, 스키턴 분석장치가 측정 대상자의 스키턴을 분석하는 방법에 있어서, 상기 측정 대상자의 신체에 부착된 센서로부터 센싱신호를 획득하는 센싱신호 획득과정; 상기 센싱신호를 이용하여 스키턴 분석을 위한 분석 데이터를 생성하는 분석 데이터 생성과정; 상기 분석 데이터에 근거하여 스키턴 구간을 판단하고, 상기 스키턴 구간 별로 스키턴을 분석하여 상기 측정 대상자에 대한 스키턴 특징정보를 생성하는 스키턴 분석과정; 및 상기 스키턴 특징정보에 근거하여 상기 측정 대상자의 훈련 또는 코칭을 위한 자가 코칭정보를 생성하는 자가코칭 처리과정을 포함하는 것을 특징으로 하는 스키턴 분석 방법을 제공한다.
또한, 본 실시예의 다른 측면에 의하면, 측정 대상자의 스키턴을 분석하는 장치에 있어서, 상기 측정 대상자의 신체에 부착된 센서로부터 센싱신호를 획득하는 센싱신호 획득부; 상기 센싱신호를 이용하여 스키턴 분석을 위한 분석 데이터를 생성하는 분석 데이터 생성부; 상기 분석 데이터에 근거하여 스키턴 구간을 판단하고, 상기 스키턴 구간 별로 스키턴을 분석하여 상기 측정 대상자에 대한 스키턴 특징정보를 생성하는 스키턴 분석부; 및 상기 스키턴 특징정보에 근거하여 상기 측정 대상자의 훈련 또는 코칭을 위한 자가 코칭정보를 생성하는 자가코칭 처리부를 포함하는 것을 특징으로 하는 스키턴 분석장치를 제공한다.
이상에서 설명한 바와 같이 본 실시예에 의하면, 스키턴 분석장치는 스키턴 동작의 센싱정보를 추출하여 스키턴 자세를 정확하게 분석할 수 있은 효과가 있다.
또한, 스키턴 분석장치는 스키턴 동작의 안정성을 분석함으로써, 자가(Self) 코칭이 가능한 효과가 있다.
또한, 스키턴 분석을 위해 측정 대상자의 센서부착에 대한 착용감을 최소화하는 위치에 센서를 부착하고, 부착된 센서를 이용하여 측정 대상자의 스키 동작에 대한 센싱신호를 가장 효과적으로 감지할 수 있는 효과가 있다.
도 1은 본 실시예에 따른 스키턴 분석 시스템의 동작을 개략적으로 나타낸 도면이다.
도 2는 본 실시예에 따른 스키턴 분석장치를 개략적으로 나타낸 블록 구성도이다.
도 3은 본 실시예에 따른 스키턴 분석 방법을 설명하기 위한 순서도이다.
도 4는 본 실시예에 따른 스키턴 분석장치에서 스키턴 구간을 산출하는 동작을 설명하기 위한 도면이다.
도 5는 본 실시예에 따른 스키턴 분석장치에서 스키턴의 안정성을 분석하는 동작을 설명하기 위한 도면이다.
도 6은 본 실시예에 따른 스키턴 분석 결과의 활용성을 설명하기 위한 그래프이다.
도 7a 및 도 7b는 본 실시예에 따른 복수의 센서를 이용하여 스키턴을 분석하기 위한 센서 및 데이터 수집 동작을 설명하기 위한 예시도이다.
이하, 본 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
최근 정밀 모션센서 기술의 발전 및 센서의 가격하락으로 신체에 센서를 부착하여 실시간으로 운동량을 확인하거나 운동 자세를 교정하는 장치들이 소개되고 있다. 특히 이러한 센서는 손목이나 몸에 부착하는 웨어러블 장치와 같은 형태로 최근 시장 출시되고 있다.
또한, 웨어러블 장치는 스마트폰과 연동하여 편리하게 운동시 생리학적 혹은 운동역학적 정보를 받아볼 수 있는 형태로 개발되고 있다. 이러한 장치들은 프로 스포츠 선수의 경기력 향상 및 스포츠 과학화를 가속화하고 일반 대중의 자가(Self) 코칭이란 새로운 시장을 열고 있다. 이하에서는 신체에 센서를 부착하여 스키턴을 분석하고, 분석결과에 근거하여 자가 코칭에 활용하는 스키턴 분석 시스템에 대해 설명하도록 한다.
도 1은 본 실시예에 따른 스키턴 분석 시스템의 동작을 개략적으로 나타낸 도면이다.
본 실시예에 따른 스키턴 분석 시스템(100)은 알파인 스키를 이용하는 측정 대상자에게 훈련 및 코칭(Coaching) 서비스를 제공하기 위한 시스템이다. 여기서, 측정 대상자는 스키선수인 것이 바람직하나 일반 스키어(Skier), 학생 및 코치 등일 수 있다.
스키턴 분석 시스템(100)은 측정 대상자의 스키턴을 분석하고, 분석결과에 근거하여 자가 코칭정보를 생성하여 측정 대상자의 훈련 및 코칭에 활용되도록 제공한다. 본 실시예에 따른 스키턴 분석 시스템(100)은 센서(110) 및 스키턴 분석장치(120)를 포함한다.
센서(110)는 측정 대상자의 신체영역에 부착되며, 스키턴을 위한 측정 대상자의 움직임(동작)을 감지하는 동작을 수행한다. 여기서, 센서(110)는 측정 대상자의 특정 신체부위에 부착된 단일 센서일 수 있으나 반드시 이에 한정되는 것은 아니며, 복수의 신체부위에 부착된 복수의 센서일 수 있다.
센서(110)는 측정 대상자의 이동 관성을 측정할 수 있는 가속도계, 측정 대상자의 회전 관성을 측정할 수 있는 자이로계 및 측정 대상자의 방위각을 측정할 수 있는 자계로 구성된 하나의 통합 유닛 (Unit)으로 구현될 수 있다. 예를 들어, 센서(110)는 측정 대상자의 동작을 센싱하기 위해 가속도센서, 자이로센서, 자계센서 등을 포함하는 IMU (Inertial Motion Sensor) 센서로 구현될 수 있으나 반드시 이에 한정되는 것은 아니며, 위치, 속도, 자세 각을 산출하는 INS(Inertial Navigation System) 센서 등 측정 대상자의 움직임을 감지할 수 있는 다양한 센서로 구현 가능하다.
센서(110)는 측정 대상자의 움직임(동작)을 감지한 센싱신호를 스키턴 분석장치(120)로 전송한다. 여기서, 센싱신호는 측정 대상자의 동작에 대한 가속도 센싱값, 자이로 센싱값, 자계센싱값 등을 포함할 수 있다.
센서(110)가 단일 센서인 경우, 단일 센서는 측정 대상자의 신체영역 중 꼬리뼈 부분(척추 꼬리뼈 부분)에 부착되어 측정 대상자의 움직임을 감지한다. 단일 센서를 이용하여 측정 대상자를 센싱하는 경우, 단일 센서는 스키턴과 관련된 스키 동작에 대한 센싱신호를 가장 효과적으로 감지할 수 있으며, 측정 대상자가 센서부착에 대한 착용감을 최소화할 수 있다.
센서(110)가 복수의 센서인 경우, 복수의 센서는 측정 대상자의 머리, 팔 상단, 팔뚝, 손, 허벅지, 정강이, 발, 발바닥, 허리 상단, 허리 하단, 꼬리뼈 등을 포함하는 복수의 신체영역에 부착되어 측정 대상자의 움직임을 감지한다. 예를 들어, 실제 국가대표 선수가 훈련 시 신체 16개 부분에 IMU 센서와 신체의 무게중심을 가장 정확하게 측정할 수 있는 족압센서를 함께 부착하여 다양한 분석을 수행할 수 있다.
스키턴 분석장치(120)는 측정 대상자에 부착된 센서(110)로부터 센싱신호를 획득하고, 센싱신호를 이용하여 스키턴의 분석을 위한 분석 데이터를 생성한다. 스키턴 분석장치(120)는 생성된 분석 데이터를 이용하여 스키턴 구간을 확인하고, 스키턴 구간별로 스키턴을 분석하여 측정 대상자의 스키턴 특징정보 및 스키턴 안정성 정보를 생성한다.
스키턴 분석장치(120)는 스키턴 특징정보 또는 스키턴 안정성 정보에 근거하여 스키턴 동작을 시각화하거나 스키에 대한 훈련 또는 자가코칭에 대한 코칭정보를 포함하는 자가 코칭정보를 생성하여 측정 대상자에게 제공한다.
스키턴 분석장치(120)는 스키선수, 일반 스키어(Skier), 학생, 코치 등의측정 대상자의 훈련 및 코칭을 위한 장치이다. 스키턴 분석장치(120)는 센서(110)를 신체에 부착하여 분석용 데이터를 수집하는 구성, 부착된 센서의 데이터를 기반으로 스키턴의 시각화 및 분석하는 구성 및 부착된 센서의 데이터를 기반으로 턴의 안정성을 판단하는 구성 등을 포함한다.
즉, 본 실시예에 따른 스키턴 분석 시스템(100)은 스키턴 분석장치(120)를 이용하여 부착된 센서(110)의 데이터를 기반으로 스키턴(회전)의 시각화 처리 및 부착된 센서(110)의 데이터를 기반으로 턴의 안정성을 파악할 수 있다. 여기서, 스키턴 분석장치(120)는 분석용 데이터를 처리하기 위한 메모리, 프로그램, 애플리케이션 등을 입력 및 제어하기 위한 마이크로프로세서, 화면 표시부 등을 구비하는 하나의 장치일 수 있으나 반드시 이에 한정되는 것은 아니며, 스키턴 분석장치(120)에서 수행하는 각각의 기능들로 구현된 별도의 모듈 또는 장치일 수 있다.
도 1에 도시된 바와 같이, 스키턴 분석 시스템(100)에서 센서(110)와 스키턴 분석장치(120)는 별도의 장치로 구현되는 것으로 기재하고 있으나 반드시 이에 한정되는 것은 아니며, 예를 들어, 스키턴 분석 시스템(100)은 센서(110)와 스키턴 분석장치(120)가 결합된 하나의 장치로 구현되거나 스키턴 분석장치(120)의 일부 기능이 센서(110)에 구현된 형태일 수 있다.
도 2는 본 실시예에 따른 스키턴 분석장치를 개략적으로 나타낸 블록 구성도이다.
본 실시예에 따른 스키턴 분석장치(120)는 센싱신호 획득부(210), 분석 데이터 생성부(220), 스키턴 분석부(230), 스키턴 안정성 분석부(240) 및 자가코칭 처리부(250)를 포함한다. 도 2에 도시된 스키턴 분석장치(120)는 일 실시예에 따른 것으로서, 도 2에 도시된 모든 블록이 필수 구성요소는 아니며, 다른 실시예에서 스키턴 분석장치(120)에 포함된 일부 블록이 추가, 변경 또는 삭제될 수 있다.
센싱신호 획득부(210)는 측정 대상자에 부착된 센서(110)로부터 센싱신호를 획득한다. 여기서, 센싱신호는 측정 대상자의 스키턴 관련 움직임(동작)에 대한 가속도 센싱값, 자이로 센싱값, 자계센싱값 등을 포함할 수 있다.
센싱신호 획득부(210)는 단일 센서 또는 복수의 센서로부터 센싱신호를 획득할 수 있다. 다시 말해, 센싱신호 획득부(210)는 단일 센서로부터 단일 센싱신호를 수신하거나, 복수의 센서 각각으로부터 복수의 센싱신호를 수신할 수 있다.
센싱신호 획득부(210)는 무선랜(WIFI), UWB(Ultra Wideband) 등의 무선 통신 또는 무선 주파수(Radio Frequency), 적외선 통신(IrDA: Infrared Data Association), 지그비(Zigbee), 블루투스(Bluetooth), 저전력 블루투스(BLE: Bluetooth Low Energy) 등의 근거리 통신을 이용하여 센서(110)로부터 센싱신호 획득할 수 있다.
분석 데이터 생성부(220)는 센싱신호를 이용하여 스키턴을 분석하기 위한 분석 데이터를 생성한다.
분석 데이터 생성부(220)는 센싱신호를 기반으로 시간의 흐름에 따라 변화하는 측정 대상자의 스키턴 각도 정보, 측정 대상자의 상체 움직임 정보, 측정 대상자의 스키 속도정보 등을 포함하는 분석 데이터를 생성한다. 여기서, 스키턴 각도 정보는 센싱신호를 기반으로 측정 대상자가 정면을 바라본 스탠딩 상태를 기준으로 좌측 또는 우측으로 스키턴을 하면서 측정 대상자의 기울기 각도를 포함한다. 또한, 상체 움직임 정보는 측정 대상자의 스탠딩 상태를 기준으로 상체 높낮이 및 회전에 대한 정보를 포함하고, 스키 속도정보는 스키를 이용하여 측정 대상자가 이동하는 진행방향에 대한 진행 속도정보를 포함한다.
분석 데이터 생성부(220)는 센싱신호를 기반으로 기 설정된 값에 대한 마킹신호를 포함하는 분석 데이터를 생성할 수 있다. 예를 들어, 분석 데이터 생성부(220)는 스키턴 각도 정보가 0 °일 경우, 해당 각도에 대한 마킹신호를 삽입하여 분석 데이터를 생성할 수 있다. 여기서, 마킹신호는 스키턴의 구간을 구분하기 위한 기준 신호로 활용될 수 있다.
분석 데이터 생성부(220)는 단일 센서로부터 하나의 센싱신호를 획득한 경우, 실시간으로 수신된 센싱신호를 이용하여 분석 데이터를 생성한다. 예를 들어, 분석 데이터 생성부(220)는 측정 대상자의 신체영역 중 꼬리뼈 부분(척추 꼬리뼈 부분)에 부착된 단일 센서로부터 센싱신호를 획득하는 경우, 센싱신호에 포함된 가속도 센싱값, 자이로 센싱값, 자계센싱값 등을 이용하여 측정 대상자의 스키턴에 대한 분석 데이터를 생성할 수 있다.
분석 데이터 생성부(220)는 복수의 센서 각각으로부터 복수의 센싱신호를 획득하는 경우, 복수의 센싱신호의 전체 또는 일부를 이용하여 분석 데이터를 생성한다.
분석 데이터 생성부(220)는 복수의 센서 중 적어도 하나의 특정 센서로부터 수신된 센싱신호를 추출하고, 추출된 센싱신호를 이용하여 분석 데이터를 생성할 수 있다. 여기서, 특정 센서는 기 설정된 위치에 부착된 특정 센서일 수 있으나 반드시 이에 한정되는 것은 아니며, 측정 대상자 또는 외부 관리자에 의해 설정된 센서일 수 있다.
또한, 분석 데이터 생성부(220)는 특정 센서의 센싱정보를 이용하여 분석 데이터를 생성하되, 분석 데이터를 정확도를 증가시키기 위해 특정 센서를 제외한 나머지 센서의 센싱정보를 이용하여 분석 데이터를 보정할 수 있다.
한편, 분석 데이터 생성부(220)는 복수의 센서 각각으로부터 수신된 복수의 센싱신호 각각의 센서의 인식률을 확인하고, 인식률이 가장 높은 센서의 센싱신호를 추출하여 분석 데이터를 생성할 수 있다.
분석 데이터 생성부(220)는 생성된 분석 데이터를 스키턴 분석부(230)로 전송하여 스키턴에 대한 분석이 수행되도록 한다. 한편, 분석 데이터 생성부(220)는 분석 데이터를 시각화한 센싱 결과정보를 생성하여 외부 단말기(미도시) 또는 디스플레이장치(미도시)로 제공할 수 있다. 여기서, 센싱 결과정보는 분석 데이터를 그래프 형태로 시각화한 정보일 수 있다.
스키턴 분석부(230)는 분석 데이터에 근거하여 스키턴 구간을 확인하고, 스키턴 구간별로 스키턴을 분석하여 측정 대상자의 스키턴 특징정보를 추출한다. 다시 말해, 스키턴 분석부(230)는 분석 데이터를 이용하여 측정 대상자의 스키턴에 대한 턴 구간, 턴 형태, 턴의 특징 등을 분석할 수 있다. 본 실시예에 따른 스키턴 분석부(230)는 스키턴 구간 판단부(232) 및 스키턴 특징 추출부(234)를 포함하며, 이하 스키턴 분석부(230)에 포함된 각각의 구성요소에 대해 설명하도록 한다.
스키턴 구간 판단부(232)는 분석 데이터를 이용하여 측정 대상자의 스키턴 구간을 판단한다.
스키턴 구간 판단부(232)는 측정 대상자가 스키턴을 하는 과정에서 정면을 바라보는 스탠딩 상태를 거쳐 좌측 턴 및 우측 턴이 변경되는 점을 고려하여 스탠딩 상태가 되는 시점을 검출하고, 스탠딩 상태인 시점을 기준으로 좌측 및 우측에 대한 스키턴 구간을 판단한다. 여기서, 측정 대상자가 스탠딩 상태가 되는 시점을 제로 크로싱(Zero Crossing) 시점으로 정의하고, 제로 크로싱 시점을 이용하여 스키턴 구간을 판단할 수 있다.
스키턴 구간 판단부(232)는 0 °의 각도정보를 갖는 분석 데이터에 근거하여 제로 크로싱 시점을 검출하고, 제로 크로싱 시점에서 다음 제로 크로싱 시점 사이의 시간 간격을 계산하여 스키턴 구간을 추출한다. 추출된 스키턴 구간에서 양(+)의 분석 데이터를 갖는 구간을 좌측 턴 구간으로 판단하고, 음(-)의 분석 데이터를 갖는 구간을 우측 턴 구간으로 판단할 수 있다.
즉, 스키턴 구간 판단부(232)는 측정 대상자의 스탠딩 상태를 기준으로 좌측 턴일 때 양(+)의 분석 데이터, 스탠딩 상태를 기준으로 우측 턴일 때 음(-)의 분석 데이터인 것을 검출하여 스키턴 구간을 추출할 수 있다. 예를 들어, 스키턴 구간 판단부(232)는 "-, -, -, 0, 0, +, +, +, +, 0, 0, 0, -,-,-,-, 0, +, +, +, +"와 같은 분석 데이터에서 '0'의 분석 데이터를 갖는 구간을 스탠딩 상태인 것으로 판단하고, 양(+)의 분석 데이터를 갖는 구간을 좌측 턴 구간, 음(-)의 분석 데이터를 갖는 구간을 우측 턴 구간으로 판단한다.
스키턴 구간 판단부(232)는 양(+)의 분석 데이터는 좌측 턴 구간, 음(-)의 분석 데이터는 우측 턴 구간인 것으로 기재하고 있으나 반드시 이에 한정되는 것은 아니며, 스키어의 이동 코스 또는 초기 설정에 따라 분석 데이터의 턴 구간 판단 기준은 변경될 수 있다.
한편, 스키턴 구간 판단부(232)는 분석 데이터에 마킹신호가 포함되어 있는 경우, 마킹신호를 기준으로 스키턴 구간을 판단할 수 있다. 예를 들어, 스키턴 구간 판단부(232)는 "-, -, -, 마킹신호, +, +, 마킹신호, 마킹신호, -,-, -, 마킹신호, +, +, +"와 같은 분석 데이터에서 마킹신호를 기준으로 양(+)의 분석 데이터를 갖는 구간을 좌측 턴 구간, 음(-)의 분석 데이터를 갖는 구간을 우측 턴 구간으로 판단할 수 있다.
스키턴 구간 판단부(232)는 기 설정된 알고리즘을 이용하여 스키턴 구간을 검증할 수 있다. 더 자세히 설명하자면, 스키턴 구간 판단부(232)는 0 °의 각도정보를 갖는 분석 데이터에 근거하여 제로 크로싱 시점을 검출하고, 제로 크로싱 시점을 기준으로 이전 분석 데이터값과 이후 분석 데이터값을 곱하여 0 또는 음(-)의 부호값이 나오는 경우에만 스키턴 구간을 구분한다.
스키턴 구간 판단부(232)는 기 설정된 알고리즘에 따라 스키턴 구간을 확인함으로써, 좌우측이 변경된 스키턴이 아닌 구간에 대한 구간 판단 오류를 줄일 수 있다. 예를 들어, 스키턴 구간 판단부(232)는 "-, -, -, 0, 0, +, +, +, +, 0, 0, 0, +, +, +, +, 0, -,-,-,-"와 같은 분석 데이터에서 '0'의 분석 데이터를 갖는 구간을 기준으로 이전 데이터값와 이후 데이터값의 곱이 양(+)의 부호값이 나오는 구간은 스키턴이 이루어지지 않은 것으로 판단한다. 이러한 구간 판단 오류를 검증하는 동작은 '0'의 분석 데이터 대신 마킹신호가 포함되어 있더라도 동일하게 이루어질 수 있다.
스키턴 특징 추출부(234)는 스키턴 구간 내에서 스키턴의 형태를 분석하여 측정 대상자에 대한 스키턴 특징정보를 생성한다. 여기서, 스키턴 특징정보는 표준 비교 특징정보, 구간별 좌우측 특징정보, 부분 특징정보 등을 포함할 수 있다. 표준 비교 특징정보는 기 설정된 표준 스키턴 정보에 근거하여 측정 대상자의 스키턴의 특징을 추출한 정보를 의미하고, 구간별 좌우측 특징정보는 스키턴 구간 별로 측정 대상자의 좌측 턴과 우측 턴을 비교하여 측정 대상자의 스키턴의 특징을 추출한 정보를 의미한다. 또한, 부분 특징정보는 측정 대상자의 좌측 턴 및 우측 턴 중 하나의 턴 방향에 대한 분석 데이터를 비교하여 소정의 방향 부분에 대한 측정 대상자의 스키턴의 특징을 추출한 정보를 의미한다.
스키턴 특징 추출부(234)는 측정 대상자가 스키를 이용하여 통과하는 코스가 설정되어 있고 해당 코스에 대해 기 설정된 표준 스키턴 정보가 존재하는 경우, 표준 스키턴 정보와 분석 데이터를 비교한 차이값을 이용하여 표준 비교 특징정보를 포함하는 스키턴 특징정보를 생성한다. 여기서, 표준 스키턴 정보는 코스에 대해 관리자에 의해 입력된 스키턴 정보일 수 있으나 반드시 이에 한정되는 것은 아니며, 스키선수들이 코스를 통과할 때 최고 성적에 대한 스키턴 정보를 수집하여 누적 및 산출된 정보일 수 있다.
또한, 스키턴 특징 추출부(234)는 스키턴 구간 별로 측정 대상자의 좌측 턴과 우측 턴을 비교하여 측정 대상자의 좌우 스키턴의 특징을 추출하여 구간별 좌우측 특징정보를 포함하는 스키턴 특징정보를 생성한다. 스키턴 특징 추출부(234)는 구간별 좌우측 특징정보를 포함하는 스키턴 특징정보를 추출하여 양측의 스키턴을 비교할 수 있도록 한다.
또한, 스키턴 특징 추출부(234)는 측정 대상자의 좌측 턴 및 우측 턴 중 하나의 턴 방향에 대한 분석 데이터를 스키턴 구간별로 비교하여 부분 특징정보를 포함하는 스키턴 특징정보를 생성한다. 스키턴 특징 추출부(234)는 부분 특징정보를 포함하는 스키턴 특징정보를 추출하여 소정의 방향 부분에 대한 측정 대상자의 스키턴의 특징을 추출하여 일측 턴의 스키턴 또는 구간에 대한 문제점 또는 특징이 감지되도록 한다. 예를 들어, 스키턴 특징 추출부(234)는 복수의 좌측 턴 및 우측 턴을 포함하는 스키턴 구간 각각에서 좌측 턴에 대한 분석 데이터만을 추출하고, 복수의 좌측 턴에 대한 분석 데이터를 서로 비교하여 좌측 턴의 스키턴의 특징 또는 취약 구간(코스)에 대한 문제점을 감지하기 위한 스키턴 특징정보를 생성할 수 있다.
또한, 스키턴 특징 추출부(234)는 분석 데이터에 포함된 측정 대상자의 상체 높낮이 정보 및 상체 회전정보에 근거하여 허리가 회전하는 동작과 전체적인 신체의 스키턴과의 리듬이 잘 이뤄지고 있는지에 대한 자세 특징정보를 포함하는 스키턴 특징정보를 생성할 수 있다.
스키턴 특징 추출부(234)는 생성된 스키턴 특징정보를 자가코칭 처리부(250)로 전송하여 측정 대상자에 대한 자가 코칭정보가 생성되도록 한다.
스키턴 안정성 분석부(240)는 측정 대상자의 분석 데이터를 기반으로 스키턴의 안정성을 분석하여 스키턴 안정성 정보를 생성한다. 여기서, 스키턴 안정성 정보는 기 설정된 안정성 분석방식을 이용하여 산출된 수치 정보를 포함할 수 있으나 반드시 이에 한정되는 것은 아니며 수치 정보를 기반으로 결정된 안정성 상태에 대한 정보를 포함할 수 있다.
스키턴 안정성 분석부(240)는 스키턴 분석부(230)로부터 스키턴 구간정보를 획득하고, 각각의 스키턴 구간 별 분석 데이터를 이용하여 측정 대상자의 스키턴 안정성 정보를 생성한다. 스키턴 안정성 분석부(240)는 소정의 스키턴 구간에 대한 분석 데이터를 기반으로 스키턴의 변곡점 개수를 추출하고, 추출된 변곡점 개수에 근거하여 스키턴 안정성 정보를 생성한다. 스키턴 안정성 정보는 [수학식 1]을 이용하여 결정된다.
Figure 112016124838399-pat00001
여기서, 턴 자세의 안정성은 스키턴의 안정성을 의미하며, 턴 시간 및 단위시간은 소정의 스키턴 구간의 전체 시간 또는 기 설정된 일부 시간을 의미한다. 또한, 턴당 변곡점 개수 및 턴 자세의 흔들림 횟수는 턴 시간 또는 단위시간 내에서 추출된 변곡점의 개수를 의미한다.
[수학식 1]과 같이, 스키턴 안정성 정보는 스키턴 자세의 흔들림 횟수를 스키턴 구간의 총 운동 시간으로 나눈 값으로 정의될 수 있다.
스키턴 안정성 분석부(240)는 스키턴의 자세가 안정적이지 못할 때 신체가 무게 중심을 잃고 필요 이상으로 흔들리는 상태 즉, 의도한 움직임에서 벗어나 급격한 변화가 일어나는 자세 흔들림을 변곡점(불연속점)으로 추출한다.
스키턴 안정성 분석부(240)는 스키턴 안정성 정보에 대한 스키턴의 안정성이 높은 경우 즉, 안정적으로 스키턴을 하는 경우 스키턴 구간 내에서 변곡점들의 수가 감소한다. 한편, 스키턴 안정성 분석부(240)는 스키턴 안정성 정보에 대한 스키턴의 안정성이 낮은 경우 즉, 다리에 힘이 부족해지거나 불안정적으로 스키턴을 하는 경우 스키턴 구간 내에서 변곡점들의 수가 증가한다.
스키턴 안정성 분석부(240)는 측정 대상자의 스키턴 구간 별 분석 데이터에서 매 순간의 미분값(기울기)를 확인하고, 미분값(기울기)의 부호가 달라지는 지점을 변곡점으로 추출할 수 있다. 따라서, 스키턴 안정성 분석부(240)는 매 순간의 기울기값과 바로 다음 순간의 기울기 값들의 곱이 0 또는 음(-)의 부호를 갖는 지점의 개수(변곡점의 개수)를 구한 후 이를 총 운동 시간으로 나누어 턴 안정성을 수치화하여 스키턴 안정성 정보를 생성할 수 있다. 다시 말해, 스키턴 안정성 분석부(240)는 제로 크로싱 방식을 활용하여 결정된 스키턴 구간을 기초로 각 구간별 변곡점 개수를 각 구간의 운동 소요시간으로 나누어 자세의 안정성에 해당하는 부분을 수치화할 수 있다.
측정 대상자의 스키턴 구간 별로 스키턴 안정성 정보를 측정한 예시는 [표 1]과 같이 표시될 수 있다.
Figure 112016124838399-pat00002
[표 1]은 복수의 스키턴 구간(예: Turn 1 내지 Turn 6) 각각에서 우측 턴 및 좌측 턴의 평균적인 기록정보와 스키턴 안정성 정보를 기재하였으며, 평균적인 기록정보와 스키턴 안정성 정보 간의 차이를 수치적으로 확인하고, 모든 스키턴에 대해 스키턴을 시행할 때마다 스키턴 안정성을 확인할 수 있다.
자가코칭 처리부(250)는 스키턴 특징정보 또는 스키턴 안정성 정보를 기반으로 자가코칭 정보를 생성한다. 여기서, 자가코칭 정보는 스키턴 특징정보 또는 스키턴 안정성 정보에 근거하여 스키턴 동작을 시각화한 정보일 수 있으며, 스키에 대한 훈련 또는 자가코칭에 대한 코칭정보를 추가로 포함하는 정보일 수 있다. 또한, 자가코칭 정보는 측정 대상자의 경기력 및 안정성 레벨에 대한 평가정보를 추가로 포함할 수 있다.
자가코칭 처리부(250)는 측정 대상자에 부착된 센서(110)에 진동 또는 알림 기능이 존재하는 경우, 자가 코칭정보를 기반으로 측정 대상자에게 코칭 알림신호(자세 교정신호)를 전송하여 자가 코칭을 수행되도록 한다. 한편, 자가코칭 처리부(250)는 측정 대상자에 부착된 센서(110)로 코칭 알림신호(자세 교정신호)를 전송하는 것으로 기재하고 있으나 반드시 이에 한정되는 것은 아니며, 측정 대상자의 신체 일부에 부착 또는 휴대할 수 있는 별로의 코칭 알림장치(미도시)가 존재하는 경우 해당 코칭 알림장치(미도시)로 코칭 알림신호(자세 교정신호)를 전송할 수 있다. 여기서, 코칭 알림신호(자세 교정신호)는 자세교정 또는 자가코칭을 위한 음성 메시지, 진동 메시지 등을 포함하는 신호일 수 있다.
본 실시예에 따른 스키턴 분석장치(120)는 측정 대상자의 스키턴을 분석하여 자가코칭을 수행하는 하드웨어 장치인 것이 바람직하나 반드시 이에 한정되는 것은 아니며, 스키 자가 코칭을 위한 소정의 단말기에 탑재된 소프트웨어 형태로 구현될 수 있다.
도 3은 본 실시예에 따른 스키턴 분석 방법을 설명하기 위한 순서도이다.
스키턴 분석장치(120)는 측정 대상자에 부착된 센서(110)로부터 센싱신호를 획득한다(S310). 여기서, 센싱신호는 측정 대상자의 스키턴 관련 움직임(동작)에 대한 가속도 센싱값, 자이로 센싱값, 자계센싱값 등을 포함할 수 있다.
스키턴 분석장치(120)는 센싱신호를 이용하여 스키턴을 분석하기 위한 분석 데이터를 생성한다(S320). 스키턴 분석장치(120)는 센싱신호를 기반으로 시간의 흐름에 따라 변화하는 측정 대상자의 스키턴 각도 정보, 측정 대상자의 상체 움직임 정보, 측정 대상자의 스키 속도정보 등을 포함하는 분석 데이터를 생성한다.
스키턴 분석장치(120)는 분석 데이터에 근거하여 측정 대상자의 스키턴 구간을 판단한다(S330). 스키턴 분석장치(120)는 측정 대상자가 스키턴을 하는 과정에서 정면을 바라보는 스탠딩 상태를 거쳐 좌측 턴 및 우측 턴이 변경되는 점을 고려하여 스탠딩 상태가 되는 시점을 검출하고, 스탠딩 상태인 시점을 기준으로 좌측 및 우측에 대한 스키턴 구간을 판단한다. 여기서, 측정 대상자가 스탠딩 상태가 되는 시점을 제로 크로싱(Zero Crossing) 시점으로 정의하고, 제로 크로싱 시점을 이용하여 스키턴 구간을 판단할 수 있다.
스키턴 분석장치(120)는 스키턴 구간 별로 스키턴 특징을 분석하여 스키턴 특징정보를 생성한다(S340). 여기서, 스키턴 특징정보는 표준 비교 특징정보, 구간별 좌우측 특징정보, 부분 특징정보 등을 포함할 수 있다. 표준 비교 특징정보는 기 설정된 표준 스키턴 정보에 근거하여 측정 대상자의 스키턴의 특징을 추출한 정보를 의미하고, 구간별 좌우측 특징정보는 스키턴 구간 별로 측정 대상자의 좌측 턴과 우측 턴을 비교하여 측정 대상자의 스키턴의 특징을 추출한 정보를 의미한다.
스키턴 분석장치(120)는 측정 대상자의 분석 데이터를 기반으로 스키턴의 안정성을 분석하여 스키턴 안정성 정보를 생성한다(S350). 스키턴 분석장치(120)는 각각의 스키턴 구간 별 분석 데이터를 이용하여 측정 대상자의 스키턴 안정성 정보를 생성할 수 있다. 스키턴 분석장치(120)는 소정의 스키턴 구간에 대한 분석 데이터를 기반으로 스키턴의 변곡점 개수를 추출하고, 추출된 변곡점 개수에 근거하여 스키턴 안정성 정보를 생성할 수 있다.
스키턴 분석장치(120)는 스키턴 특징정보 또는 스키턴 안정성 정보를 기반으로 자가코칭 정보를 생성한다(S360). 여기서, 자가코칭 정보는 스키턴 특징정보 또는 스키턴 안정성 정보에 근거하여 스키턴 동작을 시각화한 정보일 수 있으며, 스키에 대한 훈련 또는 자가코칭에 대한 코칭정보를 추가로 포함하는 정보일 수 있다. 또한, 자가코칭 정보는 측정 대상자의 경기력 및 안정성 레벨에 대한 평가정보를 추가로 포함할 수 있다.
도 3에서는 단계 S310 내지 단계 S360을 순차적으로 실행하는 것으로 기재하고 있으나, 반드시 이에 한정되는 것은 아니다. 즉, 도 3에 기재된 단계를 변경하여 실행하거나 하나 이상의 단계를 병렬적으로 실행하는 것으로 적용 가능할 것이므로, 도 3은 시계열적인 순서로 한정되는 것은 아니다.
도 4는 본 실시예에 따른 스키턴 분석장치에서 스키턴 구간을 산출하는 동작을 설명하기 위한 도면이다.
도 4에 도시된 그래프는 스키어(측정 대상자)에 부착된 IMU 센서에서 추출된 센싱신호를 기반으로 생성된 분석 데이터를 시각화한 예시 도면이다. 본 실시예에 따른 스키턴 분석장치(120)는 스키어가 스키턴을 할 때마다 도 4에 도시된 바와 같이 스키턴에 대한 곡선으로 분석 데이터를 시각화할 수 있다.
스키턴 분석장치(120)는 스키턴 각각의 시작점과 끝점을 알고리즘으로 파악하고 각 턴의 시간을 수치화하여 각 구간에 대한 다양한 스키턴의 특징을 스키어 또는 외부 사용자가 확인할 수 있도록 한다. 도 4에 도시된 바와 같이, 스키턴 분석장치(120)는 410 내지 460 시점을 스키턴의 시작점과 끝점으로 추출하고, 각 턴의 분석데이터를 기반으로 410 ~ 420 구간, 430 ~ 440 구간, 450 ~ 460 구간 등을 우측 턴 구간으로 판단하고, 420 내지 430 구간, 440 ~ 450 구간 등을 좌측 턴 구간으로 판단한다.
스키턴 분석장치(120)는 이러한 시각화를 통해 생성된 정보를 외부장치 또는 내부 모듈로 전달하여 스키어 또는 외부 사용자에게 제공할 수 있다. 예를 들어, 스키턴 분석장치(120)는 우측턴과 좌측턴 중 어느 방향의 스키턴이 더 효과적으로 이뤄지는가에 대한 정보, 허리가 돌아가는 것과 전체적인 몸의 턴과의 리듬이 잘 이뤄지고 있는가에 대한 정보 등을 포함하는 스키턴 특징정보를 스키어 또는 외부 사용자에게 제공할 수 있다.
스키턴 분석장치(120)는 스키턴 동작의 특징정보를 도 4의 그래프와 같이 시각화하여 보여줄 수 있다. 이러한 시각화를 수행함에 따라 시각화된 정보는 스키선수의 훈련 혹은 일반인들의 자가 코칭에 활용될 수 있다.
도 5는 본 실시예에 따른 스키턴 분석장치에서 스키턴의 안정성을 분석하는 동작을 설명하기 위한 도면이다.
스키턴 분석장치(120)는 IMU 센서에서 추출된 데이터를 기반으로 스키어의 스키턴에 대한 안정성을 파악할 수 있다. 스키턴이 진행될 때 안정적으로 턴을 하는 경우 도 5에 도시된 바와 같이, 작은 변곡점들의 수가 감소한다. 반대로, 다리에 힘이 없거나 턴이 불안정하면 스키턴 구간에서 변곡점이 많이 생긴다. 즉, 본 발명의 스키턴 분석장치(120)에서는 IMU 센서에 추출된 데이터를 기반으로 형성된 그래프 상의 스키턴 구간 내에서 변곡점의 개수를 판단하여 스키턴의 안정성을 파악할 수 있다.
도 6은 본 실시예에 따른 스키턴 분석 결과의 활용성을 설명하기 위한 그래프이다.
도 6은 본 실시예에 따른 스키턴의 안정성과 경기력(기록)과의 연관성을 나타내는 그래프로서, [표 1]의 결과를 기반으로 안정성의 척도가 경기력(기록)과의 연관성을 나타낸다.
도 6에서 상관관계 R 값이 0.87로 도시되어 있는 것을 기반으로 안정성과 기록이 매우 높은 상관관계를 가지고 있는 것을 확인할 수 있으며, 안정성이 좋을수록 기록이 좋다는 사실을 센서 데이터로부터 입증할 수 있다. 이는 본 실시예에서 제시하는 스키턴의 안정성에 대한 척도가 유효하다는 것을 의미한다.
도 7a 및 도 7b는 본 실시예에 따른 복수의 센서를 이용하여 스키턴을 분석하기 위한 센서 및 데이터 수집 동작을 설명하기 위한 예시도이다.
도 7a는 스키어(측정 대상자)에 복수의 센서가 부착되는 경우 센서들의 부착위치(왼쪽 그림) 및 족압력 센서의 구성(오른쪽 그림)을 나타낸다. 복수의 센서는 측정 대상자의 머리, 팔 상단, 팔뚝, 손, 허벅지, 정강이, 발, 발바닥, 허리 상단, 허리 하단, 꼬리뼈 등에 부착될 수 있다.
도 7b는 단일 센서를 이용하는 경우, 데이터 수집 과정을 위한 최적의 센서 부착위치를 결정하기 위한 클러스터링 분석 결과를 나타낸다.
알파인스키에서 가장 핵심이 되는 운동은 3 차원 회전축에 대한 운동 중 Roll 회전 운동이다. 이러한 Roll 회전 운동의 패턴은 족압센서의 경우 사인곡선적(Sinusoidal) 형태의 그래프로 나타낼 수 있다.
데이터 수집을 위해 마찬가지로 사인곡선적 형태의 Roll 회전 운동 패턴이 가장 잘 나타나는 IMU 센서의 부착위치를 알아보기 위해 IMU 센서와 족압센서를 동시에 부착하고 6 개의 턴을 진행한 9 회 실험을 진행하였다. [표 2]에 기재된 바와 같이, 총 9 회의 실험 중 2 회차는 센서의 오류로 결과값 산출시 제외한다.
Figure 112016124838399-pat00003
이후, 도 7b에 도시된 바와 같이 IMU 센서와 족압센서가 나타내는 패턴의 유사도를 부착 위치 별로 계산한 후 유사한 것끼리 그룹을 묶어주는 클러스터링 분석을 시행한다.
클러스터링 분석을 시행한 결과, 여러 후보군 중에서도 꼬리뼈(Pelvis) 부위가 사인곡선적 형태의 패턴을 잘 나타냄과 동시에 턴 기록 분석 기법을 활용한 턴 인식률에서도 가장 높은 결과를 나타내는 것을 확인할 수 있다. [표 2]은 클러스터링 분석 결과에 따라 핵심 동작을 파악할 수 있는 사인곡선적 패턴을 보여주는 부위들에 대해 각 실험 당 진행된 6 회 턴에 대한 인식률의 확인결과를 나타낸다. 인식된 턴의 개수가 6 개를 넘어갈 경우 인식률이 100 %가 넘고, 인식된 턴의 개수가 6 개보다 적을 경우 100 %보다 낮은 값을 나타낸다. 결과적으로 100 %에 가장 근접할수록 턴 인식률이 정확하다고 할 수 있으며, 총 실험 평균값을 확인하여 가장 정확한 인식률을 보여주는 부위는 꼬리뼈(Pelvis) 부위임을 판단할 수 있다.
다시 말해, 클러스터링 분석 결과, 꼬리뼈(Pelvis), 오른쪽 정강이(Shank(R)), 오른쪽 발(Foot(R)), 왼쪽 발(Foot(L))이 후보가 될 수 있다. 이 중 짝(Pair)으로 존재하는 센서들의 경우 중심축에서 약간 벗어나 부착되기 때문에 센서 데이터의 패턴이 대칭구조에 있지 않는 양상을 보임에 따라, 편향(Bias)적이지 않은 센서 위치는 꼬리뼈(Pelvis)가 유일하다 할 수 있다. 즉, 스키턴의 핵심 동작 데이터 수집을 위해 단일 센서를 사용하는 경우, 최적의 센서 부착 위치는 꼬리뼈 부분인 것이 바람직하다.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
100: 스키턴 분석 시스템 110: 센서
120: 스키턴 분석장치
210: 센싱신호 획득부 220: 분석 데이터 생성부
230: 스키턴 분석부 232: 스키턴 구간 판단부
234: 스키턴 특징 추출부 240: 스키턴 안정성 분석부
250: 자가코칭 처리부

Claims (12)

  1. 스키턴 분석장치가 측정 대상자의 스키턴을 분석하는 방법에 있어서,
    상기 측정 대상자의 신체에 부착된 센서로부터 센싱신호를 획득하는 센싱신호 획득과정;
    상기 센싱신호를 이용하여 스키턴 분석을 위한 분석 데이터를 생성하는 분석 데이터 생성과정;
    상기 분석 데이터에 근거하여 스키턴 구간을 판단하고, 상기 스키턴 구간 별로 스키턴을 분석하여 상기 측정 대상자에 대한 스키턴 특징정보를 생성하는 스키턴 분석과정; 및
    상기 스키턴 특징정보에 근거하여 상기 측정 대상자의 훈련 또는 코칭을 위한 자가 코칭정보를 생성하는 자가코칭 처리과정을 포함하되,
    상기 센싱신호 획득과정은, 상기 측정 대상자의 신체영역 중 꼬리뼈 부분(척추 꼬리뼈 부분)에 부착된 단일 센서로부터 단일 센싱신호를 획득하고, 상기 분석 데이터 생성과정은 실시간으로 수신된 상기 단일 센싱신호를 이용하여 상기 분석 데이터를 생성하는 것을 특징으로 하는 스키턴 분석 방법.
  2. 제1항에 있어서,
    상기 분석 데이터 생성과정은,
    상기 센싱신호에 포함된 상기 측정 대상자의 스키턴 관련 움직임에 대한 가속도 센싱값, 자이로 센싱값 및 자계센싱값 중 적어도 하나를 이용하여 시간의 흐름에 따라 변화하는 상기 측정 대상자의 스키턴 각도 정보, 상체 움직임 정보 및 스키 속도정보 중 적어도 하나를 포함하는 상기 분석 데이터를 생성하는 것을 특징으로 하는 스키턴 분석 방법.
  3. 삭제
  4. 제1항에 있어서,
    상기 센싱신호 획득과정은,
    복수의 센서 각각으로부터 복수의 센싱신호를 획득하고, 상기 분석 데이터 생성과정은 상기 복수의 센싱신호의 전체 또는 일부를 이용하여 상기 분석 데이터를 생성하는 것을 특징으로 하는 스키턴 분석 방법.
  5. 제4항에 있어서,
    상기 분석 데이터 생성과정은,
    상기 복수의 센싱신호 중 기 설정된 특정 센서에 대한 센싱신호를 추출하고, 추출된 상기 센싱신호를 이용하여 상기 분석 데이터를 생성하되, 상기 분석 데이터를 정확도를 증가시키기 위해 상기 특정 센서를 제외한 나머지 센서의 센싱정보를 이용하여 상기 분석 데이터를 보정하는 것을 특징으로 하는 스키턴 분석 방법.
  6. 제4항에 있어서,
    상기 분석 데이터 생성과정은,
    상기 복수의 센싱신호 각각의 센서의 인식률을 확인하고, 상기 인식률이 가장 높은 센서에 대한 센싱신호를 추출하여 상기 분석 데이터를 생성하는 것을 특징으로 하는 스키턴 분석 방법.
  7. 스키턴 분석장치가 측정 대상자의 스키턴을 분석하는 방법에 있어서,
    상기 측정 대상자의 신체에 부착된 센서로부터 센싱신호를 획득하는 센싱신호 획득과정;
    상기 센싱신호를 이용하여 스키턴 분석을 위한 분석 데이터를 생성하는 분석 데이터 생성과정;
    상기 분석 데이터에 근거하여 스키턴 구간을 판단하고, 상기 스키턴 구간 별로 스키턴을 분석하여 상기 측정 대상자에 대한 스키턴 특징정보를 생성하는 스키턴 분석과정; 및
    상기 스키턴 특징정보에 근거하여 상기 측정 대상자의 훈련 또는 코칭을 위한 자가 코칭정보를 생성하는 자가코칭 처리과정을 포함하되,
    상기 스키턴 분석과정은, 상기 측정 대상자가 스키턴을 하면서 정면을 바라보는 스탠딩 상태를 거쳐 좌측 턴 및 우측 턴이 변경되는 점을 고려하여, 상기 스탠딩 상태가 되는 제로 크로싱(Zero Crossing) 시점을 검출하고, 상기 제로 크로싱 시점을 기준으로 스키턴 구간을 판단하는 것을 특징으로 하는 스키턴 분석 방법.
  8. 스키턴 분석장치가 측정 대상자의 스키턴을 분석하는 방법에 있어서,
    상기 측정 대상자의 신체에 부착된 센서로부터 센싱신호를 획득하는 센싱신호 획득과정;
    상기 센싱신호를 이용하여 스키턴 분석을 위한 분석 데이터를 생성하는 분석 데이터 생성과정;
    상기 분석 데이터에 근거하여 스키턴 구간을 판단하고, 상기 스키턴 구간 별로 스키턴을 분석하여 상기 측정 대상자에 대한 스키턴 특징정보를 생성하는 스키턴 분석과정; 및
    상기 스키턴 특징정보에 근거하여 상기 측정 대상자의 훈련 또는 코칭을 위한 자가 코칭정보를 생성하는 자가코칭 처리과정을 포함하되,
    상기 스키턴 분석과정은, 상기 측정 대상자가 스키를 이용하여 통과하는 코스가 설정되어 있는 경우, 상기 코스에 대해 기 설정된 표준 스키턴 정보와 상기 분석 데이터를 비교하고, 상기 표준 스키턴 정보와 상기 분석 데이터 간의 차이값을 이용하여 상기 스키턴 특징정보를 생성하는 것을 특징으로 하는 스키턴 분석 방법.
  9. 스키턴 분석장치가 측정 대상자의 스키턴을 분석하는 방법에 있어서,
    상기 측정 대상자의 신체에 부착된 센서로부터 센싱신호를 획득하는 센싱신호 획득과정;
    상기 센싱신호를 이용하여 스키턴 분석을 위한 분석 데이터를 생성하는 분석 데이터 생성과정;
    상기 분석 데이터에 근거하여 스키턴 구간을 판단하고, 상기 스키턴 구간 별로 스키턴을 분석하여 상기 측정 대상자에 대한 스키턴 특징정보를 생성하는 스키턴 분석과정; 및
    상기 스키턴 특징정보에 근거하여 상기 측정 대상자의 훈련 또는 코칭을 위한 자가 코칭정보를 생성하는 자가코칭 처리과정을 포함하되,
    상기 분석 데이터를 기반으로 스키턴의 안정성을 분석하여 스키턴 안정성 정보를 생성하는 스키턴 안정성 분석과정을 추가로 포함하는 것을 특징으로 하는 스키턴 분석 방법.
  10. 제9항에 있어서,
    상기 스키턴 안정성 분석과정은,
    소정의 스키턴 구간에 대한 상기 분석 데이터를 기반으로 스키턴의 변곡점 개수를 추출하고, 추출된 상기 변곡점 개수에 근거하여 스키턴 안정성 정보를 생성하는 것을 특징으로 하는 스키턴 분석 방법.
  11. 제1항에 있어서,
    상기 자가코칭 처리과정은,
    상기 스키턴 특징정보에 근거하여 스키턴 동작을 시각화한 정보, 상기 측정 대상자의 자가코칭을 위한 코칭정보 및 상기 측정 대상자의 경기력 및 안정성 레벨에 대한 평가정보 중 적어도 하나를 포함하는 상기 자가코칭 정보를 생성하는 것을 특징으로 하는 스키턴 분석 방법.
  12. 측정 대상자의 스키턴을 분석하는 장치에 있어서,
    상기 측정 대상자의 신체에 부착된 센서로부터 센싱신호를 획득하는 센싱신호 획득부;
    상기 센싱신호를 이용하여 스키턴 분석을 위한 분석 데이터를 생성하는 분석 데이터 생성부;
    상기 분석 데이터에 근거하여 스키턴 구간을 판단하고, 상기 스키턴 구간 별로 스키턴을 분석하여 상기 측정 대상자에 대한 스키턴 특징정보를 생성하는 스키턴 분석부; 및
    상기 스키턴 특징정보에 근거하여 상기 측정 대상자의 훈련 또는 코칭을 위한 자가 코칭정보를 생성하는 자가코칭 처리부를 포함하되,
    상기 분석 데이터를 기반으로 스키턴의 안정성을 분석하여 스키턴 안정성 정보를 생성하는 스키턴 안정성 분석부를 추가로 포함하는 것을 특징으로 하는 스키턴 분석장치.
KR1020160174323A 2015-12-28 2016-12-20 스키턴 분석 방법 및 그를 위한 장치 KR101844486B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150187767 2015-12-28
KR1020150187767 2015-12-28

Publications (2)

Publication Number Publication Date
KR20170077794A KR20170077794A (ko) 2017-07-06
KR101844486B1 true KR101844486B1 (ko) 2018-04-02

Family

ID=59354343

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160174323A KR101844486B1 (ko) 2015-12-28 2016-12-20 스키턴 분석 방법 및 그를 위한 장치

Country Status (1)

Country Link
KR (1) KR101844486B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102050825B1 (ko) * 2017-04-13 2019-12-03 한국과학기술원 주행 특징 분석방법 및 그를 위한 장치
JP7147390B2 (ja) * 2018-09-07 2022-10-05 日本電信電話株式会社 スキル情報提示装置、スキル情報提示方法、プログラム
KR102349213B1 (ko) * 2021-07-08 2022-01-10 마이스포 주식회사 태권도 품새 채점 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8612181B2 (en) * 2010-03-04 2013-12-17 Ipcomm Wireless system for monitoring and analysis of skiing
EP2444130B1 (en) * 2010-10-19 2014-06-11 Marco Giani Method and device to ski correctly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8612181B2 (en) * 2010-03-04 2013-12-17 Ipcomm Wireless system for monitoring and analysis of skiing
EP2444130B1 (en) * 2010-10-19 2014-06-11 Marco Giani Method and device to ski correctly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Akiko Kondo 외 2인, Motion analysis and joint angle measurement of skier gliding on the actual snow field using inertial sensors, [Procedia Engineering], (2013. 공개), 60호 307p-312p*

Also Published As

Publication number Publication date
KR20170077794A (ko) 2017-07-06

Similar Documents

Publication Publication Date Title
CN105388495B (zh) 估计体育锻炼中的局部运动
KR101365301B1 (ko) 움직임을 특징짓기 위한 장치 및 방법
US10314520B2 (en) System and method for characterizing biomechanical activity
Lee et al. The use of a single inertial sensor to identify stride, step, and stance durations of running gait
US10463909B2 (en) System and method for using performance signatures
US9126070B2 (en) Multi-mode acceleration-based athleticism measurement system
US9452331B2 (en) Golf club shaft fitting method
KR101844486B1 (ko) 스키턴 분석 방법 및 그를 위한 장치
Jayalath et al. A gyroscope based accurate pedometer algorithm
EP3104290A1 (en) System and method for analysis and monitoring of group activities
US20160192866A1 (en) Determining performance indicators for periodic movements
Martínez et al. Development and validation of a gyroscope-based turn detection algorithm for alpine skiing in the field
JP2018068669A (ja) 運動アドバイザシステム
Patterson et al. A method for monitoring reactive strength index
Caporaso et al. A wearable inertial device based on biomechanical parameters for sports performance analysis in race-walking: preliminary results
CN112516559A (zh) 一种适用于滑雪训练台的动作评价与动作指导方法
EP2924675A1 (en) Educational gadget, system and method for teaching correct exercise or its correct trajectory
Schuldhaus et al. Classification of surfaces and inclinations during outdoor running using shoe-mounted inertial sensors
US10741095B2 (en) Teaching compatibility determining device, system, method and recording medium
KR102050825B1 (ko) 주행 특징 분석방법 및 그를 위한 장치
Maula Cycle characteristics in roller skiing measured by IMU sensors=
Meyer et al. Inertial Sensor-Based Estimation of Temporal Events in Skating Sub-Techniques While In-Field Roller Skiing
KR20210156905A (ko) 실시간 골프 스윙 동작 분석 장치 및 그 방법
KR101361166B1 (ko) 엑스 펙터 개선을 위한 피드백 장치 및 방법
KR101361165B1 (ko) 코킹 풀림 개선을 위한 피드백 장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant