KR101816855B1 - A composition comprising the Phellinus species extracts or β-glucan for odor reduction - Google Patents

A composition comprising the Phellinus species extracts or β-glucan for odor reduction Download PDF

Info

Publication number
KR101816855B1
KR101816855B1 KR1020170127982A KR20170127982A KR101816855B1 KR 101816855 B1 KR101816855 B1 KR 101816855B1 KR 1020170127982 A KR1020170127982 A KR 1020170127982A KR 20170127982 A KR20170127982 A KR 20170127982A KR 101816855 B1 KR101816855 B1 KR 101816855B1
Authority
KR
South Korea
Prior art keywords
glucan
extract
beta
pseudomonas
expression
Prior art date
Application number
KR1020170127982A
Other languages
Korean (ko)
Other versions
KR20170117969A (en
Inventor
김하원
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to KR1020170127982A priority Critical patent/KR101816855B1/en
Publication of KR20170117969A publication Critical patent/KR20170117969A/en
Application granted granted Critical
Publication of KR101816855B1 publication Critical patent/KR101816855B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs

Abstract

본 발명의 상황버섯(Phellinus species) 추출물 또는 베타글루칸(β-glucan)은 간에서 FMO 유전자군 중에서 특히 FMO3의 발현을 증가시키는 것을 확인함으로써, 상기 상황버섯 추출물 또는 베타글루칸을 이용하여 FMO3의 발현을 증가시킴으로써 악취성 휘발성분인 TMA(trimethylamine)를 무취성 비휘발성분인 TMAO(trimethylamine oxide)로 대사시킴으로써, 악취 제거 또는 저감용 사료 첨가제로 유용하게 사용될 수 있다.The Phellinus species extract of the present invention or beta-glucan has been shown to increase the expression of FMO3, particularly in the FMO gene group in the liver. Thus, the expression of FMO3 using the above-described mushroom extract or beta-glucan (Trimethylamine), which is a malodorous volatile component, is metabolized by TMAO (trimethylamine oxide), which is a non-volatile component, and thus can be usefully used as a feed additive for eliminating or reducing odor.

Description

상황버섯 추출물 또는 베타글루칸을 유효성분으로 함유하는 악취 저감용 조성물{A composition comprising the Phellinus species extracts or β-glucan for odor reduction}A composition comprising the Phellinus species extracts or β-glucan for odor reduction

본 발명은 상황버섯(Phellinus species) 추출물 또는 베타글루칸(β-glucan)을 유효성분으로 함유하는 악취 저감용 조성물에 관한 것이다.The present invention relates to a composition for reducing odor containing Phellinus species extract or beta-glucan as an active ingredient.

버섯류는 세계적으로 약 20,000여 종이 알려져 있으며 그 중 식용으로 개발 가능한 것은 약 2,000여 종이다. 국내 분포하는 버섯류는 약 992종이 기록되어 있고 이중 식용 버섯이 100여 종, 독버섯이 50여 종이며, 특히 맹독성을 가진 버섯이 20여 종으로 확인되어있다. 약 20여 종 이상의 버섯이 국내에서 재배가능하며 항암, 콜레스테롤 저하, 혈당강하 등이 입증된 바 있다. 전 세계적으로 상황버섯은 약 280여 종류가 존재한다. 대부분의 상황버섯은 노란색을 띠며 나이테 무늬를 형성하며 성장하는데, 현재 가장 널리 인공 재배되는 버섯 품종 중의 하나이다. 버섯은 유용한 생리 활성 대사 산물의 생산 및 의약품으로의 많은 재료로 큰 잠재력을 가지고있음이 알려져있다. 버섯이 가지고 있는 다당류는 대부분 베타글루칸(β-glucan) 그룹에 속하는 수송 화학 성분(deferent chemical composition)이다. 이러한 버섯의 생물학적 활성 화합물의 중요한 소스(valuable sources)는 항암, 항혈소판 및 항염증 특징을 가지고있다.About 20,000 mushrooms are known around the world, of which about 2,000 can be developed for food. About 992 species of mushrooms distributed in Korea have been recorded, of which 100 are edible mushrooms and 50 are poisonous mushrooms, and more than 20 mushrooms with severe toxicity have been identified. More than 20 kinds of mushrooms can be cultivated in Korea, and anticancer, cholesterol lowering, and blood sugar lowering have been proven. Around the world, there are about 280 types of Pseudomonas mushrooms. Most of the mushrooms have a yellow color and grow by forming a ring pattern, and it is one of the most widely artificially cultivated mushroom varieties. Mushrooms are known to have great potential for the production of useful bioactive metabolites and for many materials as pharmaceuticals. Most of the polysaccharides contained in mushrooms are a deferent chemical composition belonging to the β-glucan group. Valuable sources of these mushroom biologically active compounds have anti-cancer, anti-platelet and anti-inflammatory properties.

상황버섯(Phellinus species) 중 대표적인 것은 목질진흙버섯으로 Phellinus linteus라는 학명으로 알려져 있다. 그러나, 한국의 경우 대표적인 재배종은 상황버섯 바우미(Phellinus baumii)로 전체 상황 배재 농가의 98% 이상을 차지하고 있다. 특이하게 상황버섯 바우미가 식용으로 허용되고 건강증진 식품으로 활용되는 곳은 한국이 유일한 것으로 알려져 있으며, 현재까지 상황버섯으로부터 다양한 생리활성물질들의 분리 연구가 지속적으로 진행되고 있으며, 추출방법에 따른 상황버섯 추출물의 효능변화 및 평가가 검토되고 있다. 자실체 이외에 균사체에서도, 상황버섯 자실체와 유사한 혈액 항응고 활성, 항산화 효과, 항암작용, 위궤양 완화효과 및 항염증작용, 알츠하이머(Alzheimer) 질환 치료를 위한 베타 시크리타제(β-secretase) 저해활성 등의 다양한 생리활성이 보고되면서 상황버섯의 균사체 배양에 많은 연구가 집중되고 있으나, 상황버섯 또는 이로부터 분리된 물질의 악취 저감 효과는 알려진바 없다. Among the Phellinus species, the representative one is the wood mud mushroom, Phellinus. It is known by the scientific name linteus. However, in the case of Korea, the representative cultivar is Phellinus baumii , which accounts for more than 98% of all farms excluding the situation. In particular, it is known that Korea is the only place where Pseudomonas mushrooms Baumi is allowed for edible use and is used as a health promotion food. Until now, studies on the separation of various physiologically active substances from Pseudomonas mushrooms are ongoing, and Pseudomonas mushrooms according to extraction methods Changes in efficacy and evaluation of extracts are being reviewed. In addition to the fruiting body, in the mycelium, there are a variety of blood anticoagulant activity similar to that of the mushroom fruiting body, antioxidant effect, anticancer activity, gastric ulcer relief and anti-inflammatory activity, beta-secretase inhibitory activity for the treatment of Alzheimer's disease As physiological activity has been reported, many studies have been focused on culturing the mycelium of Pseudomonas mushrooms, but the effect of reducing the odor of Pseudomonas mushrooms or substances isolated therefrom has not been known.

베타글루칸(β-glucan)은 세균, 버섯, 효모 및 곡물 소스로부터 얻어지는 면역 조절자(immune modulators)로 알려져있고, 다당류를 발생시키고, 이러한 글루코스(glucose) 중합체(polymers)는 특정 병원성 세균 및 균류(fungi) 세포벽의 성분이다. 베타글루칸은 베타-1,6-연계된 곁사슬(side chain)에 상관없이 베타-1,3-연계된 베타-D-글루코피래노실(glucopyranosyl) 유니트(units)로 이루어져있고, 균류 세포벽 성분을 보존하고, 주요 PAMPs 중 하나로 인식되는 것으로 알려져있다(Brown, 2006).Beta-glucan (β-glucan) is known as immune modulators obtained from bacteria, mushrooms, yeast and grain sources, and generates polysaccharides, and these glucose polymers can be used for certain pathogenic bacteria and fungi ( fungi) is a component of the cell wall. Beta-glucan is composed of beta-1,3-linked beta-D-glucopyranosyl units, regardless of the beta-1,6-linked side chain, and contains fungal cell wall components. It is known to be preserved and recognized as one of the major PAMPs (Brown, 2006).

오래전부터 담자균류의 고등균류는 일반적인 의약품으로 사용되었다. 버섯의 면역 강화작용 및 항종양 활성과 같은 의약적 효과는 베타글루칸에 의한 것이라고 본다. 왜냐하면 알파글루칸은 진핵 영양분 요소이고, 포유류의 효소에 쉽게 분해되고, 면역자극 활성이 없으나, 베타글루칸은 다양한 균류에서 유래되고, 경구 투여하였을 때 인간 효소에 의해 분해되지않으나, 대신 소장에서 점막 및 전신 면역을 자극하여 흡수된다(Vos et al., 2007). 흡수된 베타글루칸은 항종양 활성뿐만 아니라, 동물과 인간에 균류 및 세균에 의한 감염이 있을 때 숙주를 보호하는 능력을 활발하게 한다. 베타글루칸은 높은 분자량임에도 불구하고, 경구투여시 장에서 흡수되고, 선천적 및 후천적 면역력을 활성화시킨다.From a long time ago, basidiomycetes higher fungi have been used as general medicines. It is believed that the medicinal effects of mushrooms, such as immune enhancing and antitumor activity, are due to beta glucan. Because alpha-glucan is a eukaryotic nutrient element, it is easily degraded by mammalian enzymes and has no immunostimulatory activity, but beta-glucan is derived from various fungi and is not degraded by human enzymes when administered orally. It is absorbed by stimulating immunity (Vos et al., 2007). Absorbed beta-glucans not only activate their anti-tumor activity, but also their ability to protect the host in the presence of fungal and bacterial infections in animals and humans. Although beta-glucan has a high molecular weight, it is absorbed in the intestine when administered orally and activates innate and acquired immunity.

베타글루칸은 글루코스 중합체이고, 백본(backbone)으로 선형 베타(1,3)-연계된 D-글루코스 분자와 다양한 크기의 베타(1,6)-연계된 곁사슬이 백본과 다른 간격으로 존재한다. 다양한 베타(1,3), 베타(1,4) 및 베타(1,6) 베타글루칸-연계 가운데 오직 베타(1,3)만 면역력을 활발하게 하고, 항종양 활성을 보인다. 처음 알려진 베타글루칸의 기능은 항종양 활성(Chihara et al., 1970)이고, 그 이후 항균(antifungal), 항감염(anti-infection)(Onderdonk et al., 1992), 방사선방호(radioprotective)(Gu et al., 2005), 콜레스테롤 감소(cholesterol reduction)(Wolever et al., 2011) 및 식후 당 대사 활성(postprandial glucose metabolic activities)(Battilana et al., 2001)을 포함하는 다른 많은 생물학적 활성이 보고되었다. 베타글루칸은 동물에서의 아스페르길루스(Aspergillus)(Torosantucci et al., 2005) 및 칸디다성 질염(Candida vaginal)(Pietrella et al., 2010) 감염 및 바다 물고기에서의 비브리오(Vibrio) 감염(Zhu et al., 2006)에서 면역강화 활성의 백신 또는 보조제 후보로 예방을 위해 사용되어졌다. 오트 및 보리와 같은 식물의 베타글루칸은 주로 베타(1,4) 연계된 것이고, 버섯 및 균류의 베타글루칸은 베타(1,3) 백본에 짧은 베타(1,6)-연계된 사이드체인으로 가지가 있다(Yan et al., 2005). 이러한 글루칸의 구조, 형태 및 소스의 차이는 생물학적 활성에 영향을 줄 수 있음이 알려져있다(Brown and Gordon, 2001).Beta-glucan is a glucose polymer, and a linear beta(1,3)-linked D-glucose molecule as a backbone and a beta(1,6)-linked side chain of various sizes exist at different intervals from the backbone. Among the various beta (1,3), beta (1,4) and beta (1,6) beta-glucan-linked, only beta (1,3) activates immunity and exhibits antitumor activity. The first known function of beta-glucan is anti-tumor activity (Chihara et al., 1970), followed by antifungal, anti-infection (Onderdonk et al., 1992), and radioprotective (Gu). et al., 2005), cholesterol reduction (Wolever et al., 2011) and postprandial glucose metabolic activities (Battilana et al., 2001). . Beta-glucans are associated with Aspergillus (Torosantucci et al., 2005) and Candida vaginal (Pietrella et al., 2010) infection in animals and Vibrio infection in sea fish (Zhu. et al., 2006) as a candidate for vaccine or adjuvant with immune enhancing activity. Beta-glucans in plants such as oat and barley are mainly beta (1,4) linked, and beta-glucans in mushrooms and fungi are branched as short beta (1,6)-linked side chains to the beta (1,3) backbone. (Yan et al., 2005). It is known that differences in the structure, morphology and source of these glucans can affect biological activity (Brown and Gordon, 2001).

FMO(Flavin-containing monooxygenase)는 보조인자(cofactor) 플라빈(flavin)을 통해 주로 부드러운 친핵체로써 기질의 산화를 촉진시키는 효소의 그룹이다. 사이토크롬(cytochrome) P450 효소와는 대조적으로 FMO는 일반적으로 생체이물 물질(xenobiotic substance)에 의해 유도되거나 억제되지않는다. 인간 FMO는 조직 특성을 보이는데, FMO1은 인간 태아 간 및 성인 신장에 존재하고, FMO2는 폐에 존재하며, FMO3은 성인 간에 존재한다.FMO (Flavin-containing monooxygenase) is a group of enzymes that promote the oxidation of substrates mainly as soft nucleophiles through the cofactor flavin. In contrast to the cytochrome P450 enzyme, FMO is generally not induced or inhibited by xenobiotic substances. Human FMO exhibits tissue characteristics: FMO1 is present in human fetal liver and adult kidney, FMO2 is present in lung, and FMO3 is present in adult liver.

FMO는 폭넓고 중복된 특이도(specificity)를 가진 미세소체(microsomal) 산화(oxidative) 효소의 두번째 군이다. FMO의 주요 반응은 헤테로 원자(hetero-atom)의 유형이 각각 N-옥시드(oxide), S-옥시드 또는 P-옥시드인 질소(nitrogen), 황(sulfur) 또는 인(phosphorus) 헤테로 원자 화합물의 친핵성을 촉진시킨다. 사이토크롬 P450과 기능적인 부분이 중복되지만, 작용기전은 다르다. FMO는 효소에 기질이 결합하기 전에 분자 산소에 결합하고, 활성화한다. 또한, 보조인자로 플라빈 아데노신 디뉴클레오티드(flavin adenosine dinucleotide, FAD)를 필요로 한다. 사이토크롬 P450 효소와는 달리 FMO는 열에 민감하고, 신진대사를 연구하는 연구자들이 효소 시스템을 구별하는데 유용하게 사용할 수 있다.FMOs are the second group of microsomal oxidative enzymes with broad and overlapping specificities. The main reactions of FMO are nitrogen, sulfur, or phosphorus heteroatoms where the hetero-atoms are N-oxide, S-oxide, or P-oxide, respectively. Promotes the nucleophilicity of the compound. Cytochrome P450 and functional part overlap, but the mechanism of action is different. FMO binds and activates molecular oxygen before the substrate binds to the enzyme. In addition, it requires flavin adenosine dinucleotide (FAD) as a cofactor. Unlike the cytochrome P450 enzyme, FMO is sensitive to heat and can be usefully used by researchers studying metabolism to differentiate enzyme systems.

TMA(trimethylamine)는 질소화합물 가운데 하나로서, 극히 저농도에서도 썩은 생선 냄새 같은 코를 찌르는 악취를 풍기는 3족 지방성 아민(tertiary aliphatic amine)이다. 본래 TMA는 섭취한 음식물 가운데 주로 콜린(choline)과 같은 전구물질이 장내 미생물에 의하여 분해되어 생성된다. 정상적인 경우 생성된 TMA는 간에서 FMO3 효소의 작용으로 무취성 비휘발성분인 TMAO(trimethylamine N-oxide, 용융점 220 내지 222℃)로 전환되어 대부분 소변을 통하여 배출되나, 애완동물 및 돼지, 오리, 닭 및 소 등의 가축의 경우에는 TMAO로 유의적으로 전환되지 않고, 소변 및 대변에 많이 남아있어 악취가 발생하는 원인이 되며, 이러한 악취가 공동생활주택이나 농장 주변에서의 불만 및 민원의 원인이 된다. 특히 TMA의 비등점(boiling point)은 3 내지 7℃이므로 실온에서는 항상 가스형태로 휘발하므로 다수의 동물이 집단으로 사육되는 가축 사육장은 겨울철에도 심한 악취를 나타내므로 동물이나 가축 등의 악취를 부작용없이 저감시키는 기술은 절실한 실정이다.TMA (trimethylamine) is one of the nitrogen compounds, and it is a tertiary aliphatic amine that gives off a stinging odor like rotten fish even at extremely low concentrations. Originally, TMA is produced by decomposing precursors such as choline among ingested foods by intestinal microbes. In normal cases, the generated TMA is converted into TMAO (trimethylamine N-oxide, melting point 220 to 222°C), which is an odorless non-volatile component by the action of the FMO3 enzyme in the liver, and is mostly discharged through urine, but pets, pigs, ducks, and chickens In the case of livestock such as cattle and cattle, it is not significantly converted to TMAO, and remains in urine and feces, which causes odors, and this odor is the cause of complaints and complaints in apartment houses or farms. . In particular, since the boiling point of TMA is 3 to 7°C, it always volatilizes in the form of gas at room temperature, so livestock farms where a large number of animals are raised in groups exhibit severe odors even in winter, reducing odors of animals and livestock without side effects. The technique of letting go is in a desperate situation.

이에, 본 발명자들은 상기 문제점을 해결하기 위해 연구한 결과, FMO3 유전자 발현이 증가하면 악취성 휘발성분인 TMA가 무취성 비휘발성분인 TMAO로 전환되어 악취가 감소됨을 확인하였고, 상황버섯 추출물 및 상황버섯에서 분리한 베타글루칸을 동물 모델에 경구투여할 경우, 간에서 FMO3의 발현이 현저히 증가하는 것을 확인함으로써, 상황버섯 추출물 및 베타글루칸을 애완동물 및 가축 악취 저감용 사료 첨가제로 유용하게 사용할 수 있음을 밝힘으로써 본 발명을 완성하였다.Accordingly, the present inventors have researched to solve the above problem, it was confirmed that when the expression of the FMO3 gene increases, TMA, which is a malodorous volatile component, is converted to TMAO, which is an odorless nonvolatile component, thereby reducing the odor. When beta-glucan isolated from mushrooms is administered orally to an animal model, it is confirmed that the expression of FMO3 in the liver is significantly increased, so that Pseudomonas mushroom extract and beta-glucan can be usefully used as feed additives for reducing odor in pets and livestock. The present invention was completed by revealing.

본 발명의 목적은 상황버섯(Phellinus species) 추출물 또는 베타글루칸(β-glucan)을 유효성분으로 함유하는 악취 제거 또는 저감용 사료 첨가제를 제공하는 것이다.It is an object of the present invention to provide a feed additive for removing or reducing odor containing extracts of Phellinus species or beta-glucan as an active ingredient.

상기 목적을 달성하기 위하여, 본 발명은 상황버섯(Phellinus species) 추출물을 유효성분으로 함유하는 악취 제거 또는 저감용 사료 첨가제를 제공한다.In order to achieve the above object, the present invention provides a feed additive for removing or reducing odor containing an extract of Phellinus species as an active ingredient.

또한, 본 발명은 베타글루칸(β-glucan)을 유효성분으로 함유하는 악취 제거 또는 저감용 사료 첨가제를 제공한다.In addition, the present invention provides a feed additive for removing or reducing odor containing beta-glucan (β-glucan) as an active ingredient.

또한, 본 발명은 상황버섯 추출물 또는 베타글루칸을 유효성분으로 함유하는 악취 제거 또는 저감용 배합 사료 조성물을 제공한다.In addition, the present invention provides a blended feed composition for removing or reducing odor, containing a mushroom extract or beta-glucan as an active ingredient.

또한, 본 발명은 상황버섯 추출물 또는 베타글루칸을 인간을 제외한 개체에 투여하는 단계를 포함하는 악취 제거 또는 저감 방법을 제공한다.In addition, the present invention provides a method for removing or reducing odor comprising administering a Pseudomonas mushroom extract or beta-glucan to an individual other than humans.

본 발명의 상황버섯(Phellinus species) 추출물 또는 베타글루칸(β-glucan)은 간에서 FMO 유전자군 중에서 특히 FMO3의 발현을 증가시키는 것을 확인함으로써, 상기 상황버섯 추출물 또는 베타글루칸을 이용하여 FMO3의 발현을 증가시킴으로써 악취성 휘발성분인 TMA(trimethylamine)를 무취성 비휘발성분인 TMAO(trimethylamine oxide)로 대사시킴으로써, 악취 제거 또는 저감용 사료 첨가제로 유용하게 사용될 수 있다. By confirming that the Phellinus species extract or beta-glucan of the present invention increases the expression of FMO3 especially among the FMO gene groups in the liver, the expression of FMO3 using the Phellinus extract or beta glucan is By increasing the metabolism of TMA (trimethylamine), an odorless volatile component, to TMAO (trimethylamine oxide), an odorless nonvolatile component, it can be usefully used as a feed additive for removing or reducing odor.

도 1a는 상황버섯(Phellinus species) 열수추출물(PBE) 단일투여군에서의 간 유전자 발현 변화를 분석한 결과를 히스토그램(histogram)으로 나타낸 도이다.
도 1b는 상황버섯 열수추출물(PBE) 단일투여군에서의 간 유전자 발현 변화를 분석한 결과를 상자그림(box plot)으로 나타낸 도이다.
도 1c는 상황버섯 열수추출물(PBE) 단일투여군에서의 간 유전자 발현 변화를 분석한 결과를 MA plot으로 나타낸 도이다.
도 1d는 상황버섯 열수추출물(PBE) 단일투여군에서의 간 유전자 발현 변화를 분석한 결과를 상관분석 산점도(correlation scatter plot)로 나타낸 도이다.
도 2a는 상황버섯 열수추출물(PBE) 단일투여군에서의 계층적 클러스터링 결과를 나타낸 도이다.
도 2b는 상황버섯 열수추출물(PBE) 단일투여군에서의 유전자 발현 패턴을 나타낸 도이다.
도 3a는 상황버섯 열수추출물(PBE) 다중투여군에서의 간 유전자 발현 변화를 분석한 결과를 히스토그램으로 나타낸 도이다.
도 3b는 상황버섯 열수추출물(PBE) 다중투여군에서의 간 유전자 발현 변화를 분석한 결과를 상자그림으로 나타낸 도이다.
도 3c는 상황버섯 열수추출물(PBE) 다중투여군에서의 간 유전자 발현 변화를 분석한 결과를 MA plot으로 나타낸 도이다.
도 3d는 상황버섯 열수추출물(PBE) 다중투여군에서의 간 유전자 발현 변화를 분석한 결과를 상관분석 산점도로 나타낸 도이다.
도 4a는 상황버섯 열수추출물(PBE) 다중투여군에서의 계층적 클러스터링 결과를 나타낸 도이다.
도 4b는 상황버섯 열수추출물(PBE) 다중투여군에서의 유전자 발현 패턴을 나타낸 도이다.
도 5는 상황버섯 열수추출물(PBE) 투여군에서의 RNA 품질(quality)를 확인한 도이다:
Cont: 대조군; 및
PBE: 상황버섯 열수추출물 처리군.
도 6은 마우스 조직에 따른 FMO(Flavin-containing monooxygenase) 유전자의 발현을 확인한 도이다:
Tissues: 조직 종류;
Liver: 간 조직;
Lung: 폐 조직; 및
Kidney; 신장 조직.
도 7은 마우스 조직별 추출물 처리에 따른 FMO 유전자의 발현 변화를 확인한 도이다:
Tissues: 조직 종류;
Liver: 간 조직;
Lung: 폐 조직;
Kidney; 신장 조직;
Cont: 대조군;
PBE: 상황버섯 열수추출물 처리군;
PBW: 상황버섯 수층분획물 처리군;
PBG: 상황버섯 베타글루칸 처리군;
20: 20 ㎎/㎏; 및
100: 100 ㎎/㎏.
1A is a diagram showing the results of analyzing changes in liver gene expression in a single administration group of Phellinus species hot water extract (PBE) as a histogram.
1B is a diagram showing the results of analysis of changes in liver gene expression in a single administration group of Pseudomonas mushroom hot water extract (PBE) as a box plot.
Figure 1c is a diagram showing the result of analysis of the change in the expression of liver genes in a single administration group of hot water extract (PBE) of Pseudomonas mushrooms as a MA plot.
1D is a diagram showing the results of analyzing changes in liver gene expression in a single administration group of Pseudomonas mushroom hot water extract (PBE) as a correlation scatter plot.
Figure 2a is a diagram showing the results of hierarchical clustering in a single administration group of Pseudomonas mushroom hot water extract (PBE).
Figure 2b is a diagram showing the gene expression pattern in a single administration group of hot water extract (PBE) of Pseudomonas mushrooms.
Figure 3a is a diagram showing the results of analysis of changes in liver gene expression in the multi-administered group of hot water extract (PBE) of Pseudomonas mushrooms as a histogram.
Figure 3b is a diagram showing the results of analysis of changes in liver gene expression in a multi-administered group of hot water extract (PBE) of Pseudomonas mushrooms as a box plot.
Figure 3c is a diagram showing the result of analysis of the change in the expression of liver genes in the multi-administered group of hot water extract (PBE) of Pseudomonas mushrooms as a MA plot.
3D is a diagram showing a correlation analysis scatter plot of the results of analysis of changes in liver gene expression in a multi-administration group of Pseudomonas mushroom hot water extract (PBE).
Figure 4a is a diagram showing the results of hierarchical clustering in a multi-administration group of hot water extract (PBE) of Pseudomonas mushrooms.
Figure 4b is a diagram showing the gene expression pattern in the multi-administered P. mushroom hot water extract (PBE) group.
Figure 5 is a diagram confirming the RNA quality (quality) in the hot water extract (PBE) administration group:
Cont: control; And
PBE: Pseudomonas mushroom hot water extract treatment group.
Figure 6 is a diagram confirming the expression of the FMO (Flavin-containing monooxygenase) gene according to the mouse tissue:
Tissues: type of tissue;
Liver: liver tissue;
Lung: lung tissue; And
Kidney; Kidney tissue.
Figure 7 is a diagram confirming the change in the expression of the FMO gene according to the extract treatment for each mouse tissue:
Tissues: type of tissue;
Liver: liver tissue;
Lung: lung tissue;
Kidney; Kidney tissue;
Cont: control;
PBE: Pseudomonas mushroom hot water extract treatment group;
PBW: Pseudomonas mushroom water layer fraction treatment group;
PBG: Pseudomonas beta-glucan treatment group;
20: 20 mg/kg; And
100: 100 mg/kg.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 상황버섯(Phellinus species) 추출물 또는 베타글루칸(β-glucan)을 유효성분으로 함유하는 악취 제거 또는 저감용 사료 첨가제를 제공한다.The present invention provides a feed additive for removing or reducing odor containing Phellinus species extract or beta-glucan as an active ingredient.

상기 상황버섯 추출물은 하기의 단계들을 포함하는 제조방법에 의해 제조되는 것이 바람직하나 이에 한정하지 않는다.The mushroom extract is preferably prepared by a manufacturing method comprising the following steps, but is not limited thereto.

1) 상황버섯에 추출용매를 가하여 추출하는 단계;1) extracting by adding an extraction solvent to Pseudomonas mushrooms;

2) 단계 1)의 추출물을 식힌 후 여과하는 단계; 및2) cooling the extract of step 1) and filtering; And

3) 단계 2)의 여과한 추출물을 감압 농축한 후 건조하는 단계.3) A step of drying after concentrating the filtered extract of step 2) under reduced pressure.

상기 방법에 있어서, 단계 1)의 추출용매는 물, C1 내지 C2 저급 알코올 또는 이들의 혼합물을 용매로 하여 추출하는 것이 바람직하며, 상기 저급 알코올은 에탄올 또는 메탄올인 것이 바람직하나, 이에 한정되는 것은 아니다. 상기 추출용매는 건조된 상황버섯에 10 내지 100배로 하는 것이 바람직하고, 20 내지 50배 첨가하는 것이 바람직하나, 이에 한정되지 않는다. 추출온도는 70 내지 140℃인 것이 바람직하고, 85 내지 110℃인 것이 바람직하나, 이에 한정되지 않는다. 또한, 추출시간은 1 내지 36시간인 것이 바람직하고, 9 내지 24시간인 것이 바람직하나, 이에 한정되지 않는다.In the above method, the extraction solvent of step 1) is preferably extracted using water, C 1 to C 2 lower alcohol or a mixture thereof, and the lower alcohol is preferably ethanol or methanol, but limited thereto. It is not. The extraction solvent is preferably 10 to 100 times, and preferably 20 to 50 times, to the dried mushroom mushrooms, but is not limited thereto. The extraction temperature is preferably 70 to 140°C, and preferably 85 to 110°C, but is not limited thereto. In addition, the extraction time is preferably 1 to 36 hours, preferably 9 to 24 hours, but is not limited thereto.

상기 방법에 있어서, 단계 3)의 감압농축은 진공감압농축기 또는 진공회전증발기를 이용하는 것일 수 있으나 이에 한정하지 않는다. 또한, 건조는 감압건조, 진공건조, 비등건조, 분무건조 또는 동결건조하는 것일 수 있으나 이에 한정하지 않는다.In the above method, the vacuum concentration in step 3) may be performed using a vacuum vacuum concentrator or a vacuum rotary evaporator, but is not limited thereto. In addition, drying may be vacuum drying, vacuum drying, boiling drying, spray drying, or freeze drying, but is not limited thereto.

상기 상황버섯은 상황버섯 바우미(Phellinus baumii) 또는 상황버섯 린테우스(Phellinus linteus)인 것이 바람직하고, 상황버섯 바우미인 것이 더욱 바람직하다.Situation mushrooms above are Baumi (Phellinus baumii) Or Pseudomonas Linteus (Phellinus linteus) Is preferably, and more preferably, it is a mushroom baumi.

상기 베타글루칸은 담자균류, 식물 및 진균류로 구성된 군으로부터 선택되는 어느 하나로부터 분리된 것이 바람직하고, 상황버섯, 영지버섯(Ganoderma lucidum), 동충하초(vegetable worms)와 같은 담자균류, 보리와 같은 식물 및 효모를 비롯한 진균류로 구성된 군으로부터 선택되는 어느 하나로부터 분리된 것이 보다 바람직하나, 이에 한정되지 않는다.The beta-glucan is preferably isolated from any one selected from the group consisting of basidiomycetes, plants, and fungi, and Pseudomonas mushrooms, reishi mushrooms ( Ganoderma lucidum ), cordyceps ( vegetables) worms ), but is more preferably isolated from any one selected from the group consisting of basidiomycetes such as barley, plants such as barley, and fungi including yeast, but is not limited thereto.

상기 상황버섯 추출물 또는 베타글루칸은 FMO3(Flavin-containing monooxygenase3) 유전자 발현을 증가시키는 것을 특징으로 하고, FMO3 유전자는 TMA(trimethylamine)를 TMAO(trimethylamine N-oxide)로 전환시키는 것을 특징으로 한다.The Pseudomonas mushroom extract or beta-glucan is characterized by increasing FMO3 (Flavin-containing monooxygenase3) gene expression, and the FMO3 gene is characterized by converting TMA (trimethylamine) to TMAO (trimethylamine N-oxide).

상기 FMO3 유전자는 서열번호: 13(GenBank 등록번호: NM_008030)으로 나타내는 염기서열을 갖는 것을 특징으로 한다.The FMO3 gene is characterized by having a nucleotide sequence represented by SEQ ID NO: 13 (GenBank registration number: NM_008030).

상기 악취는 애완동물 또는 가축의 분 또는 뇨에 포함된 인간에게 불쾌감을 일으킬 수 있는 물질을 의미한다.The odor refers to a substance that can cause discomfort to humans contained in the feces or urine of pets or livestock.

본 발명의 구체적인 실시예에서, 본 발명자들은 상황버섯 열수추출물, 상황버섯 수층분획물 및 상황버섯 베타글루칸을 제조하였고, 이를 단일투여(24시간)와 다중투여(7일)로 나눠 각각 하루에 한번 경구투여한 후, 단일투여군과 다중투여군에서의 간 유전자의 발현 변화를 확인하였고(도 1a 내지 도 4b 참조), 상황버섯 열수추출물(PBE)을 투여한 마우스에서의 FMO 유전자의 발현 변화를 확인한 결과, 단일투여와 다중투여 모두에서 FMO3 유전자 발현이 증가하는 것을 확인하였으며(표 4 참조), 조직에서의 RNA 품질(quality)를 시각화하여 확인하였다(도 5 참조).In a specific embodiment of the present invention, the present inventors prepared a hot water extract of Pseudomonas mushrooms, a water layer fractions of Pseudomonas mushrooms, and beta-glucan of Pseudomonas mushrooms, divided into single administration (24 hours) and multiple administrations (7 days), respectively, orally once a day. After administration, the change in the expression of liver genes in the single administration group and the multiple administration group was confirmed (see FIGS. 1A to 4B), and as a result of confirming the change in the expression of the FMO gene in mice to which PBE was administered, It was confirmed that FMO3 gene expression was increased in both single administration and multiple administration (see Table 4), and RNA quality in tissues was visualized and confirmed (see FIG. 5).

또한, 본 발명자들은 마우스 조직에 따라 FMO 유전자의 발현을 확인한 결과, 같은 FMO 유전자군(gene family)이더라도 조직에 따라 발현량의 차이가 나는 것을 확인하였고(도 6 참조), 상황버섯 열수추출물(PBE), 상황버섯 수층분획물(PBW) 및 상황버섯 베타글루칸(PBG)을 처리함에 따라 조직에서의 FMO 유전자의 발현 변화를 확인한 결과, 간에서의 FMO3와 신장에서의 FMO4에서 처리 농도에 의존적으로 발현량이 증가하는 것을 확인하였다(도 7 참조).In addition, the present inventors confirmed the expression of the FMO gene according to the mouse tissue, it was confirmed that even in the same FMO gene family (see Fig. 6), there was a difference in the expression level according to the tissue (see Fig. 6), and hot water extract (PBE) ), As a result of confirming the change in the expression of the FMO gene in tissues by treatment of the Pseudomonas mushroom water layer fraction (PBW) and Pseudomonas mushroom beta-glucan (PBG), the expression levels in FMO3 in the liver and FMO4 in the kidneys depend on the concentration It was confirmed that it increased (see Fig. 7).

따라서, 본 발명의 상황버섯 열수추출물 또는 베타글루칸은 간에서 FMO 유전자군 중에서 특히 FMO3의 발현을 증가시키는 것을 확인함으로써, 상기 상황버섯 열수추출물 또는 베타글루칸을 이용하여 FMO3의 발현을 증가시킴으로써 악취성 휘발성분인 TMA(trimethylamine)를 무취성 비휘발성분인 TMAO(trimethylamine oxide)로 대사시킴으로써, 악취 제거 또는 저감용 사료 첨가제로 유용하게 사용될 수 있음을 확인하였다.Therefore, by confirming that the hot-water extract or beta glucan of the present invention increases the expression of FMO3 in the FMO gene group in the liver, the odorous volatility by increasing the expression of FMO3 using the hot-water extract or beta-glucan of Pseudomonas mushrooms By metabolizing trimethylamine (TMA), which is an odorless, nonvolatile component, it was confirmed that it can be usefully used as a feed additive for odor removal or reduction.

본 발명에 있어서는 상기 사료첨가제를 그대로 또는 공지의 담체, 안정제 등을 가할 수 있으며, 필요에 따라 비타민, 아미노산류, 미네랄 등의 각종 양분, 항산화제 및 기타의 첨가제 등을 가할 수도 있으며, 그 형상으로서는 분체, 과립, 펠릿, 현탁액 등의 적당한 상태일 수 있다. 본 발명의 사료첨가제를 공급하는 경우는 단독으로 또는 사료에 혼합하여 공급할 수 있다.In the present invention, the feed additive may be used as it is or a known carrier, stabilizer, etc. may be added, and various nutrients such as vitamins, amino acids, minerals, antioxidants, and other additives may be added as necessary. Powder, granules, pellets, suspensions, etc. may be in a suitable state. In the case of supplying the feed additive of the present invention, it may be supplied alone or mixed with the feed.

또한, 본 발명은 상황버섯 추출물 또는 베타글루칸을 유효성분으로 함유하는 악취 제거 또는 저감용 배합 사료 조성물을 제공한다.In addition, the present invention provides a blended feed composition for removing or reducing odor, containing a mushroom extract or beta-glucan as an active ingredient.

본 발명의 유효성분인 상황버섯 추출물 또는 베타글루칸이 첨가될 사료에 대해 0.01 내지 10 중량부로 구성되는 것이 바람직하나, 이에 한정되지 않는다.The active ingredient of the present invention is preferably composed of 0.01 to 10 parts by weight with respect to the feed to which the extract or beta-glucan is added, but is not limited thereto.

본 발명의 상황버섯 추출물 또는 베타글루칸은 간에서 FMO 유전자군 중에서 특히 FMO3의 발현을 증가시키는 것을 확인함으로써, 상기 상황버섯 추출물 또는 베타글루칸을 이용하여 FMO3의 발현을 증가시킴으로써 악취성 휘발성분인 TMA를 무취성 비휘발성분인 TMAO로 대사시킴으로써, 악취 제거 또는 저감용 배합 사료 조성물로 유용하게 사용될 수 있음을 확인하였다.By confirming that the Pseudomonas mushroom extract or beta-glucan of the present invention increases the expression of FMO3 in particular among the FMO gene group in the liver, by increasing the expression of FMO3 using the Pseudomonas mushroom extract or beta-glucan, TMA, which is a malodorous volatile component By metabolizing to TMAO, which is an odorless nonvolatile component, it was confirmed that it can be usefully used as a blended feed composition for removing or reducing odor.

또한, 본 발명은 상황버섯 추출물 또는 베타글루칸을 인간을 제외한 개체에 투여하는 단계를 포함하는 악취 제거 또는 저감 방법을 제공한다.In addition, the present invention provides a method for removing or reducing odor comprising administering a Pseudomonas mushroom extract or beta-glucan to an individual other than humans.

상기 인간을 제외한 개체는 인간만을 제외한 말, 양, 돼지, 염소, 낙타, 영양, 소, 닭, 오리, 개, 고양이 등의 동물을 의미한다.The individual excluding humans refers to animals such as horses, sheep, pigs, goats, camels, antelopes, cows, chickens, ducks, dogs, and cats, excluding only humans.

상기 악취 제거 또는 저감 방법은 비록 인간을 제외한 동물을 대상으로 하는 방법이나, 인간에 있어 이러한 방법이 효과가 없음을 의미하는 것은 아니다. 또한, 인간의 경우 있어서 본 발명에 따른 악취 제거 또는 저감 방법에 의해 악취 제거 또는 저감에 충분히 사용되어 질 수 있다. 즉, 원인불명으로 FMO3 효소의 발현이 저하되어 TMAO로 전환시키지 못하는 트리메틸아민뇨증(Trimethylaminuria 또는 Fish odor syndrome) 환자인 경우에는 체내에 과잉의 TMA가 소변, 땀, 호흡으로 과다하게 분비되어 생선 썩는 냄새가 심하므로 이러한 환자 등에게 적용될 수 있다.Although the method for removing or reducing odor is a method for animals other than humans, it does not mean that this method is not effective in humans. In addition, in the case of humans, it can be sufficiently used to remove or reduce odor by the method for removing or reducing odor according to the present invention. In other words, in the case of a patient with trimethylaminuria (Fish odor syndrome) who cannot convert to TMAO because the expression of the FMO3 enzyme is unknown due to unknown cause, excessive TMA is secreted in the body through urine, sweat, and breath, resulting in a rotten smell of fish. Is severe, so it can be applied to such patients.

본 발명의 상황버섯 추출물 또는 베타글루칸은 간에서 FMO 유전자군 중에서 특히 FMO3의 발현을 증가시키는 것을 확인함으로써, 상기 상황버섯 추출물 또는 베타글루칸을 이용하여 FMO3의 발현을 증가시킴으로써 악취성 휘발성분인 TMA를 무취성 비휘발성분인 TMAO로 대사시킴으로써, 악취 제거 또는 저감 방법으로 유용하게 사용될 수 있음을 확인하였다.Pseudomonas mushroom extract or beta-glucan of the present invention is confirmed to increase the expression of FMO3 in the liver, especially in the FMO gene group, by increasing the expression of FMO3 by using the extract or beta glucan, odorous volatile TMA By metabolizing to TMAO, which is an odorless nonvolatile component, it was confirmed that it can be usefully used as a method of removing or reducing odor.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following examples.

통계처리Statistical processing

실험결과는 평균±표준편차로 표기하였고, 모든 측정은 최소 3번씩 수행하였다. 평균값의 집단 간 비교는 InStat 3.06(GraphPad software Inc., 미국)을 이용하여 ANOVA 단방향 분석으로 수행하였다. 유의성 있는 p값은 ≤0.05로 표기하였다.Experimental results were expressed as mean ± standard deviation, and all measurements were performed at least three times. Intergroup comparison of mean values was performed by ANOVA one-way analysis using InStat 3.06 (GraphPad software Inc., USA). Significant p values were expressed as ≤0.05.

<실시예 1> 상황버섯(<Example 1> Pseudomonas mushroom ( Phellinus baumiiPhellinus baumii ) 추출물의 제조) Preparation of extract

<1-1> 상황버섯 열수추출물(<1-1> Hot water extract of Pseudomonas mushroom ( Phellinus baumiiPhellinus baumii extract, PBE)의 제조 extract, PBE)

본 발명자들은 상황버섯 추출물을 제조함에 있어서, 추출 수율은 온도, 정제수의 양, pH, 추출시간 및 상황버섯 조각 등의 추출 상태에 따라 달라지게 되는 것을 확인하였다. 보통 추출 온도는 85℃, 90℃, 95℃, 100℃, 105℃ 및 110℃이고, 추출 시간은 9시간, 18시간 및 24시간이다. 이에, 상황버섯을 건조시켜 조각을 낸 후, 상황버섯 조각 4 g 또는 10 g에 정제수 200 ㎖(20배 또는 50배)를 넣고, 현탁액을 여과한 후, 추출 수율을 측정하였다.The present inventors have confirmed that in preparing Pseudomonas mushroom extract, the extraction yield varies depending on the extraction conditions such as temperature, amount of purified water, pH, extraction time, and Pseudomonas mushroom pieces. Usually, extraction temperatures are 85°C, 90°C, 95°C, 100°C, 105°C and 110°C, and extraction times are 9 hours, 18 hours and 24 hours. Thus, after drying the mushrooms to cut out pieces, 200 ml of purified water (20 times or 50 times) was added to 4 g or 10 g of the mushroom pieces, and the suspension was filtered, and the extraction yield was measured.

또한, 상기 방법을 이용하여 추출물을 대량생산 하였다. 200 ℓ 추출기에 잘게 썬 상황버섯 조각과 20 ℓ 정제수를 넣고, 24시간 동안 110℃에서 20번 추출하였고, 여과장치로 여과한 후, 여과액을 농축하였다. 이를 각각 감압하에 동결건조하였다. 추출 수율은 하기 표 1에 나타내었다.In addition, the extract was mass-produced using the above method. Finely chopped mushroom pieces and 20 ℓ purified water were added to a 200 liter extractor, extracted 20 times at 110° C. for 24 hours, filtered through a filtration device, and the filtrate was concentrated. Each of these was lyophilized under reduced pressure. The extraction yield is shown in Table 1 below.

샘플Sample 규모Scale 버섯 용량Mushroom capacity 추출extraction 동결건조 분말Lyophilized powder 추출 수율(%)Extraction yield (%) 상황버섯Mushroom 400 ℓ400 20 ㎏20 kg 350±10 ℓ350±10 ℓ 1050 g1050 g 5.35.3

본 연구에서 상황버섯 열수추출물은 국내에서 재배한 상황버섯 자실체를 구입하여 제조하였다.In this study, the hot-water extract of Pseudomonas mushrooms was prepared by purchasing fruiting bodies of Pseudomonas mushrooms grown in Korea.

구체적으로, 상황버섯 자실체 100 g 을 2000 ㎖의 증류수를 넣고 100℃의 중탕으로 24시간 추출하였다. 추출액을 여과하여 보관한 후 잔사에 다시 2000 ㎖의 증류수를 넣고 100℃의 중탕으로 24시간 추출하여 총 3회 반복 추출하여 얻은 추출액을 100 ㎖로 감압농축한 후에 동결건조시켜 상황버섯 열수추출물(Phellinus baumii extract, PBE)을 얻었다.Specifically, 100 g of the fruiting body of Pseudomonas mushrooms was added to 2000 ml of distilled water and extracted for 24 hours in a 100°C bath. After filtration and storage of the extract, 2000 ml of distilled water was added to the residue and extracted for 24 hours in a 100℃ bath. The extract obtained by repeated extraction three times was concentrated under reduced pressure to 100 ml, and then freeze-dried to make hot water extract of Phellinus (Phellinus baumii extract, PBE) was obtained.

<1-2> 상황버섯 <1-2> Mushroom 수층분획물Aqueous fraction (( PhellinusPhellinus baumiibaumii waterwater fractionfraction , , PBWPBW ) 및 상황버섯 베타글루칸() And beta-glucan ( Phellinus baumiiPhellinus baumii β-Glucan, PBG)의 제조 Preparation of β-Glucan, PBG)

국내에서 재배한 상황버섯 자실체를 구입하여 공지된 방법을 이용하여 베타글루칸을 정제하였다. The beta-glucan was purified using a known method by purchasing the fruiting bodies of Pseudomonas mushrooms grown in Korea.

구체적으로, 상황버섯 자실체 100 g 을 2000 ㎖의 증류수를 넣고 100℃의 중탕으로 24시간 추출하였다. 추출액을 여과하여 보관한 후 잔사에 다시 2000 ㎖의 증류수를 넣고 100℃의 중탕으로 24시간 추출하여 총 3회 반복 추출하여 얻은 추출액을 100 ㎖로 감압농축한 후에 4℃로 만든 다음 감압농축액에 -20℃로 빙냉시킨 300 ㎖ 에탄올(약 3배)을 넣고 4시간 동안 4℃에 두었다. 4시간 후, 침전물이 베타글루칸이고, 상기 분리한 베타글루칸을 Beta-glucan assay kit(Megazyme.co)를 이용하여 확인하였으며, 이를 동결 건조하여 상황버섯 베타글루칸(Phellinus baumii β-Glucan, PBG)이라 칭하였다. 한편, 상황버섯 열수추출물 중에서 에탄올에 침전하지 않는 상등액은 여과지로 여과한 후에 농축한 후에 동결건조하여 상황버섯 수층분획물(Phellinus baumii water fraction, PBW)이라 칭하였다.Specifically, 100 g of the fruiting body of Pseudomonas mushrooms was added to 2000 ml of distilled water and extracted for 24 hours in a 100°C bath. After filtration and storage of the extract, 2000 ml of distilled water was added to the residue, extracted for 24 hours with a 100℃ bath, and the resulting extract was repeatedly extracted three times under reduced pressure to 100 ml, and then made to 4℃. 300 ml of ethanol (about 3 times) ice-cooled at 20° C. was added and left at 4° C. for 4 hours. After 4 hours, the precipitate was beta-glucan, and the isolated beta-glucan was confirmed using a Beta-glucan assay kit (Megazyme.co), which was freeze-dried and called Phellinus baumii β-Glucan (PBG). Called. On the other hand, the supernatant that does not precipitate in ethanol from the hot water extract of P. mushroom is filtered through filter paper, concentrated, and then freeze-dried to obtain a fraction of Phellinus (Phellinus). baumii water fraction, PBW).

<실시예 2> 세포 배양 및 동물 모델 디자인<Example 2> Cell culture and animal model design

<2-1> 세포 배양<2-1> cell culture

마우스 대식세포주인 Raw 264.7 세포(ATCC, Rockville, MD)를 페니실린(penicillin)(10,000 units/㎖)-스트렙토마이신(streptomycin)(10,000 units/㎖) 및 소태아혈청(Fetal Bovine Serum, FBS)(Gibco-BRL, 미국)을 첨가한 DMEM 배지로 계대배양하였고, 37℃, 5% CO2 인큐베이터에서 배양하였다. T-25 플라스크(flask)에 배양하여, 계대배양 할 때는 10X 트립신(Trypsin)-EDTA 용액을 DMEM을 이용하여 10배 희석하여 사용하였다. 조직배양 플라스크에 배양된 Raw 264.7 세포에 1X 트립신-EDTA 용액을 넣고 37℃에 10분간 혼합시킨 후, 트립신 반응에 의해 단일세포로 만들어주고, 이러한 반응을 종결하기위해 10% FBS가 함유된 DMEM 배지를 첨가한 후, 2번 세척하였다. 이 후 낮은 온도에서 원심분리한 후 계대배양 하였다.Raw 264.7 cells (ATCC, Rockville, MD), a mouse macrophage cell line, were used as penicillin (10,000 units/ml)-streptomycin (10,000 units/ml) and fetal bovine serum (FBS) (Gibco). -BRL, USA) was added to DMEM medium, and cultured in a 37°C, 5% CO 2 incubator. When cultured in a T-25 flask and subcultured, a 10X trypsin-EDTA solution was diluted 10 times using DMEM and used. Add 1X trypsin-EDTA solution to Raw 264.7 cells cultured in a tissue culture flask, mix for 10 minutes at 37°C, and make single cells by trypsin reaction, and to terminate this reaction, DMEM medium containing 10% FBS After addition, it was washed twice. After that, it was centrifuged at a low temperature and then subcultured.

<2-2> 동물 모델 디자인<2-2> Animal model design

체중 25 내지 30 g의 5주령 수컷 MPF(murine pathogen free, outbred-mouse) ICR 마우스를 샘타코(Samtako Bio Korea)에서 구입하여 경구투여 실험동물로 사용하였다. 마우스는 물과 식이는 자유롭게 먹을 수 있도록 하였고, 조명 사이클을 12시간은 밝게, 12시간은 어둡게 설정하였다. 방은 22.5℃ 온도에, 42.5% 습도로 유지하였다.A 5-week-old male MPF (murine pathogen free, outbred-mouse) ICR mouse weighing 25 to 30 g was purchased from Samtako Bio Korea and used as an orally administered experimental animal. Mice were allowed to eat freely with water and diet, and the lighting cycle was set to be bright for 12 hours and dark for 12 hours. The room was kept at a temperature of 22.5° C. and a humidity of 42.5%.

상황버섯 열수추출물은 동결건조시킨 분말을 사용하여, 증류수에 용해시켜 경구투여하였다. 실험 그룹은 대조군(control, n=2), 100 ㎎/㎏의 수용성 상황버섯 열수추출물 처리군(PBE-100, n=2)으로 나누었고, 단일투여(24시간)와 다중투여(7일)로 나눠 하루에 한번 경구 투여하였다.The hot-water extract of Pseudomonas mushrooms was lyophilized, dissolved in distilled water, and administered orally. The experimental group was divided into a control group (control, n=2) and a 100 mg/kg hot water extract treatment group (PBE-100, n=2), and was divided into a single dose (24 hours) and multiple doses (7 days). Divided and administered orally once a day.

또한, 상황버섯 열수추출물(PBE), 상황버섯 수층분획물(PBW) 및 상황버섯 베타글루칸(PBG)은 동결건조시킨 분말을 사용하여, 증류수에 용해시켜 경구투여하였으며, 실험 그룹은 대조군(control, n=3), 20 ㎎/㎏의 상황버섯 열수추출물 처리군(PBE-20, n=3), 100 ㎎/㎏의 상황버섯 열수추출물 처리군(PBE-100, n=3), 20 ㎎/㎏의 상황버섯 수층분획물 처리군(PBW-20, n=3), 100 ㎎/㎏의 상황버섯 수층분획물 처리군(PBW-100, n=3), 20 ㎎/㎏의 상황버섯 베타글루칸 처리군(PBG-20, n=3) 및 100 ㎎/㎏의 상황버섯 베타글루칸 처리군(PBG-100, n=3)으로 나누었고, 7일간 하루에 한번 경구 투여하였다.In addition, Pseudomonas mushroom hot water extract (PBE), Pseudomonas mushroom water layer fraction (PBW) and Pseudomonas mushroom beta-glucan (PBG) were orally administered by dissolving them in distilled water using a lyophilized powder, and the experimental group was a control group (control, n =3), 20 mg/kg hot water extract treatment group (PBE-20, n=3), 100 mg/kg hot water extract treatment group (PBE-100, n=3), 20 mg/kg Pseudomonas mushroom water layer fraction treatment group (PBW-20, n=3), 100 mg/kg Pseudomonas mushroom water layer fraction treatment group (PBW-100, n=3), 20 mg/kg Pseudomonas beta-glucan treatment group ( It was divided into PBG-20, n=3) and 100 mg/kg of Pseudomonas beta-glucan-treated group (PBG-100, n=3), and was administered orally once a day for 7 days.

<실시예 3> 단일투여군에서의 간 유전자의 발현 변화 분석<Example 3> Analysis of changes in the expression of liver genes in a single administration group

상기 실시예 <2-2>와 동일한 방법으로 디자인한 동물 모델을 가지고 간에서 샘플을 얻어 마이크로어레이(microarray) 방법을 통해 간 유전자의 발현 변화를 분석하였다.Using the animal model designed in the same manner as in Example <2-2>, a sample was obtained from the liver, and changes in the expression of liver genes were analyzed through a microarray method.

구체적으로, 실시예 <2-2>와 동일한 방법으로 디자인한 동물 모델 중 단일투여군 마우스를 디클로로메탄(dichloromethan, CH2Cl2)으로 안락사시킨 후, 2 ㎖ 튜브에 150 ㎎ 조직을 얻고, RNA를 얻기 위해 -20℃ 이하로 샘플을 보관하였다. Mouse Gene 1.0 ST array(Affymetrix Inc)를 사용하여 마이크로어레이를 수행하여, OD 260/280 비로 확인하였다. 이렇게 확인한 결과를 히스토그램(histogram), 상자그림(box plot), MA plot 및 상관분석 산점도(correlation scatter plot)을 이용하여 분석하였다.Specifically, among the animal models designed in the same manner as in Example <2-2>, a single-administered mouse was euthanized with dichloromethan (CH 2 Cl 2 ), and then 150 mg of tissue was obtained in a 2 ml tube, and RNA was used. Samples were stored below -20°C to obtain. A microarray was performed using a Mouse Gene 1.0 ST array (Affymetrix Inc), and the OD 260/280 ratio was confirmed. The result of this confirmation was analyzed using a histogram, a box plot, an MA plot, and a correlation scatter plot.

그 결과 도 1a 내지 도 1d에 나타내 바와 같이, 간 유전자 발현 양상을 확인하였다(도 1a 내지 1d).As a result, as shown in Figs. 1A to 1D, the liver gene expression pattern was confirmed (Figs. 1A to 1D).

또한, 상기 결과를 토대로 주요 유전자를 분석하여 대조군과 비교하여 상황버섯 열수추출물(PBE)을 100 mg/kg의 농도로 단회 경구투여한 실험군에서의 발현양상 변화를 하기 표 2에 나타내었다.In addition, based on the above results, major genes were analyzed and the expression pattern changes in the experimental group in which PBE was administered orally at a concentration of 100 mg/kg once compared to the control group were shown in Table 2 below.

분석 디자인Analysis design cutoffcutoff 조절control 주요 유전자의 수Number of major genes 유전자 온톨로지 정보의 수The number of gene ontology information 경로 정보의 수Number of route information 대조군 vs PBE-100Control vs PBE-100 1.31.3 다운down 12641264 901901 282282 work 11841184 925925 349349 1.51.5 다운down 292292 184184 7575 work 328328 226226 9393 22 다운down 6161 3131 1414 work 4545 3636 1818 33 다운down 2222 1One 00 work 99 88 77

또한, 상기 <표 2>를 바탕으로 cutoff 2.0으로 설정하여, 계층적 클러스터링(clustering)을 이용하여 특정 유전자 클러스터링을 수행하였다.In addition, by setting cutoff 2.0 based on the above <Table 2>, specific gene clustering was performed using hierarchical clustering.

그 결과 도 2a 및 도 2b에 나타낸 바와 같이, 대조군과 상황버섯 열수추출물 처리군의 계층적 클러스터링 결과를 확인하였고, 이의 유전자 발현 패턴을 확인하였다(도 2a 및 도 2b).As a result, as shown in Figs. 2a and 2b, the hierarchical clustering results of the control group and the hot water extract of Pseudomonas mushrooms were confirmed, and their gene expression patterns were confirmed (FIGS. 2a and 2b ).

<< 실시예Example 4> 다중투여군에서의 간 유전자의 발현 변화 분석 4> Analysis of changes in liver gene expression in multiple dose groups

상기 실시예 <2-2>와 동일한 방법으로 디자인한 동물 모델을 가지고 간에서 샘플을 얻어 마이크로어레이(microarray) 방법을 통해 간 유전자의 발현 변화를 분석하였다.Using the animal model designed in the same manner as in Example <2-2>, a sample was obtained from the liver, and changes in the expression of liver genes were analyzed through a microarray method.

구체적으로, 상기 실시예 <2-2>와 동일한 방법으로 디자인한 동물 모델 중 다중투여군 마우스를 가지고, 상기 <실시예 3>과 동일한 방법으로 분석하였다.Specifically, among the animal models designed in the same manner as in Example <2-2>, mice in the multi-dose group were analyzed by the same method as in Example 3>.

그 결과 도 3a 내지 도 3d에 나타내 바와 같이, 간 유전자 발현 양상을 확인하였다(도 3a 내지 3d).As a result, as shown in Figs. 3a to 3d, the liver gene expression pattern was confirmed (Figs. 3a to 3d).

또한, 상기 결과를 토대로 주요 유전자를 분석하여 대조군과 비교하여 상황버섯 열수추출물(PBE)을 100 mg/kg의 농도로 7일간 다중 경구투여한 실험군에서의 발현양상 변화를 하기 표 3에 나타내었다.In addition, based on the above results, major genes were analyzed, and the expression pattern changes in the experimental group in which PBE extract was administered orally for 7 days at a concentration of 100 mg/kg were shown in Table 3 below compared to the control group.

분석 디자인Analysis design cutoffcutoff 조절control 주요 유전자의 수Number of major genes 유전자 온톨로지 정보의 수The number of gene ontology information 경로 정보의 수Number of route information 대조군 vs PBE-100Control vs PBE-100 1.31.3 다운down 11531153 864864 300300 work 13581358 10921092 349349 1.51.5 다운down 304304 219219 8686 work 368368 300300 9393 22 다운down 5151 3838 1717 work 8787 8181 2626 33 다운down 1313 1313 55 work 2222 2222 88

또한, 상기 <표 3>를 바탕으로 cutoff 2.0으로 설정하여, 계층적 클러스터링(clustering)을 이용하여 특정 유전자 클러스터링을 수행하였다.In addition, by setting cutoff 2.0 based on the above <Table 3>, specific gene clustering was performed using hierarchical clustering.

그 결과 도 4a 및 도 4b에 나타낸 바와 같이, 대조군과 상황버섯 추출물 처리군의 계층적 클러스터링 결과를 확인하였고, 이의 유전자 발현 패턴을 확인하였다(도 4a 및 도 4b).As a result, as shown in FIGS. 4A and 4B, the hierarchical clustering results of the control group and the P. mushroom extract-treated group were confirmed, and their gene expression patterns were confirmed (FIGS. 4A and 4B ).

<실시예 5> FMO(Flavin-containing monooxygenase) 유전자의 발현 변화 확인<Example 5> Confirmation of the expression change of FMO (Flavin-containing monooxygenase) gene

상기 <실시예 3>과 동일한 방법을 사용하여 얻은 상황버섯 열수추출물(PBE)을 경구투여한 ICR 마우스의 간조직(liver tissue)에서의 FMO 유전자의 발현 변화를 확인하였다.Changes in the expression of the FMO gene in the liver tissue of ICR mice to which PBE obtained by using the same method as in <Example 3> were orally administered was confirmed.

FMO 종류FMO type 상황버섯 열수추출물 경구투여 후 간조직에서의 유전자 발현Gene Expression in Liver Tissues After Oral Administration of Hot Water Extract of Pakistan Mushroom 단일투여Single dose 다중투여Multiple dose FMO1FMO1 변화없음No change 변화없음No change FMO2FMO2 변화없음No change 3.8배 증가3.8 times increase FMO3FMO3 5.13배 증가5.13 times increase 17.6배 증가17.6 times increase FMO4FMO4 변화없음No change 3.14배 증가3.14 times increase FMO5FMO5 변화없음No change 변화없음No change

그 결과 상기 표 4에 나타낸 바와 같이, 단일투여의 경우에는 FMO3 유전자만 5.13배 증가하였고, 다중투여의 경우에는 FMO2는 3.8배, FMO3는 17.6배 및 FMO4는 3.14배 증가하는 것을 확인하였다(표 4).As a result, as shown in Table 4, in the case of single administration, only the FMO3 gene increased by 5.13 times, and in the case of multiple administration, it was confirmed that FMO2 increased by 3.8 times, FMO3 by 17.6 times, and FMO4 by 3.14 times (Table 4 ).

<실시예 6> RNA 품질(quality) 확인<Example 6> RNA quality check

상기 <실시예 3>과 동일한 방법으로 얻은 조직에서 RNA를 얻어 겔 전기영동(gel electrophoresis)을 이용하여 18S 리보솜 RNA(rRNA) 및 28S rRNA를 시각화하여 확인하였다.RNA was obtained from the tissue obtained in the same manner as in <Example 3>, and 18S ribosomal RNA (rRNA) and 28S rRNA were visualized and confirmed using gel electrophoresis.

그 결과 도 5에 나타낸 바와 같이, 단일투여의 경우 rRNA의 integrity가 1.6 및 1.7로 나타났고, 다중투여의 경우 rRNA의 integrity가 2.4 및 2.4로 나타남을 확인하였다(도 5).As a result, as shown in FIG. 5, in the case of single administration, the integrity of rRNA was 1.6 and 1.7, and in the case of multiple administration, the integrity of rRNA was confirmed to be 2.4 and 2.4 (FIG. 5).

<실시예 7> 마우스 조직에 따른 FMO 유전자의 발현 확인<Example 7> Confirmation of expression of FMO gene according to mouse tissue

마우스 간, 폐 및 신장 조직에서의 FMO 유전자 발현을 확인하였다.FMO gene expression was confirmed in mouse liver, lung and kidney tissue.

구체적으로, 마우스를 디클로로메탄(dichloromethan, CH2Cl2)으로 안락사시킨 후, 간, 폐 및 신장 조직을 얻고, 실험 전 얼려서 보관해둔다. 냉동된 조직을 절단하고, 트리졸(Trizol) 시약 1 ㎖을 넣어서 균질화(homogenized)한 후, 샘플을 5분 동안 실온에 보관한다. 이에 0.2 ㎖ 클로로포름(chloroform)을 넣고, 튜브를 15초 동안 강하게 볼텍스(vortex)하고, 2 내지 3분 동안 보관한다. 이 후, 샘플을 4℃에서 15분 동안 12000 rpm으로 원심분리하면 혼합물은 빨간색으로 보이는 아래쪽에 페놀(phenol)-클로로포름 층과 색이 없는 위쪽의 물층으로 나뉜다. 물층을 새로운 튜브로 옮기고, 이소프로필 알코올(isopropyl alcohol) 0.5 ㎖을 넣고, 균질화한 후, 실온에서 10분간 보관한 후, 4℃에서 15분 동안 12000 rpm으로 원심분리한다. 상층액을 제거하고, 침전된 RNA 펠렛(pellet)을 75% 에탄올(ethanol)(100% EtOH 35 ㎖+DEPC water 15 ㎖) 1 ㎖로 한 번 세척한 후, 샘플을 볼텍스로 섞어주고, 4℃에서 5분 동안 7500 rpm으로 원심분리하였다. RNA 펠렛은 건조시킨 후, 50 ㎕ RNase-free water를 첨가하고, 56℃에서 10분간 보관하였다. 이렇게 얻은 RNA의 농도는 NanoDrop 2000 UV 분광광도계(spectrophotometer)로 측정하였다. 얻은 RNA를 M-MLV 역전사효소(Moloney Murine Leukemia Virus reverse Transcriptase)(Promega, 미국)를 사용하여 cDNA 합성을 수행하였다. RNA/프라이머 혼합물은 멸균된 PCR 튜브에 5 ㎍ RNA, 올리고(dT)(0.5 ㎍/㎕) 1 ㎕, DEPC 처리한 물을 10 ㎕까지 넣어주고, 70℃에서 10분 동안 반응시킨 후, 얼음에 최소 5분간 놓아둔다. 반응 혼합물은 5 X 반응 완충용액 4 ㎕, 10 mM dNTP 혼합물 2 ㎕, 증류수 2.4 ㎕, RNase 억제제(inhibitor) 0.1 ㎕로 혼합하여 각 RNA/프라이머 혼합물과 부드럽게 섞어주고, 간단히 원심분리하여 모아준다. 이를 42℃에 3분간 놓아둔 후, 1 ㎕ M-MLV 역전사효소를 넣고, 섞어준 후 42℃에 60분 동안 놓아둔다. 반응 종결은 70℃에 5분간 놓아두고, 얼음에 놓아 식혀준 후, 간단히 원심분리하여 반응물을 얻는다. 이렇게 얻은 반응물은 바로 PCR 하거나, 실험 전까지 -20℃에 보관한다.Specifically, after euthanizing mice with dichloromethane (CH 2 Cl 2 ), liver, lung and kidney tissues were obtained, and then frozen before the experiment and stored. The frozen tissue was cut and homogenized by adding 1 ml of Trizol reagent, and then the sample was stored at room temperature for 5 minutes. 0.2 ml of chloroform was added thereto, and the tube was vigorously vortexed for 15 seconds, and stored for 2 to 3 minutes. After that, when the sample is centrifuged at 12000 rpm for 15 minutes at 4° C., the mixture is divided into a layer of phenol-chloroform at the bottom and a layer of water at the top without color. The water layer was transferred to a new tube, 0.5 ml of isopropyl alcohol was added, homogenized, and stored at room temperature for 10 minutes, followed by centrifugation at 12000 rpm for 15 minutes at 4°C. The supernatant was removed, and the precipitated RNA pellet was washed once with 1 ml of 75% ethanol (100% EtOH 35 ml + DEPC water 15 ml), and then the sample was vortexed and mixed at 4°C. Centrifuged at 7500 rpm for 5 minutes. After drying the RNA pellet, 50 µl of RNase-free water was added and stored at 56° C. for 10 minutes. The concentration of RNA thus obtained was measured with a NanoDrop 2000 UV spectrophotometer. The obtained RNA was synthesized cDNA using M-MLV reverse transcriptase (Moloney Murine Leukemia Virus reverse transcriptase) (Promega, USA). For the RNA/primer mixture, 5 µg RNA, 1 µl of oligo(dT) (0.5 µg/µl), and up to 10 µl of DEPC-treated water were added to a sterilized PCR tube, and reacted at 70° C. for 10 minutes, and then put on ice. Let it sit for at least 5 minutes. The reaction mixture was mixed with 4 µl of 5 X reaction buffer solution, 2 µl of 10 mM dNTP mixture, 2.4 µl of distilled water, 0.1 µl of RNase inhibitor, gently mixed with each RNA/primer mixture, and collected by briefly centrifuging. After placing this at 42°C for 3 minutes, 1 µl M-MLV reverse transcriptase was added, mixed, and left at 42°C for 60 minutes. The reaction was terminated at 70° C. for 5 minutes, placed on ice to cool, and then simply centrifuged to obtain a reaction product. The reaction product thus obtained is directly PCR or stored at -20°C until the experiment.

RT-PCR은 하기 표 5에 나타낸 바와 같이 디자인한 프라이머를 이용하여 PCR 튜브에 주행 RNA 1 ㎍와 역방향 프라이머를 섞어주고, 5분간 70℃에서 반응시킨 후 얼음에 놓아둔다. 이에 정방향 프라이머를 넣어주고, 반응 볼륨이 20 ㎕가 되도록 DEPC 물로 채워준다. 이를 하기 표 6에 나타낸 바와 같이 PCR 조건으로 수행하였다. PCR 결과물은 1.0% 아가로즈 겔을 이용하여 전기영동으로 확인하였고, 이미지는 LAS-3000으로 확인하였다.For RT-PCR, 1 μg of running RNA and reverse primer were mixed in a PCR tube using primers designed as shown in Table 5 below, reacted at 70° C. for 5 minutes, and then placed on ice. To this, forward primer is added, and the reaction volume is filled with DEPC water so that the volume is 20 µl. This was performed under PCR conditions as shown in Table 6 below. The PCR result was confirmed by electrophoresis using 1.0% agarose gel, and the image was confirmed with LAS-3000.

목적
유전자
purpose
gene
프라이머primer
이름name 서열order 방향direction 사용된 조직Tissue used 서열번호Sequence number FMO1FMO1 FMO1_FFMO1_F CAT TCC AAC TAC AAG GAC TCGCAT TCC AAC TAC AAG GAC TCG 정방향Forward direction 신장kidney 서열번호: 1SEQ ID NO: 1 FMO1_RFMO1_R TGT CTC TGG ACA GTG GGA AGTTGT CTC TGG ACA GTG GGA AGT 역방향Reverse 서열번호: 2SEQ ID NO: 2 FMO2FMO2 FMO2_FFMO2_F CCG GGT CTT TAA GGG TTT CAG GCCG GGT CTT TAA GGG TTT CAG G 정방향Forward direction lungs 서열번호: 3SEQ ID NO: 3 FMO2_RFMO2_R AGG CTC CAT CTT CCC AAC CGT AAGG CTC CAT CTT CCC AAC CGT A 역방향Reverse 서열번호: 4SEQ ID NO: 4 FMO3FMO3 FMO3_FFMO3_F CAG CAT TTA CCA ATC GGT CTT CCAG CAT TTA CCA ATC GGT CTT C 정방향Forward direction liver 서열번호: 5SEQ ID NO: 5 FMO3_RFMO3_R TTG CTG TGA TGC ATG AAG TTGTTG CTG TGA TGC ATG AAG TTG 역방향Reverse 서열번호: 6SEQ ID NO: 6 FMO4FMO4 FMO4_FFMO4_F TCC TGA GCC CAC ATT TAC CTCTCC TGA GCC CAC ATT TAC CTC 정방향Forward direction 신장kidney 서열번호: 7SEQ ID NO: 7 FMO4_RFMO4_R CCA GTG TTT CCA AGA CCA ACCCCA GTG TTT CCA AGA CCA ACC 역방향Reverse 서열번호: 8SEQ ID NO: 8 FMO5FMO5 FMO5_FFMO5_F GCT TGC CTA CAC GGT TCA AGGCT TGC CTA CAC GGT TCA AG 정방향Forward direction liver 서열번호: 9SEQ ID NO: 9 FMO5_RFMO5_R ATC ACA CGG ATG CTC ACC TGATC ACA CGG ATG CTC ACC TG 역방향Reverse 서열번호: 10SEQ ID NO: 10 GAPDHGAPDH GAPDH_FGAPDH_F AGC CTC GTC CCG TAG ACA AAAGC CTC GTC CCG TAG ACA AA 정방향Forward direction 서열번호: 11SEQ ID NO: 11 GAPDH_RGAPDH_R CAC GAC ATA CTC AGC ACC GGCCAC GAC ATA CTC AGC ACC GGC 역방향Reverse 서열번호: 12SEQ ID NO: 12

PCR cyclePCR cycle 온도Temperature 시간time 1 cycle1 cycle initial denaturationinitial denaturation 95℃95 2분2 minutes 30 cycle30 cycle denaturationdenaturation 95℃95℃ 30초30 seconds annealingannealing 55℃55℃ 30초30 seconds elongationelongation 72℃72 1분1 minute 1 cycle1 cycle final elongationfinal elongation 72℃72 5분5 minutes

그 결과 도 6에 나타낸 바와 같이, 같은 FMO 유전자군(gene family) 이더라도 조직에 따라 발현량의 차이가 나타나는 것을 확인하였다(도 6).As a result, as shown in FIG. 6, even in the same FMO gene family, it was confirmed that the difference in expression levels appeared according to tissues (FIG. 6).

<실시예 8> 마우스 조직별 추출물 처리에 따른 FMO 유전자의 발현 변화 확인<Example 8> Confirmation of the expression change of FMO gene according to extract treatment for each mouse tissue

마우스 간, 폐 및 신장 조직에서의 추출물 처리에 따른 FMO 유전자 발현변화를 확인하였다.Changes in FMO gene expression according to extract treatment in mouse liver, lung and kidney tissue were confirmed.

구체적으로, 상기 실시예 <2-2>에 기재된 방법으로 추출물을 경구투여한 동물 모델을 가지고, 상기 <실시예 7>과 동일한 실험 방법으로 RT-PCR을 통해 확인하였다.Specifically, an animal model in which the extract was orally administered by the method described in Example <2-2> was used, and it was confirmed by RT-PCR in the same experimental method as in Example 7 above.

그 결과 도 7에 나타낸 바와 같이, 상기 <실시예 5>와 비슷한 결과로 간에서의 FMO3 및 신장에서의 FMO4에서 상황버섯 열수추출물(PBE), 상황버섯 수층분획물(PBW) 및 상황버섯 베타글루칸(PBG)을 처리한 군에서 처리하지않았을 때보다 농도 의존적으로 발현량이 증가하는 것을 확인하였고, 상황버섯 열수추출물이나 상황버섯 수층분획물보다 상황버섯 베타글루칸을 처리한 군에서의 FMO3의 발현 변화가 더욱 확실하게 나타남을 확인하였다(도 7).As a result, as shown in FIG. 7, with results similar to those of <Example 5>, hot-water extract (PBE), water layer fraction (PBW) and beta-glucan of Pseudomonas mushrooms from FMO3 in the liver and FMO4 in the kidneys ( PBG) was found to increase the expression level in a concentration-dependent manner compared to the non-treatment group, and the expression of FMO3 in the group treated with Pseudomonas beta-glucan was more evident than the hot water extract of P. It was confirmed that it appeared (FIG. 7).

지금까지의 결과를 토대로 상황버섯 추출물 또는 베타글루칸을 경구투여 함으로써 간에서 FMO 유전자군 중에서 특히 FMO3의 발현을 크게 증가시키는 것을 확인함으로써, 본 발명의 상황버섯 추출물 또는 베타글루칸을 이용하여 FMO3의 발현을 증가시킴으로써 악취성 휘발성분인 트리메틸아민(trimethylamine)을 무취성 비휘발성분인 트리메틸아민옥시드(trimethylamine oxide)로 대사시킴으로써, 애완동물 및 가축 악취저감 사료의 첨가제로 사용할 수 있다.Based on the results so far, it was confirmed that the expression of FMO3 in the FMO gene group in the liver was significantly increased by oral administration of Pseudomonas mushroom extract or beta-glucan, so that the expression of FMO3 by using Pseudomonas mushroom extract or beta-glucan of the present invention By increasing the metabolism of trimethylamine, which is an odorless volatile component, to trimethylamine oxide, which is an odorless, nonvolatile component, it can be used as an additive in pet and livestock odor reduction feed.

<110> University of seoul Industry Cooperation Foundation <120> A composition comprising the Phellinus species extracts or beta-glucan for odor reduction <130> 2017P-08-046 <160> 13 <170> KopatentIn 2.0 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO1_F <400> 1 cattccaact acaaggactc g 21 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO1_R <400> 2 cattccaact acaaggactc g 21 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO2_F <400> 3 cattccaact acaaggactc g 21 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO2_R <400> 4 cattccaact acaaggactc g 21 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO3_F <400> 5 cattccaact acaaggactc g 21 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO3_R <400> 6 cattccaact acaaggactc g 21 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO4_F <400> 7 cattccaact acaaggactc g 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO4_R <400> 8 cattccaact acaaggactc g 21 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO5_F <400> 9 cattccaact acaaggactc g 21 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO5_R <400> 10 cattccaact acaaggactc g 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_F <400> 11 cattccaact acaaggactc g 21 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_R <400> 12 cattccaact acaaggactc g 21 <210> 13 <211> 2020 <212> DNA <213> Mus musculus <400> 13 attcggcacg agaaaggaag acaaagaaaa ggcacccatg aagaagaaag tggccatcat 60 tggagctggt gtcagtggcc tggctgccat caggagctgt ctggaggagg ggctggagcc 120 cacatgcttt gagaggagtg atgatgttgg gggcctgtgg aaattctcag accatataga 180 agagggcagg gccagcattt accaatcggt cttcaccaac tcttccaaag agatgatgtg 240 ttttccagac ttcccctatc ccgatgactt tcccaacttc atgcatcaca gcaagctcca 300 agaatacatc acttcatttg ccaaggaaaa gaacctcctg aaatacatac agtttgagac 360 acctgtaacc agtataaata aatgtcctaa tttctcaact actggcaaat gggaagtcac 420 cactgaaaag cacggtaaaa aagaaacagc tgtctttgat gctacaatga tttgttctgg 480 gcatcacata tttccccatg taccaaaaga ctcctttcca ggactgaacc gttttaaagg 540 caaatgcttc cacagcaggg actataagga accaggaata tggaagggaa aacgagtcct 600 ggtgattggc ctggggaact caggctgtga cattgctgca gaactcagcc atgtagctca 660 gaaggtcacc atcagctcta gaagtggttc ttgggtgatg agtcgagtct gggacgatgg 720 ctacccttgg gacatggtgg tgctcacacg gtttcaaact ttcctcaaaa acaacttacc 780 caccgccatc tctgactggt ggtacacaag gcagatgaat gccagattca agcacgaaaa 840 ctatggtttg gtgcctttaa acagaacact caggaaagag cccgtgttca atgatgagct 900 cccagcccgc atcctgtgtg gcatggtgac catcaagcct aatgtaaagg agttcacaga 960 gacgtccgct gtgtttgagg atgggaccat gtttgaggcc attgactgtg tcatctttgc 1020 cacaggctat ggttatgcct accccttcct ggatgactct attatcaaaa gcagaaataa 1080 tgaggtcact ttgtacaaag gtgtcttccc tcctcaacta gagaaaccaa ccatggcagt 1140 gattggcctg gtccagtccc tgggtgccac catccccata actgacctgc aggcacgctg 1200 ggcagcacaa gtaataaaag gaacttgcac tttgccttct gtaaacgaca tgatggatga 1260 cattgatgag aaaatggggg aaaagttcaa atggtatggc aatagcacca ccatccagac 1320 agattacatt gtttatatgg atgaactggc ctccttcatt ggtgcaaagc ccaatctcct 1380 atggctgttt ctcaaggatc ccaggttggc tgtagaagtg ttctttggcc cttgcagccc 1440 ctaccagttc cggctggtag gcccaggaaa gtggtcagga gcccggaacg ccatcctaac 1500 acagtgggac cgatcactga agcctatgaa gacgcgtgtc gtcagtaaag ttcagaagtc 1560 ttgctctcac ttctattccc gtttgctcag gctcctggct gttcccgttc tgctcattgc 1620 tttgttcctt gtgttgatct gatcgtgagt ccctctagaa tttctgagag tcactgacaa 1680 caaccagaca agaactttgc tatttaaaaa ttaagatttt tcacacctct ccctttcctg 1740 ttcaagatct tttgccagaa ctctagacgt taattagtaa gcaagacaat gttttgttct 1800 ggctttgtaa ctaagcccct ttcagaatca tgttgatctg cagtgggcat aagtcccttt 1860 ctctttaagt tccaccaaca atttgtaagg agaatggtat ttttatggac aacttgtatc 1920 atctcttgga acagttggac atgattcctt ttctctttta aacaatgctt gaaagatata 1980 cttcagattc agacagtgaa taaaatagag tatttagaat 2020 <110> University of seoul Industry Cooperation Foundation <120> A composition comprising the Phellinus species extracts or beta-glucan for odor reduction <130> 2017P-08-046 <160> 13 <170> KopatentIn 2.0 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO1_F <400> 1 cattccaact acaaggactc g 21 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO1_R <400> 2 cattccaact acaaggactc g 21 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO2_F <400> 3 cattccaact acaaggactc g 21 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO2_R <400> 4 cattccaact acaaggactc g 21 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO3_F <400> 5 cattccaact acaaggactc g 21 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO3_R <400> 6 cattccaact acaaggactc g 21 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO4_F <400> 7 cattccaact acaaggactc g 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO4_R <400> 8 cattccaact acaaggactc g 21 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO5_F <400> 9 cattccaact acaaggactc g 21 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FMO5_R <400> 10 cattccaact acaaggactc g 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_F <400> 11 cattccaact acaaggactc g 21 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_R <400> 12 cattccaact acaaggactc g 21 <210> 13 <211> 2020 <212> DNA <213> Mus musculus <400> 13 attcggcacg agaaaggaag acaaagaaaa ggcacccatg aagaagaaag tggccatcat 60 tggagctggt gtcagtggcc tggctgccat caggagctgt ctggaggagg ggctggagcc 120 cacatgcttt gagaggagtg atgatgttgg gggcctgtgg aaattctcag accatataga 180 agagggcagg gccagcattt accaatcggt cttcaccaac tcttccaaag agatgatgtg 240 ttttccagac ttcccctatc ccgatgactt tcccaacttc atgcatcaca gcaagctcca 300 agaatacatc acttcatttg ccaaggaaaa gaacctcctg aaatacatac agtttgagac 360 acctgtaacc agtataaata aatgtcctaa tttctcaact actggcaaat gggaagtcac 420 cactgaaaag cacggtaaaa aagaaacagc tgtctttgat gctacaatga tttgttctgg 480 gcatcacata tttccccatg taccaaaaga ctcctttcca ggactgaacc gttttaaagg 540 caaatgcttc cacagcaggg actataagga accaggaata tggaagggaa aacgagtcct 600 ggtgattggc ctggggaact caggctgtga cattgctgca gaactcagcc atgtagctca 660 gaaggtcacc atcagctcta gaagtggttc ttgggtgatg agtcgagtct gggacgatgg 720 ctacccttgg gacatggtgg tgctcacacg gtttcaaact ttcctcaaaa acaacttacc 780 caccgccatc tctgactggt ggtacacaag gcagatgaat gccagattca agcacgaaaa 840 ctatggtttg gtgcctttaa acagaacact caggaaagag cccgtgttca atgatgagct 900 cccagcccgc atcctgtgtg gcatggtgac catcaagcct aatgtaaagg agttcacaga 960 gacgtccgct gtgtttgagg atgggaccat gtttgaggcc attgactgtg tcatctttgc 1020 cacaggctat ggttatgcct accccttcct ggatgactct attatcaaaa gcagaaataa 1080 tgaggtcact ttgtacaaag gtgtcttccc tcctcaacta gagaaaccaa ccatggcagt 1140 gattggcctg gtccagtccc tgggtgccac catccccata actgacctgc aggcacgctg 1200 ggcagcacaa gtaataaaag gaacttgcac tttgccttct gtaaacgaca tgatggatga 1260 cattgatgag aaaatggggg aaaagttcaa atggtatggc aatagcacca ccatccagac 1320 agattacatt gtttatatgg atgaactggc ctccttcatt ggtgcaaagc ccaatctcct 1380 atggctgttt ctcaaggatc ccaggttggc tgtagaagtg ttctttggcc cttgcagccc 1440 ctaccagttc cggctggtag gcccaggaaa gtggtcagga gcccggaacg ccatcctaac 1500 acagtgggac cgatcactga agcctatgaa gacgcgtgtc gtcagtaaag ttcagaagtc 1560 ttgctctcac ttctattccc gtttgctcag gctcctggct gttcccgttc tgctcattgc 1620 tttgttcctt gtgttgatct gatcgtgagt ccctctagaa tttctgagag tcactgacaa 1680 caaccagaca agaactttgc tatttaaaaa ttaagatttt tcacacctct ccctttcctg 1740 ttcaagatct tttgccagaa ctctagacgt taattagtaa gcaagacaat gttttgttct 1800 ggctttgtaa ctaagcccct ttcagaatca tgttgatctg cagtgggcat aagtcccttt 1860 ctctttaagt tccaccaaca atttgtaagg agaatggtat ttttatggac aacttgtatc 1920 atctcttgga acagttggac atgattcctt ttctctttta aacaatgctt gaaagatata 1980 cttcagattc agacagtgaa taaaatagag tatttagaat 2020

Claims (5)

1) 상황버섯(Phellinus species) 추출물을 제조하는 단계;
2) 상기 단계 1)의 추출물에 에탄올을 첨가하여 침전물 및 수층 분획물로 분리하는 단계; 및
3) 상기 단계 2)의 침전물 또는 수층 분획물을 인간을 제외한 개체에 투여하는 단계;
를 포함하는, TMA(trimethylamine)를 TMAO(trimethylamine N-oxide)로 전환시키는 방법.
1) preparing an extract of Phellinus species;
2) adding ethanol to the extract of step 1) to separate into a precipitate and an aqueous layer fraction; And
3) administering the precipitate or aqueous layer fraction of step 2) to an individual other than a human;
(Trimethylamine) to TMAO (trimethylamine N-oxide).
제1항에 있어서, 상기 상황버섯은 상황버섯 바우미(Phellinus baumii) 또는 상황버섯 린테우스(Phellinus linteus)인, TMA(trimethylamine)를 TMAO(trimethylamine N-oxide)로 전환시키는 방법.
The method according to claim 1, wherein the mushroom is Phellinus baumii or Phellinus linteus, and converting TMA (trimethylamine) to TMAO (trimethylamine N-oxide).
제1항에 있어서, 상기 추출물은 물, C1 내지 C2의 저급 알코올 또는 이들의 혼합물을 용매로 하여 추출하는 것인, TMA(trimethylamine)를 TMAO(trimethylamine N-oxide)로 전환시키는 방법.
The method according to claim 1, wherein the extract is extracted with water, a C 1 to C 2 lower alcohol or a mixture thereof as a solvent, and converting TMA (trimethylamine) into TMAO (trimethylamine N-oxide).
제1항에 있어서, 상기 상황버섯 추출물은 FMO3(Flavin-containing monooxygenase3) 유전자 발현을 증가시키는 것인, TMA(trimethylamine)를 TMAO(trimethylamine N-oxide)로 전환시키는 방법.
2. The method according to claim 1, wherein the mushroom extract increases FMO3 (Flavin-containing monooxygenase3) gene expression by converting TMA (trimethylamine) to TMAO (trimethylamine N-oxide).
1) 상황버섯(Phellinus species) 추출물을 제조하는 단계;
2) 상기 단계 1)의 추출물에 에탄올을 첨가하여 침전물 및 수층 분획물로 분리하는 단계; 및
3) 상기 단계 2)의 침전물 또는 수층 분획물을 인간을 제외한 개체에 투여하는 단계;
를 포함하는, FMO3(Flavin-containing monooxygenase3) 유전자 발현을 증가시켜 TMA(trimethylamine)를 TMAO(trimethylamine N-oxide)로 전환시킴으로써 악취 저감을 유도하는 방법.
1) preparing an extract of Phellinus species;
2) adding ethanol to the extract of step 1) to separate into a precipitate and an aqueous layer fraction; And
3) administering the precipitate or aqueous layer fraction of step 2) to an individual other than a human;
(Trimethylamine) to TMAO (trimethylamine N-oxide) by increasing expression of FMO3 (Flavin-containing monooxygenase3) gene.
KR1020170127982A 2017-09-29 2017-09-29 A composition comprising the Phellinus species extracts or β-glucan for odor reduction KR101816855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170127982A KR101816855B1 (en) 2017-09-29 2017-09-29 A composition comprising the Phellinus species extracts or β-glucan for odor reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170127982A KR101816855B1 (en) 2017-09-29 2017-09-29 A composition comprising the Phellinus species extracts or β-glucan for odor reduction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020150046873A Division KR20160118567A (en) 2015-04-02 2015-04-02 A composition comprising the Phellinus species extracts or -glucan for odor reduction

Publications (2)

Publication Number Publication Date
KR20170117969A KR20170117969A (en) 2017-10-24
KR101816855B1 true KR101816855B1 (en) 2018-02-21

Family

ID=60299546

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170127982A KR101816855B1 (en) 2017-09-29 2017-09-29 A composition comprising the Phellinus species extracts or β-glucan for odor reduction

Country Status (1)

Country Link
KR (1) KR101816855B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258480A (en) 2000-03-17 2001-09-25 Ota Isan:Kk Feed for deodorizing animal excreta
WO2008084074A2 (en) 2007-01-10 2008-07-17 Blue Limit As Feed composition for aquatic organisms
JP5681693B2 (en) 2005-02-17 2015-03-11 アボット・ラボラトリーズAbbott Laboratories Transmucosal administration of pharmaceutical compositions for treating and preventing disorders in animals
WO2015036058A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258480A (en) 2000-03-17 2001-09-25 Ota Isan:Kk Feed for deodorizing animal excreta
JP5681693B2 (en) 2005-02-17 2015-03-11 アボット・ラボラトリーズAbbott Laboratories Transmucosal administration of pharmaceutical compositions for treating and preventing disorders in animals
WO2008084074A2 (en) 2007-01-10 2008-07-17 Blue Limit As Feed composition for aquatic organisms
WO2015036058A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds

Also Published As

Publication number Publication date
KR20170117969A (en) 2017-10-24

Similar Documents

Publication Publication Date Title
EP1676908B1 (en) Fermentation and culture method, fermented plant extract, fermented plant extract powder and composition containing the fermented plant extract
KR101724218B1 (en) Extraction preparation and application of plant microribonucleic acid
Kiadaliri et al. Effects of feeding with red algae (Laurencia caspica) hydroalcoholic extract on antioxidant defense, immune responses, and immune gene expression of kidney in rainbow trout (Oncorhynchus mykiss) infected with Aeromonas hydrophila
US20200239922A1 (en) Means and methods for vitamin b12 production in duckweed
Shiu et al. Effects of hirami lemon, Citrus depressa Hayata, leaf meal in diets on the immune response and disease resistance of juvenile barramundi, Lates calcarifer (bloch), against Aeromonas hydrophila
JP6812545B2 (en) A feed composition for the prevention or treatment of acute hepatopancreatic necrosis (AHPND) or white spot disease syndrome (WSS) containing Bacillus subtilis strain, Bacillus pumilus strain and Bacillus licheniformis strain as active ingredients.
Shi et al. Fermented Astragalus in diet improved laying performance, egg quality, antioxidant and immunological status and intestinal microbiota in laying hens
CN111587968A (en) Functional feed for improving growth and immunity of micropterus salmoides
Xiang et al. Immunomodulatory activity of a water-soluble polysaccharide extracted from mussel on cyclophosphamide-induced immunosuppressive mice models
Salwan et al. Recent developments in shiitake mushrooms and their nutraceutical importance
KR101816855B1 (en) A composition comprising the Phellinus species extracts or β-glucan for odor reduction
Kim et al. Turmeric bioprocessed with mycelia from the shiitake culinary-medicinal mushroom Lentinus edodes (Agaricomycetes) protects mice against salmonellosis
Al-Quwaie The influence of bacterial selenium nanoparticles biosynthesized by Bacillus subtilus DA20 on blood constituents, growth performance, carcass traits, and gut microbiota of broiler chickens
KR20180134128A (en) Sparassis crispa fermentation product having antioxidative and immunological activity, and preparing method thereof
KR20160118567A (en) A composition comprising the Phellinus species extracts or -glucan for odor reduction
KR101825675B1 (en) A composition comprising the Phellinus species extracts or β-glucan for detoxification of N-, S-, P- containing xenobiotics
CN110050906B (en) Application of hydrolyzed tannin in improving prawn growth performance and prawn intestinal microbial abundance
KR101133708B1 (en) Feed for Ruminant Comprising Cordyceps, Breeding Method for Ruminant Using the Same, and a meat produced therefrom
Mutlag et al. Assessment of the addition of oyster mushroom (Pleurotus ostreatus) on the weights sectors ratios and giblets weight of broiler chicken and microbial contents
Mulyani A mini-review: the role of chitosan in aquaculture fish health management
Ching et al. Effects of Pleurotus pulmonarius stalk waste extract‐supplemented feed on the immune responses of red hybrid tilapia Oreochromis sp. following challenge with pathogen‐associated molecular patterns
Abdel-Tawwab et al. Stimulatory effects of seaweed Laminaria digitata polysaccharides additives on growth, immune-antioxidant potency and related genes induction in Rohu carp (Labeo rohita) during Flavobacterium columnare infection
KR102623910B1 (en) Microorganism strain having inhibitor for biofilm in animal intestines derived from Escherichia coli
KR102050019B1 (en) animal feed additive for immune activity and animal feed comprising the same
CHINNADURAI COMPARATIVE STUDY ON EDIBLE AND NON EDIBLE MUSHROOM AGAINST MDR K. PNEUMONIA

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant