KR101806223B1 - 리그닌-셀룰로오스 동시 분해 생촉매 및 이를 이용한 당화액과 바이오 연료의 제조방법 - Google Patents

리그닌-셀룰로오스 동시 분해 생촉매 및 이를 이용한 당화액과 바이오 연료의 제조방법 Download PDF

Info

Publication number
KR101806223B1
KR101806223B1 KR1020140154354A KR20140154354A KR101806223B1 KR 101806223 B1 KR101806223 B1 KR 101806223B1 KR 1020140154354 A KR1020140154354 A KR 1020140154354A KR 20140154354 A KR20140154354 A KR 20140154354A KR 101806223 B1 KR101806223 B1 KR 101806223B1
Authority
KR
South Korea
Prior art keywords
peroxidase
lignin
mnp
lip
cellulose
Prior art date
Application number
KR1020140154354A
Other languages
English (en)
Other versions
KR20160054835A (ko
Inventor
김연제
엄영순
우한민
공경택
민경선
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020140154354A priority Critical patent/KR101806223B1/ko
Priority to US14/934,710 priority patent/US20160130620A1/en
Publication of KR20160054835A publication Critical patent/KR20160054835A/ko
Application granted granted Critical
Publication of KR101806223B1 publication Critical patent/KR101806223B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01013Manganese peroxidase (1.11.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01014Lignin peroxidase (1.11.1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y115/00Oxidoreductases acting on superoxide as acceptor (1.15)
    • C12Y115/01Oxidoreductases acting on superoxide as acceptor (1.15) with NAD or NADP as acceptor (1.15.1)
    • C12Y115/01001Superoxide dismutase (1.15.1.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 특정 촉매를 이용하여 리그닌과 셀룰로오스를 동시에 분해하면서 셀룰레이즈의 활성을 높여줄 수 있는 방법에 관한 것이다.

Description

리그닌-셀룰로오스 동시 분해 생촉매 및 이를 이용한 당화액과 바이오 연료의 제조방법{Biocatalyst simultaneous degrading lignin and cellulose, and method for manufacturing hydrolysate and biomass using the same}
본 발명은 특정 촉매를 이용하여 리그닌과 셀룰로오스를 동시에 분해하면서 셀룰레이즈의 활성을 높여줄 수 있는 방법에 관한 것이다.
인류는 현재 석유 자원의 고갈 및 지구 온난화의 문제에 직면해 있다. 국제적으로 화석연료를 대체하고 지구 온난화 문제를 해결하기 위한 신재생에너지에 대한 관심이 높아지고 있는 가운데 공급원료를 석유가 아닌 환경 친화적인 생물 자원으로 대체하여 연료 및 고부가가치 화합물을 생산하는 바이오 화학산업이라는 새로운 패러다임이 각광받고 있다. 이에 따라 최근 옥수수 등의 식량자원이 아닌 비식용 목질계 바이오매스로부터 바이오 연료 및 바이오 화학원료를 생산하는 기술 개발이 활발히 진행되고 있으며, 미국 등 선진국에서는 목질계 바이오매스로부터 바이오 연료 생산을 늘리고 장기적 생산 목표를 설정하는 등의 국가적 차원에서 에너지 보안을 위해 노력하고 있다.
목질계 바이오매스를 기질로 미생물 발효를 통해 바이오 연료 및 바이오 화학원료를 생산하기 위해서는 일반적으로 리그닌 분해를 위한 전처리, 발효에 사용가능한 당을 얻기 위한 당화 (셀룰로오스 및 헤미셀룰로오스 가수 분해), 미생물 발효, 대사 산물의 분리, 정제 과정을 거친다. 리그닌 분해를 위한 전처리 과정에는 수증기 폭발(steam explosion), 희석된 산 또는 알칼리 추출물, 마이크로웨이브 처리, 이온화 방사선, 전기열분해(hydrolythermolysis) 등이 있으며 생물학적 방법으로는 주로 리그닌 퍼옥시다아제(lignin peroxidase), 망간 퍼옥시다아제(manganese peroxidase), 셀룰레이즈 (cellulase), 자일라네이즈(xylanase), 구리 옥시다아제(copper oxidase) 등의 다양한 종류의 생촉매를 분비하는 균류를 이용하여 리그닌을 분해한다.
포도당, 자일로오스 등과 같이 바이오매스로부터 미생물 발효 가능 당을 얻기 위한 당화 과정에서는 일반적으로 다양한 종류의 셀룰레이즈와 자일라네이즈가 혼합되어 사용되며, 셀룰로오스를 단당류까지 가수 분해하기 위해서는 엔도-글루카나아제(endo-glucanase), 엑소-글루카나제(exo-glucanase), β-글루코시다아제(β-glucosidase) 활성이 동시에 요구된다. 그러나 셀룰로오스 가수분해 효소는 안정성이 낮고 반응 부산물에 의한 활성 저하가 있어서, 생촉매의 로딩(loading) 양이 많아지고 그에 따른 비용이 많이 들어 산업적 이용에 한계가 있다. 그러므로 안정성이 높고 다기능성 셀룰로오스 가수 분해 효소의 개발이 필요하다.
최근 셀룰로오스 가수 분해와 관련하여 셀룰레이즈 활성을 증진시키는 단백질들이 발견되고 있다. 키틴-결합 단백질(Chitin-binding protein), 글리코사이드 하이드롤라아제 류(glycoside hydrolase family 61, GH61), 익스팬신(expansin) 등이 직접적으로 셀룰로오스를 가수 분해하지는 못하지만, 셀룰레이즈 활성을 증진시켜 더 많은 환원당을 생산하게 하는 것으로 알려져 있으나, 자세한 반응 메커니즘에 대한 이해는 여전히 부족한 실정이다.
국제 공개특허공보 WO2011/038019 국제 공개특허공보 WO2008/151043 국제 공개특허공보 WO2009/117689 국제 공개특허공보 WO2010/118058
Construction and characterization of chimeric cellulases with enhanced catalytic activity towards insoluble cellulosic substrates. Bioresource Technology 112:10-17 Screening and characterization of a cellulase with endocellulase and exocellulase activity from yak rumen metagenome. Journal of Molecular Catalysis B: Enzymatic 73:104-110 Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnology and Bioengineering 42 (8):1002-1013 An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330: 219-222 Insight into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proceedings of the National Academy of Science 108:15079-15084 Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulase. Biotechnology and Bioengineering 102 (5):1342-1353
본 발명의 목적은 리그닌과 셀룰로오스를 동시에 분해할 수 있을 뿐 아니라 셀룰레이즈의 활성을 높일 수 있는 방법을 제공하는 데 있다.
상기 목적을 달성하기 위해 본 발명은 리그노셀룰로오스를 포함하는 목질계 바이오매스에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계를 포함하는, 목질계 바이오매스 유래 당화액을 얻는 방법으로,
상기 당화액은 셀룰로오스의 환원당 및 헤미셀룰로오스의 환원당으로 구성된 군에서 선택되는 하나 이상의 당(sugar)을 포함하는 것인, 방법을 제공한다.
본 발명은 또한 셀룰레이즈에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계를 포함하는, 셀룰레이즈의 활성을 증가시키는 방법 및 자일라네이즈에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계를 포함하는, 자일라네이즈의 활성을 증가시키는 방법을 제공한다.
아울러 본 발명은 리그노셀룰로오스를 포함하는 목질계 바이오매스에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 것을 포함하여 리그닌, 셀룰로오스 및 헤미셀룰로오스를 동시에 가수분해 시키는 방법을 제공한다. 본 발명은 또한 상기 당화액을 이용하여 바이오 에너지를 생산하는 것을 포함하는, 바이오 에너지 생산방법을 제공한다.
본 발명에 의하면 종래 리그닌 산화환원효소로만 알려진 효소를 사용하여 리그닌 뿐아니라 셀룰로오스 및 헤미셀룰로오스까지 가수분해하여 이로부터 당화액을 제조할 수 있으므로, 목질계 바이오매스로부터 바이오 연료 또는 바이오 화학원료 생산을 위한 원료인 당화액의 제조 공정을 단순화, 간편화할 수 있다는 장점이 있다. 그러므로, 본 발명에 의할 때, 효소 사용량을 줄일 수 있으며, 바이오 연료의 생산공정을 단순화하여 생산 효율을 높일 수 있다. 또한 본 발명에 의할 때 상기 효소를 이용해 셀룰레이즈 및 자일라네이즈의 활성을 증가시킬 수 있으므로, 바이오 연료 또는 바이오 화학원료 생산을 위한 원료인 당화액을 보다 효율적으로 생산할 수 있다는 장점이 있다.
도 1은 본 발명의 일 구현예로서 카르복실메틸 셀룰로오스(CMC)를 기질로 사용하여 LiP(lignin peroxidase)와 MnP(manganese peroxidase)에 의해 생산되는 환원당을 보여주는 그래프이다.
도 2는 본 발명의 일 구현예로서 자일란(xylan)을 기질로 사용하여 LiP(lignin peroxidase)와 MnP(manganese peroxidase)가 생산하는 환원당을 보여주는 그래프이다.
도 3은 본 발명의 일 구현예로서 카르복실메틸 셀룰로오스(CMC), p-나이트로페닐 셀로바이오스(pNPC), 셀로바이오스(cellobiose), 환원된 비결정질 셀룰로오스(regenerated amorphous cellulose, RAC), 아비셀(Avicel), 자일란(xylan)을 기질로 했을 때 LiP(lignin peroxidase)와 MnP(manganese peroxidase)의 가수분해 활성을 보여주는 그래프이다.
본 발명은 일 관점에서 리그노셀룰로오스를 포함하는 목질계 바이오매스에 LiP(lignin peroxidase, E.C. 1.11.1.14), MnP(manganese peroxidase, E.C. 1.11.1.13), DyP(heme-containing dye-decolorizing peroxidase, E.C. 1.11.1.19), VP (versatile peroxidase, E.C. 1.11.1.16), SOD(superoxide dismutase, E.C. 1.15.1.1) 및 라카아제(laccase, E.C. 1.10.3.2)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계를 포함하는, 목질계 바이오매스 유래 당화액을 얻는 방법에 관한 것으로 상기 당화액은 셀룰로오스의 환원당 및 헤미셀룰로오스의 환원당으로 구성된 군에서 선택되는 하나 이상의 당(sugar)을 포함할 수 있다.
본 명세서에서 상기 “바이오매스”는 화학적 에너지로 이용될 수 있는 생물을 총칭하는 의미로, 에너지원으로 활용하기 위해 사용되는 식물이나 동물 같은 생물체를 의미한다.
본 명세서에서 상기 “목질계 바이오매스”는 식물, 구체적으로 목본, 즉 초본류 식물을 제외한 줄기와 뿌리가 비대하여 질이 단단한 식물을 의미한다. 목질계 바이오매스는 리그노셀룰로오스를 다량 포함하므로, 이를 가수분해하여 바이오 에너지 생성을 위한 원료인 당화액으로 사용할 수 있다.
본 명세서에서 상기 “환원당”은 중합체인 셀룰로오스 또는 헤미셀룰로오스를 가수분해하여 얻어지는 당(sugar)을 의미할 수 있다. 상기 셀룰로오스(cellulose)는 포도당이 β-1,4 결합에 의해 직선으로 연결된 다당류로서 포도당이 α-1,4 결합으로 연결되어 나선형 구조인 아밀로오스에 비해 물리적, 화학적으로 훨씬 튼튼한 구조를 이루고 있기 ‹š문에 상대적으로 가수 분해가 어렵다. 상기 헤미셀룰로오스(hemicelluloses)는 주로 5탄당인 자일로오스의 중합체로서 상기 셀룰로오스보다 당의 중합도 (degree of polymerization)가 낮은 다당류이다. 셀룰로오스와 비교했을 때, 중합도가 낮고, 구조의 규칙성이 낮아서 비교적 가수 분해가 쉽게 이루어진다. 구체적으로 상기 셀룰로오스의 환원당은 포도당일 수 있고, 상기 헤미셀룰로오스의 환원당은 자일로오스 및 포도당일 수 있으나, 이에 제한되는 것은 아니다.
본 명세서에서 상기 “당화액”은 당(sugar)을 기본 구조로 하는 중합체인 셀룰로오스 또는 헤미셀룰로오스를 가수분해 하여 얻어진 당을 포함하는 용액을 의미한다.
상기 LiP(lignin peroxidase) 및 MnP(manganese peroxidase)는 백색부후균(Phanerochaete chrysosporium)과 같은 균류로부터 유래할 수 있지만 이에 제한되는 것은 아니다. 한편 상기 락카아제(laccase)는 프레우로투스 오스트레아투스(Pleurotus ostreatus)와 같은 진균으로부터 유래한 구리를 함유한 폴리페놀 옥시다제로, 산소분자가 물분자로 환원될 때 폴리페놀, 메톡시-치환 모노페놀, 방향족 아민류 등의 전자를 유리시켜 라디칼을 형성시킬 수 있다.
본 명세서에서 상기 “리그노셀룰로오스”는 셀룰로오스, 헤미셀룰로오스 및 리그닌을 포함하는 복합체를 의미한다. 상기 리그닌(lignin)은 메톡시화(methoxylation)된 쿠마릴 알코올 (p-coumaryl alcohol), 코니퍼릴 알코올 (coniferyl alcohol), 시내필 알코올 (sinapyl alcohol) 등의 중합체로서 다량의 방향족 화합물을 포함하기 때문에 소수성을 띄며 복합한 구조를 가진 고분자이다. 상기 리그닌은 화학적으로 강한 내구성을 가지고 있어서 분해가 어렵다. 목질계 바이오 매스 내에서 리그닌은 헤미셀룰로오스와 공유결합으로 연결되고 헤미셀룰로오스는 셀룰로오스와 수소결합을 통해 연결되어 있으므로, 전체적으로 직선형인 셀룰로오스 마이크로파이브릴 (microfibril)을 헤미셀룰로오스가 수소 결합으로 감싸고, 이러한 헤미셀룰로오스를 다시 리그닌이 공유결합으로 둘러싼 형태를 갖는다.
그러므로 목질계 바이오매스로부터 당화액을 얻기 위해서는 리그노셀룰로오스의 바깥쪽을 둘러싸고 있는 리그닌 분해가 선행되어야 했고, 리그닌 분해를 위한 촉매와 셀룰로오스 (및 헤미셀룰로오스)를 분해하는 효소가 서로 상이하여 별도의 단계로 진행해야 하는 번거로움이 있었다.
그러나 본 발명의 일 관점인 상기 목질계 바이오매스 유래 당화액을 얻는 방법에 의하면 해당 촉매의 처리로 인해, 리그닌 분해에 더불어 셀룰로오스 (및 헤미셀룰로오스)의 분해까지 가능해지므로, 간편하고 경제적이다.
본 명세서에서 상기 셀룰로오스 (또는 헤미셀룰로오스)는 카르복실메틸 셀룰로오스(carboxymethyl cellulose, CMC), 아비셀(Avicel), 셀로바이오스(cellobiose), 나이트로페닐 셀로바이오사이드(p-nitrophenyl cellobioside), 재생 비결정질 셀룰로오스(regenerated amorphous cellulose, RAC), 자일란 (xylan from beechwood) 등을 예로 들 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 관점인 상기 목질계 바이오매스 유래 당화액을 얻는 방법에 있어서, 상기 촉매가 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase) 및 VP(versatile peroxidase) 중 하나 이상을 포함하는 경우, 상기 단계는 상기 촉매와 과산화수소를 함께 처리하는 것을 포함한다. 상기 촉매와 상기 과산화수소의 처리 순서에는 제한이 없으며, 동시에 처리하는 것 역시 포함한다.
본 발명의 일 관점인 상기 목질계 바이오매스 유래 당화액을 얻는 방법에 있어서, 상기 셀룰로오스의 환원당은 포도당이고 상기 헤미셀룰로오스의 환원당은 자일로오스 및 포도당일 수 있다.
본 발명의 일 관점인 상기 목질계 바이오매스 유래 당화액을 얻는 방법에 있어서, 상기 당화액은 리그닌의 가수분해물을 더 포함하고, 상기 가수분해물은 메톡시화된 쿠마릴 알코올, 코니퍼릴 알코올 및 시내필 알코올로 구성된 군에서 선택되는 하나 이상의 화합물을 포함할 수 있다. 본 명세서에서 사용한 촉매는 원래 리그닌을 가수분해하기 위해서 사용되었기 때문이다.
본 발명은 다른 관점에서 셀룰레이즈(cellulase)에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계를 포함하는, 셀룰레이즈의 활성을 증가시키는 방법에 관한 것이다.
본 발명은 또 다른 관점에서 자일라네이즈에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계를 포함하는, 자일라네이즈의 활성을 증가시키는 방법에 관한 것이다.
본 발명의 발명자들은 상기 촉매가 셀룰로오스 (및 헤미셀룰로오스, 즉 자일라네이즈) 자체를 가수분해 시킬 수 있음을 밝혔을 뿐 아니라, 셀룰레이즈(및 헤미셀룰레이즈) 의 활성 역시 증가시킬 수 있음을 밝혔다. 그러므로, 상기 촉매를 사용하여 목질계 바이오매스로부터 당화액을 얻는 경우, 상기 촉매의 처리로 리그닌과 셀룰로오스 (및 헤미셀룰로오스, 즉 자일라네이즈) 의 분해가 동시에 일어나게 될 뿐 아니라, 셀룰레이즈 (및 헤미셀룰레이즈)를 함께 넣고 이들의 활성을 극대화시킬 수 있으므로, 종래 고가의 셀룰레이즈 (및 헤미셀룰레이즈)의 사용을 줄이면서도 당화 활성은 증가시킬 수 있으므로, 유용하다.
본 발명의 일 관점인 셀룰레이즈의 활성을 증가시키는 방법에 있어서, 상기 셀룰레이즈는 엔도-글루카네이즈(endo-glucanase), 엑소-글루카네이즈 (exo-glucanase), 셀로바이오하이드레이즈(cellobiohydrolase), 셀로바이오스 디하이드로게네이즈 (cellobiose dehydrogenase) 및 β-글루코시데이즈(β-glucosidase)으로 구성된 군에서 선택되는 하나 이상의 효소를 포함할 수 있으나, 이에 제한되는 것은 아니며 셀룰로오스 (및 헤미셀룰로오스)를 분해할 수 있는 효소라면 제한없이 사용될 수 있다.
그러므로, 본 발명은 또 다른 관점에서 리그노셀룰로오스를 포함하는 목질계 바이오매스에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 것을 포함하여 리그닌, 셀룰로오스 및 헤미셀룰로오스를 동시에 가수분해 시키는 방법을 포함한다.
아울러 본 발명은 또 다른 관점에서, 리그노셀룰로오스를 포함하는 목질계 바이오매스에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하여 셀룰로오스의 환원당 및 헤미셀룰로오스의 환원당을 포함하는 당화액을 얻는 단계; 및 상기 당화액을 이용하여 바이오 에너지를 생산하는 것을 포함하는, 바이오 에너지 생산방법에 관한 것일 수 있다. 상기 두 번째 단계 즉, 당화액으로부터 바이오 에너지를 생산하는 방법은 당업계에 알려져 있는 방법이라면 제한없이 사용가능하며, 구체적으로 미생물을 이용하여 상기 당화액을 발효시키는 방법이 가능할 것이나 이에 제한되는 것은 아니다.
본 발명이 포함하는 다양한 관점의 발명 모두에 있어서, 촉매의 농도는 당업자가 적절히 조절할 수 있다. 아울러 처리하는 촉매의 종류에 따라 처리 온도와 pH를 조절할 수 있는데, 예를 들면, 촉매가 LiP, MnP, 및 DyP 인 경우 온도는 20~60℃, pH는 2~5일 수 있다. 또한, 촉매가 라카아제인 경우 온도는 20 ~ 80 ℃, pH는 2 ~10일 수 있으나, 이에 제한되는 것은 아니다.
이하, 본 발명의 실시예를 참조하여 본 발명을 상세히 설명한다. 이들은 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.
[실시예 1] 셀룰로오스 및 헤미셀룰로오스 분해
본 발명의 구현예들에 따른 리그닌-셀룰로오스 동시분해 생촉매가 셀룰로오스 및 헤미셀룰로오스를 직접 분해할 수 있는지 알아보기 위해, 셀룰로오스 및 헤미셀룰로오스 분해시 생성되는 환원당을 측정하였다.
리그닌-셀룰로오스 동시분해 생촉매로는 Sigma 사의 백색부후균(Phanerochaete chrysosporium) 유래 LiP(lignin peroxidase) 와 MnP(manganese peroxidase)를 사용하였다. 셀룰로오스 기질로는 Sigma 사의 카르복실메틸 셀룰로오스를 5 g/L, 헤미셀룰로오스 기질로는 Sigma 사의 자일란(from beechwood)을 2.5 g/L 사용하였다. LiP 반응을 위해 상기 기질에 0.1 mM 과산화수소를 첨가하였고, MnP 반응을 위해 상기 기질에 0.1 mM 과산화수소 및 2 mM MnSO4 를 첨가하였다. 환원당 생성 여부는 DNS방법으로 측정하였다. DNS 용액은 10 g/L NaOH, 5 g/L DNS((3,5-dinitrosalicylic acid), 1 g/L 페놀, 100 g/L 로셸염으로 구성되었다. 분석을 위해서 반응물 250 μL 및 DNS 용액 750 μL 를 혼합하여 5분간 끓인 후 상온에서 충분히 냉각시켜 540 nm 에서 흡광도를 측정하였으며 셀룰로오스와 헤미셀룰로오스 기질에 대하여 각각 포도당과 자일로오스를 표준 용액으로 환원당 농도를 계산하였다.
상기 셀룰로오스인 카르복실메틸 셀룰로오스 가수분해 결과를 도 1에 나타내었다. 생촉매가 포함되지 않은 대조군과 비교했을 때, LiP와 MnP는 각각 카르복실메틸 셀룰로오스를 가수분해하여 환원당을 생산함을 알 수 있다. 헤미셀룰로오스인 자일란 가수분해 결과는 도 2에 나타내었다. 생촉매가 포함되지 않은 대조군과 비교했을 ‹š, LiP와 MnP는 각각 자일란을 가수 분해하여 환원당을 생산함을 알 수 있었다.
[실시예 2] 셀룰로오스 및 헤미셀룰로오스 가수분해 활성
본 발명의 구현예들에 따른 리그닌-셀룰로오스 동시분해 생촉매의 셀룰로오스 및 헤미셀룰로오스 가수분해 활성을 측정하였다.
리그닌-셀룰로오스 동시분해 생촉매로는 Sigma 사의 백색부후균 유래 LiP(lignin peroxidase) 와 MnP(manganese peroxidase)를 사용하였다. 셀룰로오스 기질로는 카르복실메틸 셀룰로오스, 아비셀, 셀로바이오스, 나이트로페닐 셀로바이오스, 1 g/L 환원된 비정질 셀룰로오스(regenerated amorphous cellulose), 헤미셀룰로오스 기질로는 자일란을 각각 1 g/L 사용하였다. LiP 반응을 위해 0.1 mM 과산화수소를 첨가하였고, MnP 반응을 위해 0.1 mM 과산화수소 및 2 mM MnSO4 를 첨가하였다. 카르복실메틸 셀룰로오스, 아비셀, 환원된 비정질 셀룰로오스, 자일란의 반응 생성물인 환원당 생성 여부는 상기 DNS 방법으로 측정하였다. 셀로바이오스 반응 생성물인 포도당은 액체크로마토 그래프(Agilent model 1200 liquid chromatograph)로 분석하였다. 굴절률 검출기와 Aminex HPX-87H 컬럼을 사용하였다. 나이트로페닐 셀로바이오사이드의 반응 생성물인 나이트로 페놀(p-nitrophenol)은 분광광도계(Cary60, Agilent Technology)로 410 nm 에서의 흡광도를 측정하였다.
각각의 기질에 대한 반응 생성물 농도를 분석한 후 이를 토대로 가수 분해 활성을 계산하여 도 3에 나타내었다. LiP와 MnP는 (헤미)셀룰로오스를 단당류까지 가수분해 하는데 필요한 4가지 활성인 엔도-글루카네이즈(endo-glucanase), 엑소-글루카네이즈(endo-glucanase), β-글루코시데이즈(β-glucosidase), 자일라네이즈(xylanase) 활성을 동시에 가지고 있음이 확인되었다. 도 3에서 활성단위 (U) 는 1 분간 1 μmole 의 반응 생성물을 만들어내는 생촉매 양으로 정의한다. 도 3에서도 LiP와 MnP는 셀룰로오스 및 헤미셀룰로오스를 직접 가수분해 함을 알 수 있다.
[실시예 3] 셀룰레이즈 및 자일라네이즈 활성 증진
본 발명의 구현예들에 따른 리그닌-셀룰로오스 동시분해 생촉매의 셀룰레이즈 및 자일라네이즈 활성 증진 효과를 평가하였다.
리그닌-셀룰로오스 동시분해 생촉매로는 Sigma 사의 백색부후균 유래 LiP(lignin peroxidase) 와 MnP(manganese peroxidase)를 사용하였다. 셀룰레이즈로는 Sigma 사의 트리코더마 레세이(Trichoderma reesei) ATCC26921 유래 셀룰레이즈를 1 unit 사용하였고, 자일라네이즈로는 Sigma 사의 서모마이스 라뉴지노서스(Thermomyces lanuginosus) 유래 자일라네이즈를 0.25 unit 사용하였다. 활성증진 평가에 필요한 기질로는 카르복실메틸 셀룰로오스(CMC)와 아비셀을 1 g/L, 10 g/L, 자일란을 2.5 g/L 사용하였고, 반응 산물인 환원당은 상기 실시예 1과 동일하게 DNS 방법으로 분석하였다. LiP 반응을 위해 0.1 mM 과산화수소를 첨가하였고, MnP 반응을 위해 0.1 mM 과산화수소 및 2 mM MnSO4 를 첨가하였다.
LiP 와 MnP의 셀룰레이즈 및 자일라네이즈 활성 증진 결과는 아래 수학식 1을 이용하여 표1에 나타내었다.
[수학식 1]
DS (degree of synergism)=(셀룰레이즈와 퍼옥시다아제를 동시에 사용했을때 생성되는 환원당)/(셀룰레이즈만 사용했을 때 생성되는 환원당+ 퍼옥시다아제만 사용했을 때 생성되는 환원당)
생촉매 기질 기질 농도
(gL-1)
환원당 (gL-1) DS*
셀룰레이즈 퍼옥시다아제 셀룰레이즈 + 퍼옥시다아제
LiP CMC 1.0 0.633 0.213 0.915 1.08
10.0 1.214 0.229 1.828 1.27
MnP CMC 1.0 0.538 0.253 0.920 1.16
10.0 1.147 0.195 2.002 1.49
Avicel 1.0 0.530 0.198 1.000 1.37
10.0 0.713 0.213 1.735 1.87
xylan 2.5 0.553 0.134 0.702 1.02
셀룰레이즈만 사용한 경우에 비해 LiP와 셀룰레이즈를 동시에 사용했을 때, 카르복실메틸 셀룰로오스(CMC)을 기질로 사용한 경우 환원당 생성이 각각 27% 증가하였다. MnP의 셀룰레이즈 활성 증진 결과, 셀룰레이즈만 사용한 경우에 비해 MnP와 셀룰레이즈를 동시에 사용했을 때, 카르복실메틸 셀룰로오스(CMC)와 아비셀을 각각 기질로 사용한 경우 환원당 생성이 각각 49%, 87% 증가하였다. 또한 자일라네이즈와 MnP 를 동시에 사용하여 자일란을 처리했을 때 환원당 생성이 2 % 증가하였다. 그러므로, 표 1에 의하면 카르복실메틸 셀룰로오스(CMC), 아비셀(Avicel)을 기질로 사용했을 때 LiP(lignin peroxidase) 와 MnP (Manganese peroxidase)가 셀룰레이즈(cellulase) 활성을 증진시켜 환원당 생성이 증가함을 알 수 있었다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당 업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (9)

  1. 목질계 바이오매스 유래 당화액을 얻는 방법으로,
    상기 방법은 리그노셀룰로오스를 포함하는 목질계 바이오매스에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계를 포함하는, 셀룰레이즈 및 자일라네이즈를 포함하는 당화 효소없이 목질계 바이오매스 유래 당화액을 얻는 방법이며,
    상기 당화액은 셀룰로오스의 환원당 및 헤미셀룰로오스의 환원당으로 구성된 군에서 선택되는 하나 이상의 당(sugar)을 포함하고,
    상기 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매는 엔도-글루카네이즈, 엑소-글루카네이즈, β-글루코시데이즈 및 자일라네이즈 활성을 동시에 가지는 것인, 방법.
  2. 제1항에 있어서,
    상기 촉매가 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase) 및 VP(versatile peroxidase) 중 하나 이상을 포함하는 경우, 상기 단계는 상기 촉매와 과산화수소를 함께 처리하는 것인, 방법.
  3. 제1항에 있어서,
    상기 셀룰로오스의 환원당은 포도당이고 상기 헤미셀룰로오스의 환원당은 자일로오스 및 포도당인, 방법.
  4. 제1항에 있어서,
    상기 당화액은 리그닌의 가수분해물을 더 포함하고,
    상기 가수분해물은 메톡시화된 쿠마릴 알코올, 코니퍼릴 알코올 및 시내필 알코올로 구성된 군에서 선택되는 하나 이상의 화합물을 포함하는, 방법.
  5. 셀룰레이즈에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계로 구성된, 셀룰레이즈의 활성을 증가시키는 방법이고,
    상기 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매는 엔도-글루카네이즈, 엑소-글루카네이즈, β-글루코시데이즈 및 자일라네이즈 활성을 동시에 가지는 것인, 방법.
  6. 제5항에 있어서,
    상기 셀룰레이즈는 엔도-글루카네이즈(endo-glucanase), 엑소-글루카네이즈 (exo-glucanase), 셀로바이오하이드레이즈(cellobiohydrolase), 셀로바이오스 디하이드로게네이즈 (cellobiose dehydrogenase) 및 β-글루코시데이즈(β-glucosidase)으로 구성된 군에서 선택되는 하나 이상의 효소를 포함하는, 방법.
  7. 자일라네이즈에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계로 구성된, 자일라네이즈의 활성을 증가시키는 방법이고,
    상기 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매는 엔도-글루카네이즈, 엑소-글루카네이즈, β-글루코시데이즈 및 자일라네이즈 활성을 동시에 가지는 것인, 방법.
  8. 리그노셀룰로오스를 포함하는 목질계 바이오매스에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계로 구성된, 셀룰레이즈 및 자일라네이즈를 포함하는 당화 효소없이 리그닌, 셀룰로오스 및 헤미셀룰로오스를 동시에 가수분해시키는 방법이고,
    상기 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매는 엔도-글루카네이즈, 엑소-글루카네이즈, β-글루코시데이즈 및 자일라네이즈 활성을 동시에 가지는 것인, 방법.
  9. 리그노셀룰로오스를 포함하는 목질계 바이오매스에 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매를 처리하는 단계로 구성된, 셀룰레이즈 및 자일라네이즈를 포함하는 당화 효소없이 셀룰로오스의 환원당 및 헤미셀룰로오스의 환원당을 포함하는 당화액을 얻는 단계; 및
    상기 당화액을 이용하여 바이오 에너지를 생산하는 것을 포함하는, 바이오 에너지 생산방법이고,
    상기 LiP(lignin peroxidase), MnP(manganese peroxidase), DyP(heme-containing dye-decolorizing peroxidase), VP(versatile peroxidase), SOD(superoxide dismutase) 및 라카아제(laccase)로 구성된 군에서 선택되는 하나 이상의 촉매는 엔도-글루카네이즈, 엑소-글루카네이즈, β-글루코시데이즈 및 자일라네이즈 활성을 동시에 가지는 것인, 방법.
KR1020140154354A 2014-11-07 2014-11-07 리그닌-셀룰로오스 동시 분해 생촉매 및 이를 이용한 당화액과 바이오 연료의 제조방법 KR101806223B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140154354A KR101806223B1 (ko) 2014-11-07 2014-11-07 리그닌-셀룰로오스 동시 분해 생촉매 및 이를 이용한 당화액과 바이오 연료의 제조방법
US14/934,710 US20160130620A1 (en) 2014-11-07 2015-11-06 Biocatalyst for simultaneously degrading lignin and cellulose, and method for manufacturing hydrolysate and biofuel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140154354A KR101806223B1 (ko) 2014-11-07 2014-11-07 리그닌-셀룰로오스 동시 분해 생촉매 및 이를 이용한 당화액과 바이오 연료의 제조방법

Publications (2)

Publication Number Publication Date
KR20160054835A KR20160054835A (ko) 2016-05-17
KR101806223B1 true KR101806223B1 (ko) 2017-12-07

Family

ID=55911755

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140154354A KR101806223B1 (ko) 2014-11-07 2014-11-07 리그닌-셀룰로오스 동시 분해 생촉매 및 이를 이용한 당화액과 바이오 연료의 제조방법

Country Status (2)

Country Link
US (1) US20160130620A1 (ko)
KR (1) KR101806223B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106754803B (zh) * 2017-01-18 2020-05-05 四川爱奇生物科技有限公司 DypB活性蛋白异源高表达的方法及应用
CN115011489B (zh) * 2022-06-06 2023-08-29 安庆师范大学 一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079048A2 (en) * 2009-12-23 2011-06-30 Danisco Us Inc. Methods for improving the efficiency of simultaneous saccharification and fermentation reactions
KR101055623B1 (ko) 2008-02-29 2011-08-10 고려대학교 산학협력단 리그노셀룰로스성 바이오매스의 생물학적 전처리 및 당화방법 및 이를 포함하는 바이오에탄올의 제조방법
WO2012062768A1 (en) * 2010-11-08 2012-05-18 Deinove Laccases and uses thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155601A2 (en) * 2008-06-20 2009-12-23 Edenspace Systems Corporation Processing cellulosic biomass
EP2379732A2 (en) * 2008-12-19 2011-10-26 Novozymes Inc. Methods for increasing enzymatic hydrolysis of cellulosic material in the presence of a peroxidase
WO2012068167A1 (en) * 2010-11-15 2012-05-24 Edeniq, Inc. Use of manganese peroxidase for enzymatic hydrolysis of lignocellulosic material
US8993274B2 (en) * 2011-08-18 2015-03-31 Andritz Inc. Enzymatic hydrolysis pretreatment of lignocellulosic materials
CN102559763B (zh) * 2012-01-12 2014-03-19 湖南大学 一种利用活性介体组合促进复合酶催化降解稻草秸秆的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101055623B1 (ko) 2008-02-29 2011-08-10 고려대학교 산학협력단 리그노셀룰로스성 바이오매스의 생물학적 전처리 및 당화방법 및 이를 포함하는 바이오에탄올의 제조방법
WO2011079048A2 (en) * 2009-12-23 2011-06-30 Danisco Us Inc. Methods for improving the efficiency of simultaneous saccharification and fermentation reactions
WO2012062768A1 (en) * 2010-11-08 2012-05-18 Deinove Laccases and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
William Scott Eborall, University of York 학위논문 (2013. 9.)*

Also Published As

Publication number Publication date
US20160130620A1 (en) 2016-05-12
KR20160054835A (ko) 2016-05-17

Similar Documents

Publication Publication Date Title
Paramjeet et al. Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues
Sharma et al. Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview
Bhatia et al. An economic and ecological perspective of ethanol production from renewable agro waste: a review
Saritha et al. Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility
Hari Krishna et al. Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass
Martins et al. Agroindustrial wastes as substrates for microbial enzymes production and source of sugar for bioethanol production
Sinitsyn et al. Bioconversion of renewable plant biomass. Second-generation biofuels: Raw materials, biomass pretreatment, enzymes, processes, and cost analysis
Treebupachatsakul et al. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass
Schilling et al. Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems
Bhardwaj et al. Role of enzymes in deconstruction of waste biomass for sustainable generation of value-added products
Bhardwaj et al. Microbial xylanases: a helping module for the enzyme biorefinery platform
Allen et al. Lignocelluloses: an economical and ecological resource for bio-ethanol production-a review
Sarangi et al. Recent advances in consolidated bioprocessing for microbe-assisted biofuel production
Ríos-Fránquez et al. Microbial enzyme applications in bioethanol producing biorefineries: overview
Rana Green approaches in the valorization of plant wastes: Recent insights and future directions
KR101806223B1 (ko) 리그닌-셀룰로오스 동시 분해 생촉매 및 이를 이용한 당화액과 바이오 연료의 제조방법
US9840726B2 (en) Method for improving the fermentable sugar yield from lignocellulosic
DK2437567T3 (en) Disabling data carrier connections upon outbound transfer from a home cell
Trbojević-Ivić Microbial Cellulase in the Production of Second Generation Biofuels: State-of-the-Art and Beyond
Gandla et al. Enzymatic saccharification of lignocellulosic biomass
Ramamoorthy et al. An Insight into the Applications of Fungi in Ethanol Biorefinery Operations
Dadwal et al. Progress and prospects in the production of cellulosic ethanol
Haldar et al. Enzyme Technology for the Degradation of Lignocellulosic Waste
Kumar et al. Enzymatic degradation of lignocellulosic waste: bioremediation and industrial implementation
Althuri et al. Microbial enzymes and lignocellulosic fuel production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant