KR101835597B1 - Electrode active material for electric double layer capacitor - Google Patents

Electrode active material for electric double layer capacitor Download PDF

Info

Publication number
KR101835597B1
KR101835597B1 KR1020170036992A KR20170036992A KR101835597B1 KR 101835597 B1 KR101835597 B1 KR 101835597B1 KR 1020170036992 A KR1020170036992 A KR 1020170036992A KR 20170036992 A KR20170036992 A KR 20170036992A KR 101835597 B1 KR101835597 B1 KR 101835597B1
Authority
KR
South Korea
Prior art keywords
powder
activated carbon
conductive additive
carbon powder
edlc
Prior art date
Application number
KR1020170036992A
Other languages
Korean (ko)
Inventor
박종온
김태윤
엄기춘
김기효
Original Assignee
삼화전기 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼화전기 주식회사 filed Critical 삼화전기 주식회사
Priority to KR1020170036992A priority Critical patent/KR101835597B1/en
Application granted granted Critical
Publication of KR101835597B1 publication Critical patent/KR101835597B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention relates to a method for manufacturing an electrode active material for an EDLC, capable of preventing the degradation of an equivalent series resistance (ESR) characteristic by uniformly applying conductive additive powder when the conductive additive powder and activated carbon powder are applied on the surface of a current collector by granulating the activated carbon powder and the conductive additive powder. The method for manufacturing an electrode active material for an EDLC includes the steps of: preparing the activated carbon powder; preparing the conductive additive powder; mixing 87 to 96 wt% of the activated carbon powder with 4 to 13 wt% of the conductive additive powder using a nanoset mill or a ball mill; and manufacturing granular electrode powder by drying the mixture of the activated carbon powder and the conductive additive powder using a spray drying method if the activated carbon powder is mixed with the conductive additive powder.

Description

EDLC용 전극 활물질 제조방법{Electrode active material for electric double layer capacitor}[0001] The present invention relates to an electrode active material for an EDLC,

본 발명은 EDLC용 전극 활물질 제조방법에 관한 것으로, 특히 활성탄 분말과 도전성 첨가제 분말을 과립형으로 제조함으로써 집전체의 표면에 활성탄 분말과 도전성 첨가제 분말을 도포 시 도전성 첨가제 분말이 균일하게 도포되어 ESR(equivalent series resistance) 특성이 저하되는 것을 방지할 수 있는 EDLC용 전극 활물질 제조방법에 관한 것이다.More particularly, the present invention relates to a method for producing an electrode active material for EDLC, and more particularly, to a method for manufacturing an electrode active material for an EDLC, which comprises granulating an activated carbon powder and a conductive additive powder into a granular form to uniformly apply the powder of the conductive additive to the surface of the current collector, the present invention relates to a method for producing an electrode active material for EDLC.

EDLC(electric double layer capacitor)는 전극으로 활성탄을 사용하고 있으며, EDLC의 전극으로 사용되는 활성탄에 관련된 기술이 한국공개특허공보 제10-2011-0063472호(특허문헌 1)에 공개되어 있다. An electric double layer capacitor (EDLC) uses activated carbon as an electrode, and a technique relating to activated carbon used as an EDLC electrode is disclosed in Korean Patent Laid-Open Publication No. 10-2011-0063472 (Patent Document 1).

한국공개특허공보 제10-2011-0063472호는 EDLC의 전극에 사용되는 활성탄 제조 방법에 관한 것으로, 평균 입경이 작고 입자 크기가 균일하며 비표면적이 비교적 큰 활성탄이 용이하고 비용-효과적인 방식으로 생산될 수 있는 EDLC용 활성탄을 제조하는 방법으로, 출발 물질로서 석유 코크스 또는 석탄 코크스와 같은 용이하게 흑연화 가능한 탄소재를 이용하고 탄소재를 생산하기 위해 산화 기체 대기하에서 출발 물질을 소성하고, 탄소재의 입자 크기를 조절하며 그 다음 탄소재를 활성화시켜 제조한다. Korean Patent Laid-Open Publication No. 10-2011-0063472 relates to a method for producing activated carbon for use in an electrode of an EDLC, wherein activated carbon having a small average particle size, a uniform particle size, and a relatively large specific surface area is produced in a cost-effective manner A method for producing activated carbon for EDLC, which uses an easily graphitizable carbonaceous material such as petroleum coke or coal coke as a starting material, calcining the starting material under an oxidizing gas atmosphere to produce carbonaceous material, The particle size is controlled and then the carbon material is activated.

한국공개특허공보 제10-2011-0063472호에 기재된 활성탄을 이용해 EDLC의 전극 물질 제조 시 도전성 첨가제인 카본블랙(carbon black)을 첨가하여 제조하며, 이러한 도전성 첨가제는 알루미늄 재질로 형성되는 집전체의 표면에 도포 시 활성탄과 혼합하여 도포됨에 따라 도전성 첨가제가 전체의 표면에 고르게 분포되도록 도포되지 않아 ESR(equivalent series resistance) 특성이 저하될 수 있는 문제점이 있다. Korean Patent Laid-Open Publication No. 10-2011-0063472 discloses the production of EDLC by adding carbon black, which is a conductive additive, to the surface of a current collector formed of aluminum There is a problem in that the conductivity additive is not applied evenly on the entire surface and the ESR (equivalent series resistance) characteristic is lowered.

한국공개특허공보 제10-2011-0063472호Korean Patent Publication No. 10-2011-0063472

본 발명의 목적은 전술한 문제점을 해결하기 위한 것으로, 활성탄 분말과 도전성 첨가제 분말을 과립형으로 제조함으로써 집전체의 표면에 활성탄 분말과 도전성 첨가제 분말을 도포 시 도전성 첨가제 분말이 균일하게 도포되어 ESR(equivalent series resistance) 특성이 저하되는 것을 방지할 수 있는 EDLC용 전극 활물질 제조방법을 제공함에 있다.The object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to provide a method of manufacturing an active carbon powder and a conductive additive powder by granulating the activated carbon powder and the conductive additive powder, equivalent series resistance) of the electrode active material of the present invention.

본 발명의 EDLC용 전극 활물질 제조방법은 활성탄 분말을 준비하는 단계; 도전성 첨가제 분말을 준비하는 단계; 상기 활성탄 분말 87 내지 96wt%와 상기 도전성 첨가제 분말 4 내지 13wt%를 나노셋 밀(nanoset mill)이나 볼밀(ball mill)을 이용하여 혼합하는 단계; 및 상기 활성탄 분말과 상기 도전성 첨가제 분말이 혼합되면 스프레이 건조방법을 이용해 건조시켜 과립형 전극분말을 제조하는 단계를 포함하는 것을 특징으로 한다.The method for preparing an electrode active material for EDLC according to the present invention comprises: preparing an activated carbon powder; Preparing a conductive additive powder; Mixing 87 to 96 wt% of the activated carbon powder and 4 to 13 wt% of the conductive additive powder using a nanoset mill or a ball mill; And drying the mixture of the activated carbon powder and the conductive additive powder using a spray drying method to prepare a granular electrode powder.

본 발명의 EDLC용 전극 활물질 제조방법은 활성탄 분말과 도전성 첨가제 분말을 과립형으로 제조함으로써 집전체의 표면에 활성탄 분말과 도전성 첨가제 분말을 도포 시 도전성 첨가제 분말이 균일하게 도포되어 ESR(equivalent series resistance) 특성이 저하되는 것을 방지할 수 있는 이점이 있다.The method for producing an electrode active material for EDLC according to the present invention is a method for producing activated carbon powder and a conductive additive powder in a granular form to uniformly apply a conductive additive powder to the surface of a collector to apply an equivalent series resistance (ESR) There is an advantage that it is possible to prevent degradation of characteristics.

도 1은 본 발명의 EDLC용 전극 활물질 제조방법을 나타낸 공정 흐름도,
도 2는 도 1에 도시된 과립형 전극분말을 제조하는 단계에서 제조된 과립형 전극분말의 단면도,
도 3은 도 2에 도시된 과립형 전극분말이 적용된 EDLC의 단면도.
1 is a process flow diagram showing a method for producing an electrode active material for EDLC of the present invention,
FIG. 2 is a cross-sectional view of the granular electrode powder produced in the step of producing the granular electrode powder shown in FIG. 1,
3 is a cross-sectional view of the EDLC to which the granular electrode powder shown in Fig. 2 is applied.

이하, 본 발명의 EDLC용 전극 활물질 제조방법의 실시예를 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, embodiments of a method for producing an electrode active material for EDLC of the present invention will be described with reference to the accompanying drawings.

도 1 및 2에서와 같이 본 발명의 EDLC용 전극 활물질 제조방법은 먼저, 활성탄 분말(11)을 준비한다(S110). 활성탄 분말(11)이 준비되면 도전성 첨가제 분말(12)을 준비한다(S120). 활성탄 분말(11)과 도전성 첨가제 분말(12)이 각각 준비되면 활성탄 분말(11) 87 내지 96wt%와 도전성 첨가제 분말(12) 4 내지 13wt%를 나노셋 밀(nanoset mill)이나 볼밀(ball mill)을 이용하여 혼합한다(S130). 활성탄 분말(11)과 도전성 첨가제 분말(12)이 혼합되면 스프레이 건조방법을 이용해 건조시켜 과립형 전극분말(10)을 제조한다(S140). 여기서, 과립형 전극분말(10)의 평균 입경(Dm)은 5 내지 20㎛가 되도록 제조된다. As shown in FIGS. 1 and 2, in the method for producing an electrode active material for EDLC of the present invention, activated carbon powder 11 is prepared (S110). When the activated carbon powder 11 is prepared, a conductive additive powder 12 is prepared (S120). When the activated carbon powder 11 and the conductive additive powder 12 are prepared, 87 to 96 wt% of the activated carbon powder 11 and 4 to 13 wt% of the conductive additive powder 12 are mixed with a nanoset mill or ball mill, (S130). When the activated carbon powder 11 and the conductive additive powder 12 are mixed, the granular electrode powder 10 is prepared by drying using a spray drying method (S140). Here, the average particle diameter Dm of the granular electrode powder 10 is made to be 5 to 20 占 퐉.

본 발명의 EDLC용 전극 활물질 제조방법의 구성을 보다 상세히 설명하면 다음과 같다. The structure of the electrode active material for EDLC of the present invention will be described in more detail as follows.

본 발명의 EDLC용 전극 활물질 제조방법은 먼저, 도 1 및 도 2에서와 같이 활성탄 분말(11)을 준비한다(S110). 활성탄 분말(11)을 준비하기 위해 먼저, 코크스(cokes)를 대기분위기에서 30 내지 100분 동안 450 내지 550℃에서 소성하여 탄화물을 제조한다(S111). 탄화물이 제조되면 탄화물을 평균 입경이 3 내지 7㎛가 되도록 제트 밀(jet mill)로 분쇄하여 탄화분말을 제조한다(S112). 여기서, 탄화물의 분쇄는 공지된 분쇄방법인 제트 밀을 이용해 활성탄 분말(11)의 평균 입경(D1)이 0.5 내지 1㎛가 되도록 분쇄한다. 탄화분말이 제조되면 탄화분말 15 내지 35wt%와 수산화칼륨 65 내지 85wt%를 혼합한 후 질소분위기 및 600 내지 750℃에서 30 내지 100분 동안 활성화시켜 활성탄 분말(11)을 제조한다(S113). In the method for producing an electrode active material for EDLC of the present invention, activated carbon powder 11 is first prepared as shown in FIGS. 1 and 2 (S110). In order to prepare activated carbon powder 11, cokes are calcined at 450 to 550 ° C for 30 to 100 minutes in an atmospheric environment to produce carbides (S111). When the carbide is produced, the carbide is pulverized with a jet mill so that the average particle diameter becomes 3 to 7 占 퐉 to prepare a carbonized powder (S112). Here, the pulverization of the carbide is carried out by using a jet mill, which is a known grinding method, so that the mean particle diameter (D1) of the activated carbon powder (11) becomes 0.5 to 1 占 퐉. When carbonized powder is prepared, 15 to 35 wt% of carbonized powder and 65 to 85 wt% of potassium hydroxide are mixed and activated at 600 to 750 ° C for 30 to 100 minutes in a nitrogen atmosphere to produce an activated carbon powder 11 (S113).

활성탄 분말(11)이 준비되면 도 1 및 도 2에서와 같이 도전성 첨가제 분말(12)을 준비한다(S120). 도전성 첨가제 분말(12)의 재질은 슈퍼-피(Super-P), 케쳔블랙(ketjen black) 및 카본블랙(carbon black) 중 하나가 사용되며, 도전성 첨가제 분말(12)의 평균 입경(D2)은 0.01 내지 0.1㎛인 것이 사용된다. When the activated carbon powder 11 is prepared, the conductive additive powder 12 is prepared as shown in FIGS. 1 and 2 (S120). One of the materials of the conductive additive powder 12 is Super-P, ketjen black and carbon black, and the average particle diameter D2 of the conductive additive powder 12 is 0.01 to 0.1 mu m is used.

활성탄 분말(11)과 도전성 첨가제 분말(12)이 각각 준비되면 도 1에서와 같이 활성탄 분말(11) 87 내지 96wt%와 도전성 첨가제 분말(12) 4 내지 13wt%를 나노셋 밀(nanoset mill)이나 볼밀(ball mill)을 이용하여 혼합한다(S130). 여기서, 나노셋 밀(nanoset mill)이나 볼밀(ball mill)은 공지된 방법이 사용된다. 활성탄 분말(11)과 도전성 첨가제 분말(12)이 혼합되면 스프레이 건조방법을 이용해 건조시켜 과립형 전극분말(10)을 제조한다(S140).When the activated carbon powder 11 and the conductive additive powder 12 are prepared as shown in FIG. 1, 87 to 96 wt% of the activated carbon powder 11 and 4 to 13 wt% of the conductive additive powder 12 are blended in a nanoset mill And mixed using a ball mill (S130). Here, a known method is used for a nanoset mill or a ball mill. When the activated carbon powder 11 and the conductive additive powder 12 are mixed, the granular electrode powder 10 is prepared by drying using a spray drying method (S140).

이와 같이 본 발명의 EDLC용 전극 활물질 제조방법은 활성탄 분말(11) 87 내지 96wt%와 도전성 첨가제 분말(12) 4 내지 13wt%를 나노셋 밀(nanoset mill)이나 볼밀(ball mill)을 이용하여 혼합하여 과립형으로 제조함으로써 집전체(120: 도 3에 도시됨)에 도포 시 도전성 첨가제 분말(12)을 집전체(120)의 표면에 고르게 분산되도록 도포함으로써 도전성 첨가제 분말(12)이 불균일하게 도포됨에 따른 ESR(equivalent series resistance) 특성의 저하를 방지할 수 있게 된다. As described above, 87 to 96 wt% of the activated carbon powder 11 and 4 to 13 wt% of the conductive additive powder 12 are mixed using a nanoset mill or a ball mill, The conductive additive powder 12 is uniformly applied by applying the conductive additive powder 12 so as to be evenly dispersed on the surface of the current collector 120 upon application to the current collector 120 (shown in FIG. 3) It is possible to prevent the degradation of the equivalent series resistance (ESR) characteristics due to the increase of the resistance.

본 발명의 EDLC용 전극 활물질 제조방법에 제조된 을 이용해 다양한 실시예의 과립형 전극분말(10)을 제조하였다.Granular electrode powder 10 of various examples was prepared by using the electrode active material for EDLC according to the present invention.


과립형 전극분말(wt%)Granular electrode powder (wt%)
활성탄 분말Activated carbon powder 도전성 첨가제 분말Conductive additive powder 실시예 1Example 1 9696 44 실시예 2Example 2 8787 1313

표 1에서와 같이 실시예1에 따른 과립형 전극분말(10)은 활성탄 분말(11) 96wt%와 도전성 첨가제 분말(12) 4wt%가 되도록 혼합하여 형성하였으며, 실시예2에 따른 과립형 전극분말(10)은 활성탄 분말(11) 87wt%와 도전성 첨가제 분말(12) 13wt%가 되도록 혼합하여 형성하였다. As shown in Table 1, the granular electrode powder 10 according to Example 1 was formed by mixing 96 wt% of the activated carbon powder 11 and 4 wt% of the conductive additive powder 12, and the granular electrode powder (10) was formed by mixing 87 wt% of activated carbon powder (11) and 13 wt% of conductive additive powder (12).

실시예 1 및 2에 따른 과립형 전극분말(10)의 전기적인 특성을 시험하기 위해 실시예 1 및 2에 따른 과립형 전극분말(10)에 각각 바인더 및 유기용제를 혼합하여 전극 물질 슬러리를 제조하였다. 여기서, 바인더 및 유기용제의 각각의 혼합비의 공지된 기술이 적용됨으로 상세한 설명을 생략한다. 여기서, 바인더는 PVDF(polyvinylidene difluoride), PTFE(polytetrafluoroethylene), SBR(styrene butadiene rubber) 및 CMC(carboxymethylcellulose) 중 하나가 사용되며, 유기용제는 공지된 재질이 사용된다.In order to test the electrical characteristics of the granular electrode powder 10 according to Examples 1 and 2, the granular electrode powder 10 according to Examples 1 and 2 was mixed with a binder and an organic solvent to prepare an electrode material slurry Respectively. Here, known techniques of mixing ratios of the binder and the organic solvent are applied, and detailed description is omitted. Here, one of polyvinylidene difluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR) and carboxymethylcellulose (CMC) is used as the binder, and a known material is used as the organic solvent.

실시예 1 및 2에 따른 과립형 전극분말(10)을 이용해 전극 물질 슬러리가 제조되면 전극 물질 슬러리를 이용해 도 3에 도시된 EDLC를 제조하였다. EDLC는 도 3에서와 같이 제1집전체(110), 제2집전체(120), 음극물질층(130), 양극물질층(140), 분리막(150), 제1외부전극(160), 제2외부전극(170) 및 케이스(180)를 포함한다. When the electrode material slurry was prepared using the granular electrode powder 10 according to Examples 1 and 2, the EDLC shown in Fig. 3 was prepared using the electrode material slurry. 3, the EDLC includes a first current collector 110, a second current collector 120, a cathode material layer 130, a cathode material layer 140, a separator 150, a first external electrode 160, A second external electrode 170 and a case 180. [

케이스(180)는 도 3에 도시된 EDLC를 전반적으로 지지하며, 제1외부전극(160)과 제2외부전극(170)은 각각 제1집전체(110)와 제2집전체(120)의 일측에 각각 접합되어 연결된다. 음극물질층(130)과 양극물질층(140)은 각각 표 1에 도시된 실시예1과 실시예2에 따른 과립형 전극분말(10)을 이용해 제조된 전극물질 슬러리를 제1집전체(110)에 도포한 후 건조하여 제조하였다. 분리막(150)은 음극물질층(130)과 양극물질층(140)이 서로 물리적으로 접촉되지 않도록 음극물질층(130)과 양극물질층(140) 사이에 배치시켜 도 3에 도시된 EDLC를 제조하였다. 도시 않은 전해액은 공지된 재질 및 방법을 이용해 음극물질층(130)과 양극물질층(140)에 함침시켰다.The first external electrode 160 and the second external electrode 170 are connected to the first current collector 110 and the second current collector 120, respectively, And they are connected to each other. The cathode material layer 130 and the anode material layer 140 are formed by using the electrode material slurry produced using the granular electrode powder 10 according to the first and second embodiments shown in Table 1 as the first collector 110 ), Followed by drying. The separator 150 is disposed between the cathode material layer 130 and the anode material layer 140 such that the cathode material layer 130 and the anode material layer 140 are not physically contacted with each other to manufacture the EDLC shown in FIG. Respectively. An electrolyte solution not shown is impregnated into the cathode material layer 130 and the anode material layer 140 using a known material and method.

음극물질층(130)과 양극물질층(140)을 각각 표 1에 도시된 실시예1과 실시예2에 따른 과립형 전극분말(10)을 이용해 제조된 도 3에 도시된 EDLC을 전기적인 시험을 실시하였으며, 그 결과가 표 2에 도시되어 있다. The cathode material layer 130 and the anode material layer 140 were subjected to an electrical test (see FIG. 3) prepared using the granular electrode powder 10 according to Example 1 and Example 2 shown in Table 1, And the results are shown in Table 2.

셀전압(V)Cell voltage (V) ESR(mΩ)ESR (mΩ) 실시예 1Example 1 2.72.7 1010 실시예 2Example 2 2.72.7 1111

표 2에서와 같이 음극물질층(130)과 양극물질층(140)을 각각 실시예 1 및 2와 같이 본 발명의 전극물질 제조방법에 따라 제조된 EDLC는 각각 모두 셀전압이 2.7V이고, 각각의 ESR(equivalent series resistance) 특성은 순차적으로 10mΩ 및 11mΩ으로 측정되었다. 반면에, 표 2에서와 같이 음극물질층(130)과 양극물질층(140)을 각각 활성탄 분말(11)로 제조된 종래의 EDLC는 셀전압이 2.7V이고, 13mΩ으로 측정되는 것으로 보아 본 발명의 전극물질 제조방법에 따라 제조된 전극물질을 이용해 EDLC를 제조 시 ESR(equivalent series resistance) 특성을 개선시킬 수 있게 된다. As shown in Table 2, the EDLC prepared according to the electrode material manufacturing method of the present invention as in Examples 1 and 2, respectively, of the cathode material layer 130 and the anode material layer 140 had a cell voltage of 2.7 V, The equivalent series resistance (ESR) characteristics were measured sequentially at 10 mΩ and 11 mΩ. On the other hand, as shown in Table 2, since the conventional EDLC prepared by using the activated carbon powder 11 as the anode material layer 130 and the anode material layer 140 is measured at a cell voltage of 2.7 V and 13 mΩ, It is possible to improve ESR (equivalent series resistance) characteristics in manufacturing EDLC by using the electrode material manufactured according to the electrode material manufacturing method of the present invention.

본 발명의 EDLC용 전극 활물질 제조방법은 EDLC의 제조산업 분야에 적용할 수 있다.The method for producing an electrode active material for EDLC of the present invention can be applied to the manufacturing industry of EDLC.

10: 과립형 전극분말 11: 활성탄 분말
12: 도전성 첨가제 분말 110: 제1집전체
120: 제2집전체 130: 음극물질층
140: 양극물질층 150: 분리막
160: 제1외부전극 170: 제2외부전극
180: 케이스
10: granular electrode powder 11: activated carbon powder
12: conductive additive powder 110: first current collector
120: Second collector 130: Cathode material layer
140: anode material layer 150: separator
160: first external electrode 170: second external electrode
180: Case

Claims (5)

활성탄 분말을 준비하는 단계;
도전성 첨가제 분말을 준비하는 단계;
상기 활성탄 분말 87 내지 96wt%와 상기 도전성 첨가제 분말 4 내지 13wt%를 나노셋 밀(nanoset mill)이나 볼밀(ball mill)을 이용하여 혼합하는 단계; 및
상기 활성탄 분말과 상기 도전성 첨가제 분말이 혼합되면 스프레이 건조방법을 이용해 건조시켜 과립형 전극분말을 제조하는 단계를 포함하는 EDLC용 전극 활물질 제조방법.
Preparing activated carbon powder;
Preparing a conductive additive powder;
Mixing 87 to 96 wt% of the activated carbon powder and 4 to 13 wt% of the conductive additive powder using a nanoset mill or a ball mill; And
And drying the mixture of the activated carbon powder and the conductive additive powder using a spray drying method to prepare a granular electrode powder.
제1항에 있어서,
상기 활성탄 분말을 준비하는 단계는,
코크스(cokes)를 대기 분위기에서 30 내지 100분 동안 450 내지 550℃에서 소성하여 탄화물을 제조하는 단계;
상기 탄화물을 평균 입경이 3 내지 7㎛가 되도록 제트 밀로 분쇄하여 탄화분말을 제조하는 단계; 및
상기 탄화분말 15 내지 35wt%와 수산화칼륨 65 내지 85wt%를 혼합한 후 질소 분위기 600 내지 750℃에서 30 내지 100분 동안 활성화시켜 상기 활성탄 분말을 제조하는 단계를 포함하는 것을 특징으로 하는 EDLC용 전극 활물질 제조방법.
The method according to claim 1,
Wherein the step of preparing the activated carbon powder comprises:
Calcining cokes at 450 to 550 占 폚 for 30 to 100 minutes in an air atmosphere to produce carbides;
Milling the carbide with a jet mill so as to have an average particle diameter of 3 to 7 占 퐉 to produce a carbonized powder; And
Mixing 15 to 35 wt% of the carbonized powder with 65 to 85 wt% of potassium hydroxide, and then activating the mixture at 600 to 750 ° C for 30 to 100 minutes in a nitrogen atmosphere to prepare an activated carbon powder for EDLC Gt;
제2항에 있어서,
상기 활성탄 분말은 평균 입경이 0.5 내지 1㎛인 것을 특징으로 하는 EDLC용 전극 활물질 제조방법.
3. The method of claim 2,
Wherein the activated carbon powder has an average particle diameter of 0.5 to 1 占 퐉.
제1항에 있어서,
상기 도전성 첨가제 분말을 준비하는 단계에서,
상기 도전성 첨가제 분말은 슈퍼-피(Super-P), 케쳔블랙(ketjen black) 및 카본블랙(carbon black) 중 하나가 사용되는 것을 특징으로 하는 EDLC용 전극 활물질 제조방법.
The method according to claim 1,
In the step of preparing the conductive additive powder,
Wherein the conductive additive powder is one selected from the group consisting of Super-P, Ketjen black and Carbon black.
제4항에 있어서,
상기 도전성 첨가제 분말의 평균 입경은 0.01 내지 0.1㎛인 것을 특징으로 하는 EDLC용 전극 활물질 제조방법.
5. The method of claim 4,
Wherein the conductive additive powder has an average particle diameter of 0.01 to 0.1 占 퐉.
KR1020170036992A 2017-03-23 2017-03-23 Electrode active material for electric double layer capacitor KR101835597B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170036992A KR101835597B1 (en) 2017-03-23 2017-03-23 Electrode active material for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170036992A KR101835597B1 (en) 2017-03-23 2017-03-23 Electrode active material for electric double layer capacitor

Publications (1)

Publication Number Publication Date
KR101835597B1 true KR101835597B1 (en) 2018-03-08

Family

ID=61725706

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170036992A KR101835597B1 (en) 2017-03-23 2017-03-23 Electrode active material for electric double layer capacitor

Country Status (1)

Country Link
KR (1) KR101835597B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102003641B1 (en) * 2018-04-20 2019-07-25 전북대학교산학협력단 3D composite conductor for gas sensor using activated carbon and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182107B1 (en) 2011-09-16 2012-09-12 (주) 퓨리켐 3V Hybrid Capacitor using Lithium Titanate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182107B1 (en) 2011-09-16 2012-09-12 (주) 퓨리켐 3V Hybrid Capacitor using Lithium Titanate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102003641B1 (en) * 2018-04-20 2019-07-25 전북대학교산학협력단 3D composite conductor for gas sensor using activated carbon and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101365568B1 (en) Negative electrode active material for Lithium Ion Rechargeable Battery and negative Electrode using the same
US10069131B2 (en) Electrode for energy storage devices and method of making same
KR101575439B1 (en) A sulfur cathode of lithium sulfur batteries employing two kinds of binder
JPH10275747A (en) Electric double layer capacitor
US20150062779A1 (en) Edlc electrode and manufacturing process thereof
US9236599B2 (en) Low cost high performance electrode for energy storage devices and systems and method of making same
CN102527257A (en) Preparation method of conductive carbon membrane
JPH03201517A (en) Electric double layer capacitor
CN103803550B (en) A kind of preparation method of asphalt based active carbon
KR101835597B1 (en) Electrode active material for electric double layer capacitor
KR102068204B1 (en) Electrode of electric double layer capacitor
US20190066936A1 (en) Method for manufacturing capacitive deionization electrode and capacitive deionization electrode manufactured using the same
KR101462578B1 (en) Method for producing carbon material for electrochemical device electrode
KR101381710B1 (en) Method for manufacturing active carbon for electrode using cokes and method for manufacturing active carbon composition for electrode
KR101833972B1 (en) Manufacturing method of graphite material for rechargeable battery
KR20180108951A (en) Electrode active material for electric double layer capacitor
KR102068205B1 (en) electric double layer capacitor
KR102018169B1 (en) EDLC : Electric double layer capacitor
KR100805206B1 (en) Active Material For An Electrode, Electrode Comprising The Same and Manufacturing Method thereof
KR20180108950A (en) Electric double layer capacitor
JP2008270427A (en) Carbon material for power storage device electrode, and manufacturing method thereof
KR102239685B1 (en) Electro-conductive adhesive using activated carbon, electrode current collector, electrode for supercapacitor and the supercapacitor having improved high temperature performance
KR101689479B1 (en) Active carbon for electrical-double-layer capacitor electrode and method for manufacturing the same
KR101120504B1 (en) Electrode for electrochemical capacitor and process for preparing the same
KR101835596B1 (en) High capacity energy storage capacitor

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant