KR101793698B1 - Apparatus for Phase Control and Method for Phase Control Using the Apparatus - Google Patents

Apparatus for Phase Control and Method for Phase Control Using the Apparatus Download PDF

Info

Publication number
KR101793698B1
KR101793698B1 KR1020170004389A KR20170004389A KR101793698B1 KR 101793698 B1 KR101793698 B1 KR 101793698B1 KR 1020170004389 A KR1020170004389 A KR 1020170004389A KR 20170004389 A KR20170004389 A KR 20170004389A KR 101793698 B1 KR101793698 B1 KR 101793698B1
Authority
KR
South Korea
Prior art keywords
switching
unit
load
control
voltage
Prior art date
Application number
KR1020170004389A
Other languages
Korean (ko)
Inventor
임금성
Original Assignee
주식회사 모스트파워
임금성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모스트파워, 임금성 filed Critical 주식회사 모스트파워
Priority to KR1020170004389A priority Critical patent/KR101793698B1/en
Priority to PCT/KR2017/009423 priority patent/WO2018131768A1/en
Application granted granted Critical
Publication of KR101793698B1 publication Critical patent/KR101793698B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

The present invention relates to a phase control apparatus and a phase control method using the same. The phase control apparatus includes: a voltage dividing part connected to a load such that a voltage applied to the load is distributed during phase control; a switching part for performing ON control or OFF control; a discharge circuit part for discharging energy generated by a counter electromotive force at the time of the OFF control; and a control part for controlling the operation of the switching part, the voltage distribution part, and the discharge circuit part. It is possible to perform phase control more efficiently by eliminating an impulse noise that may occur during the ON control through one circuit and an inductive kickback that may occur during the OFF control. In addition, it is possible to perform power saving control by sequentially performing the ON control and the OFF control within one cycle.

Description

위상 제어장치 및 이를 이용한 위상 제어 방법{Apparatus for Phase Control and Method for Phase Control Using the Apparatus}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase control apparatus and a phase control method using the same,

본 발명은 위상 제어 방법에 관한 것으로, 더욱 상세하게는 임펄스 노이즈 및 유도성 킥백이 발생하지 않도록 한 위상 제어장치 및 이를 이용한 위상 제어 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase control method, and more particularly, to a phase control apparatus and a phase control method using the phase control apparatus so as to prevent impulse noise and inductive kickback from occurring.

시간에 따라 주기적으로 크기와 방향이 변하는 전류를 교류라고 하며, 시간에 따라 주기적으로 크기와 방향이 변하는 전압을 교류전압이라고 한다. The current whose size and direction change periodically according to time is called AC, and the voltage whose size and direction change periodically according to time is called AC voltage.

정현파 형태를 가지는 교류 전원은 다양한 주파수를 가질 수 있으나, 일반적으로는 50Hz 혹은 60Hz의 주파수를 가지는 교류 전원을 사용한다. 현재 주로 사용되고 있는 60Hz의 경우, 반주기의 시간은 8.33ms 이고, 위상각으로는 0°~ 180°에 해당한다. An AC power source having a sinusoidal waveform may have various frequencies, but generally, an AC power source having a frequency of 50 Hz or 60 Hz is used. At 60Hz, which is mainly used today, the time of the half period is 8.33ms and the phase angle is 0 ° ~ 180 °.

일반적으로, 위상 제어란 교류전압에 대하여 반주기를 기준으로 전체 정현파 형태의 입력 중에서 일부만이 출력되도록 제어하는 것을 말한다. 이와 같은 위상 제어의 방법으로는 위상 온 제어(Phase On Control) 방법과 위상 오프 제어(Phase Off Control) 방법이 있다. Generally, phase control refers to controlling only a part of the input of the entire sinusoidal waveform based on the half period with respect to the AC voltage. As the phase control method, there are a phase on control method and a phase off control method.

위상 온 제어 방법은 제로크로싱 시점으로부터 일정한 시간동안 전압(혹은 전류)신호를 출력하지 않다가, 특정 시점에 이르렀을 때 비로소 전압(혹은 전류)을 출력하도록 제어하는 것이다. 즉, 제로크로싱 시점으로부터 일정한 시간동안 출력 신호가 없다가 특정 시점에 출력이 개시되므로 이를 위상 온 제어라고 한다.The phase-on control method does not output a voltage (or current) signal for a certain period of time from the zero crossing point, and controls to output a voltage (or current) only when a certain point of time is reached. That is, since there is no output signal for a certain period of time from the zero crossing point and the output starts at a specific point in time, this is called phase-on control.

한편, 위상 오프 제어 방법은 제로크로싱 시점으로부터 일정한 시간동안 전압(혹은 전류)신호를 출력하다가, 특정 시점에 이르렀을 때 비로소 전압(혹은 전류)이 출력되지 않도록 제어하는 것이다. 즉, 제로크로싱 시점으로부터 지속적으로 신호를 출력하다가 특정 시점에 이르면 출력이 차단되므로 이를 위상 오프 제어라고 한다. On the other hand, the phase-off control method outputs a voltage (or current) signal for a certain period of time from the zero crossing point, and controls the voltage (or current) not to be output until a specific point of time is reached. That is, the output signal is continuously output from the zero crossing point, and when the output reaches a specific point, the output is blocked.

도 1 은 위상 온 제어에 따른 신호 파형의 일례를 나타낸 것이다. FIG. 1 shows an example of a signal waveform according to the phase-on control.

도 1 을 참고하면, 제1제로크로싱 시점(T11)으로부터 온 제어 시점(T12)까지는 교류전압이 차단된다. 한편, 온 제어 시점(T12)이 되는 순간 교류전압 신호가 출력되기 시작하여, 제2제로크로싱 시점(위상각 180°)(T13)까지 교류전압의 출력이 지속된다. 그리고, 제2제로크로싱 시점(위상각 180°)(T13)으로부터 교류전압의 출력이 차단된다. 교류전압은 온 제어 시점(T14)이 되는 순간부터 다시 출력되고, 제3제로크로싱 시점(T15)(위상각 360°)까지 교류전압의 출력이 지속된다. Referring to FIG. 1, the AC voltage is cut off from the first zero crossing point T11 to the control point T12. On the other hand, the instantaneous alternating-current voltage signal at the ON control time T12 begins to be output, and the output of the alternating voltage continues until the second zero-crossing point (phase angle 180 DEG) T13. Then, the output of the AC voltage is cut off from the second zero crossing point (phase angle 180 degrees) T13. The AC voltage is output again from the moment when the ON control point T14 is reached and the output of the AC voltage continues until the third zero crossing point T15 (phase angle 360 DEG).

상기와 같은 위상 온 제어 방법에는 다음과 같은 문제점이 있다. The above phase-on control method has the following problems.

위상 온 제어는 차단되어 있던 교류전압에 대해 일정한 시점에서 스위칭 온 동작을 수행하는 것이다. 따라서, 높은 전압에서 갑자기 스위칭 온 동작이 수행되는 경우, 임펄스 노이즈 및 과전류가 발생하는 문제점이 있다. The phase-on control is to perform a switching-on operation at a certain point in time against the AC voltage that has been interrupted. Therefore, when the switching-on operation is suddenly performed at a high voltage, impulse noise and overcurrent are generated.

이러한 임펄스 노이즈 및 과전류는 부하 기기에 심각한 타격을 줄 우려가 있을 뿐 아니라, EMI 를 발생시키는 문제점도 있다. Such impulse noise and overcurrent may not only seriously damage load devices but also generate EMI.

따라서, 종래 기술에 따른 위상 온 제어 방법은 조명의 조도 조절이나 온도 조절기 등 한정된 분야에서만 사용되는 문제점이 있다. Accordingly, the phase-on control method according to the related art has a problem in that it is used only in a limited field such as illumination control of a lighting or a temperature controller.

도 2 는 위상 오프 제어에 따른 신호 파형의 일례를 나타낸 것이다. 2 shows an example of a signal waveform according to the phase-off control.

도 2 를 참고하면, 제1제로크로싱 시점(T21)으로부터 오프 제어 시점(T22)까지 교류전압이 출력된다. 그리고, 오프 제어 시점(T22)부터 교류전압이 차단되기 시작하여, 제2제로크로싱 시점(위상각 180°)(T23)에 이르기까지 교류전압이 차단된다. 그리고, 제2제로크로싱 시점(T23)으로부터 교류전압 출력이 시작되어 오프 제어 시점(T24)까지 지속된다. 그리고, 오프 제어 시점(T24)으로부터 제3제로크로싱 시점(T25)이 되는 순간(위상각 360°)까지 교류전압의 출력이 차단된다. Referring to FIG. 2, an AC voltage is output from the first zero crossing point T21 to the OFF control point T22. Then, the AC voltage starts to be cut off from the OFF control time point T22, and the AC voltage is cut off until the second zero crossing point (phase angle 180 degrees) T23. Then, the AC voltage output starts from the second zero crossing point T23 and continues until the OFF control point T24. Then, the output of the AC voltage is cut off from the OFF control time point T24 to the instant when the third zero crossing time point T25 is reached (phase angle 360 degrees).

상기와 같은 위상 오프 제어 방법에는 다음과 같은 문제점이 있다. The above-mentioned phase-off control method has the following problems.

위상 오프 제어 방법의 가장 심각한 문제는 유도성 킥백(inductive kickback) 현상이다. 유도성 킥백이란 유도성 부하에 전압신호를 입력하다가 갑자기 스위칭 오프를 시키는 경우 역기전력이 발생하는 현상이다. The most serious problem of the phase-off control method is the inductive kickback phenomenon. An inductive kickback is a phenomenon in which a back electromotive force is generated when a voltage signal is input to an inductive load and then suddenly switching off.

도 3 은 유도성 킥백의 파형의 일례를 나타낸 것이다. 3 shows an example of the waveform of the inductive kickback.

도 3 에 도시된 바와 같이, 오프 제어 동작시(T31, T32, T33)에 유도성 킥백(31, 32, 33)이 발생하게 되면, 갑자기 발생하는 역기전력에 의해 부하에 큰 타격이 가해질 수 있게 된다. 따라서, 상기와 같은 유도성 킥백 현상으로 인해, 위상 오프 제어 방법은 사용되지 않는 것이 일반적이다. As shown in FIG. 3, when the inductive kickbacks 31, 32, and 33 are generated at the time of the off-control operation (T31, T32, and T33), the heavy load applied to the load can be applied due to the back electromotive force . Therefore, due to the inductive kickback phenomenon described above, it is general that the phase-off control method is not used.

본 발명은 온 제어 및 오프 제어에 있어서 문제점으로 대두되는 임펄스 노이즈 및 유도성 킥백을 제거함으로써, 온 제어 및 오프 제어를 효율적으로 수행할 수 있도록 하는데 그 목적이 있다. 또한, 주기 내에 자유롭게 온 제어 및 오프 제어를 수행할 수 있도록 하는데 그 목적이 있다. It is an object of the present invention to effectively perform the on-control and the off-control by eliminating impulse noise and inductive kickback, which are problems in on-control and off-control. It is also an object of the present invention to enable freely on and off control within a period.

상기 기술적 과제를 해결하기 위한 본 발명에 따른 위상 제어장치는, 위상 제어시에 부하에 걸리는 전압이 분배되도록 부하와 연결된 전압분배부와, 온 제어 혹은 오프 제어를 수행하기 위한 스위칭부와, 오프 제어시에 역기전력에 의해 발생하는 에너지를 방전시키는 방전회로부 및 상기 스위칭부, 전압분배부 및 방전회로부의 동작을 제어하는 제어부를 포함하여 이루어진다. According to an aspect of the present invention, there is provided a phase control apparatus including a voltage distributing unit connected to a load to divide a voltage applied to a load during phase control, a switching unit for performing ON control or OFF control, A discharge circuit for discharging the energy generated by the counter electromotive force and a controller for controlling operations of the switching unit, the voltage distributor and the discharge circuit.

또한, 상기 기술적 과제를 해결하기 위한 본 발명에 따른 위상 제어 방법은, 상기 위상 제어장치에 있어서, 상기 전압분배부를 온 시키는 단계와, 상기 스위칭부를 온 시키는 단계 및 상기 전압분배부를 오프 시키는 단계를 포함하여 이루어진다. According to another aspect of the present invention, there is provided a phase control method including: turning on a voltage divider; turning on the switching unit; and turning off the voltage divider. .

본 발명은, 온 제어 및 오프 제어시 발생하는 임펄스 노이즈 및 유도성 킥백을 제거함으로써, 보다 효율적으로 위상 제어를 수행할 수 있도록 하는 효과가 있다. The present invention has the effect of enabling more efficient phase control by eliminating impulse noise and inductive kickback that occur during on-control and off-control.

또한, 본 발명은 하나의 주기 내에서 온 제어와 오프 제어를 순차적으로 수행함으로써, 효율적인 위상 제어를 수행할 수 있도록 하는 효과가 있다. In addition, the present invention has an effect of performing efficient phase control by sequentially performing on-control and off-control within one period.

도 1 은 위상 온 제어에 따른 신호 파형의 일례를 나타낸 것이다.
도 2 는 위상 오프 제어에 따른 신호 파형의 일례를 나타낸 것이다.
도 3 은 유도성 킥백의 파형의 일례를 나타낸 것이다.
도 4 는 본 발명에 따른 위상 온 제어장치의 일실시예를 나타낸 것이다.
도 5 는 전압분배부의 일실시예를 나타낸 것이다.
도 6 은 도 4 의 위상 온 제어장치의 동작에 따른 신호 파형을 나타낸 것이다.
도 7 은 본 발명에 따른 위상 제어장치의 일실시예를 나타낸 것이다.
도 8 은 전압분배부의 일실시예를 나타낸 것이다.
도 9 는 방전회로부의 일실시예를 나타낸 것이다.
도 10 은 도 7 에 따른 위상 제어장치를 이용하여 위상 오프 제어를 수행하는 경우, 위상 제어장치의 동작에 따른 신호 파형을 나타낸 것이다.
도 11 은 위상 오프 제어가 기준전압보다 높은 전압에서 수행되는 경우, 위상 제어장치의 동작에 따른 신호 파형을 나타낸 것이다.
도 12 는 위상 오프 제어가 기준전압보다 낮은 전압에서 수행되는 경우, 위상 제어장치의 동작에 따른 신호 파형을 나타낸 것이다.
도 13 은 위상 오프 제어가 기준전압보다 높은 전압에서 수행되는 경우, 위상 제어장치의 동작에 따른 신호 파형을 나타낸 것이다.
FIG. 1 shows an example of a signal waveform according to the phase-on control.
2 shows an example of a signal waveform according to the phase-off control.
3 shows an example of the waveform of the inductive kickback.
FIG. 4 shows an embodiment of a phase-on control device according to the present invention.
5 shows an embodiment of the voltage distributor.
FIG. 6 shows a signal waveform according to the operation of the phase-on control apparatus of FIG.
7 shows an embodiment of a phase control apparatus according to the present invention.
8 shows an embodiment of the voltage distributor.
9 shows an embodiment of the discharge circuit.
FIG. 10 shows a signal waveform according to the operation of the phase control apparatus when the phase off control is performed using the phase control apparatus according to FIG.
11 shows a signal waveform according to the operation of the phase control apparatus when the phase off control is performed at a voltage higher than the reference voltage.
12 shows a signal waveform according to the operation of the phase control apparatus when the phase off control is performed at a voltage lower than the reference voltage.
13 shows a signal waveform according to the operation of the phase control device when the phase off control is performed at a voltage higher than the reference voltage.

상술한 목적, 특징들 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이다. 이하 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명한다. The above-mentioned objects, features and advantages will become more apparent from the following detailed description in conjunction with the accompanying drawings. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 4 는 본 발명에 따른 위상 온 제어장치의 일실시예를 나타낸 것이다. FIG. 4 shows an embodiment of a phase-on control device according to the present invention.

도 4 를 참조하면, 본 발명에 따른 위상 온 제어장치(40)의 일실시예는 제로크로싱 감지부(41)와 스위칭부(42)와 전압분배부(43)와 제어부(44)를 포함하여 이루어진다. 4, the phase-on control apparatus 40 includes a zero-crossing sensing unit 41, a switching unit 42, a voltage distribution unit 43, and a control unit 44. The zero- .

도 4 에서는 단상을 실시예로 하여 설명하였으나, 본 발명은 단상 뿐 아니라 다상인 경우에도 적용이 가능하다. Although FIG. 4 illustrates a single phase as an example, the present invention can be applied not only to single phase but also to multi phase.

도 5 는 전압분배부(43)의 일실시예를 나타낸 것이다. FIG. 5 shows an embodiment of the voltage distribution section 43. FIG.

도 5 에 도시된 바와 같이, 전압분배부(43)는 저항성소자(431)와 스위칭소자(432)를 포함하여 이루어진다. 이때, 저항성소자(431)가 가지는 저항 값은 부하(46)가 가지는 저항 값에 비해 매우 큰 것이 바람직하다. 5, the voltage divider 43 includes a resistive element 431 and a switching element 432. [ At this time, it is preferable that the resistance value of the resistive element 431 is much larger than the resistance value of the load 46. [

도 6 은 도 4 의 위상 온 제어장치(40)의 동작에 따른 출력 신호 파형을 나타낸 것이다. FIG. 6 shows an output signal waveform according to the operation of the phase-on control device 40 of FIG.

이하에서는 도 6 을 참조하여, 도 4 에 따른 위상 온 제어장치(40)의 동작을 설명한다. Hereinafter, the operation of the phase-on control device 40 according to Fig. 4 will be described with reference to Fig.

스위칭부(42)는 제1제로크로싱 시점(T41)으로부터 온 제어 시점(T42)까지 스위칭 오프 상태에 있도록 제어된다. 즉, 제어부(44)는 제로크로싱 감지부(41)를 통해 제1제로크로싱 시점(T41)을 감지하고, 스위칭부(42)가 제1제로크로싱 시점(T41)에서 스위칭 오프 동작을 수행하도록 제어한다. The switching unit 42 is controlled to be in the switching off state from the first zero crossing point T41 to the control point T42. That is, the controller 44 detects the first zero crossing time T41 through the zero crossing sensing unit 41 and controls the switching unit 42 to perform the switching off operation at the first zero crossing time T41 do.

한편, 전압분배부(43)의 스위칭소자(432)는, 제어부(44)의 제어에 따라, 제1제로크로싱 시점(T41)에 스위칭 온 동작을 수행하고, 온 제어 시점(T12)까지 닫힌 상태로 있으므로, 입력단에서 공급된 전압신호는 전압분배부(43)의 저항성소자(431) 및 부하(46)에 걸리게 된다. 이 때, 저항성소자(431)의 저항 값이 부하(46)의 저항 값보다 훨씬 큰 경우에는, 전압분배의 법칙에 따라 대부분의 전압이 전압분배부(43)의 저항성소자(431)에 걸리게 된다. On the other hand, the switching element 432 of the voltage distributor 43 performs the switching-on operation at the first zero crossing point T41 under the control of the controller 44, The voltage signal supplied from the input terminal is caught by the resistive element 431 and the load 46 of the voltage distributor 43. At this time, when the resistance value of the resistive element 431 is much larger than the resistance value of the load 46, most of the voltage is applied to the resistive element 431 of the voltage distribution section 43 according to the law of voltage distribution .

제어부(44)가 온 제어 시점(T42)에서 스위칭부(42)를 온 시키면, 입력단에서 공급된 전압 신호가 부하(46) 쪽으로 입력된다. When the control unit 44 turns on the switching unit 42 at the ON control time T42, the voltage signal supplied from the input terminal is input to the load 46. [

그리고, 스위칭 부의 스위칭 온 동작 시점에서 전압분배부(43)의 스위칭소자(432)는 스위칭 오프 동작을 수행한다. The switching device 432 of the voltage divider 43 performs a switching-off operation at the switching-on time of the switching unit.

이때, 전압분배부(43)의 스위칭소자(432)가 스위칭 오프 동작을 수행하는 시점은 스위칭부(42)의 스위칭 온 동작과 동시에 수행되거나, 스위칭부(42)의 스위칭 온 동작 직전에 수행될 수 있다. At this time, the time point at which the switching device 432 of the voltage divider 43 performs the switching-off operation may be performed simultaneously with the switching-on operation of the switching unit 42, or may be performed immediately before the switching-on operation of the switching unit 42 .

그러나, 스위칭부(42)의 스위칭 온 동작으로 인해 발생되는 임펄스 노이즈를 막기 위해, 전압분배부(43)의 스위칭소자(432)는 스위칭부(42)가 스위칭 온 동작을 수행한 후에도 잠시 동안 온 상태를 유지하다가 일정 시점이 되었을 때 스위칭 오프 동작을 수행하도록 제어하는 것이 바람직하다. 즉, 상기 스위칭소자(432)의 스위칭 오프 동작은 스위칭부(42)의 스위칭 온 동작 직후에 수행되는 것이 바람직하다. However, in order to prevent the impulse noise caused by the switching-on operation of the switching unit 42, the switching unit 432 of the voltage distribution unit 43 is turned on for a while after the switching unit 42 performs the switching- It is preferable to control the switching-off operation to be performed at a certain point in time. That is, the switching-off operation of the switching device 432 is preferably performed immediately after the switching-on operation of the switching unit 42.

그리고, 상기 전압분배부(43)의 스위칭소자(432)는 스위칭 오프 상태를 유지하다가 제2제로크로싱 시점(T43)이 되었을 때 스위칭 온 동작을 수행한다. The switching device 432 of the voltage divider 43 maintains the switching off state and performs a switching on operation when the second zero crossing time T43 is reached.

즉, 제어부(44)가 제로크로싱 감지부(41)를 통해 제2제로크로싱 시점(T43)을 감지하면, 상기 전압분배부(43)의 스위칭소자(432)가 스위칭 온 동작을 수행하도록 제어한다. That is, when the control unit 44 senses the second zero crossing point T43 through the zero crossing sensing unit 41, the switching unit 432 of the voltage distributor 43 controls the switch-on operation .

한편, 스위칭부(42)는 온 제어 시점(T42)으로부터 스위칭 온 상태를 유지하다가, 제2제로크로싱 시점(T13)에서 스위칭 오프 동작을 수행한다. 즉, 제어부(42)가 제로크로싱 감지부(41)를 통해 제2제로크로싱 시점(T43)을 감지하면, 스위칭부(42)가 스위칭 오프 동작을 수행하도록 제어한다. On the other hand, the switching unit 42 maintains the switching-on state from the on-control time point T42 and performs the switching-off operation at the second zero crossing time point T13. That is, when the controller 42 senses the second zero crossing point T43 through the zero crossing detector 41, the controller 42 controls the switching unit 42 to perform the switching off operation.

도 7 은 본 발명에 따른 위상 제어장치의 일실시예를 나타낸 것이다. 7 shows an embodiment of a phase control apparatus according to the present invention.

도 7 을 참조하면, 본 발명에 따른 위상 제어장치(70)의 일실시예는 제로크로싱 감지부(71)와 스위칭부(72)와 제어부(74)와 전압분배부(73) 및 방전회로부(75)를 포함하여 이루어진다. 7, a phase control apparatus 70 according to an embodiment of the present invention includes a zero crossing sensing unit 71, a switching unit 72, a control unit 74, a voltage distribution unit 73, 75).

도 7 에서는 단상을 실시예로 하여 설명하였으나, 본 발명은 단상 뿐 아니라 다상인 경우에도 적용이 가능하다. Although FIG. 7 illustrates a single phase as an example, the present invention can be applied not only to single phase but also to multi phase.

도 8 은 전압분배부(73)의 일실시예를 나타낸 것이다. FIG. 8 shows an embodiment of the voltage distribution unit 73. FIG.

도 8 에 도시된 바와 같이, 전압분배부(73)는 저항성소자(731)와 스위칭소자(732)를 포함하여 이루어진다. 이때, 저항성소자(731)가 가지는 저항 값은 부하(46)가 가지는 저항 값에 비해 매우 큰 것이 바람직하다. 8, the voltage distribution portion 73 includes a resistive element 731 and a switching element 732. [ At this time, it is preferable that the resistance value of the resistive element 731 is much larger than the resistance value of the load 46. [

도 9 는 방전회로부(75)의 일실시예를 나타낸 것이다. Fig. 9 shows an embodiment of the discharge circuit portion 75. Fig.

도 9 에 도시된 바와 같이, 방전회로부(75)는 방전소자(751)와 스위칭소자(752)를 포함하여 이루어진다. 이때, 방전소자(751)는 저항성 소자로서, 방전소자(751)가 가지는 저항 값은 부하(76)가 가지는 저항 값에 비해 매우 작은 값을 가지는 것이 바람직하다. As shown in Fig. 9, the discharge circuit portion 75 includes a discharge element 751 and a switching element 752. Fig. At this time, it is preferable that the discharge element 751 is a resistive element, and the resistance value of the discharge element 751 has a very small value compared to the resistance value of the load 76. [

도 10 은 도 7 에 따른 위상 제어장치(70)를 이용하여 위상 오프 제어를 수행하는 경우, 위상 제어장치의 동작에 따른 신호 파형을 나타낸 것이다. 특히, 도 10 은 위상 오프 제어가 미리 정해진 기준전압 보다 낮은 전압에서 수행되는 경우의 출력 신호 파형을 나타낸 것이다. FIG. 10 shows a signal waveform according to the operation of the phase control apparatus when performing the phase off control using the phase control apparatus 70 according to FIG. In particular, FIG. 10 shows the output signal waveform when the phase-off control is performed at a voltage lower than a predetermined reference voltage.

이하에서는 도 10 을 참조하여, 도 7 에 따른 위상 제어장치의 동작을 설명한다. Hereinafter, the operation of the phase control apparatus according to FIG. 7 will be described with reference to FIG.

스위칭부(72)는 제1제로크로싱 시점(T51)으로부터 오프 제어 시점(T52)까지 스위칭 온 상태에 있도록 제어된다. 즉, 제어부(74)는 제로크로싱 감지부(71)를 통해 제1제로크로싱 시점(T51)을 감지하고, 스위칭부(72)가 제1제로크로싱 시점(T21)에서 스위칭 온 동작을 수행하도록 제어한다. The switching section 72 is controlled to be in the switching on state from the first zero crossing point of time T51 to the OFF control point of time T52. That is, the control unit 74 detects the first zero-crossing time T51 through the zero-crossing sensing unit 71 and controls the switching unit 72 to perform the switching-on operation at the first zero- do.

제어부(74)의 제어에 따라, 오프 제어 시점(T52)에서 스위칭부(72)가 스위칭 오프 동작을 수행하면, 입력단에서 부하(76)쪽으로 공급되던 전압 신호가 차단된다. According to the control of the control unit 74, when the switching unit 72 performs the switching-off operation at the off-control time T52, the voltage signal supplied to the load 76 from the input terminal is cut off.

그리고, 스위칭부(72)의 스위칭 오프 동작으로 인해 발생되는 유도성 킥백을 막기 위해, 제어부(74)는 방전회로부(75)의 스위칭소자(752)가 스위칭 온 동작을 수행하도록 제어한다. 스위칭부(72)가 스위칭 온 동작을 수행할 때, 스위칭부(72)의 스위칭 오프 동작에 의해 발생하는 역기전력 에너지는 방전회로부(75)의 방전소자(751)를 통해 소멸된다. The control unit 74 controls the switching device 752 of the discharging circuit unit 75 to perform the switching-on operation in order to prevent the inductive kickback caused by the switching-off operation of the switching unit 72. [ When the switching unit 72 performs the switching-on operation, the counter-electromotive force energy generated by the switching-off operation of the switching unit 72 is destroyed through the discharging device 751 of the discharging circuit unit 75.

제어부(74)는 스위칭부(72)의 스위칭 오프 동작 수행 시점(T52)에, 혹은 스위칭 오프 동작 직전 혹은 직후에 스위칭소자(752)가 스위칭 온 동작을 수행하도록 제어할 수 있다. 그러나, 스위칭소자(752)의 스위칭 오프 동작의 수행 시점은 스위칭부(72)의 스위칭 오프 동작 수행 직후인 것이 바람직하다. The control unit 74 can control the switching element 752 to perform the switching-on operation at the switching-off operation execution time point T52 of the switching unit 72 or immediately before or after the switching-off operation. However, it is preferable that the switching-off operation of the switching element 752 is performed immediately after the switching-off operation of the switching unit 72 is performed.

방전회로부(75)의 스위칭소자(752)는 오프 제어 시점(T52) 직후로부터 스위칭 온 상태를 유지하다가, 제2제로크로싱 시점(T53)에 스위칭 오프 동작을 수행한다. The switching element 752 of the discharging circuit portion 75 maintains the switching on state immediately after the OFF control time T52 and performs the switching off operation at the second zero crossing time T53.

즉, 제어부(74)가 제로크로싱 감지부(71)를 통해 제2제로크로싱 시점(T53)을 감지하면, 그 시점에서 방전회로부(75)의 스위칭소자(752)가 스위칭 오프 동작을 수행하도록 제어한다. That is, when the control unit 74 detects the second zero crossing point T53 through the zero crossing sensing unit 71, the switching unit 752 of the discharging circuit unit 75 performs the switching-off operation do.

도 10 의 경우와 같이, 위상 오프 제어가 미리 정해진 기준전압보다 낮은 전압에서 수행되는 경우에, 제어부(74)는 전압분배부(73)의 스위칭소자(732)가 항상 열려있도록 제어한다. As in the case of Fig. 10, when the phase-off control is performed at a voltage lower than a predetermined reference voltage, the control section 74 controls the switching element 732 of the voltage distribution section 73 to be always open.

도 11 은 도 7 에 도시된 위상 제어장치(70)를 이용하여 위상 오프 제어를 수행하되, 위상 오프 제어가 미리 정해진 기준전압보다 높은 전압에서 수행되는 경우, 도 7 에 도시된 위상 제어장치(70)의 동작에 따른 출력 신호 파형을 나타낸 것이다. Fig. 11 is a circuit diagram of the phase control device 70 shown in Fig. 7, in which when the phase off control is performed at a voltage higher than a predetermined reference voltage, the phase control device 70 shown in Fig. ) Of the output signal waveform.

이하에서는 도 11 을 참조하여, 도 7 에 따른 위상 제어장치(70)의 동작을 설명한다. Hereinafter, the operation of the phase control device 70 according to Fig. 7 will be described with reference to Fig.

스위칭부(72)는 제1제로크로싱 시점(T61)으로부터 오프 제어 시점(T62)까지 스위칭 온 상태에 있도록 제어된다. 즉, 제어부(74)는 제로크로싱 감지부(71)를 통해 제1제로크로싱 시점(T61)을 감지하고, 스위칭부(72)가 제1제로크로싱 시점(T61)에서 스위칭 온 동작을 수행하도록 제어한다. The switching unit 72 is controlled to be in the switching on state from the first zero crossing point of time T61 to the OFF control point of time T62. That is, the control unit 74 detects the first zero-crossing time T61 through the zero-crossing sensing unit 71 and controls the switching unit 72 to perform the switching-on operation at the first zero- do.

도 11 에 도시된 바와 같이, 오프 제어 시점(T62)에서의 입력전압은 기준전압보다도 높다. 이러한 상황에서 스위칭부(72)가 오프 동작을 수행하면, 방전회로부(75)만을 가지고는 높은 전압에 의해 발생하는 역기전력 에너지를 모두 제거할 수 없는 문제점이 있다. 따라서, 전압분배부(73)를 이용하여 방전회로부(75)에 걸리는 전압을 강하시킬 필요가 있게 된다. As shown in Fig. 11, the input voltage at the off-control time point T62 is higher than the reference voltage. In this situation, when the switching unit 72 performs the OFF operation, there is a problem that all of the counter electromotive force energy generated by the high voltage can not be removed with only the discharge circuit unit 75. Therefore, it is necessary to lower the voltage applied to the discharge circuit portion 75 by using the voltage distribution portion 73. [

그러므로, 제어부(74)는 오프 제어 시점(T62) 직전에 전압분배부(73)의 스위칭소자(732)가 스위칭 온 동작을 수행하도록 제어함으로써, 방전회로부(75)에 걸리는 전압을 기준전압 이하로 강하시킨다. Therefore, the control unit 74 controls the switching element 732 of the voltage distribution unit 73 to perform the switching-on operation immediately before the OFF control timing T62, so that the voltage applied to the discharge circuit unit 75 is lower than the reference voltage Descend.

그리고, 제어부(74)의 제어에 따라, 오프 제어 시점(T62)에서 스위칭부(72)가 스위칭 오프 동작을 수행하면, 입력단에서 부하(76)쪽으로 공급되던 전압 신호가 차단된다. When the switching unit 72 performs the switching-off operation at the off-control time T62 under the control of the control unit 74, the voltage signal supplied to the load 76 from the input terminal is cut off.

스위칭부(72)에 의한 스위칭 오프 동작이 수행되면, 이로 인해 발생되는 유도성 킥백을 막기 위해, 제어부(74)는 방전회로부(75)의 스위칭소자(752)가 스위칭 온 동작을 수행하도록 제어한다. 따라서, 스위칭부(72)가 스위칭 오프 동작을 수행할 때, 스위칭부(72)의 스위칭 오프 동작에 의해 발생하는 역기전력 에너지는 방전회로부(75)의 방전소자(751)를 통해 소멸된다. When the switching-off operation is performed by the switching unit 72, the control unit 74 controls the switching unit 752 of the discharging circuit unit 75 to perform the switching-on operation in order to prevent inductive kickback caused thereby . Therefore, when the switching unit 72 performs the switching-off operation, the counter-electromotive force energy generated by the switching-off operation of the switching unit 72 is destroyed through the discharging device 751 of the discharging circuit unit 75.

제어부(74)는 스위칭부(72)의 스위칭 오프 동작 수행 시점(T62) 직후에 방전회로부(75)의 스위칭소자(752)가 스위칭 온 동작을 수행하도록 제어하는 것이 바람직하다.It is preferable that the control unit 74 controls the switching element 752 of the discharging circuit unit 75 to perform the switching-on operation immediately after the switching-off operation time point T62 of the switching unit 72. [

그리고, 제어부(74)는 방전회로부(75)의 스위칭소자(752)가 스위칭 온 동작을 수행한 시점 직후에 전압분배부(73)의 스위칭소자(732)가 스위칭 오프 동작을 수행하도록 제어하는 것이 바람직하다.  The control unit 74 controls the switching device 732 of the voltage distributing unit 73 to perform the switching-off operation immediately after the switching device 752 of the discharging circuit unit 75 performs the switching-on operation desirable.

한편, 방전회로부(75)의 스위칭소자(752)는 오프 제어 시점(T22) 직후로부터 스위칭 온 상태를 유지하다가, 제2제로크로싱 시점(T63)에 스위칭 오프 동작을 수행한다. On the other hand, the switching element 752 of the discharge circuit unit 75 maintains the switching-on state immediately after the OFF control time T22, and performs the switching-off operation at the second zero crossing time T63.

즉, 제어부(74)가 제로크로싱 감지부(71)를 통해 제2제로크로싱 시점(T63)을 감지하면, 그 시점에서 방전회로부(75)의 스위칭소자(752)가 스위칭 오프 동작을 수행하도록 제어한다. That is, when the control unit 74 senses the second zero crossing point T63 through the zero crossing sensing unit 71, the switching unit 752 of the discharging circuit unit 75 performs a switching-off operation do.

또한, 제어부(74)는 제2제로크로싱 시점(T63)을 감지하면, 그 시점에서 스위칭부(72)가 스위칭 온 동작을 수행하도록 제어하며, 스위칭부(72)는 다음 오프 제어 시점(T64)까지 스위칭 온 상태를 유지한다. The control unit 74 controls the switching unit 72 to perform a switching-on operation at that point of time when the second zero-crossing point of time T63 is sensed. The switching unit 72 controls the switching- Up state.

도 12 는 도 7 에 따른 위상 제어장치(70)를 이용하여 위상 제어를 수행하는 경우, 위상 제어장치의 동작에 따른 출력 신호 파형을 나타낸 것이다. 특히, 도 12 는 1/2 주기 내에서 위상 온 제어와 위상 오프 제어가 순차적으로 일어나되, 위상 오프 제어가 미리 정해진 기준전압 보다 낮은 전압에서 수행되는 경우의 출력 신호 파형을 나타낸 것이다. FIG. 12 shows an output signal waveform according to the operation of the phase control apparatus when the phase control is performed using the phase control apparatus 70 according to FIG. In particular, FIG. 12 shows an output signal waveform when the phase-on control and the phase-off control are sequentially performed within 1/2 period, and the phase-off control is performed at a voltage lower than a predetermined reference voltage.

이하에서는 도 12 를 참조하여, 도 7 에 따른 위상 제어장치의 동작을 설명한다. Hereinafter, the operation of the phase control apparatus according to Fig. 7 will be described with reference to Fig.

도 12 에 도시된 바와 같이, 본 실시예에 따른 위상 제어 방법은 1/2 주기 내에서, 위상 온 제어와 위상 오프 제어가 순차적으로 이루어진다. 또한, 도면에는 도시되지 않았으나, 1/2 주기 내에서, 위상 오프 제어와 위상 온 제어가 순차적으로 이루어질 수도 있다. 도 12 에 도시된 실시예는 위상 온 제어 및 위상 오프 제어가 모두 미리 정해진 기준전압 이하에서 수행되는 경우의 실시예이다. As shown in FIG. 12, in the phase control method according to the present embodiment, the phase-on control and the phase-off control are sequentially performed within 1/2 period. Also, although not shown in the figure, the phase-off control and the phase-on control may be sequentially performed within 1/2 cycle. The embodiment shown in Fig. 12 is an embodiment in which both the phase-on control and the phase-off control are performed below a predetermined reference voltage.

먼저, 스위칭부(72)는 제1제로크로싱 시점(T71)으로부터 온 제어 시점(T72)까지 스위칭 오프 상태에 있도록 제어된다. 즉, 제어부(74)는 제로크로싱 감지부(71)를 통해 제1제로크로싱 시점(T71)을 감지하고, 스위칭부(72)가 제1제로크로싱 시점(T71)에서 스위칭 오프 상태를 유지하도록 제어한다. First, the switching unit 72 is controlled to be in the switching off state from the first zero crossing time T71 to the control time T72. That is, the control unit 74 detects the first zero-crossing time T71 through the zero-crossing sensing unit 71 and controls the switching unit 72 to maintain the switching-off state at the first zero- do.

한편, 전압분배부(73)의 스위칭소자(732)는, 제어부(74)의 제어에 따라, 제1제로크로싱 시점(T71)에 스위칭 온 동작을 수행하고, 온 제어 시점(T72)까지 닫힌 상태로 있으므로, 입력단에서 공급된 전압신호는 전압분배부(73)의 저항성소자(731) 및 부하(76)에 걸리게 된다. 이때, 저항성소자(731)의 저항 값이 부하(76)의 저항 값보다 매우 큰 경우에는, 전압분배의 법칙에 따라 대부분의 전압이 전압분배부(73)의 저항성소자(731)에 걸리게 된다. On the other hand, the switching element 732 of the voltage distributor 73 performs the switching-on operation at the first zero crossing point T71 under the control of the controller 74, The voltage signal supplied from the input terminal is caught by the resistive element 731 and the load 76 of the voltage distributor 73. [ At this time, when the resistance value of the resistive element 731 is much larger than the resistance value of the load 76, most of the voltage is caught by the resistive element 731 of the voltage distributor 73 according to the law of voltage distribution.

제어부(74)가 온 제어 시점(T72)에서 스위칭부(72)가 스위칭 온 동작을 수행하도록 제어하면, 입력단에서 공급된 전압 신호가 부하(76) 쪽으로 출력된다.When the control unit 74 controls the switching unit 72 to perform the switching-on operation at the ON control time T72, the voltage signal supplied from the input terminal is outputted to the load 76 side.

이때, 전압분배부(73)의 스위칭소자(732)가 스위칭 오프 동작을 수행하는 시점은 스위칭부(72)의 스위칭 온 동작과 동시에 수행되거나, 스위칭부(72)의 스위칭 온 동작 직전에 수행될 수 있다. At this time, the time point at which the switching element 732 of the voltage divider 73 performs the switching off operation may be performed simultaneously with the switching on operation of the switching unit 72, or may be performed immediately before the switching on operation of the switching unit 72 .

그러나, 스위칭부(72)의 스위칭 온 동작으로 인해 발생되는 임펄스 노이즈를 막기 위해, 전압분배부(73)의 스위칭소자(732)는 스위칭부(72)가 스위칭 온 동작을 수행한 후에도 잠시 동안 온 상태를 유지하다가 일정 시점이 되었을 때 스위칭 오프 동작을 수행하도록 제어하는 것이 바람직하다. 즉, 상기 스위칭소자(732)의 스위칭 오프 동작은 스위칭부(72)의 스위칭 온 동작 직후에 수행되는 것이 바람직하다. However, in order to prevent the impulse noise generated due to the switching-on operation of the switching unit 72, the switching unit 732 of the voltage distribution unit 73 is turned on for a while even after the switching unit 72 performs the switching- It is preferable to control the switching-off operation to be performed at a certain point in time. That is, the switching-off operation of the switching element 732 is preferably performed immediately after the switching-on operation of the switching unit 72. [

스위칭부(72)는 온 제어 시점(T72)으로부터 오프 제어 시점(T73)까지 스위칭 온 상태를 유지한다. The switching unit 72 maintains the switching-on state from the ON control time T72 to the OFF control time T73.

제어부(74)의 제어에 따라, 오프 제어 시점(T73)에서 스위칭부(72)가 스위칭 오프 동작을 수행하면, 입력단에서 부하(76)쪽으로 공급되던 전압 신호가 차단된다. According to the control of the control unit 74, when the switching unit 72 performs the switching off operation at the off control time T73, the voltage signal supplied to the load 76 from the input terminal is cut off.

그리고, 스위칭부(72)의 스위칭 오프 동작으로 인해 발생되는 유도성 킥백을 막기 위해, 제어부(74)는 스위칭 오프 상태에 있던 방전회로부(75)의 스위칭소자(752)가 스위칭 온 동작을 수행하도록 제어한다. 따라서, 스위칭부(72)가 스위칭 오프 동작을 수행할 때, 스위칭부(72)의 스위칭 오프 동작에 의해 발생하는 역기전력 에너지는 방전회로부(75)의 방전소자(751)를 통해 소멸된다. In order to prevent inductive kickback caused by the switching-off operation of the switching unit 72, the control unit 74 controls the switching unit 752 of the discharging circuit unit 75 in the switching-off state to perform the switching-on operation . Therefore, when the switching unit 72 performs the switching-off operation, the counter-electromotive force energy generated by the switching-off operation of the switching unit 72 is destroyed through the discharging device 751 of the discharging circuit unit 75.

이때, 제어부(74)는 스위칭부(72)의 스위칭 오프 동작 수행 시점(T73) 직후에 방전회로부(75)의 스위칭소자(752)가 스위칭 온 동작을 수행하도록 제어하는 것이 바람직하다. At this time, the control unit 74 preferably controls the switching device 752 of the discharge circuit unit 75 to perform the switching-on operation immediately after the switching-off operation time point T73 of the switching unit 72. [

방전회로부(75)의 스위칭소자(752)는 오프 제어 시점(T43) 직후로부터 스위칭 온 상태를 유지하다가, 제2제로크로싱 시점(T74)에 스위칭 오프 동작을 수행한다. The switching element 752 of the discharging circuit portion 75 maintains the switching on state immediately after the OFF control timing T43 and performs the switching off operation at the second zero crossing timing T74.

즉, 제어부(74)가 제로크로싱 감지부(71)를 통해 제2제로크로싱 시점(T74)을 감지하면, 그 시점에서 방전회로부(75)의 스위칭소자(752)가 스위칭 오프 동작을 수행하도록 제어한다. That is, when the control unit 74 senses the second zero crossing point T74 through the zero crossing sensing unit 71, the control unit 74 controls the switching device 752 of the discharging circuit unit 75 to perform the switching- do.

또한, 제어부(74)는 제2제로크로싱 시점(T74)에서, 스위칭 오프 상태에 있던 전압분배부(73)의 스위칭소자(732)가 스위칭 온 동작을 수행하도록 제어한다. Also, the control unit 74 controls the switching element 732 of the voltage distribution unit 73, which was in the switching off state, to perform the switching-on operation at the second zero crossing point (T74).

한편, 오프 제어 시점(T73)에서 스위칭 오프 동작을 수행한 스위칭부(72)는 다음 온 제어 시점(T75)까지 스위칭 오프 상태를 유지한다. On the other hand, the switching unit 72 performing the switching-off operation at the off-control time T73 maintains the switching-off state until the next ON control time T75.

도 13 은 도 7 에 따른 위상 제어장치(70)를 이용하여 위상 제어를 수행하는 경우, 위상 제어장치의 동작에 따른 출력 신호 파형을 나타낸 것이다. 특히, 도 13 은 1/2 주기 안에서 위상 온 제어 위상 오프 제어가 순차적으로 일어나되, 위상 오프 제어가 미리 정해진 기준전압 보다 높은 전압에서 수행되는 경우의 신호 파형을 나타낸 것이다. FIG. 13 shows an output signal waveform according to the operation of the phase control device when the phase control is performed using the phase control device 70 according to FIG. In particular, FIG. 13 shows a signal waveform when the phase-on control phase-off control is sequentially performed within 1/2 period, and the phase-off control is performed at a voltage higher than a predetermined reference voltage.

이하에서는 도 13 을 참조하여, 도 7 에 따른 위상 제어장치의 동작을 설명한다. Hereinafter, the operation of the phase control apparatus according to Fig. 7 will be described with reference to Fig.

도 13 에 도시된 바와 같이, 본 실시예에 따른 위상 제어 방법은 1/2 주기 내에서, 위상 온 제어와 위상 오프 제어가 순차적으로 이루어진다. 또한, 도면에는 도시되지 않았으나, 1/2 주기 내에서, 위상 오프 제어와 위상 온 제어가 순차적으로 이루어질 수도 있다. 본 실시예는 위상 오프 제어가 미리 정해진 기준전압 이상에서 수행되는 경우의 실시예이다. As shown in FIG. 13, in the phase control method according to the present embodiment, the phase-on control and the phase-off control are sequentially performed within 1/2 period. Also, although not shown in the figure, the phase-off control and the phase-on control may be sequentially performed within 1/2 cycle. This embodiment is an embodiment in which the phase-off control is performed at a predetermined reference voltage or higher.

먼저, 스위칭부(72)는 제1제로크로싱 시점(T81)으로부터 위상 온 제어 시점(T82)까지 스위칭 오프 상태를 유지한다. 즉, 제어부(74)는 제로크로싱 감지부(71)를 통해 제1제로크로싱 시점(T81)을 감지하고, 스위칭부(72)가 제1제로크로싱 시점(T81)에서 스위칭 오프 동작을 유지하도록 제어한다.First, the switching unit 72 maintains the switching off state from the first zero crossing time T81 to the phase-on control time T82. That is, the control unit 74 detects the first zero-crossing time T81 through the zero-crossing sensing unit 71 and controls the switching unit 72 to maintain the switching-off operation at the first zero- do.

한편, 전압분배부(73)의 스위칭소자(732)는, 제어부(74)의 제어에 따라, 제1제로크로싱 시점(T81)에서 스위칭 온 동작을 수행하고, 위상 온 제어 시점(T82)까지 닫힌 상태로 있으므로, 입력단에서 공급된 전압신호는 전압분배부(73)의 저항성소자(731) 및 부하(76)에 걸리게 된다. 이때, 저항성소자(731)의 저항 값이 부하(76)의 저항 값보다 훨씬 큰 경우에는, 전압분배의 법칙에 따라 대부분의 전압이 전압분배부(73)의 저항성소자(731)에 걸리게 된다. On the other hand, under the control of the control unit 74, the switching element 732 of the voltage distribution unit 73 performs the switching-on operation at the first zero crossing point T81 and is closed until the phase-on control point T82 The voltage signal supplied from the input terminal is caught by the resistive element 731 and the load 76 of the voltage distribution portion 73. [ At this time, when the resistance value of the resistive element 731 is much larger than the resistance value of the load 76, most of the voltage is caught by the resistive element 731 of the voltage distributor 73 according to the law of voltage distribution.

제어부(74)의 제어에 따라, 위상 온 제어 시점(T82)에서 스위칭부(72)가 스위칭 온 동작을 수행하면, 입력단에서 공급된 전압 신호가 부하(76) 쪽으로 출력된다. When the switching unit 72 performs the switching-on operation at the phase-on control time T82 under the control of the control unit 74, the voltage signal supplied at the input terminal is outputted to the load 76 side.

이때, 전압분배부(73)의 스위칭소자(732)가 스위칭 오프 동작을 수행하는 시점은 스위칭부(72)의 스위칭 온 동작과 동시에 수행되거나, 스위칭부(72)의 스위칭 온 동작 직전에 수행될 수 있다. At this time, the time point at which the switching element 732 of the voltage divider 73 performs the switching off operation may be performed simultaneously with the switching on operation of the switching unit 72, or may be performed immediately before the switching on operation of the switching unit 72 .

그러나, 스위칭부(72)의 스위칭 온 동작으로 인해 발생되는 임펄스 노이즈를 막기 위해, 전압분배부(73)의 스위칭소자(732)는 스위칭부(72)가 스위칭 온 동작을 수행한 후에도 잠시 동안 온 상태를 유지하다가 일정 시점이 되었을 때 스위칭 오프 동작을 수행하도록 제어하는 것이 바람직하다. 즉, 상기 스위칭소자(732)의 스위칭 오프 동작은 스위칭부(72)의 스위칭 온 동작 직후에 수행되는 것이 바람직하다. However, in order to prevent the impulse noise generated due to the switching-on operation of the switching unit 72, the switching unit 732 of the voltage distribution unit 73 is turned on for a while even after the switching unit 72 performs the switching- It is preferable to control the switching-off operation to be performed at a certain point in time. That is, the switching-off operation of the switching element 732 is preferably performed immediately after the switching-on operation of the switching unit 72. [

도 13 에 도시된 바와 같이, 위상 오프 제어 시점(T83)에서의 입력전압은 기준전압보다도 높다. 이러한 상황에서 스위칭부(72)가 오프 동작을 수행하면, 방전회로부(75)만을 가지고는 높은 전압에 의해 발생하는 역기전력 에너지를 모두 제거할 수 없는 문제점이 있다. 따라서, 전압분배부(73)를 이용하여 방전회로부(75)에 걸리는 전압을 강하시킬 필요가 있게 된다. As shown in Fig. 13, the input voltage at the phase-off control time T83 is higher than the reference voltage. In this situation, when the switching unit 72 performs the OFF operation, there is a problem that all of the counter electromotive force energy generated by the high voltage can not be removed with only the discharge circuit unit 75. Therefore, it is necessary to lower the voltage applied to the discharge circuit portion 75 by using the voltage distribution portion 73. [

그러므로, 제어부(74)는 위상 오프 제어 시점(T83) 직전에 전압분배부(73)의 스위칭소자(732)가 스위칭 온 동작을 수행하도록 제어함으로써, 방전회로부(75)에 걸리는 전압을 기준전압 이하로 강하시킨다. Therefore, the control unit 74 controls the switching element 732 of the voltage distribution unit 73 to perform the switching-on operation immediately before the phase-off control time T83 so that the voltage applied to the discharge circuit unit 75 is lower than the reference voltage .

그리고, 제어부(74)의 제어에 따라, 위상 오프 제어 시점(T83)에서 스위칭부(72)가 스위칭 오프 동작을 수행하면, 입력단에서 부하(76)쪽으로 공급되던 전압 신호가 차단된다. When the switching unit 72 performs the switching-off operation at the phase-off control time T83 under the control of the control unit 74, the voltage signal supplied to the load 76 from the input terminal is cut off.

스위칭부(72)에 의한 스위칭 오프 동작이 수행되면, 이로 인해 발생되는 유도성 킥백을 막기 위해, 제어부(74)는 방전회로부(75)의 스위칭소자(752)가 스위칭 온 동작을 수행하도록 제어한다. 따라서, 스위칭부(72)가 스위칭 오프 동작을 수행할 때, 스위칭부(72)의 스위칭 오프 동작에 의해 발생하는 역기전력 에너지는 방전회로부(75)의 방전소자(751)를 통해 소멸된다. When the switching-off operation is performed by the switching unit 72, the control unit 74 controls the switching unit 752 of the discharging circuit unit 75 to perform the switching-on operation in order to prevent inductive kickback caused thereby . Therefore, when the switching unit 72 performs the switching-off operation, the counter-electromotive force energy generated by the switching-off operation of the switching unit 72 is destroyed through the discharging device 751 of the discharging circuit unit 75.

이때, 제어부(74)는 스위칭부(72)의 스위칭 오프 동작 수행 시점(T83) 직후에 방전회로부(75)의 스위칭소자(752)가 스위칭 온 동작을 수행하도록 제어하는 것이 바람직하다.At this time, the control unit 74 preferably controls the switching device 752 of the discharge circuit unit 75 to perform a switching-on operation immediately after the switching-off operation time point T83 of the switching unit 72. [

그리고, 제어부(74)는 방전회로부(75)의 스위칭소자(752)가 스위칭 온 동작을 수행한 시점 직후에 전압분배부(73)의 스위칭소자(732)가 스위칭 오프 동작을 수행하도록 제어하는 것이 바람직하다. The control unit 74 controls the switching device 732 of the voltage distributing unit 73 to perform the switching-off operation immediately after the switching device 752 of the discharging circuit unit 75 performs the switching-on operation desirable.

즉, 전압분배부(73)는 위상 오프 제어를 위한 스위칭 오프 시점(T83) 직전에 스위칭 온 동작을 수행하고, 방전회로부(75)의 스위칭 소자(752)가 스위칭 온 동작을 수행한 직후에 스위칭 오프 동작을 수행하는 것이 바람직하다. That is, the voltage divider 73 performs the switching-on operation immediately before the switching-off time point T83 for the phase-off control and immediately after the switching element 752 of the discharging circuit part 75 performs the switching- Off operation.

한편, 방전회로부(75)의 스위칭소자(752)는 오프 제어 시점(T83) 직후로부터 스위칭 온 상태를 유지하다가, 제2제로크로싱 시점(T84)에 스위칭 오프 동작을 수행한다. On the other hand, the switching element 752 of the discharge circuit unit 75 maintains the switching-on state immediately after the OFF control time T83 and performs the switching-off operation at the second zero crossing time T84.

즉, 제어부(74)가 제로크로싱 감지부(71)를 통해 제2제로크로싱 시점(T84)을 감지하면, 그 시점에서 방전회로부(75)의 스위칭소자(752)가 스위칭 오프 동작을 수행하도록 제어한다. That is, when the control unit 74 detects the second zero crossing point T84 through the zero crossing sensing unit 71, the control unit 74 controls the switching device 752 of the discharging circuit unit 75 to perform the switching- do.

또한, 제어부(74)는 제2제로크로싱 시점(T84)에서, 스위칭 오프 상태에 있던 전압분배부(73)의 스위칭소자(732)가 스위칭 온 동작을 수행하도록 제어한다. In addition, the control unit 74 controls the switching element 732 of the voltage distribution unit 73, which was in the switching off state, to perform the switching-on operation at the second zero crossing time T84.

한편, 위상 오프 제어 시점(T83)에서 스위칭 오프 동작을 수행한 스위칭부(72)는 다음 위상 온 제어 시점(T85)까지 스위칭 오프 상태를 유지한다. On the other hand, the switching unit 72 performing the switching-off operation at the phase-off control time T83 maintains the switching-off state until the next phase-on control time T85.

41, 71 : 제로크로싱 감지부 42, 72 : 스위칭부
43, 73 : 전압분배부 44, 74 : 제어부
45, 75 : 방전회로부 46, 76 : 부하
431, 731 : 저항성 소자 432, 732 : 스위칭 소자
751 : 방전저항 452: 스위칭 소자
41, 71: a zero crossing detection unit 42, 72:
43, 73: voltage distribution section 44, 74:
45, 75: discharge circuit section 46, 76: load
431, 731: resistive element 432, 732: switching element
751: discharge resistor 452: switching element

Claims (16)

부하에 교류 전원을 공급하거나 차단하는 스위칭부;
상기 스위칭부와 전기적으로 분리되거나 병렬로 연결되는 전압분배부;
입력되는 교류 신호로부터 제로크로싱 시점을 감지하는 제로크로싱 감지부; 및
상기 제로크로싱 감지부를 통해 감지된 제1제로크로싱 시점에서 상기 스위칭부가 스위칭 오프 동작을 수행하고, 제2제로크로싱 시점 이전에 상기 스위칭부가 스위칭 온 동작을 수행하도록 제어하되,
상기 스위칭부의 스위칭 오프 동작이 수행되는 시점에서, 상기 전압분배부가 부하에 전기적으로 연결되고,
상기 스위칭부의 스위칭 온 동작이 수행되는 시점에서, 상기 전압분배부가 상기 부하로부터 전기적으로 분리되도록 제어하는 제어부
를 포함하여 이루어지는 위상 제어 장치.
A switching unit for supplying or disconnecting AC power to the load;
A voltage divider electrically connected to the switching unit or connected in parallel;
A zero crossing detection unit for detecting a zero crossing time point from an input AC signal; And
Wherein the switching unit performs a switching-off operation at a first zero-crossing time point sensed by the zero-crossing sensing unit, and controls the switching unit to perform a switching-on operation before a second zero-
Wherein, at the time when the switching-off operation of the switching unit is performed, the voltage distribution unit is electrically connected to the load,
A control section for controlling the voltage distribution section to be electrically separated from the load at the time when the switching-on operation of the switching section is performed;
And a phase control unit.
제 1 항에 있어서,
상기 전압분배부는 스위칭 소자 및 저항성 소자를 포함하여 이루어지되, 상기 저항성 소자는 상기 부하에 비해 큰 저항값을 가지는 것을 특징으로 하는 위상 제어 장치.
The method according to claim 1,
Wherein the voltage divider comprises a switching element and a resistive element, wherein the resistive element has a larger resistance value than the load.
부하에 교류 전원을 공급하거나 차단하는 스위칭부;
상기 스위칭부와 전기적으로 분리되거나 병렬로 연결되는 전압분배부;
부하와 전기적으로 분리되거나 병렬로 연결되는 방전회로부;
입력되는 교류 신호로부터 제로크로싱 시점을 감지하는 제로크로싱 감지부; 및
상기 제로크로싱 감지부를 통해 감지된 제1제로크로싱 시점과 제2제로크로싱 시점 사이에 상기 스위칭부의 스위칭 온 동작 및 스위칭 오프 동작이 순차적으로 일어나도록 제어하고,
상기 스위칭부의 스위칭 온 동작이 수행되는 시점 이전에 상기 전압분배부가 상기 부하에 전기적으로 연결되도록 제어하며,
상기 스위칭부의 스위칭 온 동작이 수행되는 시점 혹은 그 근처에서 상기 전압분배부가 상기 부하로부터 전기적으로 분리되도록 제어하며,
상기 스위칭부의 스위칭 오프 동작이 수행되는 시점 혹은 그 근처에서 상기 방전회로부가 상기 부하와 병렬로 연결되도록 제어하는 제어부
를 포함하여 이루어지는 위상 제어 장치.
A switching unit for supplying or disconnecting AC power to the load;
A voltage divider electrically connected to the switching unit or connected in parallel;
A discharge circuit part electrically connected to the load or connected in parallel;
A zero crossing detection unit for detecting a zero crossing time point from an input AC signal; And
The control unit controls the switching-on and switching-off operations of the switching unit to occur sequentially between the first zero crossing point and the second zero crossing point detected by the zero crossing sensing unit,
Wherein the control unit controls the voltage distribution unit to be electrically connected to the load before the switching-on operation of the switching unit is performed,
And controls the voltage divider to be electrically isolated from the load at or near the time when the switching unit is switched on,
And a control unit for controlling the discharge circuit unit to be connected in parallel with the load at or near the time when the switching unit performs the switching-
And a phase control unit.
제 3 항에 있어서,
상기 전압분배부는 스위칭 소자 및 저항성 소자를 포함하여 이루어지되, 상기 저항성 소자는 상기 부하에 비해 큰 저항값을 가지는 것을 특징으로 하는 위상 제어 장치.
The method of claim 3,
Wherein the voltage divider comprises a switching element and a resistive element, wherein the resistive element has a larger resistance value than the load.
제 4 항에 있어서,
상기 방전회로부는 스위칭 소자 및 방전 소자를 포함하여 이루어지되, 상기 저항성 소자의 저항값은 상기 방전소자의 저항값보다 큰 것을 특징으로 하는 위상 제어 장치.
5. The method of claim 4,
Wherein the discharge circuit portion includes a switching element and a discharge element, wherein a resistance value of the resistive element is greater than a resistance value of the discharge element.
제 3 항에 있어서,
상기 전압분배부는 제로크로싱 시점에서 상기 부하에 전기적으로 연결되는 것을 특징으로 하는 위상 제어 장치.
The method of claim 3,
And the voltage divider is electrically connected to the load at a zero crossing point.
제 3 항에 있어서,
상기 제어부는 상기 방전회로부가 제로크로싱 시점에서 상기 부하로부터 전기적으로 분리되도록 제어하는 것을 특징으로 하는 위상 제어 장치.
The method of claim 3,
Wherein the control unit controls the discharging circuit unit to be electrically separated from the load at a zero crossing time.
부하에 교류전원을 공급하거나 차단하는 스위칭부;
상기 스위칭부와 전기적으로 분리되거나 병렬로 연결되는 전압분배부;
부하와 전기적으로 분리되거나 병렬로 연결되는 방전회로부;
입력되는 교류 신호로부터 제로크로싱 시점을 감지하는 제로크로싱 감지부; 및
상기 제로크로싱 감지부를 통해 감지된 제1제로크로싱 시점과 제2제로크로싱 시점 사이에 상기 스위칭부의 스위칭 온 동작 및 스위칭 오프 동작이 순차적으로 일어나도록 제어하고,
상기 스위칭부의 스위칭 온 동작이 수행되는 시점 이전에 상기 전압분배부가 상기 부하에 전기적으로 연결되도록 제어하며,
상기 스위칭부의 스위칭 온 동작이 수행되는 시점 혹은 그 근처에서 상기 전압분배부가 상기 부하로부터 전기적으로 분리되도록 제어하며,
상기 스위칭부의 스위칭 오프 동작이 수행되는 시점 전에 상기 전압분배부가 상기 부하에 전기적으로 연결되고, 상기 스위칭부의 스위칭 오프 동작이 수행되는 시점 후에 상기 전압분배부가 상기 부하로부터 전기적으로 분리되도록 제어하며,
상기 스위칭부의 스위칭 오프 동작이 수행되는 시점 혹은 그 근처에서 상기 방전회로부가 상기 부하와 병렬로 연결되도록 제어하는 제어부
를 포함하여 이루어지는 위상 제어 장치.
A switching unit for supplying or disconnecting AC power to the load;
A voltage divider electrically connected to the switching unit or connected in parallel;
A discharge circuit part electrically connected to the load or connected in parallel;
A zero crossing detection unit for detecting a zero crossing time point from an input AC signal; And
The control unit controls the switching-on and switching-off operations of the switching unit to occur sequentially between the first zero crossing point and the second zero crossing point detected by the zero crossing sensing unit,
Wherein the control unit controls the voltage distribution unit to be electrically connected to the load before the switching-on operation of the switching unit is performed,
And controls the voltage divider to be electrically isolated from the load at or near the time when the switching unit is switched on,
Wherein the voltage divider is electrically connected to the load before a switching-off operation of the switching unit is performed, and the voltage divider is electrically disconnected from the load after the switching-off operation of the switching unit is performed,
And a control unit for controlling the discharge circuit unit to be connected in parallel with the load at or near the time when the switching unit performs the switching-
And a phase control unit.
제 8 항에 있어서,
상기 스위칭부의 스위칭 오프 동작은 미리 정해둔 기준 전압보다 높은 전압에서 수행되는 것을 특징으로 하는 위상 제어 장치.
9. The method of claim 8,
Wherein the switching-off operation of the switching unit is performed at a voltage higher than a predetermined reference voltage.
제 9 항에 있어서,
상기 전압분배부는 스위칭 소자 및 저항성 소자를 포함하여 이루어지되, 상기 저항성 소자는 상기 부하에 비해 큰 저항값을 가지는 것을 특징으로 하는 위상 제어 장치.
10. The method of claim 9,
Wherein the voltage divider comprises a switching element and a resistive element, wherein the resistive element has a larger resistance value than the load.
제 10 항에 있어서,
상기 방전회로부는 스위칭 소자 및 방전 소자를 포함하여 이루어지되, 상기 저항성 소자의 저항값은 상기 방전소자의 저항값보다 큰 것을 특징으로 하는 위상 제어 장치.
11. The method of claim 10,
Wherein the discharge circuit portion includes a switching element and a discharge element, wherein a resistance value of the resistive element is greater than a resistance value of the discharge element.
제 9 항에 있어서,
상기 전압분배부는 제로크로싱 시점에서 상기 부하에 전기적으로 연결되는 것을 특징으로 하는 위상 제어 장치.
10. The method of claim 9,
And the voltage divider is electrically connected to the load at a zero crossing point.
제 9 항에 있어서,
상기 제어부는 상기 방전회로부가 제로크로싱 시점에서 상기 부하로부터 전기적으로 분리되도록 제어하는 것을 특징으로 하는 위상 제어 장치.
10. The method of claim 9,
Wherein the control unit controls the discharging circuit unit to be electrically separated from the load at a zero crossing time.
부하에 비해 큰 저항값을 가지는 전압분배부가 교류 입력전원에 대한 스위칭 동작을 수행하는 스위칭부에 병렬로 연결되는 단계;
상기 입력전원이 상기 부하에 공급되도록 상기 스위칭부가 스위칭 온 동작을 수행하는 단계;
상기 스위칭부의 스위칭 온 동작 시점 혹은 그 근처에서, 상기 스위칭부에 병렬로 연결되어 있던 상기 전압분배부가 상기 스위칭부로부터 전기적으로 분리되는 단계;
상기 입력전원이 부하에 공급되는 것을 차단하기 위해, 상기 스위칭부가 스위칭 오프 동작을 수행하는 단계;
상기 스위칭부의 스위칭 오프 동작 시점 혹은 그 근처에서 방전회로부가 상기 부하에 병렬로 연결되는 단계; 및
상기 부하에 병렬로 연결되어 있던 상기 방전회로부가 상기 부하로부터 전기적으로 분리되는 단계
를 포함하여 이루어지는 위상 제어 방법.
The voltage distribution portion having a larger resistance value than the load is connected in parallel to the switching portion performing the switching operation with respect to the AC input power;
Performing the switching-on operation of the switching unit such that the input power is supplied to the load;
The voltage division part connected in parallel to the switching part is electrically separated from the switching part at or near the switching-on time of the switching part;
Performing a switching-off operation of the switching unit to prevent the input power from being supplied to the load;
The discharging circuit unit being connected to the load in parallel at or near the switching-off time of the switching unit; And
A step of electrically disconnecting the discharge circuit part connected in parallel to the load from the load
/ RTI >
제 14 항에 있어서,
상기 전압분배부가 상기 스위칭부에 병렬로 연결되는 단계 및 상기 방전회로부가 상기 부하로부터 전기적으로 분리되는 단계는 상기 교류 입력전원의 제로크로싱 시점에 수행되는 것을 특징으로 하는 위상 제어 방법.
15. The method of claim 14,
Wherein the step of connecting the voltage distributing unit to the switching unit in parallel and the step of electrically disconnecting the discharging circuit unit from the load are performed at a zero crossing point of the ac input power source.
제 14 항에 있어서,
상기 스위칭부의 스위칭 오프 동작이 미리 정해둔 기준전압 이상에서 수행되는 경우,
상기 스위칭부의 스위칭 오프 동작 전에 상기 전압분배부가 상기 스위칭부에 병렬로 연결되는 단계; 및
상기 스위칭부의 스위칭 오프 동작 후에 상기 전압분배부가 상기 스위칭부로부터 전기적으로 분리되는 단계
를 더 포함하여 이루어지는 위상 제어 방법.
15. The method of claim 14,
When the switching-off operation of the switching unit is performed above a predetermined reference voltage,
Before the switching-off operation of the switching unit, the voltage distribution unit is connected in parallel to the switching unit; And
Wherein the voltage dividing section is electrically disconnected from the switching section after the switching-off operation of the switching section
And outputting the phase control signal.
KR1020170004389A 2017-01-11 2017-01-11 Apparatus for Phase Control and Method for Phase Control Using the Apparatus KR101793698B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170004389A KR101793698B1 (en) 2017-01-11 2017-01-11 Apparatus for Phase Control and Method for Phase Control Using the Apparatus
PCT/KR2017/009423 WO2018131768A1 (en) 2017-01-11 2017-08-29 Phase control apparatus and phase control method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170004389A KR101793698B1 (en) 2017-01-11 2017-01-11 Apparatus for Phase Control and Method for Phase Control Using the Apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020170142675A Division KR20180082947A (en) 2017-10-30 2017-10-30 Apparatus for Phase Control and Method for Phase Control Using the Apparatus

Publications (1)

Publication Number Publication Date
KR101793698B1 true KR101793698B1 (en) 2017-11-03

Family

ID=60383675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170004389A KR101793698B1 (en) 2017-01-11 2017-01-11 Apparatus for Phase Control and Method for Phase Control Using the Apparatus

Country Status (2)

Country Link
KR (1) KR101793698B1 (en)
WO (1) WO2018131768A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676544B1 (en) * 1998-12-28 2007-01-30 야자키 소교 가부시키가이샤 Power supply control device and method of controlling the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092766A2 (en) * 2005-03-02 2006-09-08 Koninklijke Philips Electronics N.V. Low power standby mode monitor
US7768221B2 (en) * 2006-06-02 2010-08-03 Power Efficiency Corporation Method, system, and apparatus for controlling an electric motor
KR101533560B1 (en) * 2008-09-22 2015-07-09 삼성전자 주식회사 Device for power factor correction in three phase power supply and control method thereof
KR102010386B1 (en) * 2013-01-09 2019-10-21 엘지전자 주식회사 Apparatus for driving motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676544B1 (en) * 1998-12-28 2007-01-30 야자키 소교 가부시키가이샤 Power supply control device and method of controlling the same

Also Published As

Publication number Publication date
WO2018131768A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
US10616975B2 (en) Dimmer
EP2846437B1 (en) Uninterrupted power supply method and uninterrupted power supply
US8803473B2 (en) Pulse modulation charging method and apparatus
WO2017041011A3 (en) Load control device for high-efficiency loads
MX2019014837A (en) Load control device having an overcurrent protection circuit.
EP3022837B1 (en) Electrical conversion
AU2016346901A1 (en) Static transfer switch system with real time flux control
KR101793698B1 (en) Apparatus for Phase Control and Method for Phase Control Using the Apparatus
WO2016044726A1 (en) Systems and methods for limiting inrush current in charging devices
US20150229203A1 (en) Smart Resistor-Less Pre-Charge Circuit For Power Converter
KR20180082947A (en) Apparatus for Phase Control and Method for Phase Control Using the Apparatus
EP2797194A1 (en) Systems and methods for electronic TRU input protection
CN104600964A (en) Voltage adapter system used in device
CN105006997B (en) Apparatus and method for starting an alternating current machine
US9122295B2 (en) Power supply apparatus with reducing voltage overshooting
EP3116115A3 (en) Power rectifier
WO2013157387A1 (en) Rectifier and rectifying system
KR101839786B1 (en) Voltage Stabilizing Apparatus and Method Using Phase Control
KR102016654B1 (en) Switching Control circuit of pulse power supply
KR20190036440A (en) Voltage Stabilizing Apparatus and Method Using Phase Control
US9831798B2 (en) Power conversion apparatus, power generation system, and control method
CN111366778B (en) Method and device for detecting the zero crossing of an electrical signal, electronic regulating device
WO2009109957A1 (en) Electronic ac power controller
JP2020086399A5 (en)
EP3661009B1 (en) Detection of shoot-through in power converters

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant