KR101825613B1 - Method for preparing low-odor polyethylene resin composition for plastic closure and Article Produced with the Same - Google Patents

Method for preparing low-odor polyethylene resin composition for plastic closure and Article Produced with the Same Download PDF

Info

Publication number
KR101825613B1
KR101825613B1 KR1020160119172A KR20160119172A KR101825613B1 KR 101825613 B1 KR101825613 B1 KR 101825613B1 KR 1020160119172 A KR1020160119172 A KR 1020160119172A KR 20160119172 A KR20160119172 A KR 20160119172A KR 101825613 B1 KR101825613 B1 KR 101825613B1
Authority
KR
South Korea
Prior art keywords
resin composition
polyethylene resin
carbon atoms
pressure
solid catalyst
Prior art date
Application number
KR1020160119172A
Other languages
Korean (ko)
Inventor
김동진
박준려
박지용
이영실
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020160119172A priority Critical patent/KR101825613B1/en
Priority to CN201710557738.1A priority patent/CN107840918B/en
Application granted granted Critical
Publication of KR101825613B1 publication Critical patent/KR101825613B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0096Producing closure members for containers, e.g. closure caps or stoppers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6421Titanium tetrahalides with organo-aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/645Component covered by group C08F4/64 with a metal or compound covered by group C08F4/44, not provided for in a single group of groups C08F4/642 - C08F4/643
    • C08F4/6452Component of C08F4/64 containing at least two different metals
    • C08F4/6455Component of C08F4/64 containing at least two different metals containing magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • C08K5/526Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2400/00Characteristics for processes of polymerization
    • C08F2400/02Control or adjustment of polymerization parameters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/03Multinuclear procatalyst, i.e. containing two or more metals, being different or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/04Dual catalyst, i.e. use of two different catalysts, where none of the catalysts is a metallocene

Abstract

A preparation method of a polyethylene resin composition for a bottle cap of the present invention, as a method of preparing the polyethylene resin composition by copolymerizing ethylene and alpha-olefin in the presence of a solid catalyst including Si, Ti and Mg, comprises performing a degassing process of at least three stages or more on the polyethylene resin composition, wherein the degassing process of the three stages or more has a first stage pressure of 1.2 to 1.5 atmospheric pressure, a second stage pressure of 1.1 to 1.3 atmospheric pressure, and a third stage pressure of 0.9 to 1.1 atmospheric pressure. The polyethylene resin composition has less than 10 ppm of a content of a hydrocarbon having 2 to 10 carbon atoms, exhibits low bad odor characteristics with a smell index of 2.0 or less, and does not generate an unpleasant smell such that the polyethylene resin composition can maintain intrinsic smell characteristics of the beverages when the polyethylene resin composition is applied to the bottle cap for beverages.

Description

저취기 특성을 나타내는 플라스틱 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법 및 이로부터 제조된 성형품{Method for preparing low-odor polyethylene resin composition for plastic closure and Article Produced with the Same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyethylene resin composition for a plastic bottle cover showing low odor characteristics and a molded article produced therefrom,

본 발명은 산화수 4가의 티타늄 화합물과 유기마그네슘 화합물을 반응시켜 알콕시실란계 화합물을 포함한 고체 촉매 존재하에 에틸렌 및 알파올레핀을 공중합 및 탈기(degassing)하여 불쾌한 냄새가 발생하지 않는 플라스틱 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법 및 이로부터 제조된 성형품에 관한 것이다.The present invention relates to a polyethylene resin composition for a plastic bottle cap which does not cause an unpleasant odor by reacting ethylene oxide and tetravalent titanium compound with an organomagnesium compound and copolymerizing and degassing ethylene and an alpha olefin in the presence of a solid catalyst containing an alkoxysilane compound And a molded article produced therefrom.

최근 포장용기의 다양화와 환경측면의 분리수거 확대로 유리병, 폴리에틸렌테레프탈레이트(PET) 등의 음료용기에 사용되는 병뚜껑 소재의 플라스틱화가 증가되고 있는 상태이다. 플라스틱 병뚜껑 소재로는 고밀도 폴리에틸렌, 폴리프로필렌 등이 주로 사용되고 있는데 이러한 소재를 기재로 한 병뚜껑은 기존의 알루미늄 소재의 병뚜껑 대비 가볍고 부식성이 없으며, 성형성이 우수할 뿐만 아니라 다양한 디자인의 성형이 가능한 장점으로 그 사용량이 늘어나고 있다. 특히, 고밀도 폴리에틸렌의 경우 폴리프로필렌 대비 유연한 특성을 지니고 있어 음료용기 내용물의 밀봉성 부여를 위해 별도의 라이너가 필요한 폴리프로필렌 소재의 병뚜껑과 달리 라이너를 사용하지 않고도 내용물의 밀봉성을 유지할 수 있는 장점을 지니고 있다. 하지만 폴리에틸렌 수지에 냄새를 유발하는 성분이 있을 경우, 그 성분이 음료에 전이되어 음료 고유의 냄새를 변화시키고, 심할 경우 불쾌한 냄새가 발생하기도 한다. 특히 생수의 경우 무미무취가 유지되어야 하는데, PET 용기 또는 폴리에틸렌 병뚜껑에 잔류된 미량의 냄새유발 물질들이 생수의 맛을 변화시키는 경우가 지속적으로 발생하고 있다.In recent years, plasticization of bottle lids used in beverage containers such as glass bottles and polyethylene terephthalate (PET) has been increasing due to diversification of packaging containers and separation of environmental aspects. High density polyethylene, polypropylene, etc. are mainly used as plastic bottle lid material. Bottle lid based on these materials is light and not corrosive compared with conventional aluminum bottle lid. Its use is increasing as a possible advantage. Especially, high density polyethylene has flexible characteristics compared to polypropylene, so it is possible to maintain the sealing property of the contents without using a liner, unlike a bottle cap made of polypropylene, which requires a separate liner to seal the contents of the beverage container . However, if there is a component that causes odor in the polyethylene resin, the component may be transferred to the beverage to change the intrinsic odor of the beverage, and if unpleasant, the odor may occur. Particularly, in the case of bottled water, tasteless odor must be maintained, and a small amount of odor causing substances remaining in the PET container or the polyethylene bottle lid continuously changes the taste of the living water.

종래기술로는 미국 등록특허 제5,948,846에서 수지 조성물에 윤활제 및 제올라이트(zeolite)를 첨가하여 냄새 성분을 흡착하는 방법을 제시하고 있으나, 첨가제를 활용한 방법으로 수지 본연의 냄새를 최소화한 본 발명과는 차이점이 있다.US Patent No. 5,948,846 discloses a method of adsorbing an odor component by adding a lubricant and zeolite to a resin composition in the prior art. However, the present invention, which minimizes odor of the resin by using a method using additives, There is a difference.

상기와 문제점을 해결하기 위한 본 발명의 목적은 폴리에틸렌 수지의 냄새 유발을 최소화한 음료용 플라스틱 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법을 제공하는 것이다.It is an object of the present invention to solve the above-mentioned problems and to provide a method for producing a polyethylene resin composition for a plastic bottle cap for a beverage in which odor induction of a polyethylene resin is minimized.

본 발명의 다른 목적은 상기 제조방법으로 제조된 성형품을 제공하는 것이다.Another object of the present invention is to provide a molded article produced by the above production method.

상기 목적을 달성하기 위한 본 발명의 양상은, According to an aspect of the present invention,

Si, Ti 및 Mg를 포함하는 고체 촉매의 존재하에 에틸렌 및 알파올레핀을 공중합시켜 폴리에틸렌 수지 조성물을 제조하는 방법에 있어서,A process for producing a polyethylene resin composition by copolymerizing ethylene and an alpha olefin in the presence of a solid catalyst comprising Si, Ti and Mg,

상기 폴리에틸렌 수지 조성물은 적어도 3단 이상의 탈기(degassing)공정이 수행되고,The polyethylene resin composition is subjected to a degassing process of at least three stages,

상기 3단 이상의 탈기공정 중 1단의 압력은 1.2~1.5 기압이며, 2단의 압력은 1.1~1.3 기압이고, 3단의 압력은 0.9~1.1 기압인 것을 특징으로 하는 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법을 제공하는 것이다.Wherein the pressure of the first stage of the degassing process of the three or more stages is 1.2 to 1.5 atm, the pressure of the second stage is 1.1 to 1.3 atm and the pressure of the third stage is 0.9 to 1.1 atm. And a method for manufacturing the same.

본 발명의 폴리에틸렌 수지 조성물의 제조방법으로 제조된 폴리에틸렌 수지 조성물은 저취기 특성을 나타내며, 음료용 병뚜껑에 적용할 경우 음료 고유의 냄새 특성을 유지할 수 있다.The polyethylene resin composition prepared by the process for producing a polyethylene resin composition of the present invention exhibits a low odor characteristic, and when applied to a bottle cap for a beverage, the odor characteristic inherent to the beverage can be maintained.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

Si, Ti 및 Mg를 포함하는 고체 촉매의 존재하에 에틸렌 및 알파올레핀을 공중합시켜 폴리에틸렌 수지 조성물을 제조하는 방법에 있어서,A process for producing a polyethylene resin composition by copolymerizing ethylene and an alpha olefin in the presence of a solid catalyst comprising Si, Ti and Mg,

상기 폴리에틸렌 수지 조성물은 적어도 3단 이상의 탈기(degassing)공정이 수행되고,The polyethylene resin composition is subjected to a degassing process of at least three stages,

상기 3단 이상의 탈기공정 중 1단의 압력은 1.2~1.5 기압이며, 2단의 압력은 1.1~1.3 기압이고, 3단의 압력은 0.9~1.1 기압인 것을 특징으로 하는 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법에 관한 것이다.Wherein the pressure of the first stage of the degassing process of the three or more stages is 1.2 to 1.5 atm, the pressure of the second stage is 1.1 to 1.3 atm and the pressure of the third stage is 0.9 to 1.1 atm. And a manufacturing method thereof.

본 발명의 일 실시예에 있어서, 상기 에틸렌과 알파올레핀 공중합시켜 제조된 폴리에틸렌 수지 조성물은 적어도 3단 이상의 탈기(degassing)공정을 거치는 것이 바람직하다.In one embodiment of the present invention, the polyethylene resin composition prepared by copolymerization of ethylene and alpha-olefin is preferably subjected to at least three degassing steps.

상기 3단 이상의 탈기공정은 탈기기(degasser)에서 1단 압력 1.2~1.5 기압, 2단 압력 1.1~1.3 기압 및 3단 압력 0.9~1.1 기압으로 탈기(degassing) 하는 단계를 포함할 수 있다.The degassing process of the three or more stages may include a step of degassing the degasser at a first stage pressure of 1.2 to 1.5 atm, a second stage pressure of 1.1 to 1.3 atm and a third stage pressure of 0.9 to 1.1 atm.

본 발명에 있어서, 헤드스페이스 기체 크로마토그래피(headspace-gas chromatography)로 분석되는 상기 폴리에틸렌 수지 조성물에 탄소수 2 내지 10인 짧은 사슬의 탄화수소는 반응기에서 생성된 분말 형태의 중합체의 탈기공정을 통해 제거하여 10ppm 미만의 함량을 유지하는 것이 바람직하다.In the present invention, a chain hydrocarbon having a carbon number of 2 to 10 is removed from the polyethylene resin composition, which is analyzed by headspace-gas chromatography, through a deaeration process of a powdery polymer produced in the reactor, By weight or less.

상기 탈기공정은 탈기기에서 적어도 3단계로 진행될 수 있으며, 상기 탈기공정 조건은 중합체내 탄소수 2 내지 10인 짧은 사슬의 탄화수소의 함량에 영향을 줄 수 있다.The degassing process may proceed in at least three stages in the degassing apparatus, and the degassing process conditions may affect the content of short chain hydrocarbons having 2 to 10 carbon atoms in the polymer.

상기 폴리에틸렌 수지 조성물에 탄소수 2 내지 10인 짧은 사슬의 탄화수소 함량을 10ppm 미만으로 유지하기 위해서는 탈기기(degasser)에서 1단 압력은 1.2~1.5 기압, 2단 압력은 1.1~1.3 기압, 3단 압력은 0.9~1.1 기압의 범위인 것이 바람직하다. In order to keep the hydrocarbon content of the short chain carbon chain of 2 to 10 in the polyethylene resin composition at less than 10 ppm, the degasser requires a first stage pressure of 1.2 to 1.5 atm, a second stage pressure of 1.1 to 1.3 atm, And is preferably in the range of 0.9 to 1.1 atm.

일 실시예에 있어서, 상기 탈기기에서 1단 압력이 1.2 기압 미만이면 생산성이 저하되고, 1.5 기압을 초과하면 탈기가 제대로 이루어지지 않는다.In one embodiment, the productivity of the deaerator is lowered when the pressure of the first stage is less than 1.2 atm. If the pressure is more than 1.5 atm, the deaeration is not properly performed.

상기 2단 압력이 1.1 기압 미만이면 생산성이 저하되고, 1.3 기압을 초과하면 탈기가 제대로 되기 않는다.If the above-mentioned two-stage pressure is less than 1.1 atmospheres pressure, the productivity is lowered.

상기 3단 압력이 0.9 기압 미만이면 중합된 폴리에틸렌 파우더의 배출이 원활하지 않고, 1.1 기압을 초과하면 탈기가 제대로 되지 않는다.If the above-mentioned third-stage pressure is less than 0.9 atm, the discharged polymerized polyethylene powder is not smoothly discharged.

또한, 1단 압력은 항상 2단 압력보다 커야하고, 2단 압력은 3단 압력보다 커야만, 파우더의 이송이 원활하게 이루어진다.Also, the first-stage pressure must always be greater than the second-stage pressure, and the second-stage pressure must be greater than the third-stage pressure, thereby smoothly transferring the powder.

일 실시예에 있어서, 상기 폴리에틸렌 수지 조성물에 탄소수 2 내지 10의 짧은 사슬의 탄화수소 함량은 10ppm 미만이 바람직하며, 상기 탄화수소의 함량이 10ppm 이상이면 충분한 저취기 특성을 발현할 수 없다.In one embodiment, the polyethylene resin composition preferably has a short chain hydrocarbon content of 2 to 10 carbon atoms of less than 10 ppm, and if the hydrocarbon content is more than 10 ppm, it can not exhibit sufficient low odor characteristics.

일 실시예에 있어서, 상기 폴리에틸렌 수지 조성물은 냄새지수(sensory score)가 2.0 이하가 바람직하며, 2.0을 초과하면 불쾌한 냄새가 날 수 있다.In one embodiment, the polyethylene resin composition preferably has a sensory score of 2.0 or less, and an unpleasant odor may occur when the polyethylene resin composition exceeds 2.0.

일 실시예에 있어서, 상기 에틸렌과 알파올레핀 공중합은 Si, Ti 및 Mg를 포함하는 고체 촉매의 존재하에 30kg/cm2 이하의 중합압력 및 40~120℃의 중합온도에서 실시될 수 있다.In one embodiment, the ethylene and alpha olefin copolymerization may be carried out in the presence of a solid catalyst comprising Si, Ti and Mg at a polymerization pressure of 30 kg / cm 2 or less and at a polymerization temperature of 40 to 120 ° C.

일 실시예에 있어서, 상기 중합반응은 기체상태의 에틸렌으로 채워진 반응기내에 에틸렌 또는 다른 알파-올레핀으로 구성된 모노머를 연속적으로 도입함으로써, 기체상의 모노머를 직접 촉매 시스템과 접촉시켜 수행된다. 중합은 일반적으로 중합체의 분자량을 조절하기 위하여 수소와 같은 사슬성장 억제제의 존재하에 수행되며, 반응에 사용되는 올레핀에 대한 사용되는 수소의 부피비는 1~10%의 범위인 것이 바람직하다.In one embodiment, the polymerization reaction is carried out by continuously introducing monomers composed of ethylene or other alpha-olefins into the reactor filled with gaseous ethylene, by contacting the gaseous monomers directly with the catalyst system. The polymerization is generally carried out in the presence of a chain growth inhibitor such as hydrogen to control the molecular weight of the polymer, and it is preferable that the volume ratio of hydrogen used for the olefin used in the reaction ranges from 1 to 10%.

일 실시예에 있어서, 상기 폴리에틸렌 수지 조성물의 용융흐름지수는 ASTM D1238 2.16kg의 하중으로 190℃에서 측정했을 때 0.5~30g/10분이며, 바람직하게는 1~20g/10분이다.In one embodiment, the melt flow index of the polyethylene resin composition is 0.5 to 30 g / 10 min, preferably 1 to 20 g / 10 min, measured at 190 ° C under a load of 2.16 kg ASTM D1238.

상기 용융흐름지수가 0.5g/10분 미만인 경우 흐름성이 저하되어 병뚜껑 성형이 어렵고, 30g/10분을 초과하면, 내환경응력균열저항성(ESCR)이 저하되어 병뚜껑의 장기보관 안정성에 문제가 있을 수 있다.When the melt flow index is less than 0.5 g / 10 min, flowability is lowered and bottle lid molding is difficult. When the melt flow index exceeds 30 g / 10 min, the environmental stress crack resistance (ESCR) .

일 실시예에 있어서, 상기 폴리에틸렌 수지 조성물의 밀도는 0.945~0.965g/cm3이며, 바람직하게는 0.950~0.960g/cm3이다. 상기 밀도가 0.945g/cm3 미만이면 굴곡강도 저하로 병뚜껑의 sealing 특성이 저하될 수 있고, 0.965g/cm3를 초과하면, 내환경응력균열저항성(ESCR)이 저하되어 병뚜껑의 장기보관 안정성에 문제가 있을 수 있다.In one embodiment, the density of the polyethylene resin composition is 0.945 ~ 0.965g / cm 3, preferably 0.950 ~ 0.960g / cm 3. If the density is less than 0.945 g / cm 3, the sealing properties of the bottle lid may deteriorate due to a decrease in the bending strength. If the density exceeds 0.965 g / cm 3 , the environmental stress crack resistance (ESCR) There may be a problem with stability.

일 실시예에 있어서, 상기 폴리에틸렌 수지 조성물은 산화방지제 및 중화제를 더 포함할 수 있다.In one embodiment, the polyethylene resin composition may further comprise an antioxidant and a neutralizing agent.

상기 산화방지제는 상기 폴리에틸렌 수지 조성물 총 100중량부에 대하여 0.01~0.5중량부로 포함될 수 있으며, 바람직하게는 0.05~0.2중량부로 포함될 수 있다.The antioxidant may be included in an amount of 0.01 to 0.5 parts by weight, preferably 0.05 to 0.2 parts by weight based on 100 parts by weight of the total amount of the polyethylene resin composition.

상기 산화방지제 함량이 0.01중량부 미만이면 보관시 변색, 가공 중 점도 변화 등의 문제가 있고, 0.5중량부를 초과하면 맛이나 냄새가 변질되는 문제가 있을 수 있다. If the content of the antioxidant is less than 0.01 parts by weight, discoloration during storage and viscosity change during processing may occur. If the content of the antioxidant is more than 0.5 parts by weight, there may be a problem that the taste and odor are deteriorated.

상기 중화제는 상기 폴리에틸렌 수지 조성물 총 100중량부에 대하여 0.01~0.3중량부로 포함될 수 있으며, 바람직하게는 0.05~0.2중량부로 포함될 수 있다.The neutralizing agent may be included in an amount of 0.01 to 0.3 parts by weight, preferably 0.05 to 0.2 parts by weight based on 100 parts by weight of the total amount of the polyethylene resin composition.

상기 중화제의 함량이 0.01중량부 미만이면 가공 중 변색 및 점도변화가 생기고, 0.3중량부를 초과하면 장기 보관시 색상, 강도 등의 물성 변화가 발생할 수 있다. If the content of the neutralizing agent is less than 0.01 parts by weight, discoloration and viscosity change during processing may occur. If the amount of the neutralizing agent is more than 0.3 parts by weight, changes in physical properties such as color and strength may occur.

상기 산화방지제의 대표적인 예로는 1,3,5-트리메틸-2,4,6-트리스(3,5-디-tert-부틸-4-히드록시벤질)벤젠(1,3,5-Trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene), 1,6-비스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피온아미도]헥산(1,6-Bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamido]hexane), 1,6-비스[3-(3,5-디-tert-부틸-4-히드록시페닐)프로피온아미도]프로판(1,6-Bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamido]propane), 테트라키스[메틸렌(3,5-디-tert-부틸-4-히드록시히드로시나메이트)]메탄(tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)]methane), 비스(2,6-디-tert-부틸-4-메틸페닐)펜타에리트리톨-디-포스파이트(Bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol-di-phosphite), 트리스(2,4-디-tert-부틸페닐)포스파이트(Tris (2, 4-di-tert-butylphenyl) phosphite) 및 비스(2,4-디-tert-부틸페닐)펜타에리트리톨-디-포스파이트(Bis(2,4-di-tert-butylphenyl)Pentraerythritol-di-phosphite) 등이 있다.Representative examples of the antioxidant include 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene (1,3,5- , 4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 1,6-bis [3- (3,5- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamido] hexane), 1,6-bis [3- Butyl-4-hydroxyphenyl) propionamido] propane), tetrakis [methylene (3,5 4-hydroxyhydrocinnamate)] methane), bis (2,6-di-tert-butyl-4-hydroxyhydrocinnamate) Butyl-4-methylphenyl) pentaerythritol-di-phosphite), tris (2,4-di-tert- butylphenyl) pentaerythritol- ) Phosphite and bis (2,4-di-tert-butylphenyl) pentaerythritol-di-phosphite (Bis (2,4-di-tert-butylphenyl) Pentraerythritol-di-phosphite) and the like.

상기 중화제의 대표적인 예로는 칼슘 스테아르산, 아연 스테아르산, 마그네슘 알루미늄 하이드록시 카보네이트, 산화아연 및 마그네슘 하이드록시 스테아르산 또는 이들의 혼합물 등을 포함할 수 있다.Representative examples of such neutralizing agents may include calcium stearate, zinc stearate, magnesium aluminum hydroxycarbonate, zinc oxide and magnesium hydroxystearic acid or mixtures thereof.

본 발명의 일 실시예에 있어서, 상기 고체 촉매는 바람직하게 하기의 단계를 포함하여 제조될 수 있다.In one embodiment of the present invention, the solid catalyst may preferably be prepared comprising the following steps.

(1) 금속 마그네슘(Mg)을 하기 화학식 1로 표시되는 유기할라이드 화합물과 그리냐드 반응하여 유기마그네슘할라이드를 생성하는 단계;(1) reacting metallic magnesium (Mg) with an organic halide compound represented by the following formula (1) to produce an organic magnesium halide;

<화학식 1>&Lt; Formula 1 >

R1X R 1 X

(여기서, R1은 탄소수 1 내지 10의 알킬기, X는 염소, 브롬 또는 요오드)(Wherein R &lt; 1 &gt; is an alkyl group having 1 to 10 carbon atoms, X is chlorine, bromine or iodine)

(2) 상기 (1)단계의 반응중에 하기 화학식 2로 표시되는 산화수 4가의 티타늄 화합물을 반응시켜 촉매중간체를 제조하는 단계; 및(2) reacting a titanium tetravalent titanium compound represented by the following formula (2) in the reaction of step (1) to prepare a catalyst intermediate; And

<화학식 2>(2)

Ti(OR2)mCl4 -m Ti (OR 2 ) m Cl 4 -m

(여기서, 여기서 R2는 탄소수 1 내지 10의 알킬기, m은 0~4의 정수 또는 소수)(Wherein R 2 is an alkyl group having 1 to 10 carbon atoms, m is an integer of 0 to 4, or a prime number)

(3) 상기 (2)단계의 반응 중에, 또는 (2)단계의 반응 완료 후에, 하기 화학식 3으로 표시되는 알콕시실란계 화합물을 첨가하여 반응시켜 고체 촉매를 제조하는 단계;(3) adding an alkoxysilane compound represented by the following formula (3) to the solid catalyst during the reaction of step (2) or after completion of the reaction of step (2);

<화학식 3>(3)

R3 nSi(OR4)4 -n R 3 n Si (OR 4 ) 4 -n

(여기서, R3 및 R4는 각각 탄소수 1 내지 10의 알킬기, n은 0, 1 또는 2의 정수, n이 2일 경우, 2개의 R4는 동일하거나 상이하다).(Wherein R 3 and R 4 are each an alkyl group having 1 to 10 carbon atoms, n is an integer of 0, 1 or 2, and when n is 2, two R 4 s are the same or different).

상기 (3)단계에서 전자공여체 물질로 사용되는 R3 nSi(OR4)4 - n 으로 표시되는 알콕시실란계 화합물의 예로는, 테트라메톡시실란, 메틸트리메톡시실란, 디메틸트디메톡시실란, 트리메틸메톡시실란, 에틸트리메톡시실란, 디에틸디메톡시실란, 트리에틸메톡시실란, 비닐트리메톡시실란, 디비닐디메톡시실란, 프로필트리메톡시실란, 디프로필디메톡시실란, 트리프로필메톡시실란, 이소프로필트리메톡시실란, 디이소프로필디메톡시실란, 트리이소프로필메톡시실란, 부틸트리메톡시실란, 디부틸디메톡시실란, 트리부틸메톡시실란, 이소부틸트리메톡시실란, 디이소부틸디메톡시실란, 트리이소부틸메톡시실란, 시클로펜틸트리메톡시실란, 디시클로펜틸디메톡시실란, 시클로펜틸메틸디메톡시실란, 시클로헥실트리메톡시실란, 디시클로헥실디메톡시실란, 시클로헥실메틸디메톡시실란, 테트라에톡시실란, 메틸트리에톡시실란, 디메틸디에톡시실란, 트리메틸에톡시실란, 에틸트리에톡시실란, 디에틸디에톡시실란, 트리에틸메톡시실란, 비닐트리에톡시실란, 디비닐디에톡시실란, 프로필트리에톡시실란, 디프로필디에톡시실란, 트리프로필에톡시실란, 이소프로필트리에톡시실란, 디이소프로필디에톡시실란, 트리이소프로필에톡시실란, 부틸트리에톡시실란, 디부틸디에톡시실란, 트리부틸에톡시실란, 이소부틸트리에톡시실란, 디이소부틸디에톡시실란, 트리이소부틸에톡시실란, 시클로펜틸트리에톡시실란, 디시클로펜틸디에톡시실란, 시클로펜틸메틸디에톡시실란, 시클로헥실트리에톡시실란, 디시클로헥실디에톡시실란, 시클로헥실메틸디에톡시실란, 테트라프로폭시실란, 메틸트리프로폭시실란, 디메틸디프로폭시실란, 트리메틸프로폭시실란, 에틸트리프로폭시실란, 디에틸디프로폭시실란, 비닐트리프로폭시실란, 디비닐디프로폭시실란, 프로필트리프로폭시실란, 디프로필디프로폭시실란, 이소프로필트리프로폭시실란, 디이소프로필디프로폭시실란, 부틸트리프로폭시실란, 디부틸디프로폭시실란, 이소부틸트리프로폭시실란, 디이소부틸디프로폭시실란, 시클로펜틸트리프로폭시실란, 디시클로펜틸디프로폭시실란, 시클로펜틸메틸디프로폭시실란, 시클로헥실트리프로폭시실란, 디시클로헥실디프로폭시실란 및 시클로헥실메틸디프로폭시실란 등이 있으며, 이들 중 1종 또는 2종 이상을 사용할 수 있다.Examples of the alkoxysilane compound represented by R 3 n Si (OR 4 ) 4 - n used as the electron donor material in the step (3) include tetramethoxysilane, methyltrimethoxysilane, dimethyltrimethoxysilane , Trimethylmethoxysilane, ethyltrimethoxysilane, diethyldimethoxysilane, triethylmethoxysilane, vinyltrimethoxysilane, divinyldimethoxysilane, propyltrimethoxysilane, dipropyldimethoxysilane, tripropyl But are not limited to, methoxysilane, isopropyltrimethoxysilane, diisopropyldimethoxysilane, triisopropylmethoxysilane, butyltrimethoxysilane, dibutyldimethoxysilane, tributylmethoxysilane, isobutyltrimethoxysilane, Diisobutyldimethoxysilane, diisobutyldimethoxysilane, triisobutylmethoxysilane, cyclopentyltrimethoxysilane, dicyclopentyldimethoxysilane, cyclopentylmethyldimethoxysilane, cyclohexyltrimethoxysilane, dicyclohexyldimethoxysilane , Cyclohexylmethyldimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, ethyltriethoxysilane, diethyldiethoxysilane, triethylmethoxysilane, vinyltriethoxysilane, Propyltriethoxysilane, dipropyldiethoxysilane, tripropylethoxysilane, isopropyltriethoxysilane, diisopropyldiethoxysilane, triisopropylethoxysilane, butyltriethoxysilane, dipropyltriethoxysilane, dipropyltriethoxysilane, But are not limited to, ethoxysilane, dibutyldiethoxysilane, tributylethoxysilane, isobutyltriethoxysilane, diisobutyldiethoxysilane, triisobutylethoxysilane, cyclopentyltriethoxysilane, dicyclopentyldiethoxysilane, Cyclopentylmethyldiethoxysilane, cyclohexyltriethoxysilane, dicyclohexyldiethoxysilane, cyclohexylmethyldiethoxysilane, tetrapropoxysilane, methyltripropoxysilane, methyltripropoxysilane, Methyldipropoxysilane, trimethylpropoxysilane, ethyltripropoxysilane, diethyldipropoxysilane, vinyltripropoxysilane, divinyldipropoxysilane, propyltripropoxysilane, dipropyldipropoxysilane, Isopropyltripropoxysilane, diisopropyldipropoxysilane, butyltripropoxysilane, dibutyldipropoxysilane, isobutyltripropoxysilane, diisobutyldipropoxysilane, cyclopentyltripropoxysilane, cyclopentyltripropoxysilane, , Dicyclopentyldipropoxysilane, cyclopentylmethyldipropoxysilane, cyclohexyltripropoxysilane, dicyclohexyldipropoxysilane, and cyclohexylmethyldipropoxysilane. Of these, one or two of them Or more can be used.

일 실시예에 있어서, 상기 고체 족매 제조방법의 (1)단계, (2)단계 및 (3)단계의 각 반응들은 유기용매의 존재하에 수행되는데, 이때 사용 가능한 유기용매로는 헥산, 헵탄, 시클로헥산, 메틸시클로펜탄, 옥탄, 이소옥탄, 노난, 데칸, 케로신 등과 같은 지방족 탄화수소는 물론, 톨루엔, 크실렌 등과 같은 방향족 탄화수소를 사용할 수 있으며, 더욱 바람직하게는 헥산, 헵탄, 시클로헥산, 메틸시클로펜탄, 옥탄 및 이소옥탄 중에서 선택된 1종 이상을 사용할 수 있다.In one embodiment, the respective reactions in steps (1), (2), and (3) of the solid-phase synthesis method are carried out in the presence of an organic solvent. Examples of the organic solvent include hexane, heptane, Aromatic hydrocarbons such as toluene and xylene as well as aliphatic hydrocarbons such as hexane, methylcyclopentane, octane, isooctane, nonane, decane and kerosene may be used and more preferably hexane, heptane, cyclohexane, methylcyclopentane, Octane and isooctane can be used.

상기 (1)단계, 상기 (2)단계 및 상기 (3)단계의 각 반응들은, 효율적인 반응을 위하여 20~150℃, 바람직하게는 60~90℃의 온도에서 수행된다.The reactions of steps (1), (2) and (3) are carried out at a temperature of 20 to 150 ° C., preferably 60 to 90 ° C., for efficient reaction.

본 발명에 있어서, 상기 고체 촉매는 기상에서의 에틸렌 중합 또는 에틸렌과 다른 알파올레핀과의 공중합에 적합하게 이용될 수 있다.In the present invention, the solid catalyst can be suitably used for ethylene polymerization in the gas phase or copolymerization of ethylene and other alpha olefins.

상기 고체 촉매는 중합시에 조촉매의 존재 하에 중합 반응기에 직접 투입되거나, 또는 지방족 탄화수소와 같은 불활성 액체 내에서 조촉매의 존재 하에 하나 또는 그 이상의 올레핀의 전중합에 의해 제조된 전중합체(prepolymer)의 형태로 반응기에 투입될 수도 있다.The solid catalyst may be added directly to the polymerization reactor in the presence of a cocatalyst during polymerization or may be introduced into a prepolymer prepared by the prepolymerization of one or more olefins in the presence of a cocatalyst in an inert liquid such as an aliphatic hydrocarbon, May be introduced into the reactor.

상기 고체 촉매에 대한 상기 조촉매의 비율(고체 촉매내의 티타늄 원자에 대한 조촉매내의 알루미늄 원자의 몰비)은 0.5~1,000의 범위내에서, 기상공정, 슬러리공정 및 용액공정 등에서 각 공정의 특성 및 원하는 고분자 특성에 따라서 다양하게 사용될 수 있다.The ratio of the cocatalyst to the solid catalyst (the molar ratio of aluminum atoms in the cocatalyst to the titanium atom in the solid catalyst) is in the range of 0.5 to 1,000, and the characteristics of each step in the gas phase process, slurry process, solution process, And may be variously used depending on the characteristics of the polymer.

상기 조촉매는 하기 화학식 4로 표시되는 것을 특징으로 한다.The cocatalyst is characterized by being represented by the following formula (4).

<화학식 4>&Lt; Formula 4 >

AlR5 3 AlR 5 3

(여기서, R5는 탄소수 1 내지 16의 알킬기 이다.)(Wherein R &lt; 5 &gt; is an alkyl group having 1 to 16 carbon atoms)

상기 조촉매는 트리알킬알루미늄 화합물이 사용될 수 있으며, 상기 트리알킬알루미늄 화합물의 예로는, 트리에틸알루미늄, 트리메틸알루미늄, 트리노말프로필알루미늄, 트리노말부틸알루미늄, 트리이소부틸알루미늄, 트리노말헥실알루미늄, 트리노말옥틸알루미늄 및 트리-2-메틸펜틸알루미늄 중에서 선택된 1종 이상일 수 있으며, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리노말헥실알루미늄 및 트리노말옥틸알루미늄 중에서 선택된 1종 이상이 바람직하다.Examples of the trialkylaluminum compound include trialkylaluminum compounds such as triethylaluminum, trimethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, tri N-octylaluminum and tri-2-methylpentylaluminum, and at least one selected from triethylaluminum, triisobutylaluminum, trinormalhexylaluminum and trinormaloctylaluminum is preferable.

본 발명에 따른 폴리에틸렌 수지 조성물은 압축 및 사출성형과 같은 일반적인 병뚜껑 제조성형 방법에 모두 사용될 수 있으며, 상기 제조 방법으로 제조된 성형품을 제공할 수 있다.The polyethylene resin composition according to the present invention can be used for general bottle lid manufacturing molding methods such as compression and injection molding, and can provide a molded article manufactured by the above-mentioned manufacturing method.

이하, 당업자가 용이하게 실시할 수 있도록 본 발명을 하기의 실시예 및 비교예에 의하여 보다 구체적으로 설명한다. 하기의 실시예는 본 발명을 예시하기 위한 예에 지나지 않으며, 본 발명의 보호범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples and comparative examples so that those skilled in the art can easily carry out the present invention. The following examples are only illustrative of the present invention and do not limit the scope of protection of the present invention.

실시예Example 1~2 및  1 to 2 and 비교예Comparative Example 1~3 1-3

촉매의 제조Preparation of Catalyst

마그네슘 47.8g(1.968mol)과 요오드 5.0g(0.02mol)을 기계식 교반기가 장착된 5L의 유리반응기 내에서 2400ml의 정제된 헵탄에 현탁시켰다. 이 혼합물의 온도를 85℃로 올려서 테트라부톡시티타늄 44.9ml(0.165mol)과 티타늄테트라클로라이드 22.8ml(0.205mol)를 주입하여 혼합한 다음, 1-클로로부탄 318ml(3.05mol)을 4시간에 걸쳐 적가하였다. 주입 완료 후 2시간의 추가반응을 실시한 다음, 충분한 량의 헥산으로 4회 세척을 하였다. 여기에 테트라에톡시실란 8.240ml(0.037mol)을 주입하여 60℃에서 1시간 추가 반응시켰다. 이렇게 얻어진 촉매는 정제된 헥산에 슬러리 상태로 보관하였다.47.8 g (1.968 mol) of magnesium and 5.0 g (0.02 mol) of iodine were suspended in 2400 ml of purified heptane in a 5 L glass reactor equipped with a mechanical stirrer. 44.9 ml (0.165 mol) of tetrabutoxy titanium and 22.8 ml (0.205 mol) of titanium tetrachloride were poured into the mixture, and 318 ml (3.05 mol) of 1-chlorobutane was added thereto over a period of 4 hours . After the completion of the addition, a further reaction was carried out for 2 hours, followed by washing with a sufficient amount of hexane four times. Then, 8.240 ml (0.037 mol) of tetraethoxysilane was added thereto, followed by further reaction at 60 ° C for 1 hour. The catalyst thus obtained was stored in purified hexane in a slurry state.

총 티타늄: 7.8중량%(산화수 4가의 티타늄이 총 티타늄 중 78중량%), 마그네슘: 32.8중량%, 실리콘: 0.06중량%Total titanium: 7.8 wt.% (Tetradentate titanium is 78 wt.% In total titanium), magnesium: 32.8 wt.%, Silicon: 0.06 wt.%,

에틸렌 및 알파-올레핀 공중합 및 degassingEthylene and alpha-olefin copolymerization and degassing

상기와 같이 제조된 촉매와 조촉매로 트리노말옥틸알루미늄(TnOA) 및 하기 표 1의 중합조건으로 기상 유동층 반응기에서 폴리에틸렌을 중합 및 degassing하였다.Polyethylene was polymerized and degassed in a gaseous fluidized bed reactor with trinormaloctylaluminum (TnOA) as a cocatalyst and the catalyst prepared as described above and the polymerization conditions shown in Table 1 below.

제립Granulation

상기에서 얻어진 파우더형의 공중합체에 산화방지제로 Irganox-1010(Tetrakismethylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)methane) 0.02중량부, Irgafos-168(Tris(2, 4-di-t-butylphenyl) phosphite) 0.1중량부 및 중화제로 calcium stearate 0.1중량부를 헨셀믹서로 혼합한 후, 이축압출기를 사용하여 펠렛 형태로 제립하였다.0.02 part by weight of Irganox-1010 (Tetrakisethylene (3,5-di-t-butyl-4-hydroxyhydrocinnamate) methane) as an antioxidant, 0.02 part by weight of Irgafos-168 (Tris (2,4- t-butylphenyl) phosphite and 0.1 part by weight of calcium stearate as a neutralizing agent were mixed in a Henschel mixer and then granulated in the form of a pellet using a twin-screw extruder.

비교예Comparative Example 4~5 4 to 5

촉매의 제조Preparation of Catalyst

마그네슘 47.8g(1.968mol)과 요오드 5.0g(0.02mol)을 기계식 교반기가 장착된 5L의 유리반응기 내에서 2400ml의 정제된 헵탄에 현탁시켰다. 이 혼합물의 온도를 85℃로 올려서 테트라부톡시티타늄 44.9ml(0.165mol)과 티타늄테트라클로라이드 22.8ml(0.205mol)를 주입하여 혼합한 다음, 1-클로로부탄 318ml(3.05mol)을 4시간에 걸쳐 적가하였다. 주입 완료 후 2시간의 추가반응을 실시한 다음, 충분한 양의 헥산으로 4회 세척을 하였다. 이렇게 얻어진 촉매는 정제된 헥산에 슬러리 상태로 보관하였다.47.8 g (1.968 mol) of magnesium and 5.0 g (0.02 mol) of iodine were suspended in 2400 ml of purified heptane in a 5 L glass reactor equipped with a mechanical stirrer. 44.9 ml (0.165 mol) of tetrabutoxy titanium and 22.8 ml (0.205 mol) of titanium tetrachloride were poured into the mixture, and 318 ml (3.05 mol) of 1-chlorobutane was added thereto over a period of 4 hours . After completion of the addition, an additional reaction was carried out for 2 hours, followed by washing 4 times with a sufficient amount of hexane. The catalyst thus obtained was stored in purified hexane in a slurry state.

총 티타늄: 7.8중량%(산화수 4가의 티타늄이 총 티타늄 중 78중량%), 마그네슘 32.8중량%Total titanium: 7.8 wt% (tetravalent titanium is 78 wt% of total titanium), magnesium 32.8 wt%

에틸렌 및 알파-올레핀 공중합 및 degassingEthylene and alpha-olefin copolymerization and degassing

상기와 같이 제조된 촉매와 조촉매로 트리노말옥틸알루미늄(TnOA) 및 하기 표 1의 중합조건으로 기상 유동층 반응기에서 폴리에틸렌을 중합 및 degassing하였다.Polyethylene was polymerized and degassed in a gaseous fluidized bed reactor with trinormaloctylaluminum (TnOA) as a cocatalyst and the catalyst prepared as described above and the polymerization conditions shown in Table 1 below.

제립Granulation

상기에서 얻어진 파우더형의 공중합체에 산화방지제로 Irganox-1010 0.02중량부, Irgafos-168 0.1중량부 및 중화제로 calcium stearate 0.1중량부를 헨셀믹서로 혼합한 후, 이축압출기를 사용하여 펠렛 형태로 제립하였다.0.02 part by weight of Irganox-1010, 0.1 part by weight of Irgafos-168 as an antioxidant and 0.1 part by weight of calcium stearate as a neutralizing agent were mixed in a Henschel mixer and then granulated in the form of pellets using a twin screw extruder .

비교예Comparative Example 6 6

통상적으로 사용되는 Borouge사의 Cap용 HDPE 제품 MB6561Borouge's Cap HDPE product MB6561

비교예Comparative Example 7 7

통상적으로 사용되는 Sabic사의 Cap용 HDPE 제품 CC453Sabic's cap HDPE product CC453

단위unit 실시예Example 비교예Comparative Example 1One 22 1One 22 33 44 55 중합조건Polymerization conditions 중합온도Polymerization temperature 9090 9090 9090 9090 9090 9090 9090 중합압력Polymerization pressure kg/cm2 kg / cm 2 19.519.5 19.519.5 19.519.5 19.519.5 19.519.5 19.519.5 19.519.5 에틸렌(C2)Ethylene (C2) mol%mol% 43.343.3 38.238.2 43.343.3 38.238.2 39.339.3 42.442.4 39.339.3 수소(H2)Hydrogen (H2) mol%mol% 21.221.2 14.514.5 21.221.2 14.514.5 14.214.2 21.321.3 14.214.2 H2/C2H2 / C2 -- 0.490.49 0.380.38 0.490.49 0.380.38 0.390.39 0.490.49 0.390.39 1-butene1-butene mol%mol% 0.00210.0021 00 0.00210.0021 00 0.00210.0021 0.00210.0021 00 1-hexene1-hexene mol%mol% 00 0.00130.0013 00 0.00130.0013 00 00 0.00130.0013 Bed 무게Bed Weight kgkg 8080 8080 8080 8080 8080 8080 8080 체류시간Residence time hrhr 1212 1212 1212 1212 1212 1212 1212 생산량output kg/hrkg / hr 77 77 77 77 77 77 77 탈기(Degassing) 조건Degassing conditions 1단압력Single-stage pressure 기압atmospheric pressure 1.401.40 1.401.40 1.401.40 1.551.55 1.401.40 1.401.40 1.401.40 2단압력Double-stage pressure 기압atmospheric pressure 1.201.20 1.201.20 1.351.35 1.201.20 1.201.20 1.201.20 1.201.20 3단압력Three-stage pressure 기압atmospheric pressure 1.001.00 1.001.00 1.001.00 1.001.00 1.151.15 1.001.00 1.001.00

용융흐름지수Melt flow index (melt index, MI)(melt index, MI)

ASTM D1238에 따라서 190℃에서 2.16kg 하중으로 측정하였다Lt; RTI ID = 0.0 &gt; 190 C &lt; / RTI &gt; according to ASTM D1238

밀도density

ASTM D1505에 준하여 측정하였다.Measured according to ASTM D1505.

짧은 사슬의 탄화수소(Short chain hydrocarbon) 함량Short chain hydrocarbon content

펠렛 형태의 폴리에틸렌 수지 조성물 1g을 headspace gas chromatography용 20ml 바이알에 넣고 밀봉한 후 1시간동안 180℃로 가열한 후 DB-5 column(60m x 0.32mm x 1.0㎛)이 장착된 gas chromatography로 탄소수 2 내지 10인 탄화수소 함량을 정량하였다. 1 g of the polyethylene resin composition in the form of pellets was placed in a 20 ml vial for headspace gas chromatography and sealed. The mixture was heated to 180 ° C for 1 hour and then subjected to gas chromatography with a DB-5 column (60 m x 0.32 mm x 1.0 m) 10 was determined.

냄새지수(sensory score)Sensory score

하기 표 2와 같이 펠렛 형태의 폴리에틸렌 수지 조성물 100g과 에비앙 생수 1g을 유리 재질의 1L 삼각플라스크에 넣고 밀봉한다. 이것을 80℃ 오븐에 2시간동안 방치한 뒤 꺼내서 상온에 1시간동안 냉각한다. 이것을 손으로 3회 내지 5회 흔들어 준 후, 마개를 열어 냄새를 맡고 Blank(수지를 넣지 않고 동일조건으로 준비)와 비교하여 냄새의 강도를 하기의 표에 따라 숫자로 기입한다. 냄새 평가자는 총 6명으로 구성하며 평균값을 결과로 한다. 냄새 평가자는 이 평가방법을 10회 이상 경험해 본 사람들 중 2시간이내 흡연, 음료, 음식물 섭취가 없고, 24시간 이내 음주, 화장품 사용이 없는 사람을 대상으로 한다.100 g of the polyethylene resin composition in the form of pellets and 1 g of Evian water are placed in a 1 L Erlenmeyer flask made of glass and sealed as shown in Table 2 below. This is allowed to stand in an oven at 80 ° C for 2 hours, then taken out and cooled to room temperature for 1 hour. After shaking it three to five times by hand, open the stopper to take the smell and write the number in accordance with the table below as compared to Blank (prepared under the same conditions without adding resin). The odor evaluator consists of a total of 6 people and results in averages. The odor evaluator is for those who have had more than 10 of these evaluations within 2 hours, who do not smoke, drink, or eat food, and who do not drink or use cosmetics within 24 hours.

냄새지수(sensory score)Sensory score 판정기준Criteria 1One Blank와 비슷하여 구분이 어렵다.Similar to Blank, it is hard to distinguish. 22 미미하게 냄새가 느껴진다.I feel a slight smell. 33 불쾌한 냄새가 느껴진다.An unpleasant smell is felt. 44 불쾌한 냄새가 강하게 느껴진다.The unpleasant smell feels strong. 55 매우 역겨운 냄새가 난다.It smells very disgusting.

단위unit 실시예Example 비교예Comparative Example 1One 22 1One 22 33 44 55 66 77 MI 2.16MI 2.16 g/10ming / 10 min 7.87.8 4.64.6 7.67.6 7.57.5 7.67.6 7.97.9 4.44.4 1.51.5 3.83.8 밀도density g/cm3 g / cm 3 0.9570.957 0.9600.960 0.9670.967 0.9600.960 0.9570.957 0.9570.957 0.9600.960 0.9590.959 0.9550.955 short chain hydrocarbon 함량short chain hydrocarbon content ppmppm 77 88 1616 1212 1515 88 88 4646 1212 냄새지수Odor index 1.81.8 1.71.7 2.42.4 2.32.3 2.22.2 2.62.6 2.42.4 3.13.1 2.82.8

상기 표 3의 결과와 같이, 실시예 1, 2는 Si, Ti 및 Mg를 포함하는 고체 촉매 존재하에 공중합되고, 또한, 3단 탈기(degassing)조건을 모두 만족시키고 있어서 냄재지수가 2 이하로 바람직한 결과를 나타내고 있다.As shown in Table 3, Examples 1 and 2 were copolymerized in the presence of a solid catalyst containing Si, Ti, and Mg, and all of the three-stage degassing conditions were satisfied, Results.

다만, 비교예 1 내지 3은 Si, Ti 및 Mg를 포함하는 고체 촉매 존재하에 공중합 되고 있으나, 3단 탈기(degassing) 조건을 만족하지 못하고 있어서 짧은 사슬의 탄화수소 함량의 10ppm을 초과하고 있으며, 냄새지수가 2 이상을 나타내고 있다.However, Comparative Examples 1 to 3 were copolymerized in the presence of a solid catalyst containing Si, Ti and Mg, but did not satisfy the three-stage degassing condition, exceeded 10 ppm of the short chain hydrocarbon content, and the odor index Is 2 or more.

비교예 4, 5는 Ti 및 Mg를 포함하고 있으나, Si를 포함하지 않은 고체 촉매 존재하에 공중합되어 실시예 1, 2와 비교시 냄새지수가 2 이상으로 불쾌한 냄새를 유발한다.Comparative Examples 4 and 5 contain Ti and Mg, but are copolymerized in the presence of a solid catalyst containing no Si, resulting in an unpleasant odor with an odor index of 2 or more as compared with Examples 1 and 2.

또한, 통상적으로 사용되고 있는 고밀도폴리프로필렌 제품의 비교예 6, 7은 실시예 1 내지 2와 비교시 짧은 사슬의 탄화수소 함량이 10ppm을 초과하고 있으며, 냄새지수에서 바람직하지 못한 결과를 나타내고 있다.Also, in Comparative Examples 6 and 7 of high-density polypropylene products commonly used, the hydrocarbon content of the short chain is more than 10 ppm as compared with Examples 1 and 2, and the odor index shows an undesirable result.

따라서, Si, Ti 및 Mg를 포함하는 고체촉매를 사용하여 제조된 본 발명의 폴리에틸렌 수지 조성물은 저취기 특성을 나타내며, 불쾌한 냄새가 발생하지 않아 음료용 병뚜껑에 적용할 경우 음료 고유의 냄새특성을 유지할 수 있다.Therefore, the polyethylene resin composition of the present invention, which is produced using a solid catalyst containing Si, Ti and Mg, exhibits low odor characteristics and does not generate an unpleasant odor, so that when applied to a lid for a beverage bottle, .

Claims (10)

Si, Ti 및 Mg를 포함하는 고체 촉매의 존재하에 에틸렌 및 알파올레핀을 공중합시켜 폴리에틸렌 수지 조성물을 제조하는 방법에 있어서,
상기 폴리에틸렌 수지 조성물은 적어도 3단 이상의 탈기(degassing)공정이 수행되고,
상기 3단 이상의 탈기공정 중 1단의 압력은 1.2~1.5 기압이며, 2단의 압력은 1.1~1.3 기압이고, 3단의 압력은 0.9~1.1 기압이며,
상기 폴리에틸렌 수지 조성물은 탄소수 2 내지 10의 탄화수소 함량이 10ppm 미만이고, 냄새지수가 2.0 이하인 것을 특징으로 하는 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법.
A process for producing a polyethylene resin composition by copolymerizing ethylene and an alpha olefin in the presence of a solid catalyst comprising Si, Ti and Mg,
The polyethylene resin composition is subjected to a degassing process of at least three stages,
The pressure of the first stage of the degassing process is 1.2 to 1.5 atm, the pressure of the second stage is 1.1 to 1.3 atm, the pressure of the third stage is 0.9 to 1.1 atm,
Wherein the polyethylene resin composition has a hydrocarbon content of 2 to 10 carbon atoms of less than 10 ppm and an odor index of 2.0 or less.
삭제delete 삭제delete 제1항에 있어서,
상기 폴리에틸렌 수지 조성물의 용융흐름지수(ASTM D1238, 190℃, 2.16kg)는 0.5 내지 30g/10분인 것을 특징으로 하는 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법.
The method according to claim 1,
Wherein the polyethylene resin composition has a melt flow index (ASTM D1238, 190 占 폚, 2.16 kg) of 0.5 to 30 g / 10 minutes.
제1항에 있어서,
상기 폴리에틸렌 수지 조성물의 밀도(ASTM D1505, 23℃)는 0.945 내지 0.965g/cm3인 것을 특징으로 하는 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법.
The method according to claim 1,
Wherein the density of the polyethylene resin composition (ASTM D 1505, 23 ° C) is 0.945 to 0.965 g / cm 3 .
제1항에 있어서,
상기 폴리에틸렌 수지 조성물 총 100중량부에 대하여 산화방지제 0.01~0.5중량부 및 중화제 0.01~0.3중량부를 더 포함하는 것을 특징으로 하는 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법.
The method according to claim 1,
Wherein the polyethylene resin composition further comprises 0.01 to 0.5 parts by weight of an antioxidant and 0.01 to 0.3 parts by weight of a neutralizing agent based on 100 parts by weight of the total of the polyethylene resin composition.
제1항에 있어서,
상기 고체 촉매는 하기의 단계를 포함하여 제조되는 것을 특징으로 하는 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법:
(1) 금속 마그네슘(Mg)을 하기 화학식 1로 표시되는 유기할라이드 화합물과 그리냐드 반응하여 유기마그네슘할라이드를 생성하는 단계;
<화학식 1>
R1X
(여기서 R1은 탄소수 1 내지 10의 알킬기, X는 염소, 브롬 또는 요오드)

(2) 상기 (1)단계의 반응중에 하기 화학식 2로 표시되는 산화수 4가의 티타늄 화합물을 반응시켜 촉매중간체를 제조하는 단계; 및
<화학식 2>
Ti(OR2)mCl4 -m
(여기서, 여기서 R2는 탄소수 1 내지 10의 알킬기, m은 0~4의 정수 또는 소수)

(3) 상기 (2)단계의 반응 중에, 또는 (2)단계의 반응 완료 후에, 하기 화학식 3으로 표시되는 알콕시실란계 화합물을 첨가하여 반응시켜 고체 촉매를 제조하는 단계;
<화학식 3>
R3 nSi(OR4)4 -n
(여기서, R3 및 R4는 각각 탄소수 1 내지 10의 알킬기, n은 0, 1 또는 2의 정수, n이 2일 경우, 2개의 R4는 동일하거나 상이하다.)
The method according to claim 1,
Wherein the solid catalyst is prepared by the following steps:
(1) reacting metallic magnesium (Mg) with an organic halide compound represented by the following formula (1) to produce an organic magnesium halide;
&Lt; Formula 1 >
R 1 X
(Wherein R 1 is an alkyl group having 1 to 10 carbon atoms, and X is chlorine, bromine or iodine)

(2) reacting a titanium tetravalent titanium compound represented by the following formula (2) in the reaction of step (1) to prepare a catalyst intermediate; And
(2)
Ti (OR 2 ) m Cl 4 -m
(Wherein R 2 is an alkyl group having 1 to 10 carbon atoms, m is an integer of 0 to 4, or a prime number)

(3) adding an alkoxysilane compound represented by the following formula (3) to the solid catalyst during the reaction of step (2) or after completion of the reaction of step (2);
(3)
R 3 n Si (OR 4 ) 4 -n
(Wherein R 3 and R 4 are each an alkyl group having 1 to 10 carbon atoms, n is an integer of 0, 1 or 2, and when n is 2, two R 4 s are the same or different.)
제1항에 있어서,
상기 고체 촉매는 하기 화학식 4로 표시되는 조촉매 존재 하에서 중합되는 것을 특징으로 하는 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법.

<화학식 4>
AlR5 3
(여기서, R5는 탄소수 1 내지 16의 알킬기이다)
The method according to claim 1,
Wherein the solid catalyst is polymerized in the presence of a cocatalyst represented by the following general formula (4).

&Lt; Formula 4 >
AlR 5 3
(Wherein R &lt; 5 &gt; is an alkyl group having 1 to 16 carbon atoms)
제8항에 있어서,
상기 조촉매는 트리에틸알루미늄, 트리메틸알루미늄, 트리노말프로필알루미늄, 트리노말부틸알루미늄, 트리이소부틸알루미늄, 트리노말헥실알루미늄, 트리노말옥틸알루미늄 및 트리-2-메틸펜틸알루미늄 중에서 선택된 1종 이상인 것을 특징으로 하는 병뚜껑용 폴리에틸렌 수지 조성물의 제조방법.
9. The method of claim 8,
The promoter is at least one selected from triethylaluminum, trimethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctalaluminum and tri-2-methylpentylaluminum Of the polyethylene resin composition for a bottle cap.
제1항 및 제4항 내지 제9항 중 어느 한 항의 폴리에틸렌 수지 조성물의 제조방법으로 제조된 성형품.A molded article produced by the process for producing a polyethylene resin composition according to any one of claims 1 to 9.
KR1020160119172A 2016-09-19 2016-09-19 Method for preparing low-odor polyethylene resin composition for plastic closure and Article Produced with the Same KR101825613B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160119172A KR101825613B1 (en) 2016-09-19 2016-09-19 Method for preparing low-odor polyethylene resin composition for plastic closure and Article Produced with the Same
CN201710557738.1A CN107840918B (en) 2016-09-19 2017-07-10 Process for preparing low odor polyethylene resin composition for plastic closures and articles prepared by the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160119172A KR101825613B1 (en) 2016-09-19 2016-09-19 Method for preparing low-odor polyethylene resin composition for plastic closure and Article Produced with the Same

Publications (1)

Publication Number Publication Date
KR101825613B1 true KR101825613B1 (en) 2018-02-05

Family

ID=61224664

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160119172A KR101825613B1 (en) 2016-09-19 2016-09-19 Method for preparing low-odor polyethylene resin composition for plastic closure and Article Produced with the Same

Country Status (2)

Country Link
KR (1) KR101825613B1 (en)
CN (1) CN107840918B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234595A4 (en) * 2020-11-30 2024-04-17 Lg Chemical Ltd Polyethylene and preparation method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151181A (en) 2014-02-18 2015-08-24 日本ポリエチレン株式会社 Polyethylene-based resin material for molding container lid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG42868A1 (en) * 1989-05-08 1997-10-17 Sumitomo Chemical Co Process for producing solid catalyst for use in polymerization of olefins
EP0942006B1 (en) * 1998-03-09 2003-06-04 Tosoh Corporation Catalyst for olefin polymer production and process for olefin polymer production employing the catalyst
AU3538601A (en) * 1999-12-28 2001-07-09 Basell Technology Company B.V. Process for the preparation of ethylene polymers
WO2011028523A2 (en) * 2009-08-24 2011-03-10 Bridgestone Corporation Process and catalyst system for polydiene production
US8399724B2 (en) * 2011-03-25 2013-03-19 Exxonmobil Chemical Patents Inc. Vinyl terminated higher olefin copolymers and methods to produce thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151181A (en) 2014-02-18 2015-08-24 日本ポリエチレン株式会社 Polyethylene-based resin material for molding container lid

Also Published As

Publication number Publication date
CN107840918B (en) 2020-12-11
CN107840918A (en) 2018-03-27

Similar Documents

Publication Publication Date Title
EP2451851B1 (en) Caps and closures
WO1997014725A1 (en) Olefin (co)polymer composition, process for producing the same, catalyst for (co)polymerizing olefin, and process for producing the same
WO2011126029A1 (en) Polyethylene resin molding material for container lid
EP3230365B1 (en) Polyethylene composition comprising two types of linear low density polyethylene
JP4942525B2 (en) Polyethylene resin composition for bottle caps
MX2012008833A (en) Bimodal polyethylene for blow-moulding applications.
MX2014003884A (en) High-density polyethylene for caps and closures.
US5231144A (en) Highly crystalline polypropylene for forming film
WO2007102652A1 (en) Method of polymerizing propylene comprising olefin pre-polymerization step
US7208436B2 (en) Catalyst components for the polymerization of olefins
KR101825613B1 (en) Method for preparing low-odor polyethylene resin composition for plastic closure and Article Produced with the Same
KR101420017B1 (en) Polyethylene Resine Composition for Plastic Closure and Article Produced with the Same
EP2360192A1 (en) Caps and closures
US7307036B2 (en) Highly active alpha-olefin polymerization catalyst
JP2011111579A (en) Polyethylene resin composition for bottle cap
WO1994007926A1 (en) Process for polymerizing alpha-olefin
JP4240870B2 (en) Propylene-ethylene random copolymer and method for producing the same
EP3313901A1 (en) Polymerisation of ethylene in the presence of a silylchromate based catalyst
JP2021520432A (en) Impact resistant clear polypropylene copolymer composition
KR101862928B1 (en) Linear Medium Density Polyethylene Resin Composition and Article Produced with the Same
KR20120072607A (en) Method of preparation of solid catalyst and method of gas-phase polymerization of ethylene using solid catalyst prepared by the same
US10640584B2 (en) Process for making a solid catalyst component for ethylene polymerization and co-polymerization
US10730965B2 (en) Process for making a solid catalyst component for ethylene polymerization and co-polymerization
CN116997579A (en) Method for producing polypropylene using selectivity control agent and activity limiting agent
JP2002363357A (en) Injection-molded container

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant