KR101823690B1 - Regeneration method of deactivated SCR catalyst by electrolyzed oxidized water - Google Patents

Regeneration method of deactivated SCR catalyst by electrolyzed oxidized water Download PDF

Info

Publication number
KR101823690B1
KR101823690B1 KR1020110095054A KR20110095054A KR101823690B1 KR 101823690 B1 KR101823690 B1 KR 101823690B1 KR 1020110095054 A KR1020110095054 A KR 1020110095054A KR 20110095054 A KR20110095054 A KR 20110095054A KR 101823690 B1 KR101823690 B1 KR 101823690B1
Authority
KR
South Korea
Prior art keywords
catalyst
electrolytic oxidation
oxidation water
scr
spent catalyst
Prior art date
Application number
KR1020110095054A
Other languages
Korean (ko)
Other versions
KR20130031467A (en
Inventor
김동화
이정빈
김기형
Original Assignee
한국전력공사
한국중부발전(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사, 한국중부발전(주) filed Critical 한국전력공사
Priority to KR1020110095054A priority Critical patent/KR101823690B1/en
Publication of KR20130031467A publication Critical patent/KR20130031467A/en
Application granted granted Critical
Publication of KR101823690B1 publication Critical patent/KR101823690B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/50Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids
    • B01J38/52Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids oxygen-containing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 화력발전소 등 연소설비에서 배출되는 질소산화물(NOx)을 제거하기 위한 선택적 촉매 환원공정(Selective Catalytic Reduction: 약자로 SCR)에서 사용되는 SCR 폐촉매의 재생 방법에 관한 것이다. 보다 상세하게는 화력발전소에서 장기 운전되어 비산회(Fly Ash) 중에 포함된 알칼리 금속, 알칼리 토금속 및 중금속 등의 성분에 의해 오염됨으로써, 질소산화물 제거 성능이 크게 떨어진 SCR 폐촉매를 재생할 때, 전해 산화수를 이용하여 성능을 회복시키는 SCR 폐촉매의 재생 방법에 관한 것이다. 본 발명에서는 SCR 폐촉매를 세정할 때, 특정 범위의 산화 환원 전위차(ORP: Oxidation/Reduction Potential)로 설정된 전해 산화수를 이용함으로써, 기존 재생공정에 비하여 단순한 공정에서 촉매 상에 침적된 오염물질은 최대한 많이 침출시키면서, 촉매의 활성물질인 바나듐(V)이나 텅스텐(W)의 용출을 최대한 줄일 수 있기 때문에, 효과적이고 경제적으로 질소산화물 제거 성능을 복원시킬 수 있는 장점이 있다.The present invention relates to a regeneration method of SCR spent catalyst used in Selective Catalytic Reduction (abbreviation SCR) for removing nitrogen oxides (NOx) discharged from combustion facilities such as thermal power plants. More particularly, when regenerating SCR spent catalysts that are contaminated by components such as alkali metals, alkaline earth metals and heavy metals contained in fly ash during long-term operation in a thermal power plant and thus have a greatly reduced NOx removal performance, And recovering the performance of the SCR spent catalyst. In the present invention, by using the electrolytic oxidation water set to a specific range of oxidation / reduction potential (ORP) when cleaning the SCR spent catalyst, contaminants deposited on the catalyst in a simple process as compared with the conventional regeneration process are maximally The leaching of vanadium (V) or tungsten (W), which is an active material of the catalyst, can be minimized while largely leaching the catalyst. Therefore, the nitrogen oxide removal performance can be effectively and economically restored.

Description

전해 산화수를 이용한 배연 탈질 촉매의 재생방법{Regeneration method of deactivated SCR catalyst by electrolyzed oxidized water}Regeneration method of deactivated SCR catalyst by electrolyzed oxidized water [

본 발명은 화력발전소 등 연소설비의 배기가스에 함유된 질소산화물(NOx)의 제거기술인 선택적 촉매 환원공정(Selective Catalytic Reduction 약자로 SCR)에서 성능이 저하된 SCR 폐촉매를 세정용액으로 재생하는 공정에 관한 것이다. 보다 상세하게는 화력발전소 등의 연소과정에서 발생되는 비산회(Fly Ash) 중에 포함된 알칼리 금속,알칼리 토금속 및 중금속 등의 피독 물질에 의해 오염되어 질소산화물 제거 성능이 크게 떨어진 SCR 폐촉매를 전해산화수로 세정하고 건조시켜 질소산화물 제거 성능을 회복시키는 재생방법에 관한 것이다.
The present invention relates to a process for regenerating an SCR spent catalyst whose performance has deteriorated in a selective catalytic reduction (SCR) process, which is a technology for removing nitrogen oxides (NOx) contained in the exhaust gas of a combustion plant such as a thermal power plant, . More particularly, SCR spent catalysts, which are contaminated by poisonous substances such as alkali metals, alkaline earth metals, heavy metals, and the like contained in fly ash generated during the combustion process of thermal power plants and the like, And a regeneration method for recovering the nitrogen oxide removal performance by washing and drying.

화력발전소에서 배출되는 질소산화물을 제거하기 위하여, 암모니아를 환원제로 이용한 선택적 촉매 환원(SCR) 공정이 가장 많이 운용되고 있으며, 설비의 증가에 따라 촉매의 수요 또한 증가하고 있다. SCR 촉매의 수명은 3 내지 5년으로, SCR 설비의 원활한 운영을 위해서는 촉매를 주기적으로 교체해야 하며, 최근에는 경제적인 이유로 신촉매로의 교체보다는 폐촉매를 재생 후 다시 충진시키는 방법을 선호하고 있다. 또한, 특정 폐기물로 분류되는 폐촉매를 재생하여 사용할 경우 경제적인 효과와 함께 환경적인 효과를 추구할 수 있다.The selective catalytic reduction (SCR) process using ammonia as a reducing agent is most widely used to remove nitrogen oxides from thermal power plants. The SCR catalyst has a service life of 3 to 5 years. In order to operate the SCR facility smoothly, the catalyst should be periodically replaced. Recently, for economical reasons, . In addition, when waste catalysts classified as specific waste are regenerated and used, it is possible to pursue environmental effects together with economic effects.

종래의 한국 등록특허 제10-0668936호에서는 하니컴 SCR 폐촉매를 H2SO4 용액에 N4VO3 및 (NH4)2WO3를 첨가시킨 혼합액으로 기포유동장치에서 재생하는 방법을 제시하고 있다. 한국 등록특허 제10-0673303호에서는 분석기기를 이용하여 폐촉매의 활성인자를 분석하고 촉매의 성능을 평가하는 촉매의 성능평가 공정과, 대상 폐촉매를 열적 화학적 재생처리(질산, 황산 등 산성용액; 수산화칼륨, 수산화나트륨 등 알칼리 용액)를 통하여 재생시키는 방법을 제시하고 있다. 미국 특허 US 6,395,665 B2에서는 As와 같은 중금속으로 피독된 배연탈질 폐촉매를 황산(H2SO4)이나 암모니아 수용액을 포함하는 세정용액으로 세정하는 방법을 제시하고 있다.Korean Patent No. 10-0668936 discloses a method of regenerating a honeycomb SCR spent catalyst in a bubble flow apparatus with a mixed solution obtained by adding N 4 VO 3 and (NH 4 ) 2 WO 3 to a H 2 SO 4 solution . Korean Patent Registration No. 10-0673303 discloses a process for evaluating the performance of a catalyst by analyzing the activity factors of the spent catalyst using analytical instruments and evaluating the performance of the catalyst by subjecting the spent catalyst to a thermochemical regeneration treatment such as nitric acid, ; An alkali solution such as potassium hydroxide, sodium hydroxide, etc.). U.S. Patent No. 6,395,665 B2 proposes a method of cleaning a flue gas denitrification catalyst poisoned with a heavy metal such as As with a cleaning solution containing sulfuric acid (H 2 SO 4 ) or aqueous ammonia solution.

순수로만 세정하는 공정에서는 공정이 단순하여 운영비가 적게 소요되지만, 피독 물질인 알칼리 금속, 알칼리 토금속 및 중금속이 완전히 용출되지 못하고 일부 물질이 촉매상에 잔류함에 따라, 재생 후의 촉매 성능이 완전히 회복되지 못하거나 재생 후의 촉매수명이 크게 단축되며, 그 결과 신촉매 등으로 다시 교체해야 하는 경우가 종종 발생한다.In the process of cleaning pure rosin only, the process is simple and the operation cost is low. However, since alkali metal, alkaline earth metal and heavy metal which are poisoning substances are not completely eluted and some substances remain on the catalyst, Or the catalyst life after regeneration is greatly shortened, and as a result, it is often necessary to replace it with a fresh catalyst or the like.

순수 세정 후 산 용액과 알칼리 용액으로 2차 세정을 실시하는 공정에서는, 피독 물질인 알칼리 금속, 알칼리 토금속 및 중금속뿐 아니라, 활성물질인 바나듐(V)이나 텅스텐(W)까지 용출되기 때문에, 촉매의 성능을 회복시키기 위해서는 활성물질을 추가적으로 담지시켜야 하며, 약품 세정 및 세척을 위한 설비를 추가로 설치 및 운전하여야 한다.
In the step of performing secondary cleaning with an acid solution and an alkali solution after pure washing, not only alkaline metals, alkaline earth metals and heavy metals as poisoning substances but also vanadium (V) and tungsten (W) as active substances are eluted. In order to recover the performance, the active substance should be additionally supported, and facilities for cleaning and cleaning the drug should be additionally installed and operated.

본 발명은 상기의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 전해 산화수를 이용한 단일 재생 공정에서 폐촉매에 침적된 피독 물질을 전해 산화수를 이용하여 최대한 용출시키고 활성물질은 보존시킴으로써, 탈질 촉매의 성능을 효과적으로 회복시키는 SCR 폐촉매의 재생방법을 제공하는데 있다.
DISCLOSURE OF THE INVENTION The present invention has been conceived to solve the above problems, and it is an object of the present invention to provide a method for removing a toxic substance deposited on a waste catalyst in a single regeneration process using electrolytic oxidation water, And to provide a regeneration method of an SCR spent catalyst that effectively restores the performance of the catalyst.

본 발명은 상기 목적을 달성하기 위하여, (a) 전해 산화수를 이용하여 폐촉매를 세정하는 단계를 포함하는 촉매의 재생방법을 제공한다.In order to achieve the above object, the present invention provides a method for regenerating a catalyst, comprising the steps of: (a) cleaning the spent catalyst using electrolytic oxidation water.

본 발명에 따른 촉매의 재생방법은 (a) 단계 이후에, (b) 세정된 폐촉매를 순수로 수세시키는 단계; 및 (c) 세정된 폐촉매를 건조시키는 단계를 추가로 포함할 수 있다.The method for regenerating a catalyst according to the present invention comprises: (a) after the step (b), washing the washed spent catalyst with pure water; And (c) drying the washed spent catalyst.

본 발명에 따른 촉매의 재생방법은 (a) 단계 이전에, (d) 전해 산화수의 산화 환원 전위차(ORP: Oxidation Reduction Potential)를 설정하는 단계; 및 (e) 전해 산화수로 피독 물질 용출에 필요한 세정시간을 설정하는 단계를 추가로 포함할 수 있다.The method for regenerating a catalyst according to the present invention may further comprise: (d) before the step (a), setting an oxidation reduction potential (ORP) of electrolytic oxidation water; And (e) setting a cleaning time required for elution of the poisonous substance with the electrolytic oxidation water.

본 발명에서 촉매는 배연 탈질용 선택적 촉매 환원공정(SCR: Selective Catalytic Reduction)에 사용되는 촉매일 수 있고, 또한 촉매는 이산화 티타늄 담지체에 바나듐, 텅스텐, 바륨, 망간, 몰리브덴 또는 이들의 혼합물로 구성되는 활성물질이 담지된 촉매일 수 있으며, 또한 촉매는 하니컴(Honeycomb) 형태, 플레이트 형태 또는 물결(Corrugated) 형태의 촉매일 수 있다.In the present invention, the catalyst may be a catalyst used in Selective Catalytic Reduction (SCR) for flue gas denitrification, and the catalyst may be a vanadium, tungsten, barium, manganese, molybdenum or a mixture thereof And the catalyst may be a honeycomb type, a plate type or a corrugated type catalyst.

본 발명의 방법 중 (d) 단계에서는 전해 산화수의 산화 환원 전위차를 800 mV 내지 1,200 mV로 설정할 수 있고, (e) 단계에서는 세정시간을 30분 이하로 설정할 수 있다.In the step (d) of the method of the present invention, the redox potential difference of electrolytic oxidation water can be set to 800 mV to 1,200 mV, and in the step (e), the cleaning time can be set to 30 minutes or less.

본 발명의 방법 중 (c) 단계에서 건조온도는 150 내지 250℃일 수 있고, (c) 단계에서 건조시간은 1 내지 3시간일 수 있다.In step (c) of the method of the present invention, the drying temperature may be 150 to 250 ° C, and in step (c), the drying time may be 1 to 3 hours.

바람직하게는, 본 발명의 SCR 폐촉매 재생방법은 1) 전해 산화수의 산화 환원 전위차(ORP)를 설정하는 단계, 2) 전해 산화수로 피독 물질 용출에 필요한 세정시간을 설정하는 단계, 3) 전해 산화수로 폐촉매를 세정하는 단계; 4) 세정을 마친 폐촉매를 순수로 수세하는 단계, 5) 수세된 폐촉매를 건조시키는 단계로 구성된다.
Preferably, the SCR spent catalyst regeneration method of the present invention comprises the steps of 1) setting the redox potential difference (ORP) of the electrolytic oxidation water, 2) setting the cleaning time necessary for dissolving the poisoning substance with electrolytic oxidation water, 3) To clean the spent catalyst; 4) washing the washed spent catalyst with pure water, and 5) drying the washed spent catalyst.

본 발명에 따라 SCR 촉매 재생공정에서 별도의 산 처리 또는 알칼리 처리 공정 없이 전해 산화수 처리 단일공정으로 탈질 촉매의 성능을 회복시킴으로써, 공정을 단순화시키고 약품처리 비용을 절감할 수 있으므로 경제적 활용가치가 높다.According to the present invention, in the SCR catalyst regeneration process, the performance of the NO x removal catalyst is recovered by a single electrolytic oxidation treatment without the acid treatment or alkali treatment, thereby simplifying the process and reducing the cost of the chemical treatment.

본 발명에 따라 폐촉매에 침적된 피독 물질은 전해 산화수를 이용하여 최대한 용출시키고 활성물질은 보존시켜 탈질 촉매의 성능을 효과적으로 회복시킬 수 있으며, 또한 공정이 기존의 산성 용액 또는 알칼리 용액을 재생용액으로 사용하는 상용 공정에 비하여 단순하여 경제적으로 SCR 폐촉매를 재생시킬 수 있다.
According to the present invention, the poisoning substance immersed in the waste catalyst can be efficiently eluted using the electrolytic oxidation water and the active material can be preserved to effectively recover the performance of the denitration catalyst. Further, when the process is performed using the existing acidic solution or alkaline solution as a regeneration solution SCR spent catalyst can be regenerated simply and economically as compared with the commercial process used.

도 1은 본 발명에 따라 전해 산화수를 이용하여 SCR 폐촉매를 재생하는 방법을 나타내는 흐름도이다.1 is a flow chart showing a method for regenerating an SCR spent catalyst using electrolytic oxidation water according to the present invention.

본 발명은 화력발전소 등에서 배출되는 질소산화물을 제거시키는 SCR 폐촉매를 재생함에 있어서, 전해 산화수를 이용하여 촉매의 물리적 화학적 손상 없이 기존의 탈질 성능을 회복시키는 재생방법에 관한 것이다.The present invention relates to a regeneration method for regenerating an SCR spent catalyst for removing nitrogen oxides discharged from a thermal power plant or the like by using electrolytic oxidation water to recover the existing denitration performance without physical chemical damage of the catalyst.

도 1은 본 발명에 따라 전해 산화수를 이용하여 SCR 폐촉매를 재생하는 방법을 나타내는 흐름도로서, 본 발명의 SCR 폐촉매 재생방법은 전해 산화수 ORP 설정단계(S10), 전해 산화수 세정단계(S20), 세척단계(S30), 건조단계(S40)를 포함하여 이루어진다.FIG. 1 is a flow chart showing a method for regenerating an SCR spent catalyst using electrolytic oxidation water according to the present invention, wherein the SCR spent catalyst regeneration method of the present invention comprises an electrolytic oxidation number ORP setting step S10, an electrolytic oxidized water cleaning step S20, A cleaning step (S30), and a drying step (S40).

본 발명에서 적용 대상 촉매는 배연 탈질용 SCR 촉매로서, 이 촉매는 이산화 티타늄 담지체에 바나듐, 텅스텐, 바륨, 망간, 몰리브덴 또는 이들의 혼합물로 구성되는 활성물질이 담지된 형태로 이루어질 수 있으며, 또한 하니컴(Honeycomb) 형태, 플레이트 형태 또는 물결(Corrugated) 형태를 가질 수 있다.In the present invention, the catalyst to be applied is an SCR catalyst for exhaust denitration, and the catalyst may be in the form of supporting an active material composed of vanadium, tungsten, barium, manganese, molybdenum or a mixture thereof on a titanium dioxide carrier, May have a honeycomb, plate or corrugated form.

전해 산화수의 ORP 설정단계(S10)에서는 산화 환원 전위차(ORP)가 800 mV 이상인 전해 산화수를 사용하여 폐촉매 중의 피독 물질을 용출시키는 것으로 한다. ORP가 너무 낮으면 피독 물질이 잘 용출되지 않을 수 있으며, ORP가 높을수록 폐촉매 중의 피독 물질 용출이 더 수월해지나 활성물질도 함께 용출되므로, 효과적인 세정을 위해 ORP가 800 mV 내지 1,200 mV인 전해 산화수를 사용하는 것이 바람직하다.In the ORP setting step S10 of the electrolytic oxidation water, electrolytic oxidation water having an oxidation-reduction potential difference (ORP) of 800 mV or more is used to dissolve the poisonous substance in the spent catalyst. If the ORP is too low, the poisonous material may not be eluted well. The higher the ORP, the easier the elution of the poisonous substance in the spent catalyst, but the active substance is also eluted together. Therefore, in order to effectively clean the electrolytic oxidation water with an ORP of 800 mV to 1,200 mV Is preferably used.

다음, 전해 산화수로 피독 물질 용출에 필요한 세정시간을 설정한다. 바람직하게는, 피독 물질을 충분히 용출시키면서 활성물질은 용출되지 않도록, 세정시간을 30분 이하로 설정한다.Next, the cleaning time required for elution of poisonous substance with electrolytic oxidation water is set. Preferably, the cleaning time is set to 30 minutes or less so that the active material is not eluted while sufficiently dissolving the poisonous substance.

실험결과, 세정시간 30분까지는 피독 물질이 최대로 용출되고 활성물질은 최소로 용출되었으며, 30분 이상에서 100분까지는 용출물질의 농도에 큰 변화가 없었기 때문에, 세정시간은 30분 이하로 결정하였다.As a result, it was determined that the washing time was less than 30 minutes since the concentration of the eluent was not changed from 30 minutes to 100 minutes. .

다음, 설정을 마친 후 전해 산화수로 폐촉매를 세정한다. 이 전해 산화수 세정단계(S20)는 폐촉매를 전해 산화수에 투입한 후 피독 물질을 용출시키는 과정을 말한다. 상술한 바와 같이, 피독 물질을 최대로 용출시키면서 활성물질은 용출되지 않도록, ORP가 800 내지 1,200 mV인 전해 산화수를 이용하여 30분 이내로 세정한다.Next, after the setting is completed, the spent catalyst is washed with electrolytic oxidation water. This electrolytic oxidized water cleaning step (S20) refers to a process in which the spent catalyst is injected into the electrolytic oxidation water and then the poisonous material is eluted. As described above, the ORP is rinsed with electrolytic oxidation water having an ORP of 800 to 1,200 mV within 30 minutes so that the active material is not eluted while maximally eluting the poisonous substance.

다음, 세정을 마친 폐촉매를 순수로 수세시킨다. 이 수세단계(S30)는 전해 산화수로 세정을 마친 SCR 폐촉매를 순수로 수세하는 과정이다.Next, the washed spent catalyst is washed with pure water. This water washing step (S30) is a process of washing the SCR spent catalyst cleaned with electrolytic oxidation water with pure water.

마지막으로, 수세된 폐촉매를 건조시킨다. 이 건조단계(S40)는 폐촉매를 세정시킨 후 건조시키는 과정으로서, 이때 150 내지 250℃의 온도에서 1 내지 3시간 동안 수행하는 것이 바람직하다.Finally, the washed spent catalyst is dried. The drying step (S40) is a step of washing the waste catalyst and drying it, and the drying is preferably performed at a temperature of 150 to 250 DEG C for 1 to 3 hours.

건조온도가 150℃ 미만이면 과도한 건조시간이 필요하게 될 우려가 있으며, 건조온도가 250℃를 초과하면 촉매의 내부변형이 일어날 우려가 있다. 상기 범위의 온도에서 비건조 또는 과도한 건조로 인해 촉매의 효율이 감소되는 현상을 방지할 수 있다.If the drying temperature is less than 150 ° C, excessive drying time may be required. If the drying temperature exceeds 250 ° C, internal deformation of the catalyst may occur. It is possible to prevent the efficiency of the catalyst from being reduced due to non-drying or excessive drying at the temperature within the above range.

이하, 실시예를 통하여 본 발명을 상세히 설명한다. 그러나, 하기 실시예는 본 발명을 상세히 설명하기 위해 예시되는 것일 뿐, 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are intended to illustrate the present invention in detail, but the scope of the present invention is not limited thereto.

[실시예 1][Example 1]

본 실시예에서 탈질 폐촉매로는 국내 석탄화력발전소 배연탈질 설비에서 30,000시간 이상 운전되어 탈질효율이 약 55%(350℃ 기준, 동일 조건하 신촉매의 효율은 78%임)로 낮아진 촉매를 사용하였다. 상기 촉매는 이산화 티타늄 담지체에 V2O5와 WO3을 담지시켜 제조된 하니컴 형태의 촉매로서, 가로 10 mm × 세로 10 mm × 높이 100 mm 크기의 모듈 형태로 만들었다. 산화화원장치(ORP)가 800 mV인 전해 산화수를 이용하여, 폐촉매를 30분간 세정한 다음, 순수로 수세한 후, 200℃에서 2시간 동안 건조시켰다.In this embodiment, the denitrification catalyst is operated for 30,000 hours or more in a domestic coal-fired power plant flue gas denitrification facility, and the denitrification efficiency is about 55% (the efficiency of the catalyst is 350% Respectively. The catalyst is a honeycomb catalyst prepared by supporting V 2 O 5 and WO 3 on a titanium dioxide carrier and has a module shape of 10 mm × 10 mm × 100 mm in height. The waste catalyst was washed for 30 minutes using electrolytic oxidation water having an ORP of 800 mV, then rinsed with pure water, and then dried at 200 ° C for 2 hours.

[실시예 2][Example 2]

전해 산화수의 ORP가 900 mV인 것을 제외하고, 실시예 1과 동일하다.The same as Example 1 except that the ORP of the electrolytic oxidation water was 900 mV.

[실시예 3][Example 3]

전해 산화수의 ORP가 1,000 mV인 것을 제외하고, 실시예 1과 동일하다.The same as Example 1, except that the ORP of electrolytic oxidation water was 1,000 mV.

[실시예 4][Example 4]

전해 산화수의 ORP가 1,100 mV인 것을 제외하고, 실시예 1과 동일하다.The same as Example 1 except that the ORP of electrolytic oxidation water was 1,100 mV.

[실시예 5][Example 5]

전해 산화수의 ORP가 1,200 mV인 것을 제외하고, 실시예 1과 동일하다.The same as Example 1 except that the ORP of electrolytic oxidation water was 1,200 mV.

[비교예 1][Comparative Example 1]

전해 산화수 대신 200 ml의 순수로 세정한 것을 제외하고, 실시예 1과 동일하다.Except that it was washed with 200 ml of pure water instead of electrolytic oxidation water.

[비교예 2][Comparative Example 2]

전해 산화수 대신 0.1 M 황산(H2SO4)으로 세정한 것을 제외하고, 실시예 1과 동일하다.Except that it was washed with 0.1 M sulfuric acid (H 2 SO 4 ) instead of electrolytic oxidation water.

[비교예 3][Comparative Example 3]

전해 산화수의 ORP가 700 mV인 것을 제외하고, 실시예 1과 동일하다.The same as Example 1 except that the ORP of electrolytic oxidation water was 700 mV.

[비교예 4][Comparative Example 4]

신촉매New catalyst

[비교예 5][Comparative Example 5]

재생하지 않은 폐촉매Recycled waste catalyst

[시험예 1][Test Example 1]

세정액의 종류에 따른 하니컴 SCR 폐촉매 용출시험을 하였다. 촉매의 피독 물질인 Na, Fe, Ca, Mg, K 및 활성물질인 바나듐(V)과 텅스텐(W)의 용출량을 Perkin-Elmer Plasma 2000 Inductively Coupled Plasma-Atomic Emission Spectrometry(ICP-AES)를 이용하여 분석하였다. 세정액의 종류에 따라 용출된 피독 물질 및 활성물질의 양은 표 1과 같다.The honeycomb SCR spent catalyst leaching test was performed according to the type of cleaning liquid. Elmer Plasma 2000 Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) was used to measure the amount of vanadium (V) and tungsten (W), which are poisons of catalysts, Na, Fe, Ca, Respectively. Table 1 shows the amounts of poisonous substances and active substances eluted depending on the type of cleaning liquid.

세정액의 종류에 따른 용출된 금속물질 농도(단위: ppm)Concentration of eluted metal substances according to the type of cleaning liquid (unit: ppm) 세정액Cleaning liquid NaNa CaCa MgMg FeFe KK VV WW 비교예 1Comparative Example 1 순수pure 3636 2828 1515 1919 1616 2525 1313 비교예 2Comparative Example 2 0.1M H2SO4 0.1 MH 2 SO 4 7878 8989 3737 4242 3939 102102 3535 비교예 3Comparative Example 3 전해산화수(700mV)Electrolytic oxidation water (700 mV) 5050 6262 1818 2525 2222 2323 1212 실시예 1Example 1 전해산화수(800mV)Electrolytic oxidation water (800 mV) 5555 6868 2222 3131 2626 2626 1414 실시예 2Example 2 전해산화수(900mV)Electrolytic oxidation water (900mV) 6060 7373 2525 3535 2828 2828 1616 실시예 3Example 3 전해산화수(1000mV)Electrolytic oxidation water (1000 mV) 6868 8080 2929 3838 3030 3030 1818 실시예 4Example 4 전해산화수(1100mV)Electrolytic oxidation water (1100 mV) 7373 8585 3333 4040 3434 3333 1818 실시예 5Example 5 전해산화수(1200mV)Electrolytic oxidation water (1200 mV) 7676 9090 3535 4040 3636 3434 2020

표 1에 따르면, 전해 산화수에 의한 세정결과, 피독 물질인 Na, Fe, Ca, Mg, K의 용출량은 기존의 황산 세정액에 의한 용출량과 비슷하거나 낮은 값을 보였으나, 활성물질인 바나듐(V)과 텅스텐(W)의 용출량은 현저히 적음을 알 수 있다.As shown in Table 1, the elution amounts of poisoning substances Na, Fe, Ca, Mg and K were similar to those of the conventional sulfuric acid cleaning solution, but vanadium (V) And the amount of elution of tungsten (W) is remarkably low.

[시험예 2][Test Example 2]

전해 산화수의 전위차에 따른 재생촉매의 질소산화물 제거율을 측정하였다. 실시예 및 비교예에 따라 재생을 마친 촉매, 신촉매 및 폐촉매를 하니컴 촉매반응기에 장착한 후, 동일 조건에서 NOx 제거 활성을 측정하였다. 반응조건은 350℃의 반응온도, 20,000 hr-1의 공간속도(Space Velocity) 및 1.0 NH3/NOx의 몰비 조건에서 연소 배기가스 조성과 유사한 산소농도 3.0%, 질소산화물 300 ppm, 이산화황 500 ppm, 암모니아 300 ppm 그리고 밸런스가스인 질소로 구성된 모사가스를 반응기에 통과시킨 후, 탈질율을 측정하였다. 표 2는 전해 산화수의 전위차에 따른 재생촉매의 NOx 제거 활성을 나타낸 것이다.The nitrogen oxide removal rate of the regenerated catalyst was measured according to the potential difference of electrolytic oxidation water. After the regenerated catalyst, the fresh catalyst and the spent catalyst were mounted in the honeycomb catalytic reactor according to Examples and Comparative Examples, the NOx removing activity was measured under the same conditions. The reaction conditions were as follows: a reaction temperature of 350 ° C, a space velocity of 20,000 hr -1 and a molar ratio of 1.0 NH 3 / NO x, an oxygen concentration of 3.0% similar to the combustion exhaust gas composition, 300 ppm of nitrogen oxides, 500 ppm of sulfur dioxide, 300 ppm of ammonia, and nitrogen as a balance gas were passed through the reactor, and the denitration rate was measured. Table 2 shows the NOx removal activity of the regenerated catalyst depending on the potential difference of electrolytic oxidation water.

시험촉매Test catalyst NOx 제거율(%)NOx removal rate (%) 비교예 4Comparative Example 4 신촉매New catalyst 7878 비교예 5Comparative Example 5 폐촉매Spent catalyst 5555 비교예 3Comparative Example 3 전해산화수(700mV)Electrolytic oxidation water (700 mV) 6565 실시예 1Example 1 전해산화수(800mV)Electrolytic oxidation water (800 mV) 7070 실시예 2Example 2 전해산화수(900mV)Electrolytic oxidation water (900mV) 7272 실시예 3Example 3 전해산화수(1000mV)Electrolytic oxidation water (1000 mV) 7575 실시예 4Example 4 전해산화수(1100mV)Electrolytic oxidation water (1100 mV) 7777 실시예 5Example 5 전해산화수(1200mV)Electrolytic oxidation water (1200 mV) 7777

표 2에서 확인할 수 있는 바와 같이, 800 내지 1,200 mV의 전해 산화수로 재생시킨 촉매는 신촉매의 탈질율에 근접하는 성능을 보였다.As can be seen in Table 2, the catalyst regenerated with electrolytic oxidation water of 800 to 1,200 mV showed a performance close to that of the fresh catalyst.

Claims (10)

(a) 전해 산화수를 이용하여 폐촉매를 세정하는 단계;
(a) 단계 이후에,
(b) 세정된 폐촉매를 순수로 수세시키는 단계;
(c) 수세된 폐촉매를 건조시키는 단계;
(a) 단계 이전에,
(d) 전해 산화수의 산화 환원 전위차를 설정하는 단계; 및
(e) 전해 산화수로 피독 물질 용출에 필요한 세정시간을 설정하는 단계를 포함하며,
(c) 단계에서 건조온도는 150 내지 250℃이고,
(c) 단계에서 건조시간은 1 내지 3시간이며,
(d) 단계에서 전해 산화수의 산화 환원 전위차를 800 mV 내지 1,200 mV로 설정하고,
(e) 단계에서 세정시간을 30분 이하로 설정하며,
촉매는 배연 탈질용 선택적 촉매 환원공정에 사용되는 촉매인 것을 특징으로 하는 촉매의 재생방법.
(a) cleaning the spent catalyst using electrolytic oxidation water;
After step (a)
(b) washing the washed spent catalyst with pure water;
(c) drying the washed spent catalyst;
Prior to step (a)
(d) setting a redox potential difference of electrolytic oxidation water; And
(e) setting a cleaning time required for dissolving the poisonous substance with electrolytic oxidation water,
In step (c), the drying temperature is 150 to 250 ° C,
In the step (c), the drying time is 1 to 3 hours,
(d), the redox potential difference of electrolytic oxidation water is set to 800 mV to 1,200 mV,
(e), the cleaning time is set to 30 minutes or less,
Wherein the catalyst is a catalyst used in a selective catalyst reduction process for flue gas denitrification.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서,
촉매는 이산화 티타늄 담지체에 바나듐, 텅스텐, 바륨, 망간, 몰리브덴 또는 이들의 혼합물로 구성되는 활성물질이 담지된 촉매인 것을 특징으로 하는 촉매의 재생방법.
The method according to claim 1,
Wherein the catalyst is a catalyst in which an active material composed of vanadium, tungsten, barium, manganese, molybdenum, or a mixture thereof is carried on a titanium dioxide carrier.
제1항에 있어서,
촉매는 하니컴(Honeycomb) 형태, 플레이트 형태 또는 물결(Corrugated) 형태의 촉매인 것을 특징으로 하는 촉매의 재생방법.
The method according to claim 1,
Wherein the catalyst is a honeycomb type, a plate type or a corrugated type catalyst.
KR1020110095054A 2011-09-21 2011-09-21 Regeneration method of deactivated SCR catalyst by electrolyzed oxidized water KR101823690B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110095054A KR101823690B1 (en) 2011-09-21 2011-09-21 Regeneration method of deactivated SCR catalyst by electrolyzed oxidized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110095054A KR101823690B1 (en) 2011-09-21 2011-09-21 Regeneration method of deactivated SCR catalyst by electrolyzed oxidized water

Publications (2)

Publication Number Publication Date
KR20130031467A KR20130031467A (en) 2013-03-29
KR101823690B1 true KR101823690B1 (en) 2018-02-01

Family

ID=48180607

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110095054A KR101823690B1 (en) 2011-09-21 2011-09-21 Regeneration method of deactivated SCR catalyst by electrolyzed oxidized water

Country Status (1)

Country Link
KR (1) KR101823690B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102021347B1 (en) 2019-03-14 2019-09-16 임운경 Producing method of Catalyst for the removal of nitrogen oxide using catalyst waste containing a titanium dioxide carrier

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413760B (en) * 2014-09-12 2018-04-13 神华集团有限责任公司 The method for activation recovering of the composition of cleaning solution and its SCR catalyst of application and failure
CN104548935B (en) * 2014-12-30 2017-02-22 中国华电科工集团有限公司 Regeneration method of SCR (selective catalytic reduction) catalyst
CN107469622B (en) * 2017-09-26 2019-06-04 苏州米颜生物科技有限公司 A kind of regeneration method of denitrating catalyst
CN113339106A (en) * 2021-06-24 2021-09-03 广州德百顺蓝钻科技有限公司 Application of blue diamond material in regeneration of diesel particulate filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037634A (en) 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating treatment of dentirating catalyst
JP2000107612A (en) 1998-09-30 2000-04-18 Catalysts & Chem Ind Co Ltd Method for regenerating denitration catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037634A (en) 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating treatment of dentirating catalyst
JP2000107612A (en) 1998-09-30 2000-04-18 Catalysts & Chem Ind Co Ltd Method for regenerating denitration catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102021347B1 (en) 2019-03-14 2019-09-16 임운경 Producing method of Catalyst for the removal of nitrogen oxide using catalyst waste containing a titanium dioxide carrier

Also Published As

Publication number Publication date
KR20130031467A (en) 2013-03-29

Similar Documents

Publication Publication Date Title
US6395665B2 (en) Methods for the regeneration of a denitration catalyst
US9272265B2 (en) Method for suppressing increase in SO2 oxidation rate of NOx removal catalyst
KR101823690B1 (en) Regeneration method of deactivated SCR catalyst by electrolyzed oxidized water
CN106179326B (en) A kind of nano tube supported type denitrating catalyst of manganese oxide and preparation method thereof
CN103878034B (en) The renovation process of a kind of arsenic and phosphorism denitrifying catalyst with selective catalytic reduction
KR101345444B1 (en) Remanufactured scr aged catalyst by in-situ technology
JP5495001B2 (en) Catalyst regeneration method
CN103894240B (en) A kind of renovation process of arsenic poisoning denitrifying catalyst with selective catalytic reduction
CN102266723B (en) Regenerating method and regenerating device for selective catalytic reduction de-nitration catalyst
KR20080114051A (en) Method for regenerating catalyst for de-nox
CN105080622B (en) Regeneration method for inactivated selective catalytic reduction (SCR) denitration catalyst
CN103143401A (en) Flue gas denitrification catalyst on-line regeneration activator liquid and preparation method thereof
KR101199477B1 (en) Method of regenerating SCR catalyst
CN106732655A (en) A kind of arsenic poisoning SCR denitration renovation process
CN104028316A (en) Regeneration method of arsenic-poisoned selective catalytic reduction (SCR) denitrification catalyst
CN104028315A (en) Regeneration method of sulfur-poisoned selective catalytic reduction (SCR) denitrification catalyst
CN104162456B (en) A kind of cleaning fluid for denitrating catalyst regeneration and cleaning method
WO2005028103A1 (en) Method of regenerating deteriorated catalyst
JP2012024669A (en) Method for regenerating denitration catalyst
KR100668926B1 (en) Method of regenerating scr catalyst
JP3059137B2 (en) Reprocessing method for denitration catalyst
CN104857998B (en) Efficient regenerating method for As-poisoned denitration catalyst
KR20110116454A (en) Method for renewed activation of the deactivated plate type scr catalyst
JP4268831B2 (en) Oxide-based catalyst and method for detoxifying organic wastewater containing the catalyst
WO2018214360A1 (en) Neutral complex cleaning liquid for calcium-poisoned denitration catalyst and regeneration method

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant