KR101808436B1 - 자연공기 흡입에 의한 고속 수중 부력체의 마찰저항감소장치 및 이를 적용한 선박 - Google Patents

자연공기 흡입에 의한 고속 수중 부력체의 마찰저항감소장치 및 이를 적용한 선박 Download PDF

Info

Publication number
KR101808436B1
KR101808436B1 KR1020160081726A KR20160081726A KR101808436B1 KR 101808436 B1 KR101808436 B1 KR 101808436B1 KR 1020160081726 A KR1020160081726 A KR 1020160081726A KR 20160081726 A KR20160081726 A KR 20160081726A KR 101808436 B1 KR101808436 B1 KR 101808436B1
Authority
KR
South Korea
Prior art keywords
underwater
air
buoyant body
air injection
buoyancy
Prior art date
Application number
KR1020160081726A
Other languages
English (en)
Inventor
정철민
김선범
백부근
권래언
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020160081726A priority Critical patent/KR101808436B1/ko
Application granted granted Critical
Publication of KR101808436B1 publication Critical patent/KR101808436B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/24Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls
    • Y02T70/122

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

본 발명의 고속 수중 부력체의 마찰저항감소장치는 선박(1)의 저부에 구비된 수중 날개(1-1)와 결합되어 수중에 잠긴 콘형 수중부력체(10), 선박(1)의 고속주행 시 발생된 저압력점에 의한 수중부력체(10)의 내.외부 압력차로 대기가 수중으로 배출되는 공기분사를 발생시켜 수중부력체(10)의 물속 마찰저항을 감소시키는 자연공기분사장치(20)로 구성됨으로써 대기로부터 흡입되는 공기가 별도의 추가 동력 없이 자연적으로 수중 분사되어 마철저항을 감소시키고, 특히 콘형 수중부력체(10)의 내,외부 압력차를 공기 분사의 동력원으로 함으로써 기존 공기강제배출 기술의 한계 극복으로 SWATH(Small Waterplane Area Twin Hull)선박의 성능을 개선하는 특징이 구현된다.

Description

자연공기 흡입에 의한 고속 수중 부력체의 마찰저항감소장치 및 이를 적용한 선박{Natural Air Suction type Friction Resistance Decreasing Device of High Speed Underwater Buoyancy Vessel and Ship thereby}
본 발명은 고속 수중 부력체의 마찰저항감소장치에 관한 것으로, 특히 압력차를 동력원으로 하는 고속 수중 부력체의 마찰저항감소장치가 적용된 선박에 관한 것이다.
일반적으로 선박의 항해 시 크게 조파저항, 선박 형상에 의한 공기저항, 그리고 해수와 선체 표면에서의 마찰 저항으로 분류되는 저항이 발생되고, 이중 마찰저항은 선박의 항해에 많은 동력을 필요로 하는 가장 큰 원인이 된다.
따라서 수중 및 수상 운동체 운행에 따른 전체 저항 중 저항 감소에 미치는 영향이 큰 마찰저항을 감소하는 다양한 기술이 적용되고 있다. 상기 기술의 예로, 공기경계층 형성 기술, 추가 구조물 설치 기술을 들 수 있다.
상기 공기경계층 형성 기술은 열전소자(thermoelectric element)를 이용하여 선체 외판의 온도를 높여 선체 표면 해수의 점성력을 낮추어 선박의 마찰 저항을 감소시키는 방식, 피에저 써멀 디바이스 (Piezo-Thermal device)를 이용하여 수면아래에 잠긴 선체의 온도를 높여 해수의 점성력을 감소시켜 선박의 마찰저항을 감소시키는 방식, 유체에 잠기는 선박 표면에 초음파에 의한 물분자의 기체화를 유도하여 기포층 또는 공기층 형성으로 마찰저항을 감소시키는 방식, 고온상태의 폐열이나 냉각유체를 사용하여 선박의 선수 및 선저 외판을 가열하여 표면에 기포를 발생시키거나 또는 엔진의 폐열을 이용하여 발라스트 워터의 온도를 높여 선체 외판주변의 해수의 점성력을 낮추거나 또는 폐열을 이용하여 압축공기를 발생시켜 운항에 따라 발생되는 마찰저항을 감소시키는 방식 등으로 분류된다. 그러나 공기경계층 형성 기술은 마찰저항 감소를 위해 선저 아래 외판의 온도를 높여 공기 경계층을 형성함으로써 고체 표면의 온도를 높여 막비등(Film Boiling)현상이 이용되는 것으로, 이는 고온의 열이 필요할 뿐만 아니라 추가적인 에너지소비가 있어 선체 선저외판 표면 마찰 감소에 의한 에너지 절약분을 상쇄시키는 단점과 충분한 두께의 공기 경계층을 보장할 수 없는 단점이 있다. 무엇보다 고온의 엔진열과 냉각유체를 사용하는 경우에는 비대한 추가적인 시스템이 필요하여 공간적, 경제적 단점이 존재한다.
상기 추가 구조물 설치 기술은 해수 유속 감소를 위한 마찰저항 감소 유닛을 설치하여 선체의 운항 방향과 반대방향으로 이동시켜 마찰저항을 감소시키는 방식, 해수 유속 감소를 위한 해수 통과 터널을 선체 아래 설치하여 해수 통과 터널 내로 유동되는 해수의 유동 방향의 반대 방향으로 전자기력을 발생시켜 해수의 유속을 감소시킴으로써 해수로 인한 마찰저항을 감소시키는 방식, 저항 감소장치의 각도를 선박의 속도에 따라 조절하여 마찰저항을 감소시키는 방식 등으로 구분된다. 그러나 선저 아래 추가적인 구조물 설치는 특정 선박에만 제한적으로 적용될 수 있으며, 특히 마찰저항 감소 효과를 검증하기 어려운 단점이 있다.
한편, 선박 중 SWATH(Small Waterplane Area Twin Hull) 선박은 상당량의 저항이 발생되는 수중 부력체를 수중에 가짐으로써 높은 연료비를 필요로 하고, 나아가 보다 많은 화석 연료 소모에 따른 탄소 배출 증가를 가져온다. 특히 SWATH 선박은 다른 선박에 적용된 공기경계층 형성 기술과 추가 구조물 설치 기술의 적용이 어려워 공기강제배출 기술을 적용한다.
상기 공기강제배출 기술은 선박의 선수 벌브에 유체 유입구를 통해 유입된 유체를 펌프를 이용하여 선박의 측부에 배출시켜줌으로써 선박 측부에 발생하는 조파저항 감소로 마찰저항을 감소시키는 방식, 선체 내부의 공기압축기에서 발생된 압축공기를 선수부 또는 구상선수의 외측으로 배출하여 선체에 가해지는 마찰저항을 감소시키는 방식, 선체 저면에 설치된 공기 챔버의 공기를 선미 방향으로 배출함으로써 선박의 마찰저항을 감소시키는 방식, 공기 회수장치로 공기가 프로펠러에 도달하는 것을 방지함으로써 표면의 공기 윤활 작용으로 마찰저항을 감소시키는 방식 등으로 구분된다.
그러므로 공기강제배출 기술은 수중 부력체의 마찰저항을 기포 및 공기분사로 감소시킴으로써 SWATH 선박 운행 시 전체 저항 중 저항 감소에 미치는 영향이 큰 마찰저항을 감소시키고, 이를 통해 SWATH 선박의 높은 연료비와 많은 화석 연료 소모에 따른 탄소 배출 증가를 줄이는데 기여할 수 있다.
국내특허공개 10-2014-0006673
하지만, 공기강제배출 기술은 SWATH 선박에 적용된 수중 부력체에 기포 및 공기분사를 위한 압축공기 배출 및 미세 기포 배출로 추가적인 에너지소비가 요구되고, 최적의 공기배출량을 위해 공기배출 제어장치로 이루어진 제어시스템도 필요하며, 특히 별도의 공기배관과 공기공급장치를 제한된 공간에 설치하여야 하는 어려움이 존재하고 있다.
이에 상기와 같은 점을 감안한 본 발명은 선박의 주행속도에 의한 수중 부력체의 내외부 압력차를 동력원으로 한 자연공기흡입방식으로 공기가 자동분사됨으로써 기존 공기강제배출 기술의 한계를 극복한 고속 수중 부력체의 마찰저항감소장치 및 이를 적용한 선박을 제공하는데 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 고속 수중 부력체의 마찰저항감소장치는 선박의 하부에 구비되어 대기 노출경로를 형성한 수중 날개; 곡률을 가진 선수부와 후미부를 잇는 몸통으로 이루어지고, 상기 수중 날개와 연결되어 수중에 잠겨진 수중부력체; 상기 선박에 의한 상기 수중부력체의 수중 주행속도로 발생된 저압력점이 상기 수중부력체에 내외부 압력차를 발생시키면, 상기 압력차가 상기 수중부력체의 내부로 유입된 대기를 상기 수중부력체의 외부로 공기 분사시키고, 상기 공기분사가 상기 수중부력체의 물속 마찰저항을 감소시키는 자연공기분사장치;를 포함하는 것을 특징으로 한다.
바람직한 실시예로서, 상기 공기분사는 상기 수중 부력체의 곡률을 가지는 선수부의 전체 구간 길이를 1로 할 때 0.45 ~ 0.85 구간 중 어느 한 구간에서 이루어지고, 상기 수중부력체의 둘레를 통해 원형 띠 형상을 이룬다.
바람직한 실시예로서, 상기 자연공기분사장치는 상기 수중부력체의 내부공간을 대기와 연통시키는 에어파이프, 상기 수중부력체에 구비되어 상기 공기분사가 이루어지는 노즐, 상기 압력차 미형성 시 상기 공기분사가 차단되도록 상기 노즐을 막는 반면 상기 압력차 형성 시 상기 공기분사가 이루어지도록 상기 노즐을 여는 에어밸브로 구성된다.
바람직한 실시예로서, 상기 노즐은 상기 수중 부력체에 홀을 뚫어 형성한다.
바람직한 실시예로서, 상기 에어밸브는 상기 압력차 형성 시 압력으로 상기 노즐을 열어주는 반면 상기 압력차 미형성 시 부력으로 상기 노즐을 막아주는 부력 마개, 상기 부력 마개와 연결되어 상기 수중부력체의 내부공간에 구비된 에어 하우징, 상기 에어 하우징에 구비된 기밀부재로 구성되고, 상기 에어 하우징은 상기 부력 마개의 움직임과 연동되며, 상기 기밀부재는 상기 수중부력체의 내부공간으로 물이 유입되지 못하도록 상기 노즐의 주변을 밀폐한다.
그리고 상기와 같은 목적을 달성하기 위한 본 발명의 선박은 선박 저부에 구비된 수중 날개, 상기 수중 날개에 연결된 상태에서 수중 주행속도로 발생된 저압력점으로 내외부 압력차가 발생되는 콘형 수중부력체, 상기 수중부력체의 내부공간에 구비된 상태에서 상기 압력차로 상기 수중부력체의 내부공기를 수중으로 분사하여 상기 수중부력체의 물속 마찰저항을 감소시키는 자연공기분사장치를 포함하는 것을 특징으로 한다.
이러한 본 발명은 선박의 주행속도에 의한 수중 부력체의 내외부 압력차를 동력원으로 한 자연공기흡입방식으로 공기분사가 이루어짐으로써 다음과 같은 장점 및 효과가 있다.
첫째, 대기압보다 낮은 선수부의 저압력점을 이용한 압력차로 공기분사가 이루어짐으로써 SWATH 선박이 크게 감소된 마찰저항으로 고속주행 할 수 있다. 둘째, 강제적인 기포 및 공기분사에 필요한 추가적인 에너지 공급이 없으므로 에너지 절약이 이루어진다. 셋째, 압축 공기를 만드는 컴프레서를 탑재할 필요가 없고, 컴프레서 제거로 중량 감소와 함께 추가적인 에너지 절약도 이루어진다. 넷째, 부력과 압력차를 이용한 기계식 밸브 구조로 밸브 개폐 조절장치가 따로 필요 없으며 구조가 간단하다.
도 1은 본 발명에 따른 자연공기 흡입에 의한 고속 수중 부력체의 마찰저항감소장치의 구성도이고, 도 2는 본 발명에 따른 수중 부력체에 적용된 에어밸브의 구성도이며, 도 3은 본 발명에 따른 마찰저항감소장치의 공기분사원리이고, 도 4는 본 발명에 따른 마찰저항감소장치가 공기분사원리를 감안한 최적 레이아웃의 예이며, 도 5는 본 발명에 따른 마찰저항감소장치가 공기분사원리로 선박의 주행속도에 맞춰 공기분사가 이루어지는 동작 상태이다.
이하 본 발명의 실시예를 첨부된 예시도면을 참조로 상세히 설명하며, 이러한 실시예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시예에 한정되지 않는다.
도 1을 참조하면, 선박(1)은 선박 하부로 구비되어 수중에 잠기는 수중 운동체를 포함하고, 상기 수중 운동체는 수중 날개(1-1), 수중 부력체(10), 자연공기분사장치(20)로 구성된다.
구체적으로 상기 선박(1)은 SWATH(Small Waterplane Area Twin Hull)선박이다. 상기 수중 날개(1-1)는 선박(1)과 수중 부력체(10)를 일체화하고, 자연공기분사장치(20)로 가는 공기 경로를 형성한다. 상기 수중 부력체(10)는 길쭉한 콘형(corn shape) 선수부(10-1)와 후미부(10-3)를 각각 앞쪽과 뒤쪽에 형성한 유선형 몸통(10-2)으로 이루어지고, 상기 몸통(10-2)은 원형(circle shape)을 형성하며 수중 날개(1-1)와 결합된다. 그러므로 상기 수중 날개(1-1)와 상기 수중 부력체(10)는 SWATH의 통상적인 구성요소이다. 다만, 상기 수중 날개(1-1)와 상기 수중 부력체(10)는 자연공기분사장치(20)의 에어파이프(30)가 내부공간에 구비 되므로 속이 빈 중공으로 형성되는 차이가 있다.
구체적으로 상기 자연공기분사장치(20)는 수중으로 분사되는 공기의 유입 경로를 형성하는 꺾인 직선 경로의 에어파이프(30), 공기를 수중으로 분사하는 홀 형태의 노즐(40), 선박(1)에 의한 수중 운동체의 고속 주행시 수중 부력체(10)의 선수부(10-1)쪽에 형성되는 저압력점의 영향으로 개폐되도록 부유식 압력차를 이용하는 밸브 형태의 에어밸브(50)로 구성된다.
일례로, 상기 에어파이프(30)는 수중 날개(1-1)와 수중 부력체(10)의 내부를 통해 수중 부력체(10)의 선수부(10-1)에 뚫린 홀 형상의 노즐(40)로 이어진 파이프 엔드로 분기됨으로써 노즐(40)에서 분사되는 공기가 선박(1)을 통해 대기에서 공급되는 경로를 형성한다. 상기 노즐(40)은 수중 부력체(10)의 선수부(10-1)에 홀 형상으로 뚫려짐으로써 에어파이프(30)에서 공급된 대기를 공기로 수중에 분사한다. 상기 에어밸브(50)는 수중 부력체(10)의 외부에 형성된 저압력점과 수중 부력체(10)의 내부에 형성된 대기압의 압력차이로 개폐됨으로써 노즐(40)이 열리거나 막혀진다. 특히, 상기 노즐(40)은 일정각도의 배열각 K로 원형 띠 영역을 형성해 수중 부력체(10)의 선수부(10-1)의 둘레에 분포되거나 또는 수중 부력체(10)의 선수부(10-1)와 몸통(10-2)의 둘레에 분포된다. 이 경우 에어파이프(30)의 파이프 엔드는 원형 띠를 형성하는 홀 수량에 맞춰진다.
그러므로 상기 자연공기분사장치(20)는 노즐(40)의 수량과 형성 위치를 통해 수중으로 분사된 공기가 수중 부력체(10)의 선수부(10-1)에서 몸통(10-2)을 거쳐 후미부(10-3)까지 영향을 끼칠 수 있어 마찰저항 감소 효과를 최대화할 수 있다.
도 2를 참조하면, 상기 에어밸브(50)는 에어 하우징(51), 부력 마개(53), 연결로드(55), 기밀부재(57)로 구성된다.
구체적으로 상기 에어 하우징(51)은 에어 홀(51a)이 뚫려진 반구형을 이루어지고, 에어파이프(30)의 내부공간에 위치되어 노즐(40)의 주위를 감싸준다. 상기 에어 홀(51a)은 소정 간격으로 다수 개 형성되어 공기를 노즐(40)쪽으로 배출시켜 준다. 상기 부력 마개(53)는 부력을 가진 원뿔형으로 이루어져 연결로드(55)를 매개로 에어 하우징(51)과 연결되고, 수중 부력체(10)의 내,외부 압력차가 크지 않을 때 공기 분사가 이루어지지 않도록 노즐(40)을 막아주는 반면 내,외부 압력차가 클 때 공기 분사가 이루어지도록 노즐(40)을 열어준다. 상기 기밀부재(57)는 에어 하우징(51)의 한쪽면으로 덧대어진 탄성재질로 이루어지고, 수중 부력체(10)의 내,외부 압력차가 클 때 노즐(40)의 주변을 밀폐시켜줌으로써 노즐(40)의 열림에 따른 물의 수중 부력체(10) 내부 유입을 차단한다.
그러므로 상기 에어밸브(50)는 선박(1)의 저속 또는 정지 상태에서는 선저의 정수압에 의해 부력을 가진 원뿔형의 부력 마개(53)에 의해 노즐(40)의 구멍이 막히고, 선박(1)의 속도 증가 시 선저와 상부 대기압의 압력차로 반대방향으로 존재하는 압력에 의해 노즐(40)의 구멍이 열리며, 노즐(40)의 열린 구멍을 통해 공기가 자연적으로 유출됨으로써 수중 부력체(10)의 저항감소가 이루어진다.
한편 도 3을 참조하면, 선박(1)이 선저의 정수압을 형성하는 정지 상태 또는 저속 주행에서 고속으로 주행할 때 수중 부력체(10)의 선수부(10-1)에 저압력점을 형성하고, 상기 저압력점이 압력차로 자연공기분사장치(20)의 공기 분사를 형성하는 원리를 알 수 있다.
일례로, 수중 부력체(10)와 같이 선수부(10-1)가 곡률을 형성한 수중 운동체가 수중에서 주행하게 되면, 동일 유선상의 베르누이 방정식이 적용될 수 있다.
유선상의 베르누이 방정식의 예.
Figure 112016063021474-pat00001
상기 베르누이 방정식에 의하면 선수부 정체점(예, 선수부(10-1))에서 최대의 압력을 가지고 이후 곡면을 따라 속도가 증가하여 압력이 감소하는 지점이 발생한다. 이로부터 선수부에 곡면을 가진 수중 운동체 주위의 유동을 해석하면 길이에 따른 압력계수 분포 (
Figure 112016063021474-pat00002
)를 얻을 수 있으며, 전산유동해석을 통해 얻어진 압력 계수 분포를 구할 수 있다. 그 결과 압력분포도(A)와 압력계수선도(B)에서 알 수 있듯이 자유유동속도가 증가하면 최소 압력점에서 점점 감소하게 되고, 수면 근처로 고속 주행하는 경우 잠긴 깊이에 따른 정수압 보다 낮아지는 압력이 된다. 따라서 최소압력점에 대기중과 연결된 홀이 있다면, 대기와 표면홀의 자연적인 압력차를 통해 공기가 분사되며 분사된 공기는 물과의 접촉을 줄여주어 마찰저항을 감소시키게 된다.
한편, 도 4는 자연공기분사장치(20)의 공기 분사를 형성하는 원리를 이용하여 수중 부력체(10)의 저항감소를 최적화하기 위한 자연공기분사장치(20)의 레이아웃을 나타낸다.
도시된 바와 같이, 자연공기분사장치(20)의 레이아웃 최적화는 수중 부력체(10)의 선수부(10-1)에 대한 분사 홀(즉, 노즐(40))의 위치 설정을 통해 이루어진다.
일례로, X , R 좌표가 적용된 선수부(10-1)의 형상식은 식 1,2로 표현된다.
Figure 112016063021474-pat00003
- 식 1
Figure 112016063021474-pat00004
- 식 2
여기서,
Figure 112016063021474-pat00005
,
Figure 112016063021474-pat00006
= 1.6854,
Figure 112016063021474-pat00007
는 선수부 곡면부 길이,
Figure 112016063021474-pat00008
는 몸통 최대 반경,
Figure 112016063021474-pat00009
는 매개변수,
Figure 112016063021474-pat00010
는 선수부(10-1) 끝단에서부터 후방으로 길이방향 좌표,
Figure 112016063021474-pat00011
은 선수부 끝단에서부터 후방으로 반경방향 좌표이다.
그 결과 선수부 분사 홀의 위치는 몸통 선수부 끝단에서 후방으로
Figure 112016063021474-pat00012
인 위치일 때 압력강하의 효과가 증대 되므로 이 위치에 위치하는 것이 효과적임이 증명되었다.
한편 도 5를 참조하면, 선박(1)의 주행속도에 맞춰 공기분사가 이루어지는 자연공기분사장치(20)의 동작 상태가 에어밸브 열림(a)과 에어밸브 닫힘(b)으로 구분된 예를 나타낸다. 이하, P1은 에어 파이프(30)를 통해 수중 부력체(10)의 내부에 형성된 대기의 내부압력이고, P2는 수중 부력체(10)의 선수부(10-1)에 형성된 저압력점의 외부압력으로 정의한다.
에어밸브 열림(a)은 선박(1)의 고속 주행으로 발생된다. 이러한 이유는 정수압을 형성하는 저속 또는 정지 상태의 선박(1)이 고속 주행함으로써 수중 부력체(10)의 선수부(10-1)에 저압력점을 형성하고, 그 결과 P1 과 P2 는 P2 < P1 과 같이 P1 이 P2 보다 커지게 된다. 여기서, "<"는 P1 과 P2 의 크기 관계를 나타내는 부등호이다.
이어 P2 < P1 가 되면, 수중 부력체(10)의 내,외부 압력차로 에어 하우징(51)이 노즐(40)쪽으로 이동됨으로써 연결로드(55)와 고정된 부력 마개(53)가 노즐(40)에서 밀려나고, 그 결과 노즐(40)은 그 주변이 기밀부재(57)로 밀폐된 상태에서 열려진다. 그러면 수중 부력체(10)로 유입된 대기는 에어 하우징(51)의 에어 홀(51a)을 통해 공기로 빠져나가고, 공기는 기밀부재(57)의 밀폐 공간에서 노즐(40)을 통해 수중으로 분사된다.
그 결과 분사된 공기는 수중 부력체(10)의 선저부(10-1)에 형성되는 물 흐름을 변화시킴으로써 수중 부력체(10)의 저항을 크게 감소시켜준다. 특히, 공기분사가 수중 부력체(10)의 선저부(10-1)와 몸통(10-2)을 통해 이루질 경우 수중 부력체(10)의 저항 감소 효과가 더욱 큼이 실험적으로 증명되었다.
에어밸브 담힘(b)은 선박(1)의 저속 주행에서 정지 시 발생된다. 이러한 이유는 고속 주행하던 선박(1)의 저속 주행은 정수압을 형성함으로써 수중 부력체(10)의 선수부(10-1)에 저압력점을 형성하지 않고, 그 결과 P1 과 P2 는 P2 > P1 과 같이 P2 가 P1 보다 커지게 된다. 여기서, ">"는 P1 과 P2 의 크기 관계를 나타내는 부등호이다.
이어 P2 > P1 가 되면, 수중 부력체(10)의 내,외부 압력차로 부력 마개(53)가 노즐(40)쪽으로 이동됨으로써 연결로드(55)와 고정된 에어 하우징(51)이 노즐(40)에서 밀려나고, 그 결과 부력 마개(53)가 노즐(40)에 끼워짐으로써 노즐(40)은 막혀진다. 그러면 수중 부력체(10)로 유입된 대기는 노즐(40)을 통해 수중으로 분사되지 않는다.
이와 같이 자연공기분사장치(20)가 선박(1)의 주행속도에 의한 수중 부력체(10)의 내,외부 압력차를 동력원으로 한 자연공기흡입방식으로 공기를 분사함으로써 공기강제배출 기술을 적용하면서도 기존과 같이 추가적인 에너지소비가 없고 공기배출 제어시스템이 필요하지 않으며 별도의 공기배관과 공기공급장치로 인한 설치공간 확보나 제약 등이 모두 해소된다.
전술된 바와 같이, 본 실시예에 따른 고속 수중 부력체의 마찰저항감소장치는 선박(1)의 저부에 구비된 수중 날개(1-1)와 결합되어 수중에 잠긴 콘형 수중부력체(10), 선박(1)의 고속주행 시 발생된 저압력점에 의한 수중부력체(10)의 내.외부 압력차로 대기가 수중으로 배출되는 공기분사를 발생시켜 수중부력체(10)의 물속 마찰저항을 감소시키는 자연공기분사장치(20)로 구성됨으로써 대기로부터 흡입되는 공기가 별도의 추가 동력 없이 자연적으로 수중 분사되어 마철저항을 감소시키고, 특히 콘형 수중부력체(10)의 내,외부 압력차를 공기 분사의 동력원으로 함으로써 기존 공기강제배출 기술의 한계 극복으로 SWATH 선박의 성능이 개선된다.
1 : 선박 1-1 : 수중 날개
10 : 수중 부력체 10-1 : 선수부
10-2 : 몸통 10-3 : 후미부
20 : 자연공기분사장치 30 : 에어파이프
40 : 노즐 50 : 에어밸브
51 : 에어 하우징 51a : 에어 홀
53 : 부력 마개 55 : 연결로드
57 : 기밀부재

Claims (11)

  1. 수중부력체;
    상기 수중부력체의 수중 주행속도로 발생된 저압력점이 상기 수중부력체에 내.외부 압력차를 발생시키면, 상기 압력차가 상기 수중부력체의 내부로 유입된 대기를 상기 수중부력체의 외부로 공기 분사시키고, 상기 공기분사가 상기 수중부력체의 물속 마찰저항을 감소시키는 자연공기분사장치;가 포함되고,
    상기 자연공기분사장치는 상기 공기분사가 이루어지는 에어밸브를 구비하고, 상기 에어밸브는 부력 마개와 연결되어 상기 수중부력체의 내부공간에 구비된 에어 하우징, 상기 에어 하우징에 구비된 기밀부재로 구성되며;
    상기 에어 하우징은 상기 압력차의 형성 시 압력으로 상기 공기분사가 이루어지도록 상기 수중부력체에 구비된 노즐을 열어주는 반면 상기 압력차의 미형성 시 상기 공기분사가 차단되도록 부력으로 상기 노즐을 막아주는 상기 부력 마개의 움직임과 연동되고, 상기 기밀부재는 상기 수중부력체의 내부공간으로 물이 유입되지 못하도록 상기 노즐의 주변을 밀폐하는
    것을 특징으로 하는 고속 수중 부력체의 마찰저항감소장치.
  2. 청구항 1에 있어서, 상기 공기분사는 상기 수중 부력체의 곡률을 가지는 선수부의 전체 구간 길이를 1로 할 때 0.45 ~ 0.85 구간 중 어느 한 구간에서 이루어지는 것을 특징으로 하는 고속 수중 부력체의 마찰저항감소장치.
  3. 청구항 1에 있어서, 상기 자연공기분사장치는 상기 수중부력체의 내부에 구비되고, 상기 공기분사는 상기 수중부력체의 둘레를 통해 원형 띠 형상으로 이루어지는 것을 특징으로 하는 고속 수중 부력체의 마찰저항감소장치.

  4. 청구항 1에 있어서, 상기 자연공기분사장치에는 상기 수중부력체의 내부공간을 대기와 연통시키는 에어파이프가 구비되는 것을 특징으로 하는 고속 수중 부력체의 마찰저항감소장치.
  5. 청구항 1에 있어서, 상기 노즐은 상기 수중 부력체에 뚫린 홀로 이루어진 것을 특징으로 하는 고속 수중 부력체의 마찰저항감소장치.
  6. 삭제
  7. 삭제
  8. 청구항 1에 있어서, 상기 수중 부력체는 선박의 하부에 구비된 수중 날개와 연결된 것을 특징으로 하는 고속 수중 부력체의 마찰저항감소장치.
  9. 청구항 8에 있어서, 상기 수중 날개에는 상기 자연공기분사장치를 대기에 노출시키는 경로가 형성된 것을 특징으로 하는 고속 수중 부력체의 마찰저항감소장치.
  10. 청구항 1 내지 청구항 5와 청구항 8 및 청구항 9중 어느 한 항에 의한 고속 수중 부력체의 마찰저항감소장치;
    가 포함된 것을 특징으로 하는 선박.
  11. 청구항 10에 있어서, 상기 마찰저항감소장치는 SWATH(Small Waterplane Area Twin Hull)에 적용되는 것을 특징으로 하는 선박.
KR1020160081726A 2016-06-29 2016-06-29 자연공기 흡입에 의한 고속 수중 부력체의 마찰저항감소장치 및 이를 적용한 선박 KR101808436B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160081726A KR101808436B1 (ko) 2016-06-29 2016-06-29 자연공기 흡입에 의한 고속 수중 부력체의 마찰저항감소장치 및 이를 적용한 선박

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160081726A KR101808436B1 (ko) 2016-06-29 2016-06-29 자연공기 흡입에 의한 고속 수중 부력체의 마찰저항감소장치 및 이를 적용한 선박

Publications (1)

Publication Number Publication Date
KR101808436B1 true KR101808436B1 (ko) 2017-12-12

Family

ID=60943631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160081726A KR101808436B1 (ko) 2016-06-29 2016-06-29 자연공기 흡입에 의한 고속 수중 부력체의 마찰저항감소장치 및 이를 적용한 선박

Country Status (1)

Country Link
KR (1) KR101808436B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052718A (ja) 2011-09-01 2013-03-21 Zuei-Ling Lin 水流抵抗低減装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052718A (ja) 2011-09-01 2013-03-21 Zuei-Ling Lin 水流抵抗低減装置

Similar Documents

Publication Publication Date Title
KR101348081B1 (ko) 추진기 주변에 계단형식을 갖춘 선미형상을 한 에어 캐비티 및 공기윤활 방식 선박
CN107543462B (zh) 一种超空泡航行体
CN202295215U (zh) 一种高速艇气幕减阻装置
RU2651949C1 (ru) Многоструйный реактивный движитель для высокоскоростных судов, движущихся по поверхности воды, над поверхностью воды и под водой (варианты)
JP7334339B2 (ja) 艦船の航行時の造波抵抗及び摩擦抵抗を低減する方法及び装置
KR101616261B1 (ko) 기포형 저항저감장치를 구비한 선박 및 선박의 저항저감방법
KR101808436B1 (ko) 자연공기 흡입에 의한 고속 수중 부력체의 마찰저항감소장치 및 이를 적용한 선박
US20100258046A1 (en) Method and apparatus for suppressing cavitation on the surface of a streamlined body
KR20150111429A (ko) 선박의 저항감소장치
KR101336221B1 (ko) 링형 선박 추진장치
CN110539872A (zh) 自流式冷却系统
JP5697000B2 (ja) 船舶の摩擦抵抗低減装置
KR20160117654A (ko) 선박의 저항감소장치
KR20160043399A (ko) 원통형 추진 프레임
KR101078832B1 (ko) 선박구조
CN109916590B (zh) 一种超空泡生成及控制装置
CN210734476U (zh) 自流式冷却系统
JP5757486B2 (ja) 船舶の摩擦抵抗低減装置
KR20160117655A (ko) 버블형성유닛
KR20160087005A (ko) 선박의 빌지 볼텍스 억제용 날개장치
CN109774908A (zh) 适用于船舶的混合推进装置
CN217125050U (zh) 一种用于内河的气泡减阻船
CN220924423U (zh) 一种聚合物减阻剂注入潜航体附体流层的注入结构
KR101563709B1 (ko) 선저공기공급장치
CN215867181U (zh) 台风中心监测机器人

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant