KR101841970B1 - Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it - Google Patents

Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it Download PDF

Info

Publication number
KR101841970B1
KR101841970B1 KR1020170076283A KR20170076283A KR101841970B1 KR 101841970 B1 KR101841970 B1 KR 101841970B1 KR 1020170076283 A KR1020170076283 A KR 1020170076283A KR 20170076283 A KR20170076283 A KR 20170076283A KR 101841970 B1 KR101841970 B1 KR 101841970B1
Authority
KR
South Korea
Prior art keywords
base material
metal base
coating composition
coating
temperature
Prior art date
Application number
KR1020170076283A
Other languages
Korean (ko)
Inventor
노승환
박용순
Original Assignee
노승환
박용순
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노승환, 박용순 filed Critical 노승환
Priority to KR1020170076283A priority Critical patent/KR101841970B1/en
Application granted granted Critical
Publication of KR101841970B1 publication Critical patent/KR101841970B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention relates to a method for manufacturing an antibacterial ceramic coating composition, the coating composition, and a coating method using the same. The method for manufacturing the antibacterial ceramic coating composition comprises: a step of mixing 10-30 wt% of corundum, 5-25 wt% of a silica stone, 1-15 wt% of tin oxide, 5-30 wt% of borax, 1-18 wt% of a base stone, 1-20 wt% of copper oxide, 0.1-5 wt% of magnesium carbonate, 0.1-5 wt% of cobalt oxide, and 0.1-5 wt% of manganese dioxide; a step of melting the mixed composition at the temperature of 1,200-1,600°C to produce an amorphous sintered body; a step of cooling the produced amorphous sintered body; a step of pulverizing the cooling product; a step of coating the pulverized product on a surface of a metal base material; a step of sintering the metal base material, on which the composition is coated, at the temperature of 800-950°C for 1-30 minutes; and a step of cooling the sintered metal base material. The present invention can form a ceramic thin film having excellent antibiosis, heat insulation, and heat resistance on the surface of the metal base material without using an organic binder or a high-temperature sintering process. The present invention can form the ceramic thin film having excellent self-cleaning ability by emitting far-infrared rays and providing excellent deodorizing power.

Description

항균 세라믹 코팅 조성물의 제조방법, 그 코팅 조성물 및 이를 이용한 코팅방법{METHOD FOR PRODUCING CERAMIC COMPOSITION FOR COATING, CERAMIC COMPOSITION BY THE METHOD AND COATING MEHTOD USING BY IT}FIELD OF THE INVENTION [0001] The present invention relates to a method for preparing an antimicrobial ceramic coating composition, a coating composition for the same, and a coating method using the same.

본 발명은 항균 세라믹 코팅 조성물의 제조방법, 그 코팅 조성물 및 이를 이용한 코팅방법에 관한 것으로, 더 상세하게는 고온 소결이 요구되지 않으면서도 항균성이 우수한 세라믹 코팅 조성물을 제조하고, 이를 이용하여 금속 소재의 모재를 코팅하는 방법에 관한 것이다. The present invention relates to a method for producing an antimicrobial ceramic coating composition, a coating composition for the antimicrobial ceramic coating composition, and a coating method using the same. More specifically, the present invention relates to a ceramic coating composition having excellent antimicrobial activity without requiring high- To a method of coating a base material.

일반적으로 각종 산업용품에는 제품의 보호 및 기능성의 향상을 위해 표면을 코팅하는 다양한 코팅제가 사용되고 있다. BACKGROUND ART In general, various kinds of coating agents for coating surfaces are used for various industrial products in order to improve the protection and functionality of products.

그 중 가장 대중적인 코팅 방법으로는 유기원료를 사용하는 도료의 도포를 들 수 있으나, 내열성이 낮고 코팅 피막 형성 후 시간의 경과 및 태양광, 일교차 등에 의해 변질, 탈색, 박리 등의 문제가 발생되며, 모재를 보호하고자 지속적인 유지보수 및 관리가 필요하였다.The most popular coating method is coating of organic material, but it has low heat resistance, time after formation of coating film, deterioration, decolorization and peeling due to sunlight and daylight. , Continuous maintenance and management were required to protect the base material.

이러한 문제에 대응하기 위해 최근에는 높은 내열성과 미관 및 인체친화적인 관점에서 세라믹 코팅제가 주목받고 있다.In order to cope with such a problem, ceramic coating agents have recently been attracting attention from the viewpoints of high heat resistance, aesthetic appearance and human-friendly properties.

현재까지 사용되고 있는 세라믹 코팅제로는 실란, 아크릴실리케이트, 실리콘 플루오르계 고분자 화합물 등의 유기바인더류를 사용한 유기물 세라믹 코팅제와, 유기바인더의 사용 없이 무기 세라믹만을 사용한 무기물 세라믹 코팅제가 있다.Ceramic coating agents that have been used so far include organic ceramic coating agents using organic binders such as silane, acryl silicate, and silicone fluorine polymer compounds and inorganic ceramic coating agents using only inorganic ceramics without using organic binders.

그러나 상기 유기물 세라믹 코팅제는 그 시공이 용이하나, 사용된 유기바인더류로 인해 각종 휘발성 유기 화합물(VOCs)이 다량 발생하여 환경에 악영향을 미치는 원인이 되고 있다.However, the organic ceramic coating agent is easy to apply, but a large amount of various volatile organic compounds (VOCs) are generated due to the used organic binders, thereby causing adverse effects on the environment.

그리고 상기 무기물 세라믹 코팅제는 환경오염을 유발하지는 않으나, 모재에 무기물 세라믹 코팅층이 고착되도록 하기 위해서는 1,100~1,700℃로 유지되는 소결로를 통해 장시간 소결시켜야 하였는바, 1,100℃가 넘는 고온을 장시간 유지해야 하므로 고온 소결에 따른 막대한 열처리 비용이 발생되는 단점이 있었다. The inorganic ceramic coating agent does not cause environmental pollution. However, in order to fix the inorganic ceramic coating layer to the base material, the inorganic ceramic coating agent must be sintered for a long time through a sintering furnace maintained at 1,100 to 1,700 ° C. There is a disadvantage in that a great heat treatment cost is incurred due to high-temperature sintering.

이러한 단점을 해소하기 위해 국내 등록특허 제10-1703345호에서는 규석, 장석, 나트륨, 붕소, 빙정석, 이산화티탄, 산화알루미늄, 망간, 니켈 등으로 구성된 세라믹 조성물을 1200~1600℃로 용융하여 세라믹 코팅 조성물을 제조하고, 이를 모재에 코팅한 후 800~950℃의 온도로 열처리하여 피막을 형성하는 방법을 제안하였다.In order to overcome such disadvantages, Korean Patent No. 10-1703345 discloses a ceramic coating composition obtained by melting a ceramic composition composed of silica, feldspar, sodium, boron, cryolite, titanium dioxide, aluminum oxide, manganese, nickel, , Coating it on the base material, and then heat-treating it at a temperature of 800 to 950 ° C to form a film.

상기한 선등록특허는 비교적 저온에서 열처리함으로써 고가의 열처리 비용을 절감하였으나, 항균, 탈취 등의 기능성이 결여된다는 단점이 있었다.The above-mentioned prior-art patent has a disadvantage in that the heat treatment cost is reduced by heat treatment at a relatively low temperature, but it lacks functionalities such as antibacterial and deodorization.

KR 10-1493951 B1KR 10-1493951 B1 KR 10-1703345 B1KR 10-1703345 B1

따라서, 본 발명의 목적은 항균 및 탈취의 효과를 가지면서도 고온 소결이 요구되지 않는 비정질 구조의 세라믹 코팅 조성물을 제조하는 것이다.Accordingly, it is an object of the present invention to provide a ceramic coating composition having an amorphous structure which does not require high-temperature sintering while having an antibacterial and deodorizing effect.

또한, 이러한 세라믹 코팅 조성물을 이용하여 금속 모재의 표면을 코팅함으로써, 원적외선이 다량 방사되고, 단열성, 내열성 및 자정능력이 우수한 세라믹 코팅층을 갖는 금속 모재를 제조하는 것이다.Further, by coating the surface of the metal base material using such a ceramic coating composition, it is possible to manufacture a metal base material having a ceramic coating layer that radiates a large amount of far-infrared rays and is excellent in heat insulation, heat resistance and self-correcting ability.

상기와 같은 목적을 달성하기 위한 본 발명의 항균 세라믹 코팅 조성물의 제조방법은, 강옥(Corundum) 10~30중량%, 규석(silica stone) 5~25중량%, 산화주석(SnO2) 1~15중량%, 붕사(borax) 5~30중량%, 초석(niter) 1~18중량%, 산화구리(CuO) 1~20중량%, 탄산마그네슘(MgCO3) 0.1~5중량%, 산화코발트(CoO) 0.1~5중량%, 이산화망간(MnO2) 0.1~5중량%를 혼합하는 단계와, 상기 혼합된 혼합물을 용융처리하여 비정질 소결체로 제조하는 단계와, 상기 제조된 비정질 소결체를 냉각하는 단계와, 상기 냉각된 냉각물을 분쇄하는 단계를 포함하는 것을 특징으로 한다.In order to accomplish the above object, the present invention provides a method for producing an antimicrobial ceramic coating composition, which comprises 10 to 30 wt% of corundum, 5 to 25 wt% of silica stone, 1 to 15 wt% of tin oxide (SnO 2 ) By weight of boron, 5 to 30% by weight of borax, 1 to 18% by weight of niter, 1 to 20% by weight of copper oxide (CuO), 0.1 to 5% by weight of magnesium carbonate (MgCO 3 ) ) comprising the steps of: 0.1-5 wt.%, manganese dioxide (MnO 2) cooling step and the amorphous sintered body thus prepared for producing an amorphous sintered body by treating the melt-step and the mixture was mixed for 0.1 to 5% by weight, And pulverizing the cooled cooling product.

상기 용융처리는 1,200~1,600℃로 1~10시간 동안 하는 것을 특징으로 한다.The melting treatment is performed at 1,200 to 1,600 DEG C for 1 to 10 hours.

그리고 본 발명에 따른 세라믹 코팅 조성물은 상기한 방법을 통해 제조되는 것을 특징으로 한다.The ceramic coating composition according to the present invention is characterized in that it is produced through the above-described method.

그리고 본 발명에 따른 코팅방법은, 상기한 세라믹 코팅 조성물을 금속 모재의 표면에 도포하는 단계와, 상기 조성물이 도포된 금속 모재를 800~950℃의 온도로 1~30분간 소성처리하는 단계와, 상기 열처리된 금속 모재를 냉각하는 단계를 포함하는 것을 특징으로 한다.The coating method according to the present invention includes the steps of: applying the ceramic coating composition to a surface of a metal base material; firing the metal base material coated with the composition at a temperature of 800 to 950 ° C for 1 to 30 minutes; And cooling the heat-treated metal base material.

상기 코팅 조성물을 금속 모재의 표면에 도포하는 단계는, 상기 코팅 조성물을 10~2,000㎛의 두께로 도포하고, 상기 코팅 조성물을 금속 모재에 도포하는 단계 후, 상기 코팅 조성물이 도포된 금속 모재를 30~200℃의 온도에서 건조하는 단계를 더 포함한 후, 소성처리하는 것을 특징으로 한다. The step of applying the coating composition to the surface of the metal base material may include coating the coating composition to a thickness of 10 to 2,000 mu m and then applying the coating composition to the base metal material, Drying at a temperature of < RTI ID = 0.0 > 200 C, < / RTI >

상기 금속 모재는 파이프이고, 상기 소성처리하는 단계는, 고주파 유도 가열장치로 가열하여 열처리하는 것을 특징으로 한다. Wherein the metal base material is a pipe, and the step of performing the sintering treatment is characterized by heating with a high frequency induction heating device and performing heat treatment.

상기 소성처리하는 단계는, 박스(Box)로에서 소성하는 것을 특징으로 한다.The firing step is characterized by firing in a box furnace.

본 발명에 의하면, 유기바인더의 사용이나 고온 소결의 공정 없이 금속 모재의 표면에 항균성, 단열성, 내열성 등이 특히 우수한 세라믹 박막을 형성시킬 수 있는 장점이 있다. 또한, 원적외선을 방사하며, 탈취력 역시 우수하여 자정능력이 뛰어난 세라믹 박막을 형성시킬 수 있다는 장점이 있다. According to the present invention, there is an advantage that a ceramic thin film having excellent antimicrobial property, heat insulating property and heat resistance can be formed on the surface of a metal base material without using an organic binder or a high-temperature sintering process. In addition, it radiates far-infrared rays and is excellent in deodorizing power, which makes it possible to form a ceramic thin film having excellent self-cleaning ability.

아울러, 작업이 간편하며, 생산효율이 우수하여 세라믹 코팅 제품의 제조원가를 현저히 절감할 수 있는 장점이 있다.In addition, it is advantageous in that the manufacturing cost is remarkably reduced because the work is simple and the production efficiency is excellent.

도 1은 본 발명에 따른 세라믹 코팅 조성물의 제조공정도.
도 2는 본 발명에 따른 세라믹 코팅 방법의 공정도.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process flow diagram for manufacturing a ceramic coating composition according to the present invention; FIG.
2 is a process diagram of a ceramic coating method according to the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

먼저, 본 발명에 따른 세라믹 코팅 조성물의 제조방법에 대해 설명한다.First, a method of manufacturing a ceramic coating composition according to the present invention will be described.

종래 세라믹 코팅 조성물은 유기바인더를 사용하거나, 코팅 공정 시 고온 소결이 요구되었다. 또한, 종래 1100℃ 이하의 저온 소결 공정을 갖는 조성물은 별도의 기능성이 결여되었다. Conventional ceramic coating compositions require the use of organic binders or high temperature sintering in the coating process. In addition, a conventional composition having a low-temperature sintering process at 1100 DEG C or less lacked additional functionality.

본 발명에 따른 세라믹 코팅 조성물은 이러한 단점을 해소하기 위한 것으로, 저온 소결이 가능하고, 항균성 및 탈취력이 우수하고, 원적외선이 방사되어 자정능력이 우수하며, 내열성 및 단열성이 특히 우수하다는 데 특징이 있다.The ceramic coating composition according to the present invention is characterized by being capable of low-temperature sintering, having excellent antimicrobial and deodorizing ability, radiating far-infrared rays, having excellent self-cleaning ability, and excellent in heat resistance and heat insulation .

이를 위한 본 발명의 세라믹 코팅 조성물의 제조방법은, 강옥(Corundum) 10~30중량%, 규석(silica stone) 5~25중량%, 산화주석(SnO2) 1~15중량%, 붕사(borax) 5~30중량%, 초석(niter) 1~18중량%, 산화구리(CuO) 1~20중량%, 탄산마그네슘(MgCO3) 0.1~5중량%, 산화코발트(CoO) 0.1~5중량%, 이산화망간(MnO2) 0.1~5중량%를 혼합하는 단계와, 상기 혼합된 혼합물을 용융처리하여 비정질 소결체로 제조하는 단계와, 상기 제조된 비정질 소결체를 냉각하는 단계와, 상기 냉각된 냉각물을 분쇄하는 단계를 포함하는 것을 특징으로 한다.The method for preparing the ceramic coating composition of the present invention comprises 10 to 30% by weight of corundum, 5 to 25% by weight of silica stone, 1 to 15% by weight of tin oxide (SnO 2 ) 5 to 30% by weight of cobalt oxide, 1 to 18% by weight of niter, 1 to 20% by weight of copper oxide (CuO), 0.1 to 5% by weight of magnesium carbonate (MgCO 3 ) A step of mixing 0.1 to 5% by weight of manganese dioxide (MnO 2 ); melting and mixing the mixture to prepare an amorphous sintered body; cooling the produced amorphous sintered body; The method comprising the steps of:

이하, 도 1을 참조하여 본 발명에 따른 항균 세라믹 코팅 조성물의 제조방법에 대해 상세히 설명한다.Hereinafter, a method for producing the antibacterial ceramic coating composition according to the present invention will be described in detail with reference to FIG.

강옥Coarse (Corundum) 10~(Corundum) 30중량%30 wt% , 규석(silica stone) 5~, Silica stone 5 ~ 25중량%25 wt% , 산화주석(, Tin oxide ( SnOSnO 22 ) 1~15중량%, ) 1 to 15% by weight, 붕사borax (borax) 5~(borax) 30중량%30 wt% , 초석(niter) 1~, Niter 1 ~ 18중량%18 wt% , 산화구리(, Copper oxide ( CuOCuO ) 1~20중) Between 1 and 20 량%% , 탄산마그네슘(, Magnesium carbonate ( MgCOMgCO 33 ) 0.1~) 0.1 ~ 5중량%5 wt% , 산화코발트(, Cobalt oxide ( CoOCoO ) 0.1~) 0.1 ~ 5중량%5 wt% , 이산화망간(MnO, Manganese dioxide (MnO 22 ) 0.1~5중량%를 혼합하는 단계.) 0.1 to 5% by weight.

먼저, 강옥, 규석, 산화주석, 붕사, 초석, 산화구리, 탄산마그네슘, 산화코발트, 이산화망간을 혼합한다. 이때, 상기한 성분들을 이용하는 이유는, 이러한 성분을 통해 세라믹 박막의 탈취, 원적외선 방사 및 항균의 기능성을 부여하여 자정능력이 우수한 코팅층을 형성하고, 단열성 및 내열성 역시 개선하기 위함이다. 아울러, 상기 조성물의 열팽창계수가 금속, 특히 철 또는 스테인리스 스틸 소재의 열팽창계수와 유사하도록 함으로써, 코팅층, 즉 세라믹 박막의 물성이 우수하면서도 박리현상이 일어나지 않고 부착력이 뛰어나도록 하기 위함이다. First, it is mixed with a coarse, grit, tin oxide, borax, corundum, copper oxide, magnesium carbonate, cobalt oxide and manganese dioxide. At this time, the above-mentioned components are used to form a coating layer having excellent self-cleaning ability by imparting functions of deodorization, far-infrared radiation, and antibacterial action of the ceramic thin film through these components, and also to improve heat insulation and heat resistance. In addition, the thermal expansion coefficient of the composition is similar to that of a metal, especially iron or stainless steel, so that the coating layer, that is, the ceramic thin film has excellent physical properties, but does not cause peeling and has excellent adhesion.

더욱 구체적으로, 상기 강옥은 코팅층의 경도 및 강도를 강화하고, 내열성 및 단열성을 높이는 것은 물론, 원적외선을 다량 방사하여 항균 및 탈취를 돕는 역할을 하고, 상기 규석은 코팅층의 강도 및 물성을 개선하며, 부식 저항성 및 내산성의 향상에도 기여한다. 상기 산화주석은 코팅층의 내열성 및 내마모성을 좋게 하고, 상기 붕사는 코팅층의 부착력을 향상시켜주는 것은 물론, 조성 보전성을 좋게 하며, 상기 초석은 코팅층의 물성 향상은 물론, 코팅층 표면의 불균일화 현상을 방지하는 역할을 한다. 그리고 상기 산화구리는 열팽창을 조정해주고 급격한 열충격에도 안정성을 부여해주며, 물리적 충격에 큰 저항성을 발휘하고, 상기 탄산마그네슘은 단열성 및 내열성을 현저히 개선해주고, 상기 산화코발트 및 이산화망간은 원적외선을 방사하여 탈취 및 항균력에 도움을 주며, 코팅층의 물성을 전체적으로 좋게 한다.More specifically, the coarse grit enhances the hardness and strength of the coating layer, enhances heat resistance and heat insulation, and radiates a large amount of far-infrared rays to assist in antibacterial and deodorization. The silica improves the strength and physical properties of the coating layer, It also contributes to the improvement of corrosion resistance and acid resistance. The tin oxide improves the heat resistance and wear resistance of the coating layer, and the borax improves the adhesion of the coating layer and improves the compositional integrity. The cornerstone improves the physical properties of the coating layer and prevents the coating layer from being uneven It plays a role. Further, the copper oxide adjusts thermal expansion, gives stability to a rapid thermal shock, exhibits a great resistance to physical impact, and the magnesium carbonate remarkably improves the heat insulation and heat resistance. The cobalt oxide and manganese dioxide radiate far- It helps to antimicrobial activity and improves the overall physical properties of the coating layer.

그리고 그 혼합비는, 강옥 10~30중량%, 규석 5~25중량%, 산화주석 1~15중량%, 붕사 5~30중량%, 초석 1~18중량%, 산화구리 1~20중량%, 탄산마그네슘 0.1~5중량%, 산화코발트 0.1~5중량%, 이산화망간 0.1~5중량%를 혼합하는 것이 바람직한바, 이는 제조되는 세라믹 코팅 조성물의 항균성, 탈취력, 원적외선 방사율, 용융온도, 모재와의 부착성 등을 고려한 것으로, 이러한 혼합비를 벗어날 경우 상기한 특성들이 저하되므로 상기한 혼합비로서 혼합한다.The mixing ratio is 10 to 30% by weight of corundum, 5 to 25% by weight of zircon, 1 to 15% by weight of tin oxide, 5 to 30% by weight of borax, 1 to 18% by weight of cornerstone, 1 to 20% by weight of copper oxide, It is preferable to mix 0.1 to 5% by weight of magnesium, 0.1 to 5% by weight of cobalt oxide and 0.1 to 5% by weight of manganese dioxide. This is because the antimicrobial activity, deodorizing power, far infrared ray emissivity, melting temperature, Etc. When the mixing ratio is exceeded, the characteristics described above are lowered. Therefore, the mixing ratio is mixed as described above.

한편, 상기와 같은 코팅 조성물은 강옥으로 인해 미려한 자연옥색의 색상이 발현된다는 장점이 있다. 따라서, 별도의 안료를 포함할 필요성이 없게 된다. 다만, 안료 외 코팅 조성물에 물성 향상을 위해 이 기술이 속하는 분야에서 공지된 성분을 더 포함할 수도 있음은 당연하다. On the other hand, the above-mentioned coating composition has an advantage that natural oak color is expressed due to the strong oak. Thus, there is no need to include a separate pigment. However, it is of course also possible to further include components known in the field to which the present technique belongs for improving the physical properties of the pigment-containing coating composition.

또한, 상기 혼합물에 사용되는 각 재료의 입도는 제한하지 않는다.The particle size of each material used in the mixture is not limited.

상기 혼합된 혼합물을 용융처리하여 비정질 소결체로 제조하는 단계.And melting the mixed mixture to produce an amorphous sintered body.

다음으로, 상기 혼합된 혼합물을 용융처리하여 비정질 소결체로 제조한다. 이때, 상기 용융처리는 1,200~1,600℃의 온도에서 1~10시간 동안 소결하는 것을 의미하는바, 상기 용융처리 온도가 낮을 경우 소결이 어렵고, 1600℃보다 높을 경우 불필요한 에너지의 소요로 인해 제조비용이 높아지는 단점이 있다. Next, the mixed mixture is melt-treated to produce an amorphous sintered body. In this case, the melting treatment means sintering at a temperature of 1,200 to 1,600 ° C. for 1 to 10 hours. When the melting temperature is low, sintering is difficult. When the melting temperature is higher than 1600 ° C., .

본 발명에서는 상기 혼합물을 소결하여 비정질 상태의 세라믹 코팅 조성물을 제조하므로, 코팅 공정 시 1,100℃ 이상의 고온 소결 공정을 수행하지 않더라도 강도, 내마모성, 부착력, 표면경도 및 내식성이 우수한 세라믹 피막을 형성할 수 있게 된다는 특징이 있다. In the present invention, since the amorphous ceramic coating composition is prepared by sintering the mixture, it is possible to form a ceramic coating having excellent strength, abrasion resistance, adhesion, surface hardness and corrosion resistance even when a high temperature sintering process of not less than 1,100 ° C. is not performed .

상기 제조된 비정질 소결체를 냉각하는 단계.Cooling the produced amorphous sintered body.

그리고 상기 제조된 비정질 소결체를 냉각시킨다. 상기 냉각은 상온에 방치하거나, 냉풍 등을 이용하거나, 냉각 롤러를 통과시키는 등의 건식 방법을 채택할 수도 있고, 물에 투입하여 냉각시키는 습식 냉각방법을 채택할 수 있는 것으로, 그 방법을 제한하지 않는다. Then, the produced amorphous sintered body is cooled. The cooling may be performed by a dry method such as leaving at room temperature, using cold air or passing through a cooling roller, or employing a wet cooling method in which water is added to cool the material. Do not.

이러한 소결체를 냉각하는 방법은 이미 이 기술이 속하는 분야에서 충분히 공지된 사항이므로, 이에 대한 상세한 설명은 생략한다. 또한, 상기 소결체는 분쇄가 가능한 정도로 냉각되면 족한 것으로 통상 20~50℃ 정도면 족하나, 이를 제한하지 않는다. Since the method of cooling the sintered body is well known in the field of the technology, detailed description thereof will be omitted. The sintered body may be cooled to such an extent that the sintered body can be pulverized. The sintered body is usually about 20 to 50 캜, but is not limited thereto.

아울러, 상기 용융처리 및 냉각시의 승온속도와 냉각속도는 특별히 제한이 없으며, 승온 또는 냉각속도를 일정하게 유지하면서 승온 또는 냉각할 수 있고, 점진적 또는 불연속적으로 다양하게 변화시키면서 승온 또는 냉각시킬 수도 있는 것으로, 그 실시를 제한하지 않는다. The heating rate and cooling rate at the time of the melting treatment and cooling are not particularly limited and the temperature can be raised or cooled while the temperature or the cooling rate is kept constant and the temperature can be increased or decreased while varying gradually or discontinuously There is no restriction on the implementation.

상기 냉각된 The cooled 냉각물을Cooling water 분쇄하는 단계. Crushing step.

그리고 상기 냉각된 냉각물을 분쇄한다. 상기 분쇄 역시 건식으로 밀링하여 분말상의 코팅 조성물로서 사용할 수도 있고, 냉각물을 물과 함께 분쇄, 즉 습식 밀링하여 액상의 코팅 조성물로서 사용할 수도 있으며, 습식 분쇄한 후, 다시 냉풍, 열풍 또는 자연건조하여 분말 상의 코팅 조성물로서 사용할 수도 있는 것으로, 그 실시를 제한하지 않는다. And the cooled cooling product is pulverized. The pulverization can also be carried out by dry milling and used as a powder coating composition. Alternatively, the cooling product may be pulverized, that is, wet milled with water to be used as a liquid coating composition, or may be wet pulverized and then cooled again, And may be used as a coating composition on a powder, and its implementation is not limited.

또한, 그 분쇄 입도 역시 크게 제한하지 않으나, 1~300㎛ 정도의 크기일 수 있다. Also, the grain size is not limited to a large extent, but may be about 1 to 300 mu m.

상기와 같이 제조된 본 발명의 항균 세라믹 코팅 조성물은 앞서 설명한 바와 같이, 원적외선의 방사율이 높고, 항균 및 탈취력이 우수하면서도, 모재와의 접착력이 우수하고, 내식성 및 표면경도 역시 우수한 특징이 있다. 또한, 비정질의 구조이기 때문에 코팅시 고온 소결 공정을 포함하지 않더라도 이러한 특징이 발휘된다는 점에 특징이 있다. 아울러, 이러한 세라믹 코팅은 종래 다른 세라믹 코팅 조성물에 비해 단열성 및 내열성이 우수하다는 특징도 있다. As described above, the antimicrobial ceramic coating composition according to the present invention has a high emissivity of far-infrared rays, excellent antimicrobial and deodorizing power, excellent adhesion to a base material, and excellent corrosion resistance and surface hardness. In addition, since it is an amorphous structure, it is characterized in that these characteristics are exhibited even when a high temperature sintering process is not included in coating. Further, such a ceramic coating is also characterized in that it is superior in heat insulation and heat resistance to other ceramic coating compositions.

이하, 이러한 본 발명의 코팅 조성물을 이용하여 금속 모재를 코팅하는 방법에 대해 도 2를 참조하여 상세히 설명한다.Hereinafter, a method of coating a metal base material using the coating composition of the present invention will be described in detail with reference to FIG.

본 발명에 따른 코팅방법은, 상기한 조성물을 금속 모재의 표면에 도포하는 단계와, 상기 조성물이 도포된 금속 모재를 800~950℃의 온도로 1~30분간 소성처리하는 단계와, 상기 열처리된 금속 모재를 냉각하는 단계를 포함하는 것을 특징으로 한다.The coating method according to the present invention comprises the steps of: applying the composition to the surface of a metal base material; firing the metal base material coated with the composition at a temperature of 800 to 950 DEG C for 1 to 30 minutes; And cooling the metal base material.

상기한 세라믹 코팅 조성물을 금속 The ceramic coating composition described above was mixed with a metal 모재의Of base metal 표면에 도포하는 단계. Applying to the surface.

먼저, 상기한 세라믹 코팅 조성물을 금속 모재의 표면에 도포한다. 여기서, 상기 세라믹 코팅 조성물은 앞서 설명한 바와 같이, 분말 상 일수도 있으며, 액상의 상태일 수도 있는 것으로 그 종류는 무관하다. First, the above-mentioned ceramic coating composition is applied to the surface of the metal base material. As described above, the ceramic coating composition may be in a powder state or in a liquid state, and the kind thereof is irrelevant.

그리고 상기 모재로는 금속 소재로 된 다양한 종류의 것을 사용할 수 있지만, 특히 철 또는 스테인리스 스틸을 포함하는 소재의 모재를 사용할 수 있다. 이는 후술될 열처리 단계에서 고주파 유도 가열장치 또는 박스로를 이용하므로, 철 또는 스테인리스 스틸을 포함하는 소재를 이용할 경우 가열이 더욱 용이하기 때문이다. As the base material, various kinds of metal materials can be used, but in particular, a base material of a material including iron or stainless steel can be used. This is because the high-frequency induction heating apparatus or the box furnace is used in the heat treatment step to be described later, so that it is easier to heat when a material including iron or stainless steel is used.

또한, 본 발명에서는 금속 모재로서 다양한 형태의 것을 적용할 수 있으며, 특히 종래 세라믹 코팅의 적용이 어려웠던 파이프도 이용할 수 있다는 점에 특징이 있다. 즉, 고 내식성 및 고 내산성을 요구하는 파이프는, 스테인리스 소재를 원형 그대로 두껍게 사용해야 하지만, 소재의 고비용으로 인해 사용을 꺼리는 경우가 대부분이었으며, 철 소재를 이용할 경우 내식성, 내산성이 현저히 떨어지는 단점이 있었다. 본 발명을 따르면 철은 물론 스테인리스 스틸의 두께를 얇게 하고, 본 발명의 조성물을 코팅하면 고 내식성 및 내산성을 확보할 수 있어 저비용의 세라믹 파이프를 생산할 수 있기 때문이다. 아울러, 금속 모재로서 파이프 이외 다양한 형태의 것을 이용할 수 있음은 당연하다.In addition, the present invention can be applied to various types of metal base materials. In particular, the present invention is characterized in that pipes which are difficult to apply the conventional ceramic coating can also be used. In other words, a pipe requiring high corrosion resistance and high acid resistance is required to use a thick stainless steel material as it is in a circular shape. However, most of the pipes are unlikely to be used due to high cost of materials, and corrosion resistance and acid resistance are remarkably deteriorated when iron materials are used. According to the present invention, it is possible to produce a low-cost ceramic pipe because it can secure high corrosion resistance and acid resistance by coating the composition of the present invention while reducing the thickness of stainless steel as well as iron. It goes without saying that various types of metal base materials other than pipes can be used.

여기서, 상기 코팅 조성물을 도포하여서 되는 도포층, 즉 코팅층의 두께는, 10~2,000㎛인이 바람직한데, 코팅층의 두께가 10㎛ 미만일 경우 충분한 물성확보가 어렵고, 2,000㎛를 초과하더라도 더 이상의 세라믹 코팅 제품으로서의 물성증가가 없으면서도 비용이 증가하므로 효율적이지 못하기 때문이다. 상기 코팅층의 두께는 코팅의 횟수, 코팅 방법 등에 따라 조절할 수 있다.If the thickness of the coating layer is less than 10 mu m, it is difficult to secure sufficient physical properties. If the thickness of the coating layer is more than 2,000 mu m, This is because the cost increases without increasing the physical properties of the product, which is not efficient. The thickness of the coating layer can be controlled according to the number of coatings, the coating method, and the like.

그리고 상기 코팅방법은 종래 공지된 다양한 방법을 적용할 수 있는바, 딥코팅법(Dip coationg), 분체 코팅법(powder coating), 스프레이 코팅법(Spray coating), 브러시법(brushing), 용사코팅법(thermal spraying) 등 어떠한 방법을 사용해도 무방하다. 즉, 모재의 종류 및 형태, 요구되는 코팅층의 두께에 따라 적절히 선택할 수 있으며, 가장 바람직하게는 습식 분체(Spray coating) 또는 용사코팅법(Thermal spraying)을 이용하는 것이다.As the coating method, various methods known in the art can be applied. Examples of the coating method include a dip coating method, a powder coating method, a spray coating method, a brushing method, a spray coating method (thermal spraying) may be used. That is, it can be appropriately selected according to the type and the shape of the base material and the thickness of the required coating layer, and the spray coating or the thermal spraying is most preferably used.

상기 코팅 조성물이 도포된 금속 모재When the coating composition is applied to the metal base material To 건조하는 단계. Drying step.

다음으로, 상기 코팅 조성물이 도포된 금속 모재를 건조한다. 상기 건조는 30~200℃의 온도의 건조실에서 이루어질 수 있으며, 건조시간은 제한하지 않는다. 즉, 상기 건조는 코팅층이 충분히 건조될 정도까지 진행하는바, 그 건조온도에 따라 건조시간이 달라지나 통상 5분~1시간 정도이다. Next, the metal base material to which the coating composition is applied is dried. The drying may be performed in a drying chamber at a temperature of 30 to 200 DEG C, and the drying time is not limited. That is, the drying is performed until the coating layer is sufficiently dried, and the drying time varies depending on the drying temperature, but is usually about 5 minutes to 1 hour.

다만, 분말 상의 코팅 조성물을 이용하여 세라믹 조성물을 도포하였을 경우, 상기 건조 단계는 생략할 수 있다.However, when the ceramic composition is applied using the powdery coating composition, the drying step may be omitted.

상기 건조된 금속 The dried metal 모재를Base material 800~950℃의 온도로 1~30분간 소성처리하는 단계. And calcining at a temperature of 800 to 950 DEG C for 1 to 30 minutes.

그리고 상기 건조된 금속 모재를 800~950℃의 온도로 1~30분간 소성처리한다.Then, the dried metal base material is calcined at a temperature of 800 to 950 DEG C for 1 to 30 minutes.

이때, 상기 소성처리는 고주파 유도 가열장치 또는 박스로(BOX爐)를 이용한다.At this time, a high frequency induction heating apparatus or a box furnace is used as the firing treatment.

여기서, 상기 고주파 유도 가열장치란, 피열물(被熱物)이 되는 도체를 코일 내에 두고, 여기에 고주파 전류를 흘리면 금속 도체의 표면 가까이에 와전류가 생겨 이 손실의 열로 가열하는 장치를 말하는 것으로, 상기 건조된 금속 모재를 피열물로 하여 열처리하는 것이다. 이러한 고주파 유도 가열장치는 금속 모재가 파이프일 경우 유용하다.Here, the high-frequency induction heating apparatus refers to a device that places a conductor serving as an object to be heated in a coil and causes an eddy current to be generated near the surface of the metal conductor when a high-frequency current is passed therethrough, And the dried metal base material is subjected to heat treatment as an object to be heated. Such a high frequency induction heating apparatus is useful when the metal base material is a pipe.

또한, 박스로는 전기 또는 가스의 열원을 사용하며, 다량을 한번에 넣고 소성하는 박스 형태의 고정식로와, 하나씩 지그에 걸어 로타리식으로 회전하는 터널 형태의 연속식로가 있다. 이러한 박스로의 크기는 모재의 크기와 비례하여 제작되며, 지그(JIG)와 대차(臺車)를 사용한다. 이때 상기 대차는 모터를 부착하어 자동으로 사용이 가능하다. 또한, 모재의 모양에 따라 연속 소성로의 하부에 레일을 설치하고 지그에 눕혀서 지나가거나, 소성로 상부에 레일을 설치하여 지그에 걸여 세워서 지나갈 수도 있다. In addition, the box furnace uses a heat source of electric or gas, a box type stationary furnace in which a large quantity is charged at one time and a furnace, and a tunnel type continuous furnace rotatably mounted in a jig. The size of the box is made proportional to the size of the base material, and a jig and a cart are used. At this time, the bogie can be used automatically by attaching a motor. In addition, depending on the shape of the base material, rails may be provided on the lower part of the continuous firing furnace and laid on the jig, or rails may be installed on the upper part of the firing furnace,

아울러, 그 소성처리 온도는 종래 1,100℃ 이상이야 했으나, 본 발명에서는 800~950℃의 온도로 열처리하는 것만으로도, 충분히 세라믹 피막이 형성되고, 그 물성 역시 현저히 개선된다. 이때, 상기 소성처리 시간은 1~30분이면 족하다.In addition, although the baking treatment temperature was conventionally 1,100 ° C or higher, in the present invention, even if the heat treatment is performed at a temperature of 800 to 950 ° C, a sufficient ceramic coating film is formed and the physical properties thereof are remarkably improved. At this time, the calcination treatment time may be 1 to 30 minutes.

상기 remind 열처리된Heat-treated 금속 모재 Metal base material To 냉각하는 단계. Cooling step.

다음으로, 공지된 방법을 통해 상기 열처리된 금속 모재를 상온 정도로 냉각함으로써, 코팅작업을 완료한다. Next, the heat-treated metal base material is cooled to about room temperature through a known method to complete the coating operation.

상기와 같은 방법으로 코팅된 금속 모재는 그 표면이 매끄럽고, 광택이 있으며, 코팅층과 금속 모재간의 접착력이 우수하다는 특징이 있다. 또한, 내산성, 강도, 내열성 및 내마모성이 특히 우수하다.The surface of the coated metal base material is smooth and glossy, and the adhesion between the coating layer and the metal base material is excellent. In addition, it is particularly excellent in acid resistance, strength, heat resistance and abrasion resistance.

따라서, 유기바인더를 포함하지 않고, 고온 소결이 요구되지 않아 간단한 방법으로 환경오염을 유발하지 않으면서 고품질, 즉 고 내산성, 고 강도, 고 내열성 및 고 내마모성의 특징으로 갖는 세라믹 코팅 금속 모재를 제공할 수 있는 장점이 있다. Accordingly, there is provided a ceramic-coated metal base material which does not contain an organic binder, does not require high-temperature sintering and does not cause environmental pollution in a simple manner, and has characteristics of high quality, i.e., high acid resistance, high strength, high heat resistance and high abrasion resistance There are advantages to be able to.

한편, 필요한 경우 본 발명의 코팅 조성물을 적용하기 전, 전처리로서 금속 모재의 표면으로부터 이물질이나 기름때를 제거하고, 코팅 조성물의 흡착력이 향상되도록 샌드블라스팅이나 표면 연마 등의 공정을 추가적으로 포함할 수 있는 것으로, 그 실시를 제한하지 않는다.On the other hand, if necessary, prior to application of the coating composition of the present invention, a pretreatment may further include steps such as sandblasting and surface polishing so as to remove foreign substances or grease from the surface of the metal base material and improve the adsorption force of the coating composition , Its implementation is not limited.

다만, 본 발명에 따라 코팅된 금속 모재는 앞서 설명한 바와 같이, 그 표면이 매끄럽고 광택이 있으므로, 별도의 그라인딩 또는 광택 공정과 같은 후처리 마감 작업은 불필요하다.However, as described above, since the surface of the coated metal base material according to the present invention is smooth and glossy, a post-finishing operation such as a separate grinding or polishing process is unnecessary.

또한, 본원발명은 그 부착성이 우수하여, 코팅층의 박리현상이 일어나지 않으므로, 전처리로서 금속 모재의 표면에 미세 요철을 형성하는 산처리공정도 요구되지 않는다. Further, since the present invention is excellent in adhesion and does not cause peeling of the coating layer, an acid treatment step of forming fine unevenness on the surface of the metal base material as a pretreatment is not required.

이하, 구체적인 실시예를 통해 본 발명을 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail with reference to specific examples.

(실시예 1)(Example 1)

강옥 20중량%, 규석 20중량%, 산화주석 10중량%, 붕사 20중량%, 초석 12중량%, 산화구리 15중량%, 탄산마그네슘 1중량%, 산화코발트 1중량%, 이산화망간 1중량%로 되는 코팅 재료를 준비하였다. 그리고 이를 1400℃에서 3시간 용융처리하여 비정질 소결체로 제조하고, 상온 냉각하여 30℃가 되도록 한 후, 1~300㎛의 크기로 건식 밀링하였다. A mixture of 20 wt% of copper oxide, 20 wt% of zircon, 10 wt% of tin oxide, 20 wt% of borax, 12 wt% of corner stone, 15 wt% of copper oxide, 1 wt% of magnesium carbonate, 1 wt% of cobalt oxide, A coating material was prepared. The amorphous sintered body was melted at 1400 캜 for 3 hours, cooled to room temperature and cooled to room temperature, and then milled to a size of 1 to 300 탆 by dry milling.

그리고 상기 건식 밀링된 조성물을 모재의 표면에 분체 코팅하였다. 그리고 박스로에서 900℃로 10분간 소성처리한 후, 상온 냉각시켰다. 상기 코팅된 피막의 두께는 100㎛로 하였다. The dry milled composition was powder coated onto the surface of the base material. Then, it was baked in a box furnace at 900 DEG C for 10 minutes and then cooled at room temperature. The thickness of the coated film was 100 mu m.

여기서, 상기 모재로는 2T의 두께를 갖는 스테인레스 304 강판과, KS D 3504에서 규정된 철근인 D22를 각각 사용하였다.Here, as the base material, a stainless steel 304 steel plate having a thickness of 2T and a reinforcing bar D22 specified in KS D 3504 were used.

(비교예 1)(Comparative Example 1)

실시예 1과 동일하게 실시하되, 상기 코팅 재료로서 규석 25중량%, 장석 20중량%, 나트륨 10중량%, 붕소 6중량%, 빙정석 6중량%, 이산화티탄 6중량%, 산화알루미늄 16중량%, 망간 6중량%, 니켈 5중량%를 혼합하여 사용하였다. The coating material was prepared in the same manner as in Example 1 except that 25 wt% of silica, 20 wt% of feldspar, 10 wt% of sodium, 6 wt% of boron, 6 wt% of cryolite, 6 wt% of titanium dioxide, 6 wt% of manganese, and 5 wt% of nickel were mixed and used.

(시험예 1)(Test Example 1)

상기 실시예 1의 탈취력을 테스트하였다. 테스트를 위한 시편으로는 실시예 1의 코팅층이 형성된 스테인레스 304 강판(10cm×10cm, 2T)을 사용하였다. 그 시험방법은 시편을 5L 크기의 반응기에 넣어 밀봉하고, 시험가스를 주입한 후, 시험가스의 농도를 시간별로 측정하여 이를 sample 농도라 하였다. 상기 시험가스의 농도는 가스검지관(구 KS I 2218)에 의해 측정하였으며, 이와 별도로 시료가 없는 상태에서 시험을 진행하고, 이를 Blank 농도라 하였다. 상기 시험가스로는 폼알데하이드(HCHO)와 암모니아(NH3)를 이용하였다.The deodorizing power of Example 1 was tested. As a test specimen, a stainless steel 304 plate (10 cm x 10 cm, 2T) in which the coating layer of Example 1 was formed was used. In the test method, the specimen was sealed in a 5-L reactor, and after the test gas was injected, the concentration of the test gas was measured over time and referred to as the sample concentration. The concentration of the test gas was measured by a gas detection tube (formerly KS I 2218), and the test was carried out in the absence of a sample, which was called blank concentration. Formaldehyde (HCHO) and ammonia (NH 3 ) were used as the test gas.

그리고 각 시간대 별 시험가스의 제거율은 다음과 같이 계산하였다.The removal rate of the test gas for each time period was calculated as follows.

시험가스의 제거율(%)=[{(blank 농도)-(sample 농도)}/(blank 농도)]×100(%) = [{(Blank concentration) - (sample concentration)} / (blank concentration)] × 100

그 결과는 하기 표 1과 같았다. The results are shown in Table 1 below.

시험예 1의 결과Results of Test Example 1 시험항목Test Items 시험결과Test result 시험환경
Test environment
Blank 농도
(μmol/mol)
Blank concentration
(μmol / mol)
Sample 농도
(μmol/mol)
Sample concentration
(μmol / mol)
탈취율(%)Deodorization rate (%)
탈취
(HCHO)
*검출한계
0.5μmol/mol
Deodorization
(HCHO)
* Detection limit
0.5 mol / mol
0분0 minutes 2020 2020 0.00.0 (19.9±0.03)℃
(40.8±0.5)% R.H.
(19.9 ± 0.03) ° C
(40.8 ± 0.5)% RH
30분30 minutes 2020 1818 10.010.0 60분60 minutes 2020 1515 25.025.0 90분90 minutes 2020 1313 35.035.0 120분120 minutes 2020 1212 40.040.0 탈취
(NH3)
*검출한계
0.2μmol/mol
Deodorization
(NH 3)
* Detection limit
0.2 mol / mol
0분0 minutes 5050 5050 00
30분30 minutes 4949 2525 48.948.9 60분60 minutes 4949 2020 59.159.1 90분90 minutes 4949 1818 63.263.2 120분120 minutes 4949 1717 65.365.3

상기 표 1에서 확인할 수 있는 바와 같이, 실시예 1은 우수한 탈취력을 보임을 확인할 수 있었다.As can be seen from the above Table 1, it can be confirmed that Example 1 shows excellent deodorizing power.

(실시예 2)(Example 2)

상기 실시예 1의 원적외선 방사율을 테스트하였다. 시험방법은 KCL-FIR-1005;2011에 따랐으며, FT-IR Spectrometer를 이용하여 측정하였다. 시편으로는 실시예 1의 코팅층이 형성된 스테인레스 304 강판(10cm×10cm, 2T)을 사용하였다. The far infrared ray emissivity of Example 1 was tested. The test method was followed in accordance with KCL-FIR-1005; 2011 and measured by FT-IR spectrometer. As the test piece, a stainless steel 304 plate (10 cm x 10 cm, 2T) having the coating layer of Example 1 was used.

시험예 2의 결과The results of Test Example 2 시험항목Test Items 단위unit 시험결과Test result 비고Remarks 원적외선 방사율
(측정온도:40℃, 측정파장: 5㎛~20㎛)
Far-infrared emissivity
(Measurement temperature: 40 占 폚, measurement wavelength: 5 占 퐉 to 20 占 퐉)
-- 0.8140.814 (22.4±0.1)℃
(24.2±0.3)% R.H.
(22.4 ± 0.1) ° C
(24.2 ± 0.3)% RH
원적외선 방사에너지
(측정온도:40℃, 측정파장: 5㎛~20㎛)
Far-infrared radiation energy
(Measurement temperature: 40 占 폚, measurement wavelength: 5 占 퐉 to 20 占 퐉)
W/㎡W / ㎡ 3.02×102 3.02 × 10 2 (22.4±0.1)℃
(24.2±0.3)% R.H.
(22.4 ± 0.1) ° C
(24.2 ± 0.3)% RH

상기 표 2에서 확인할 수 있는 바와 같이, 실시예 1은 원적외선 방사율이 81%에 달하며, 높은 방사에너지를 가짐을 확인하였다. As can be seen from the above Table 2, Example 1 shows that the far infrared ray emissivity reaches 81% and has a high radiant energy.

(시험예 3)(Test Example 3)

상기 실시예 1의 항균성을 테스트하였다. 시편으로는 실시예 1의 코팅층이 형성된 스테인레스 304 강판(5cm×5cm, 2T)을 사용하였다. 상기 항균성은 Japanese Industrial Standards Z 2801(JIS Z2801)의 필름밀착법에 따라 그람 음성균인 대장균(Escherichia coli)과 그람 양성균인 황색포도상구균(Staphylococcus aureus)을 이용하여 실시하였다. 또한, 시험균을 접종 후 모든 시편은 (35±1)℃, 상대습도 90% 이상에서 (24±1) 시간 배양하였고, 이후 각 시편에서 균을 회수하여 생균수를 측정하였다. The antibacterial properties of the above Example 1 were tested. As the test piece, a stainless steel 304 steel plate (5 cm x 5 cm, 2T) in which the coating layer of Example 1 was formed was used. The antimicrobial activity was determined using Escherichia coli, a gram-negative bacterium, and Staphylococcus aureus, a gram-positive bacterium, according to the film adhesion method of Japanese Industrial Standards Z 2801 (JIS Z2801). After incubation, all specimens were cultured for (24 ± 1) hours at (35 ± 1) ℃ and relative humidity of 90% or higher. Then, the bacteria were collected from each specimen and the number of live cells was measured.

시험방법으로는 보존균주로부터 사면배지에 해당 공시균을 (35±1)℃에서 16~20 시간 배양하고, 배양된 공시균을 500배 희석된 Nutrient Broth(1/500 NB)에 (2.5×105~ 10×105)개/mL 가 되도록 부유시켜 접종균액으로 사용하였다. 준비된 접종균액 0.4nL를 Petri Dish 안에 놓여진 각 시편의 시험면 위에 접종하고, 접종균액 위에 필름을 덮어 접종균액이 각 시편 위에 골고루 퍼지도록 한 후, Petri Dish 마개를 닫고 (35±1)℃, 상대습도 90% 이상의 조건하에서 24±1시간 동안 배양하였다. SCDLP 배지 10mL를 사용하여 시험접종 직후의 무가공 시험편, 24시간 배양 후 각 시편과 무가공 시험편에서 균을 회수하였다. 회수된 균액은 PCA 배지를 이용하여 (35±1)℃, 40~48시간 동안 배양 후 생균수를 측정하였다.As a test method, the bacteria were cultured on a slope medium at 35 ± 1 ° C for 16-20 hours on a slope medium, and the cultured bacteria were added to 500-fold diluted Nutrient Broth (1/500 NB) 5 to 10 x 10 5 ) / ml, and used as the inoculum. 0.4 nL of the prepared inoculum was inoculated on the test surface of each specimen placed in Petri Dish, and the inoculum was spread over the specimen by spreading the film on the inoculum. The petri dish was closed (35 ± 1) ℃, And cultured for 24 ± 1 hours under conditions of 90% or more of humidity. 10 mL of SCDLP medium was used for the 24-hour culture of the untreated test pieces immediately after the inoculation, and the bacteria were recovered from each of the test pieces and the non-processed test pieces. The collected bacteria were incubated at 35 ± 1 ℃ for 40 ~ 48 hours using PCA medium.

그 결과는 하기 표 3과 같았다. The results are shown in Table 3 below.

시험예 3의 결과Results of Test Example 3 시험항목
Test Items
시험결과Test result
초기농도
(CFU/mL)
Initial concentration
(CFU / mL)
24시간 후 농도
(CFU/mL)
Concentration after 24 hours
(CFU / mL)
세균감소율
(%)
Bacterial reduction rate
(%)
Escherichia coliEscherichia coli BlankBlank 1.7×104 1.7 x 10 4 5.9×104 5.9 x 10 4 -- 실시예 1Example 1 1.7×104 1.7 x 10 4 <10<10 99.999.9 Staphylococcus aureusStaphylococcus aureus BlankBlank 1.2×104 1.2 x 10 4 4.4×104 4.4 × 10 4 -- 실시예 1Example 1 1.2×104 1.2 x 10 4 <10<10 99.999.9

상기 표 3에서 확인할 수 있는 바와 같이, 실시예 1은 대장균, 황색포도상구균에 대한 테스트 결과 24시간 후, 99.9%의 세균감소율을 보임을 확인할 수 있었다. As can be seen from the above Table 3, it was confirmed that Example 1 showed a bacterial reduction rate of 99.9% after 24 hours from the test on E. coli and Staphylococcus aureus.

(시험예 4)(Test Example 4)

68% 질산(HNO3), 98% 황산(H2SO4), 35% 염산(HCl), 55% 불산(HF)을 이용하여 실시예 1 및 비교예 1의 내산성을 테스트하였다. 내산성 테스트를 위하여 상기 실시예 1 및 비교예 1의 코팅층이 형성된 철근을 길이가 3cm가 되도록 시편을 준비하였다.The acid resistance of Example 1 and Comparative Example 1 was tested using 68% nitric acid (HNO 3 ), 98% sulfuric acid (H 2 SO 4 ), 35% hydrochloric acid (HCl) and 55% hydrofluoric acid (HF). For the acid resistance test, specimens were prepared so that the reinforcing bars formed with the coating layers of Example 1 and Comparative Example 1 had a length of 3 cm.

테스트 방법은 종이컵 8개에 질산 150㎖, 황산 150㎖, 염산 150㎖ 및 불산 150㎖를 각각 2개씩 담아 Aset(질산, 황산, 염산 및 불산 각 1개씩)과 B set(질산, 황산, 염산 및 불산 각 1개씩)으로 나누어 둔 후, Aset의 종이컵에 실시예 1의 시편을, B set의 종이컵에는 비교예 1의 시편을 각각 투입하여 24시간 방치한 후, 시편을 꺼내 시편의 적청발생 정도를 디지털면적계를 이용하여 측정하고, 부식면적율을 계산하였다. 이때 부식 면적율의 계산은 부식면적/측정면적 ×100으로 하였다. 이때 각 산의 온도는 20℃로 유지하였다.Test methods were as follows: Acet (one each of nitric acid, sulfuric acid, hydrochloric acid, and hydrofluoric acid) and B set (nitric acid, sulfuric acid, hydrochloric acid, and hydrochloric acid) containing two 150 ml of nitric acid, 150 ml of sulfuric acid, And one set of each one of the hydrofluoric acid). Thereafter, the specimen of Example 1 was placed in a paper cup of Aset and the specimen of Comparative Example 1 was placed in a paper cup of B set. After 24 hours, the specimen was taken out and the degree of redness A digital area meter was used to measure the corrosion area rate. At this time, the calculation of the corrosion area ratio was made as corrosion area / measurement area × 100. The temperature of each acid was maintained at 20 ° C.

그리고 대조군으로서는 코팅층이 형성되지 않은 철근을 동일한 크기로 준비하여 사용하였다.As a control, reinforcing bars having no coating layer were prepared in the same size.

시험예 4 결과Test Example 4 Result 구분division 질산nitric acid 황산Sulfuric acid 염산Hydrochloric acid 불산Foshan 실시예 1Example 1 00 00 00 00 비교예 1Comparative Example 1 22 00 00 2121 대조군 Control group 9494 9292 9393 9898

상기 표 4에서 확인할 수 있는 바와 같이 실시예 1은 질산, 황산, 염산, 불산 모두에서 반응 없음을 확인하였다. 반면, 비교예 1은 황산과 염산에 반응이 없음을 확인하였으나, 질산과 불산에서 약간의 부식이 진행되며, 대조군은 질산, 황산, 염산 및 불산 모두에 다량의 부식이 진행됨을 확인하였다. As can be seen from the above Table 4, it was confirmed that in Example 1, no reaction was found in all of nitric acid, sulfuric acid, hydrochloric acid and hydrofluoric acid. On the other hand, in Comparative Example 1, it was confirmed that there was no reaction with sulfuric acid and hydrochloric acid. However, slight corrosion occurred in nitric acid and hydrofluoric acid, and a large amount of corrosion was observed in nitric acid, sulfuric acid, hydrochloric acid and hydrofluoric acid.

이상, 본 발명을 바람직한 실시예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the scope of the present invention is not limited to the disclosed exemplary embodiments. It will also be appreciated that many modifications and variations will be apparent to those skilled in the art without departing from the scope of the invention.

Claims (7)

삭제delete 강옥(Corundum) 10~30중량%, 규석(silica stone) 5~25중량%, 산화주석(SnO2) 1~15중량%, 붕사(borax) 5~30중량%, 초석(niter) 1~18중량%, 산화구리(CuO) 1~20중량%, 탄산마그네슘(MgCO3) 0.1~5중량%, 산화코발트(CoO) 0.1~5중량% 및 이산화망간(MnO2) 0.1~5중량%를 혼합하는 단계와,
상기 혼합된 혼합물을 1,200~1,600℃로 1~10시간 동안 용융처리하여 비정질 소결체로 제조하는 단계와,
상기 제조된 비정질 소결체를 냉각하는 단계와,
상기 냉각된 냉각물을 분쇄하는 단계를 포함하는 것을 특징으로 하는 항균 세라믹 코팅 조성물의 제조방법.
10 to 30 wt% of corundum, 5 to 25 wt% of silica stone, 1 to 15 wt% of tin oxide (SnO 2 ), 5 to 30 wt% of borax, 1 to 18 nitrers 1 to 20% by weight of copper oxide (CuO), 0.1 to 5% by weight of magnesium carbonate (MgCO 3 ), 0.1 to 5% by weight of cobalt oxide and 0.1 to 5% by weight of manganese dioxide (MnO 2 ) Step,
Melting the mixed mixture at 1,200 to 1,600 DEG C for 1 to 10 hours to obtain an amorphous sintered body;
Cooling the produced amorphous sintered body,
And milling the cooled cooling product. &Lt; RTI ID = 0.0 &gt; 21. &lt; / RTI &gt;
제 2항의 방법으로 제조되는 것을 특징으로 하는 항균 세라믹 코팅 조성물.
The antimicrobial ceramic coating composition according to claim 2, which is produced by the method of claim 2.
제 3항의 세라믹 코팅 조성물을 금속 모재의 표면에 도포하는 단계와,
상기 조성물이 도포된 금속 모재를 800~950℃의 온도로 1~30분간 소성처리하는 단계와,
상기 열처리된 금속 모재를 냉각하는 단계를 포함하는 것을 특징으로 하는 항균 세라믹 코팅 조성물의 코팅방법.
Applying the ceramic coating composition of claim 3 to the surface of the metal base material,
Calcining the metal base material coated with the composition at a temperature of 800 to 950 占 폚 for 1 to 30 minutes;
And cooling the heat-treated metal base material. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제 4항에 있어서,
상기 코팅 조성물을 금속 모재의 표면에 도포하는 단계는, 상기 코팅 조성물을 10~2,000㎛의 두께로 도포하고,
상기 코팅 조성물을 금속 모재에 도포하는 단계 후,
상기 코팅 조성물이 도포된 금속 모재를 30~200℃의 온도에서 건조하는 단계를 더 포함한 후, 열처리하는 것을 특징으로 하는 항균 세라믹 코팅 조성물의 코팅방법.
5. The method of claim 4,
Wherein the step of applying the coating composition to the surface of the metal base material comprises applying the coating composition to a thickness of 10 to 2,000 mu m,
After the step of applying the coating composition to the metal base material,
And drying the metal base material coated with the coating composition at a temperature of 30 to 200 캜, followed by heat treatment.
제 5항에 있어서,
상기 금속 모재는 파이프이고,
상기 소성처리하는 단계는,
고주파 유도 가열장치로 가열하여 열처리하는 것을 특징으로 하는 항균 세라믹 코팅 조성물의 코팅방법.
6. The method of claim 5,
The metal base material is a pipe,
The firing step may include:
And heating the coated substrate with a high frequency induction heating apparatus to heat-treat the coated substrate.
제 6항에 있어서,
상기 소성처리하는 단계는,
박스(Box)로에서 소성하는 것을 특징으로 하는 항균 세라믹 코팅 조성물의 코팅방법.
The method according to claim 6,
The firing step may include:
And baking the mixture in a box furnace.
KR1020170076283A 2017-06-16 2017-06-16 Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it KR101841970B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170076283A KR101841970B1 (en) 2017-06-16 2017-06-16 Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170076283A KR101841970B1 (en) 2017-06-16 2017-06-16 Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it

Publications (1)

Publication Number Publication Date
KR101841970B1 true KR101841970B1 (en) 2018-03-26

Family

ID=61910801

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170076283A KR101841970B1 (en) 2017-06-16 2017-06-16 Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it

Country Status (1)

Country Link
KR (1) KR101841970B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102086954B1 (en) * 2019-06-11 2020-03-10 주식회사 터보이온코리아 Far-infrared ray hair dryer
CN113336441A (en) * 2021-05-21 2021-09-03 亚细亚建筑材料股份有限公司 Light-operated heat transfer glaze
WO2024014576A1 (en) * 2022-07-14 2024-01-18 엘지전자 주식회사 Antimicrobial film-coated substrate and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405322B1 (en) * 2014-02-28 2014-06-11 부림산업개발(주) Inorganic ceramic paint for curing at room temperature and painting method using the same
KR101703345B1 (en) * 2016-08-05 2017-02-06 성기영 Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405322B1 (en) * 2014-02-28 2014-06-11 부림산업개발(주) Inorganic ceramic paint for curing at room temperature and painting method using the same
KR101703345B1 (en) * 2016-08-05 2017-02-06 성기영 Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102086954B1 (en) * 2019-06-11 2020-03-10 주식회사 터보이온코리아 Far-infrared ray hair dryer
CN113336441A (en) * 2021-05-21 2021-09-03 亚细亚建筑材料股份有限公司 Light-operated heat transfer glaze
WO2024014576A1 (en) * 2022-07-14 2024-01-18 엘지전자 주식회사 Antimicrobial film-coated substrate and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR101703345B1 (en) Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it
KR101841970B1 (en) Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it
US20080233295A1 (en) Antioxidation coating for steel and antioxidation method using the same
KR101414019B1 (en) Method for forming hydrophilic inorganic layer
CN103922806B (en) Ceramic wine bottle colored glaze and glaze spraying method
CN1730570A (en) High temperature energy-saving corrosion-resisting paint , preparation and usage
CN106221559B (en) A kind of ordinary steel high-temp. resistant antioxidation coating and its application method
CN102615877A (en) Low-radiation coated glass capable of being toughened off line and production method thereof
KR101468093B1 (en) Antimicrobial ceramic and oxide-containing epoxy resin coating method for manufacturing a steel tube
WO2018079881A1 (en) Celadon glaze composition and preparation method therefor
CN103359942A (en) Preparation method of glass glaze surface winebottle
CN106348787A (en) Rare earth added antibacterial ceramic glaze and preparation method thereof
CN108441006B (en) High-conversion-rate black body radiation coating
CN110526582B (en) Composite material for coating and preparation method thereof
CN107793141A (en) The preparation method of infrared radiant material
KR101789324B1 (en) Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it
KR101841968B1 (en) Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it
KR101841965B1 (en) Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it
JP2003137603A (en) Thermally tempered glass formed body having photocatalyst layer and method of manufacturing the same
KR101934634B1 (en) A Glaze Composition With An Excellent Far Infrared Radiation And Antibiosis And A Pottery Manufactured Using The Same
KR101841957B1 (en) Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it
KR101841971B1 (en) Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it
KR100990450B1 (en) Functional paint having thermal storage function, antibacterial function and deodorizing function
CN105084906A (en) Ceramic material, ceramic liner and electric cooker prepared from same
KR101431148B1 (en) Method of preparing ceramic coating material for low temperature sintering and coated product using the same

Legal Events

Date Code Title Description
GRNT Written decision to grant