KR101787739B1 - 항공기의 메인 파워 변속기에 관한 신뢰도가 증가한 삼중 회로 윤활 장치 - Google Patents
항공기의 메인 파워 변속기에 관한 신뢰도가 증가한 삼중 회로 윤활 장치 Download PDFInfo
- Publication number
- KR101787739B1 KR101787739B1 KR1020150150937A KR20150150937A KR101787739B1 KR 101787739 B1 KR101787739 B1 KR 101787739B1 KR 1020150150937 A KR1020150150937 A KR 1020150150937A KR 20150150937 A KR20150150937 A KR 20150150937A KR 101787739 B1 KR101787739 B1 KR 101787739B1
- Authority
- KR
- South Korea
- Prior art keywords
- circuit
- lubrication
- liquid
- heat exchanger
- lubricating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0434—Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
- F16H57/0435—Pressure control for supplying lubricant; Circuits or valves therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/04—Helicopters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/04—Helicopters
- B64C27/12—Rotor drives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/04—Helicopters
- B64C27/12—Rotor drives
- B64C27/14—Direct drive between power plant and rotor hub
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0405—Monitoring quality of lubricant or hydraulic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0412—Cooling or heating; Control of temperature
- F16H57/0415—Air cooling or ventilation; Heat exchangers; Thermal insulations
- F16H57/0417—Heat exchangers adapted or integrated in the gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0434—Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0434—Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
- F16H57/0436—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0434—Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
- F16H57/0436—Pumps
- F16H57/0438—Pumps of jet type, e.g. jet pumps with means to inject high pressure fluid to the suction area thereby supercharging the pump or means reducing cavitations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0434—Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
- F16H57/0441—Arrangements of pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/045—Lubricant storage reservoirs, e.g. reservoirs in addition to a gear sump for collecting lubricant in the upper part of a gear case
- F16H57/0452—Oil pans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0456—Lubrication by injection; Injection nozzles or tubes therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0458—Oil-mist or spray lubrication; Means to reduce foam formation
- F16H57/046—Oil-mist or spray lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16N—LUBRICATING
- F16N19/00—Lubricant containers for use in lubricators or lubrication systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16N—LUBRICATING
- F16N39/00—Arrangements for conditioning of lubricants in the lubricating system
- F16N39/02—Arrangements for conditioning of lubricants in the lubricating system by cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16N—LUBRICATING
- F16N39/00—Arrangements for conditioning of lubricants in the lubricating system
- F16N39/04—Arrangements for conditioning of lubricants in the lubricating system by heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16N—LUBRICATING
- F16N39/00—Arrangements for conditioning of lubricants in the lubricating system
- F16N39/06—Arrangements for conditioning of lubricants in the lubricating system by filtration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16N—LUBRICATING
- F16N7/00—Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
- F16N7/38—Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M11/00—Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
- F01M11/0004—Oilsumps
- F01M2011/007—Oil pickup tube to oil pump, e.g. strainer
- F01M2011/0075—Oil pickup tube to oil pump, e.g. strainer with a plurality of tubes
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Quality & Reliability (AREA)
- General Details Of Gearings (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Abstract
본 발명은 기계 시스템(3)에 윤활 작용을 행하는 삼중 회로 윤활 장치(1)에 관한 것으로, 상기 윤활 장치(1)에는 2개의 독립적인 윤활 회로(10,20)가 제공되며, 윤활 회로(10,20) 양쪽에 공통이고 윤활 액체를 담고 있는 탱크(2)와, 제3 액체가 흐르는 제3 회로(30)가 제공된다. 각 윤활 회로(10,20)는 파이프, 각각의 압력 센서(12,22), 펌프(11,21), 열 교환기(13,23), 스프레이 노즐(14,24), 및 상기 탱크(2)에 위치한 상기 윤활 액체를 흡입하기 위한 흡입 포인트(16,26)를 포함한다. 상기 제2 흡입 포인트(26)는 상기 높은 제1 흡입 포인트(16) 아래에 위치한다. 상기 제3 회로(30)는 제3 펌프(31), 제3 압력 센서(32), 상기 제2 열 교환기(23), 및 제3 열 교환기(33)를 포함함으로써, 상기 제2 윤활 회로(20)를 통해 흐르는 윤활 액체를 냉각시키는 역할을 한다.
Description
관련 출원에 대한 상호 참조
본 출원은 본 명세서에 전문이 참조로 통합되고, 2014년 10월 31일자로 출원된 FR1402468의 이익을 주장한다.
본 발명은 윤활 기어박스(gearbox) 분야에 관한 것으로, 특히 회전익 항공기에 관한 파워 변속기에 관한 것이다.
본 발명은 기계 시스템(mechanical system)에 관한 신뢰도가 증가한 삼중(triple) 회로 윤활 장치에 관한 것이다. 이 윤활 장치는 특히 회전익 항공기의 메인 파워(main power) 변속기에 윤활 작용을 행하기에 적합하다.
기계 시스템은 일반적으로 샤프트 및 베어링과 같은 회전 소자와, 기어 장치(gearing)와 같이, 힘을 전달하고 속도를 감소 또는 증가시키기 위한 소자를 가진다. 그러므로 기계 시스템의 적절한 동작을 위해서는, 예를 들면 압력 하의(under pressure) 오일에 의해 이들 소자에 윤활유를 칠하고 냉각시키는 것이 필수적이다. 이러한 윤활유 칠하기는 일반적으로 윤활 회로에 의해 제공되고, 기계 시스템의 소자의 마멸 및 가열을 제한하고, 그로 인해 기계 시스템의 수명을 연장시키는 주된 기능을 가진다. 그러한 윤활유 칠하기가 없는, 기계 시스템의 동작은 급격히 질이 떨어질 수 있거나, 불가능해질 수 있다.
기계 시스템에 윤활유가 칠해짐으로 인해, 윤활 회로를 통해 흐르는 오일은 때때로 매우 뜨거울 수 있고, 그러한 경우 기계 시스템에 윤활유를 칠하기 위해 다시 한번 사용 가능하게 되기 전에, 일반적으로 기계 시스템의 외부에 위치하는 냉각 회로에서 냉각된다. 냉각 회로는 예컨대 오일/공기 열 교환기와 같은 열 교환기를 포함한다.
기계 시스템 외부에 있는 냉각 회로는, 누설에 관한 한, 기계 시스템에 관한 윤활 회로의 취약(vulnerable) 부분을 구성한다. 냉각 회로는 파이프, 다수의 연결부, 및 열 교환기를 가진다. 냉각 회로는 오일의 온도와 외부 온도 사이의 큰 차이와 같은 열적 스트레스를 받고, 기계 시스템 및/또는 기계 시스템을 사용하는 차량에 의해 발생된 진동성 스트레스를 받는다. 또한, 냉각 회로는 기계 시스템의 외부에 노출된다. 특히, 기계 시스템이 항공기에 조립될 때, 냉각 회로는 커버 아래와 같이, 항공기의 기계 시스템 외부에 위치한다. 그렇지만, 냉각 회로는 예컨대 새들이나 얼음에 충돌하는 것에 노출될 수 있다. 그 결과, 그것의 연결부와 그것의 파이프, 및 실제로 열 교환기에 하나 이상의 누설이 나타날 수 있고, 그러한 누설은 본질적으로 진동성 스트레스와 열적 스트레스에 의해 야기된다.
그렇지만, 그러한 누설이 존재할 때, 기계 시스템은 일반적으로 계속해서 윤활유가 칠해질 수 있지만, 제한된 시간기간 동안만 그러하다. 윤활 회로, 예컨대 탱크에 저장된 오일 전부가 그러한 누설을 통해 윤활 회로 외부로 분실되는 경우가 발생할 수 있다. 그러한 누설은 아마도 윤활 회로에서의 오일의 압력 저하의 결과로서 탐지될 수 있다.
더 나아가, 윤활 회로는 또한 윤활 회로에 오일을 공급하여 오일이 윤활 회로에서 흐를 수 있게 하기 위해 펌프와 같은 압력 발생기를 포함한다. 압력 발생기의 고정이 있는 경우, 오일의 흐름이 중지되고, 따라서 마찬가지로 기계 시스템의 윤활 작용이 중지되며, 이는 즉시 일어난다.
이러한 윤활 작용이 없는 경우, 기계 시스템의 동작시 그 품질 저하가 급격히 나타날 수 있다. 자체 추진 차량에 적합하게 된 기계 시스템에서 일어나는 그러한 품질 저하의 결과는, 그 차량이 추진되는 것이 즉시 중지되는 것이거나, 일찍이 윤활 회로에서의 오일이 다 소모된 것일 수 있다.
그에 반해, 기계 시스템이 회전익 항공기의 메인 파워 변속기를 구성한다면, 메인 파워 변속기에 윤활 작용을 하는 회로의 품질 저하가, 비상 착륙이나 실제로 불시 착륙을 수행하는 비행기와 같이, 비극적인 결과를 가질 수 있다.
그러한 결과를 완화시키기 위해, 기계 시스템은 비상 윤활 회로를 포함할 수 있다. 그러한 비상 윤활 회로는 주 윤활 회로가 동작이 안 되는 경우, 기계 시스템이 계속해서 동작하는 것을 보장하도록 기계 시스템의 가장 중요한 부재들에 최소한 윤활 작용을 제공하는 것을 가능하게 한다. 안전상 이유로, 항공기가 기계 시스템에 대한 스트레스를 제한하기 위해, 파워 레벨이 감소된 상태에서 동작하는 것이 바람직할 수 있다. 그러한 비상 윤활 회로는 예컨대 기계 시스템이 항공기의 메인 파워 변속기일 때, 기계 시스템이 동작하는 것을 가능하게 하고, 그로 인해 착륙 장소에 도달할 수 있게 하기 위해 항공기가 동작할 수 있게 하는 것을 가능하게 한다. 그러므로 그러한 비상 윤활 회로는 항공기의 안전성을 향상시킨다.
특허 문헌 US8230835에 설명된 것과 같이, 비상 윤활 회로는 주 윤활 회로와 나란히 배치될 수 있다. 각각의 윤활 회로는 그것 자체의 펌프를 가지고 있지만, 모두 동일한 오일 탱크를 사용한다. 그렇지만, 비록 주 회로가 고장인 경우, 비상 회로가 기계 시스템에 충분히 윤활 작용이 이루어지게 할 수 있을지라도, 실제로는 매우 드물게 사용된다. 그 결과, 비상 회로는 좀처럼 영향을 주지 않는 적재 중량(on-board weight)을 구성한다.
또한, 주 윤활 회로에서 누설이 나타나는 구역(zone)은 종종 열 교환기와 그것의 연결부에 위치한다. 비상 윤활 회로에 그러한 누설이 또한 나타나는 것을 회피하기 위해, 비상 회로는 열 교환기를 가지지 않는다. 그 결과, 비상 회로를 통해 흐르는 오일은 냉각되지 않는다. 따라서 비상 윤활 회로는 오일이 너무 높은 온도에 도달하는 것을 회피하기 위해, 제한된 지속시간 동안에만 사용될 수 있다.
비상 회로는 일반적으로 주 회로의 펌프 고장이나 실제로는 주 회로로부터의 누설의 결과로서 주 회로에서 탐지되는 압력 손실의 결과로서 자동으로 작동하게 된다. 비상 윤활 회로는 또한 조작자에 의해 수동으로 작동될 수 있다.
비상 회로에 의해 야기되는 주 윤활 회로 고장의 위험을 감소시키기 위해, 비상 회로는 일반적으로 주 윤활 회로에서의 오일 압력이 충분할 때, 비상 회로의 파이프에서의 흐름을 방지하는 역할을 하는 바이패스(bypass) 시스템을 구비한다. 그러므로 비상 윤활 회로로부터의 누설이 있는 경우, 회로가 더 이상 동작 가능하지 않지만, 주 윤활 회로가 동작하는 것을 방지하지 않는다.
바이패스 시스템의 결점은 비상 회로에서의 활동 중단(dormant) 고장이 존재하는 것을 가능하게 한다는 것이고, 이러한 고장은 비상 회로가 작동하게 되는 순간에만 탐지된다. 그러한 상황 하에서는, 회전익 항공기에서 결정적일 수 있는 주요 이례적인 것(anomaly)이 존재한다.
회전익 항공기의 특정 적용예에서, 메인 파워 변속기는 적당한 비상 윤활 회로를 포함하지 않지만, 동일하고 독립적인 2개의 윤활 회로를 가진다. 각각의 윤활 회로는 그것 자체의 펌프와 그것 자체의 열 교환기를 가진다. 그렇지만, 양 윤활 회로 모두 메인 파워 변속기의 바닥에 의해 형성된 동일한 오일 탱크를 공통으로 사용한다. 그 결과, 윤활 회로 중 하나에서 누설이 존재한다면, 그것의 오일이 메인 파워 변속기의 바닥이 더 짧거나 더 긴 시간 기간에 걸쳐 비워지게 되고, 그로 인해 윤활 시스템의 완전한 고장을 일으킨다.
특정 윤활 시스템은, 때로는 특허 문헌인 EP2505878 및 US2007/0261922에서 설명된 것과 같이, 윤활 작용을 위해 기계 시스템 내부에 직접 설치된 비상 탱크를 포함한다. 이 비상 탱크는 윤활 작용이 필요한 부재들 위에 위치하고, 윤활 회로로부터 계속해서 오일이 공급된다. 그런 다음 오일은 필요한 부재들 위에서 이러한 비상 탱크로부터 중력의 영향을 받아 계속해서 흐른다. 윤활 회로가 고장인 경우는, 비상 탱크에 더 이상 오일이 공급되지 않지만, 필요한 부재에는 비상 탱크로부터 오일을 비우는데 걸리는 시간에 대응하는 제한된 기간 동안 계속해서 윤활 작용이 이루어질 수 있게 한다.
또한, 특허 문헌 US2007/0261922에 따르면, 주 윤활 회로가 고장이 나면 이 비상 탱크에 있는 오일에 첨가물이 추가될 수 있다. 이 첨가물은 오일의 특성을 개선하는 역할을 함으로써, 그것의 효과성을 향상시키고, 이러한 비상 탱크로 구성된 비상 윤활 회로가 동작할 수 있는 시간의 길이를 향상시킨다.
더 나아가, 특허 문헌 US4717000은 윤활 시스템에 의해 오일이 공급되고 윤활 시스템의 고장시에만 사용된 비상 탱크를 가지는 터보샤프트 엔진용 윤활 시스템을 설명한다. 또한, 그러한 비상 탱크는 윤활 시스템의 고장 후 비상 탱크에 저장된 오일이 압력을 받도록 엔진의 컴프레서(compressor)를 떠나는 압축된 공기에 의해 작동된 액추에이터를 포함한다. 그 후, 오일과 압축된 공기의 혼합물이 엔진의 중요한 부재들에 뿌려진다.
또한, 본 발명의 기술적 배경에는 다음 특허 문헌들, 즉 JP2002/340152; FR2685758; 및 FR1194993이 포함된다.
그러므로 본 발명의 목적은 전술한 한계의 극복을 가능하게 하는 기계 시스템에 윤활 작용을 하는 장치를 제안함으로써, 윤활 회로에 고장이 있는 경우에도 불구하고, 그리고 특히 윤활 작용이 이루어지는 지속 기간에 제한을 두지 않으면서, 기계 시스템에 윤활 작용이 이루어지는 것을 가능하게 하는 것이다.
본 발명에서는, 하나의 탱크와 2개의 독립적인 윤활 회로가 제공된, 기계 시스템용 삼중 회로 윤활 장치가 제공된다. 이러한 탱크는 오일과 같은 윤활 액체를 함유하고, 기계 시스템에 윤활 작용이 이루어지도록 하기 위해 윤활 회로 모두에 의해 공동으로 사용된다.
제1 윤활 회로는 제1 펌프, 제1 파이프, 제1 압력 센서, 제1 필터, 제1 열 교환기, 제1 노즐, 및 윤활 액체를 흡입하기 위한 제1 흡입 포인트를 포함하고, 제1 흡입 포인트는 탱크에 위치한다. 기계 시스템에 윤활 작용을 하기 위해, 제1 펌프는 탱크에 존재하는 윤활 액체를 제1 파이프와 제1 노즐에 전달하도록, 제1 흡입 포인트를 통해 작용한다.
제2 윤활 회로는 제2 펌프, 제2 파이프, 제2 압력 센서, 제2 필터, 제2 열 교환기, 제2 노즐, 및 윤활 액체를 흡입하기 위한 적어도 하나의 제2 흡입 포인트를 포함하고, 제2 흡입 포인트는 탱크에 위치한다. 기계 시스템에 윤활 작용을 하기 위해, 제2 펌프는 탱크에 존재하는 윤활 액체를 제2 파이프와 제2 노즐에 전달하도록, 제2 흡입 포인트를 통해 작용한다.
따라서 2개의 윤활 회로는 기계 시스템에 윤활 작용을 하기 위해 동시에 작용한다.
또한, 제1 노즐과 제2 노즐은 윤활 회로 모두에 공통인 하나의 노즐 시리즈로 구성될 수 있다. 각각의 윤활 회로는 체크 밸브와 같은 하나 이상의 역류 방지(non-return) 수단을 가짐으로써, 2개의 윤활 회로 사이의 직접적인 소통(communication)을 피한다.
이러한 삼중 회로 윤활 장치는 그것이 제3 액체가 흐르는 제3 회로를 포함한다는 점에서 주목할 만하다. 이러한 제3 액체는 제3 펌프, 제3 파이프, 제3 압력 센서, 제2 열 교환기, 및 제3 열 교환기를 포함한다. 제3 펌프는 제3 액체가 제3 파이프, 제2 열 교환기, 및 제3 열 교환기를 통해 흐르게 하는 역할을 한다. 또한, 제2 흡입 포인트는 탱크에서 제1 흡입 포인트 아래에 위치한다.
예를 들면, 기계 시스템은 그것이 효과적으로 및 오래 지속되도록 동작할 수 있게 하기 위해, 회전 소자와, 오일과 같은 윤활 액체에 의해 윤활 작용이 이루어지고 냉각될 필요가 있는, 힘을 전달하고 속도를 감소 또는 증가시키기 위한 소자를 포함한다.
예를 들면, 기계 시스템은 회전익 항공기의 메인 파워 변속기이다. 그러한 상황에서는, 삼중 회로 윤활 장치의 탱크가 일반적으로 메인 파워 변속기의 케이싱(casing)으로 구성된다.
제1 윤활 회로의 제1 열 교환기는 그러한 윤활 회로에서 일반적으로 사용된 것과 같은 공기/액체 열 교환기이다. 따라서 이러한 공기/액체 열 교환기는 기계 시스템에 윤활 작용을 행할 때에 가열된 윤활 액체를 냉각시키는 역할을 한다. 이러한 공기/액체 열 교환기는 보통 기계 시스템 근처에 위치하는 공기를 사용하여 냉각을 행한다.
제2 윤활 회로의 제2 열 교환기는 액체/액체 열 교환기이다. 따라서 이러한 액체/액체 열 교환기는 기계 시스템에 윤활 작용을 행함으로써 가열된 윤활 액체를 냉각시키는 역할을 한다. 이러한 액체/액체 열 교환기는 제3 회로에서 흐르는 제3 액체를 사용한다.
제3 회로의 제3 열 교환기는 윤활 회로에서 보통 사용된 종류의 공기/액체 열 교환기이다. 따라서 이러한 공기/액체 열 교환기는 제2 열 교환기를 통과시 가열된 제3 액체를 냉각시키는 역할을 한다. 이러한 공기/액체 열 교환기는 보통 기계 시스템 부근에 위치하는 공기를 사용한다. 예를 들면, 제3 액체는 물, 글리콜, 또는 실제로는 오일이다.
더 나아가, 윤활 액체는 제1 압력(P1)에서 제1 윤활 회로를 통해 흐르고, 제2 압력(P2)에서 제2 윤활 회로를 통해 흐른다. 제1 압력(P1)은 제1 펌프에 의해 얻어지고, 제2 압력(P2)은 제2 펌프에 의해 얻어진다. 제3 액체는 제3 펌프에 의해 얻어진 제3 압력(P3)에서 제3 회로를 통해 흐른다.
또한, 각 압력 센서가 제1 윤활 회로 및 제2 윤활 회로, 그리고 제3 회로를 통해 흐르는 액체의 압력(P1,P2,P3) 각각을 측정하는 역할을 한다. 각 압력 센서는 특히 대응하는 압력(P1,P2,P3)에서의 강하(drop)를 탐지하는 역할을 한다.
그렇지만, 압력 센서는 윤활 액체가 계속해서 윤활 회로를 통해 압력을 받으면서 흐르는 한, 윤활 회로에 누설이 존재하는 결과 반드시 압력 강하를 탐지하지는 않는다. 만약 누설이 느리게 이루어진다면, 그러한 느린 누설에 의해 발생된 윤활 액체의 압력 강하는 윤활 회로에서 보통 사용 중인 압력 센서의 종류에 의해 탐지되지 않는다.
이에 반해, 그러한 압력 센서는 예컨대 파이프나 열 교환기에서의 분명한 갈라진 틈(break)으로 인해 생기는 윤활 회로로부터의 주요 누설로 초래하는 윤활 회로에 있어서의 윤활 액체의 압력 강하를 탐지할 수 있다.
따라서, 제1 윤활 회로에서 누설이 나타나면, 그러한 누설이 제1 압력 센서에 의해 반드시 바로 탐지되는 것은 아니다. 하지만, 이러한 제1 윤활 회로로부터의 누설은 아마도 제1 열 교환기나 그러한 제1 열 교환기에 연결된 파이프 중 하나에서 나타나게 된다. 이러한 누설은 본 발명의 삼중 회로 윤활 장치로부터 윤활 액체 중 일부가 배출되게 한다. 따라서, 탱크에서의 윤활 액체의 깊이는 감소한다. 그 결과, 제1 흡입 포인트가 탱크에서의 윤활 액체의 레벨 위에서 발견될 때에는, 제1 펌프가 채워지지 않게 되고, 더 이상 제1 윤활 회로에 윤활 액체를 공급할 수 없다.
그러한 누설이 신속하게 탐지될 수 있도록 하기 위해, 이러한 제1 흡입 포인트는 바람직하게는 탱크에 존재하는 윤활 액체 부피의 높은 구역에 위치한다.
제1 흡입 포인트에 관한 이러한 위치는, 윤활 액체가 소모되는 것을 허용하고, 존재하지 않는 누설의 원치 않는 탐지를 회피하기 위해, 안전 여유(safety margin)를 가지고 정의된다. 제1 흡입 포인트의 위치에 관한 이러한 안전 여유는 또한 기계 시스템의 가능한 움직임을 고려하는데, 이러한 움직임은 탱크에서의 윤활 액체의 출렁거림(sloshing)과 잠재적으로는 제1 펌프를 가득 채우지 않는 것을 초래할 수 있고, 따라서 기계 시스템의 윤활 작용을 멈추게 한다. 그러한 출렁거림 움직임은 특히, 회전익 항공기의 비행 자세가 비행시, 특히 특정의 호버링(hovering) 비행 동안 변할 수 있다는 점을 고려하면, 기계 시스템이 회전익 항공기의 부분을 형성할 때 일어난다.
그 결과, 제1 흡입 포인트의 위치는 자동으로 느린 누설이 제1 윤활 회로에서 나타날 때 제1 윤활 회로를 통해 윤활 액체가 흐르는 것을 멈추게 하는 역할을 한다. 그로 인해 기계 시스템은 제1 윤활 회로에 의해 더 이상 윤활 작용이 이루어지지 않는다.
기계 시스템은 오로지 제2 윤활 회로에 의해 윤활 작용이 이루어진다. 이를 위해, 제2 윤활 회로가 탱크에서의 윤활 액체의 레벨 강하에도 불구하고, 제2 펌프에 의해 공급될 수 있도록 하기 위해 제2 흡입 포인트가 제1 흡입 포인트 아래에 위치할 필요가 있다. 제2 흡입 탱크는 바람직하게는 탱크의 바닥에 위치한다.
기계 시스템이 제2 윤활 회로에 의해서만 윤활 작용이 이루어지기 때문에, 겪게 되는 스트레스가 기계 시스템에서 발생하는 감소된 윤활과 부합되도록 기계 시스템에 대해 생기는 스트레스를 제한하는 것이 적절하다. 예를 들면, 기계 시스템이 회전익 항공기의 메인 파워 변속기일 때에는, 기계 시스템의 윤활 작용이 감소되자마자, 항공기의 속도가 감소되어야 한다.
제1 흡입 포인트의 위치 아래로 탱크에서의 윤활 액체의 레벨이 강하하는 결과로서 제1 윤활 회로에서의 윤활 액체의 압력 강하를 탐지하게 되면, 누설이 존재하는 것과 기계 시스템이 윤활 감소를 받고 있다는 것을 조작자에게 경고하기 위해, 소리 및/또는 시각적 신호를 발생시킬 수 있다. 조작자는 기계 시스템이 항공기의 부분을 형성할 때에는 항공기의 조종사일 수 있다.
더구나, 제2 윤활 회로에서도 마찬가지로 누설이 잘 나타날 수 있다.
누설이 제2 열 교환기에서 일어난다면, 윤활 액체가 본 발명의 윤활 장치의 외부에 배출되지 않지만, 제3 회로에서 제3 액체와 혼합된다. 탱크에서의 윤활 액체의 레벨은, 제2 윤활 회로의 제2 열 교환기에서의 누설에도 불구하고 실질적으로 변경되지 않은 채로 있다. 유리하게, 이러한 누설에도 불구하고 윤활 액체와 제3 액체로 구성된 혼합물에 의해 윤활 작용이 제공되면서, 기계 시스템은 제2 윤활 회로에 의해 계속해서 윤활 작용이 이루어진다.
또한, 제3 액체의 구성에 따라, 그리고 그러한 누설의 결과로서, 일단 누설이 수리되면 이러한 혼합물을 윤활 액체로 대체하기 위해, 일반적으로 윤활 회로들과 탱크 모두를 깨끗하게 하는 것이 필요하다.
또한, 제2 열 교환기는 바람직하게는 탱크 위에 위치하거나 실제로는 탱크의 측벽에 맞닿아 눌러진다. 그 결과, 아마도 제2 열 교환기를 제외하고는 모든 제2 파이프가 제2 윤활 회로의 구성 성분들이 그러한 것처럼 탱크 위에 위치한다.
따라서 제2 윤활 회로(제2 열 교환기를 제외하고)의 구성 성분들 중 하나에서, 또는 실제로는 제2 파이프들과 제2 열 교환기 사이의 결합들 중 하나에서, 제2 파이프에서 나타나는 누설은 유리하게 윤활 회로의 어떠한 손실도 가져오지 않는다. 윤활 회로는 상기 누설로부터 그것이 탱크에 저장된 윤활 액체로 되돌아가는 탱크 내로 배출된다.
그 결과, 탱크에서의 윤활 액체의 레벨은 제2 윤활 회로로부터의 누설에도 불구하고 변경되지 않은 채로 있다. 기계 시스템은 누설에도 불구하고 제2 윤활 회로에 의해 계속해서 윤활 작용이 이루어지고, 제2 윤활 회로를 통해 흐르는 윤활 액체는 계속해서 냉각됨으로써, 이러한 윤활 작용이 효력이 있음을 보장한다.
제2 열 교환기는 탱크 위에 있으면서 기계 시스템 내부에 있을 수 있다. 예컨대, 기계 시스템은 회전익 항공기용 메인 파워 변속기일 수 있고, 제2 열 교환기는 메인 파워 변속기의 케이싱 위에 있을 수 있고 삼중 회로 윤활 장치의 탱크를 형성한다.
하지만, 누설이 제3 회로에 나타나면, 제3 회로의 외부로 제3 액체가 배출되고, 일반적으로 삼중 회로 윤활 장치의 외부로 배출되어, 제3 액체 모두가 결국에는 분실이 이루어지게 한다. 제3 액체 모두의 이러한 분실은 제3 회로에서의 이러한 제3 액체의 제3 압력(P3)의 강하를 가져온다. 이러한 제3 압력(P3)의 강하는 제3 압력 센서에 의해 탐지된다.
제3 압력(P3)의 강하는 또한, 제3 파이프 또는 제3 열 교환기에서 명확한 파손과 같이, 제3 회로로부터의 주요 누설이 있는 경우 제3 압력 센서에 의해 탐지된다. 어떠한 제3 액체도 제2 열 교환기를 통해 흐르지 않는다. 따라서 제2 윤활 회로를 통해 흐르는 윤활 액체는 더 이상 냉각되지 않는다.
기계 시스템은 윤활 회로 모두에 의해 계속해서 윤활 작용이 이루어지지만, 윤활 액체는 제1 윤활 회로에서만 냉각된다. 기계 시스템은 제1 윤활 회로에 의해서만 효과적으로 윤활 작용이 이루어진다. 제2 윤활 회로에 의해서만 제공되기 때문에 기계 시스템의 윤활 작용이 감소될 때, 기계 시스템이 받는 스트레스를 제한하는 것이 적절하다.
제3 회로로부터 제3 액체 모두를 잃는 결과로서 또는 제3 회로로부터의 주요 누설의 결과로서의 여부에 따라, 제3 회로에서 제3 액체의 압력 강하를 탐지하는 것은, 조작자에게 이러한 누설의 존재와 기계 시스템의 윤활 작용이 감소한다는 것을 경고하기 위해 소리 및/또는 시각적 신호를 발생시킬 수 있다.
본 발명의 삼중 회로 윤활 장치의 제1 예에서, 제2 윤활 회로에서의 윤활 액체의 제2 압력(P2)은 제3 회로에서의 제3 액체의 제3 압력(P3)보다 엄격히 더 크다. 바람직하게는, 제2 압력(P2)이 제3 압력(P3)보다 상당히 더 크다.
예컨대, 제2 압력(P2)은 3바(bar)와 같을 수 있는데 반해, 제3 압력(P3)은 1바와 같다.
그 결과, 제2 열 교환기에서의 제2 회로에 누설이 나타나면, 압력(P2)에서 제2 회로에 흐르는 윤활 액체는 제3 액체가 제2 압력(P2) 보다 엄격히 작은 제3 압력(P3)에 있는 제3 회로로 배출된다. 탱크에 존재하는 윤활 액체가 계속해서 배출되고 제2 윤활 회로를 통해 흐름으로써 제3 회로 내로 완전히 배출되는 것을 회피하기 위해, 제3 회로는 닫힌 회로일 필요가 있다.
만약 제3 회로가 열려 있었고 제3 탱크로부터 제3 액체를 끌어당기는 경우, 윤활 액체 모두가 제3 탱크 내로 비워지게 됨으로써 제1 윤활 회로와 제2 윤활 회로에 의해 이루어지는 기계 시스템의 어떠한 윤활 작용도 정지된다.
그러므로 제3 회로가 닫혀서, 제3 압력(P3)이 제2 압력(P2)과 같아지게 될 때까지 증가한다. 일단 제2 압력(P2)과 제3 압력(P3) 사이의 평형 상태에 도달되거나, 이러한 평형 상태에 가깝게 되면, 동작이나 안전에 관한 문제를 일으키지 않고, 제3 액체가 또한 제2 윤활 회로를 통해 흐를 수 있다.
제3 액체는 우선 열 전달 액체로서의 그것의 능력 때문에 선택된다. 하지만, 또한 작용의 품질이 떨어지면서도 윤활 액체와 제3 액체의 혼합물이 계속해서 윤활 작용을 제공할 수 있도록 하기 위해, 이러한 위험을 고려하면서 제3 액체가 선택된다. 제3 액체는 예를 들면 글리콜, 물 또는 실제로는 오일일 수 있다.
더구나, 이러한 혼합물은 제3 열 교환기에 의해 계속해서 냉각된다. 기계 시스템은 정상적으로 또는 제한 없이 계속해서 동작할 수 있다.
제2 압력(P2)이 제3 압력(P3)보다 상당히 크기 때문에, 제3 압력 센서는 제2 압력(P2)의 값까지의 제3 압력(P3)에서의 증가를 탐지하는 역할을 하고, 따라서 제1 윤활 회로 및 제2 윤활 회로를 통해 흐르는 윤활 액체가 계속해서 충분히 냉각되기 때문에, 첫 번째는 누설이 존재하는지와, 두 번째는 기계 시스템에 정상적으로 윤활 작용이 이루어짐을 조작자에게 경고하기 위해 소리 및/또는 시각적 신호를 발생시키는 역할을 한다. 하지만, 제1 윤활 회로 및 제2 윤활 회로, 그리고 제3 회로 및 탱크는 일단 누설이 수리되면 그에 따라 깨끗하게 세정되어야 한다.
본 발명의 삼중 회로 윤활 장치의 제2 실시예에서, 윤활 액체의 제2 압력(P2)은 제3 액체의 제3 압력(P3)보다 엄격히 작다. 재차(once more), 제3 압력(P3)은 바람직하게는 제2 압력(P2)보다 상당히 더 크다.
예컨대, 제2 압력(P2)은 3바와 같을 수 있는데 반해, 제3 압력(P3)은 5바와 10바 사이의 범위에 있다.
그 결과, 제2 열 교환기에서의 제2 윤활 회로로부터 누설이 나타나면, 압력(P3)에서 제3 회로에서 흐르는 제3 액체가 제2 열 교환기, 그리고 윤활 액체가 제3 압력(P3)보다 엄격히 작은 제2 압력(P2)에 있는 제2 윤활 회로 내로 배출된다. 그 결과, 윤활 액체와 제3 액체의 혼합물을 담고 있는 탱크에서의 액체의 레벨은 상승한다. 하지만, 제3 회로는 그것이 담는 제3 액체가 완전히 비워지게 된다.
따라서, 제3 액체는 제3 열 교환기를 통해 흐르고, 그 결과 윤활 액체는 제2 열 교환기에서 더 이상 냉각되지 않는다. 이후 기계 시스템은 윤활 회로 모두에 의해 계속해서 윤활 작용이 이루어지지만, 윤활 액체는 제1 윤활 회로에 의해서만 냉각된다. 기계 시스템은 이후 제1 윤활 회로에 의해서만 효과적으로 윤활 작용이 이루어진다. 제2 윤활 회로에 의해서만 감소되고 제공되는 윤활 작용을 기계 시스템이 받기 때문에, 기계 시스템에 대한 스트레스를 제한하는 것이 적절하다.
또한, 일단 제3 회로가 비워지면 제3 회로에서의 제3 액체의 제3 압력(P3)은 떨어진다. 제3 압력 센서에 의한 제3 압력(P3)에서의 이러한 떨어짐 탐지는 제2 윤활 회로에서의 윤활 액체의 냉각의 손실과 기계 시스템에 대한 스트레스를 감소시킬 필요성을 조작자에게 경고하기 위해 소리 및/또는 시각적 신호를 발생시킬 수 있다.
제3 회로가 닫힌 회로일 때에는, 누설을 통한 흐름 속도(flow rate)에 따라 제3 회로가 상당히 신속하게 비워질 수 있다. 따라서 그러한 누설은 제2 윤활 회로를 통해 흐르는 윤활 액체의 냉각이 신속하게 중지되는 것을 야기하고, 따라서 기계 시스템의 윤활 작용이 신속하게 감소하게 한다.
이러한 누설의 결과로서 제2 윤활 회로에 흐르는 윤활 액체의 냉각 손실을 늦추기 위해, 제3 회로가 제3 액체를 끌어당기는 제3 탱크를 사용하는 것이 가능하다. 제3 회로에 의해 사용 가능한 제3 액체의 양은, 닫힌 제3 회로를 사용할 때보다 더 클 수 있고, 따라서 제한된 하지만 닫힌 회로를 사용할 때보다 긴 지속시간 동안 제2 열 교환기에서의 윤활 액체가 냉각될 수 있게 한다. 제3 탱크는 제1 회로 및 제2 회로가 윤활 액체를 끌어당기는 탱크와는 별개인 독립적인 것이다.
제3 탱크 외에, 제3 회로는 제3 탱크에 위치한 제3 흡입 포인트를 포함한다. 제3 펌프는 제3 액체를 제3 파이프들과 제2 열 교환기, 및 제3 열 교환기 내로 전달하기 위해 제3 흡입 포인트를 통해 작용한다.
더구나, 본 발명의 양 실시예 모두에 적용 가능한 일 변형예의 상황에서는, 또한 제3 회로가 제1 윤활 회로 및 제2 윤활 회로에서의 제1 압력(P1) 및 제2 압력(P2)이 동시에 또는 순차적으로 떨어지는 경우, 비상 윤활 회로로서 사용될 수 있다. 그러한 떨어짐은 제1 펌프와 제2 펌프의 고장으로 인해 생길 수 있거나 더 가능하게는 윤활 장치의 탱크로부터 직접 발생하는 누설로부터 생길 수 있다. 제1 압력(P1) 및 제2 압력(P2)이 떨어짐으로 인해, 기계 시스템은 제1 윤활 회로 및 제2 윤활 회로에 의해서는 더 이상 윤활 작용이 이루어지지 않는다.
제3 회로는 제3 밸브 및 제3 스프레이 노즐(spray nozzle)을 가진다. 제3 파이프는 제3 액체가 제3 밸브로 흐를 수 있게 하고, 그런 다음 제3 밸브로부터 제3 노즐로 흐를 수 있게 한다. 이들 노즐은 기계 시스템에 윤활 작용이 이루어지도록 하기 위해, 제3 액체를 기계 시스템 위로 뿌린다.
재차, 제1 노즐, 제2 노즐, 및 제3 노즐이 2개의 윤활 회로와 제3 회로에 공통인 하나의 노즐 시리즈로 구성될 수 있다. 제1 윤활 회로와 제2 윤활 회로, 그리고 제3 회로는 체크 밸브와 같은 하나 이상의 각각의 역류 방지 수단을 가짐으로써, 2개의 윤활 회로와 제3 회로 사이의 어떠한 직접적인 소통도 회피한다.
따라서 제1 압력 센서와 제2 압력 센서에 의해 탐지된 것과 같은 제1 압력(P1)과 제2 압력(P2)의 떨어짐은 제3 밸브가 열리게 한다. 제3 액체는 이후 제한된 지속시간 동안 기계 시스템에 윤활 작용을 하기 위해 제3 노즐로 흐른다. 이러한 제한된 지속 시간은 제3 회로에서 흐르는 제3 액체의 양에 의존적이다. 이러한 제한된 지속 시간은 일반적으로 닫힌 제3 회로에 관한 것보다 제3 탱크를 가지는 열린 제3 회로에 관해 더 길다.
또한, 제1 압력 센서와 제2 압력 센서에 의한 제1 압력(P1)과 제2 압력(P2)의 떨어짐의 탐지는 제1 윤활 회로와 제2 윤활 회로에 의한 기계 시스템의 윤활 작용이 없어짐을 조작자에게 경고하기 위해 소리 및/또는 시각적 신호를 발생시키는 것을 가능하게 한다. 조작자는 이후 제한된 지속시간 동안 비상 회로에 의해 기계 시스템에 윤활 작용이 이루어지는 것과 기계 시스템이 신속하게 정지될 필요가 있다는 점을 안다.
특히, 기계 시스템이 회전익 항공기의 부분을 형성한다면, 항공기가 착륙 장소로 신속하게 옮겨져야 한다.
따라서 이러한 삼중 회로 윤활 장치는, 기계 시스템에 윤활 작용을 하는 신뢰도가 증가한 전반적이고 안전한 시스템을 제안하는 것을 가능하게 하고, 이러한 윤활 장치는 완전하고 독립적인 2개의 서브시스템(subsystem)으로 이루어지며, 이 경우 2개의 서브시스템 모두에 공통인 윤활 액체 탱크와 제3 냉각 회로는 예외이다.
더구나, 윤활 장치는 예컨대 윤활 회로로부터의 느린 누설이 있는 경우, 탱크로부터 나오는 윤활 액체의 결과로서 기계 시스템의 윤활 작용이 완전히 실패하는 것을 회피하고, 이 경우 그러한 느린 누설은 압력 센서에 의해 탐지될 수 없다.
그러므로 일반적으로, 윤활 회로에서 누설이 탐지된 후의 윤활의 지속 기간에 대한 한계는 존재하지 않지만, 적어도 하나의 윤활 회로에 의해 윤활 액체의 냉각이 이루어지는 것을 보장한다.
본 발명은 또한 회전익 항공기용 메인 파워 변속기를 제공한다. 이러한 메인 파워 변속기에는 전술한 바와 같은 삼중 회로 윤활 장치가 제공된다. 삼중 회로 윤활 장치의 탱크는 메인 파워 변속기의 케이싱에 의해 구성된다. 제2 열 교환기는 연결부와 제2 파이프를 제한하기 위해 메인 파워 변속기에 직접 위치할 수 있다. 제2 윤활 회로로부터의 임의의 누설은 윤활 액체를 메인 파워 변속기 내로, 따라서 탱크 내로 또는 제2 열 교환기 내로, 따라서 제3 회로 내로 배출하게 한다.
유리하게, 메인 파워 변속기에는 어떠한 비상 윤활 시스템도 설치되지 않고, 그러한 경우 그러한 비상 시스템은 매우 가끔, 그리고 메인 시스템의 고정이 있는 경우에만 사용되고, 따라서 불리하게 되는 무게를 나타낸다. 삼중 회로 윤활 장치에 임의로 존재할 수 있는 비상 윤활 회로는, 제2 윤활 회로에서 흐르는 윤활 액체를 냉각시킬 목적으로 계속해서 사용되는 제3 회로의 완전한 부분을 형성한다.
본 발명과 본 발명의 장점은, 첨부도면을 참조하고, 비제한적인 예로서 주어지는 실시예의 이하의 설명의 상황에서 더 상세히 드러난다.
도 1 및 도 2는 삼중 회로 윤활 장치의 2가지 실시예를 도시하는 도면.
도면 중 2개 이상에서 존재하는 요소는 그들 각각에 동일한 참조 번호가 주어진다.
도 1 및 도 2는 삼중 회로 윤활 장치의 2가지 실시예를 도시하는 도면.
도면 중 2개 이상에서 존재하는 요소는 그들 각각에 동일한 참조 번호가 주어진다.
도 1 및 도 2에 도시된 삼중 회로 윤활 장치(1)의 2가지 실시예는, 샤프트와 베어링과 같은, 특히 회전 요소(5)와, 기어 및/또는 기어링과 같은, 힘을 전달하고 속도를 감소 또는 증가시키는 요소를 포함하는 기계 시스템(3)에 윤활 작용을 행하는 역할을 한다. 기계 시스템(3)은 예컨대 회전익 항공기의 메인 파워 변속기일 수 있다.
각각의 삼중 회로 윤활 장치(1)는 하나의 탱크(2), 동시에 기계 시스템(3)에 윤활 작용을 행하는 역할을 하는 2개의 윤활 회로(10,20), 및 제3 회로(30)를 가진다. 탱크(2)는 기계 시스템(3)의 케이싱에 의해 형성되고 윤활 액체를 담는다.
각각의 윤활 회로(10,20)는 펌프(11,21), 압력 센서(12,22), 열 교환기(13,23), 필터(15,25), 스프레이 노즐(14,24), 흡입 포인트(16,26), 및 각 윤활 회로(10,20)의 다양한 구성 성분을 함께 연결하는 파이프를 가진다. 흡입 포인트(16,26)는 탱크(2)에 위치한다. 제2 흡입 포인트(26)는 탱크(2)의 바닥에 위치하는데 반해, 제1 흡입 포인트(16)는 탱크(2)에서 윤활 액체의 표면 약간 아래에 위치한다. 따라서 제2 흡입 포인트(26)는 제1 흡입 포인트(16) 아래에 위치한다.
각 펌프(11,21)는 흡입 포인트(16,26)를 통해 탱크(2)로부터 윤활 액체를 끌어 당기고, 그러한 윤활 액체를 각각의 윤활 회로(10,20)에 전달하는 역할을 한다. 각 열 교환기(13,23)는 필터(15,25)를 통과한 후, 노즐(14,24)에 도달하기 전에 윤활 액체를 냉각시키는 역할을 한다.
제1 열 교환기(13)는 기계 시스템(3)의 외부에 위치한다. 제1 열 교환기(13)는 기계 시스템(3)에 윤활 작용을 행함으로써 가열된 윤활 액체를 냉각시키는 역할을 하는 공기/액체 열 교환기이다. 이러한 공기/액체 열 교환기는 기계 시스템(3) 부근에 위치한 공기를 사용한다. 제1 환기 시스템(18)은 공기의 흐름이 제1 열 교환기(13)를 휩쓸고 가도록 촉진하는 역할을 한다.
제2 열 교환기(23)는 액체/액체 열 교환기이다. 이러한 액체/액체 열 교환기는 기계 시스템(3)에 윤활 작용을 행함으로써 가열된 윤활 액체를 냉각시키는 역할을 한다. 이러한 액체/액체 열 교환기는 제3 회로(30)에서 흐르는 제3 액체를 사용한다.
제3 회로(30)는 공기/액체 열 교환기인 제3 열 교환기(33)를 포함한다. 이러한 제3 열 교환기(33)는 기계 시스템(3) 외부에 위치하고, 제2 열 교환기를 통과시 가열된 제3 액체를 냉각시키는 역할을 한다. 이러한 공기/액체 열 교환기는 기계 시스템(3) 부근에 위치한 공기를 사용한다. 제2 환기 시스템(38)은 공기의 흐름이 제3 열 교환기(33)를 휩쓸고 가도록 촉진하는 역할을 한다.
예컨대, 제3 액체는 물, 글리콜, 또는 실제로 오일일 수 있는데 반해, 윤활 액체는 오일이다.
도 1에 도시된 삼중 회로 윤활 장치(1)의 제1 실시예에서, 제3 회로(30)는 닫힌 회로이고, 제3 펌프(31), 제3 압력 센서(32), 제2 열 교환기(23), 제3 열 교환기(33), 및 제3 회로(30)의 다양한 구성 성분을 상호 연결하는 제3 파이프를 포함한다.
제2 열 교환기(23)는 탱크(2)의 벽에 맞닿게 놓인다. 그 결과, 제2 윤활 회로(20)의 제2 파이프와, 제2 윤활 회로(20)의 구성 성분(21,22,24,25)은 모두 기계 시스템(3) 내부에 그리고 탱크(2) 위에 위치한다(제2 열 교환기(23)를 제외하고).
그 결과, 이러한 제2 윤활 회로(20)에 나타나는 임의의 누설(제2 열 교환기(23)에서의 누설을 제외하고)이 윤활 액체를 탱크(2) 내로 직접 배출한다. 이는 예컨대 제2 파이프와 제2 열 교환기(23) 사이의 결합으로부터의 누설에 대해서도 적용된다. 따라서 그러한 누설의 결과로서 윤활 장치(1) 외부로의 어떠한 윤활 액체의 손실도 존재하지 않고, 2개의 윤활 회로(10,20)에 의해 기계 시스템(3)의 윤활 작용이 효과적으로 보장된다.
제3 액체는 그것이 가열되는 제2 열 교환기(23)를 통해 제3 펌프(32)로부터 구동중인 닫힌 루프 주위에서 흐르고, 이로 인해, 제2 윤활 회로(20)를 통해 그리고, 제3 액체가 공기에 의해 냉각되는 제3 열 교환기(23)를 통해 흐르는 윤활 액체를 냉각시킨다.
더구나, 윤활 액체는 제3 회로(30)에서 흐르는 제3 액체의 제3 압력(P3)보다 엄격히 더 큰 제2 압력(P2)에서 제2 윤활 회로(20)를 통해 흐른다.
열 교한기(23)에서 제2 윤활 회로(20)로부터 누설이 있는 경우, 윤활 액체가 제3 회로(30) 내로 배출된다. 제3 압력(P3)은 그것이 제2 압력(P2)과 같게 될 때까지 상승한다. 그 결과, 윤활 액체는 삼중 회로 윤활 장치(1)의 외부로 분실되지 않는다.
더구나, 제3 회로(30)가 닫힌 회로이기 때문에, 제3 회로(30)로 배출되는 윤활 회로의 양은 제한된 상태가 된다. 따라서 윤활 액체의 레벨은 탱크(2)에서 실질적으로 변하지 않은 채로 남아 있다.
또한, 제3 회로(30)에서 흐르는 제3 액체와 윤활 액체로 구성된 혼합물이 제3 열 교환기(33)를 통과한다. 따라서 또한 제2 윤활 회로(20)를 통해 흐르는 윤활 액체는 이러한 혼합물에 의해 제2 열 교환기(23)에서 냉각된다.
그러므로 기계 시스템(3)은 지속 시간이 제한되지 않은 채로, 그리고 제2 열 교환기(23)에서 누설이 존재함에도 불구하고, 제1 윤활 회로(10)와 제2 윤활 회로(20)에 의해 효과적으로 윤활 작용이 이루어진다.
도 2에 도시된 바와 같이, 삼중 회로 윤활 장치(1)의 제2 실시예에서, 제3 회로(30)는 열린 회로이고, 제3 펌프(31), 제3 탱크(37), 제3 압력 센서(32), 제2 열 교환기(23), 제3 열 교환기(33), 제3 흡입 포인트(36), 및 제3 회로(30)의 다양한 구성 성분을 함께 연결하는 제3 파이프를 포함한다. 제3 회로(30)는 또한 제3 밸브(35)와 제3 스프레이 노즐(34)을 가진다.
제2 열 교환기(23)는 기계 시스템(3)의 내부와 탱크(2) 위에 위치한다. 그 결과, 이러한 제2 윤활 회로(20)의 구성 성분(21,22,23,24,25) 모두와 함께, 제2 윤활 회로(20)의 제2 파이프는 기계 시스템(3)의 내부와 탱크(2) 위에 위치한다.
윤활 장치(1)의 제1 실시예에서처럼, 제2 윤활 회로(20)에서 나타나는 임의의 누설(제2 열 교환기(23)에서의 누설을 제외하고)은 윤활 액체를 탱크(2) 내로 직접 배출한다. 따라서, 이러한 누설의 결과로서 윤활 장치(1) 외부로의 윤활 액체의 어떠한 손실도 존재하지 않고, 기계 시스템(3)은 2개의 윤활 회로(10,20)에 의해 효과적으로 계속해서 윤활 작용이 이루어진다.
제3 액체는 제3 탱크(37)로부터 제3 펌프(32)에 의해 끌어 당겨진 다음, 제3 액체가 가열되는 제2 열 교환기(23)를 통해 흐름으로써, 제2 윤활 회로(20)를 통해, 그리고 공기에 의해 냉각되는 제3 열 교환기(33)를 통해 흐르는 윤활 액체를 냉각시키고, 마지막으로 제3 탱크(37)로 되돌아간다.
더구나, 윤활 액체는 제3 회로(30)에서 흐르는 제3 액체의 제3 압력(P3)보다 엄격히 작은 제2 압력(P2)으로 제2 윤활 회로(20)에서 흐른다.
열 교환기(23)에서 제2 윤활 회로(20)로부터 누설이 있는 경우, 제3 액체는 제2 윤활 회로(20) 내로 배출된다. 따라서 모든 제3 액체는 제2 윤활 회로(20) 내로 배출된 다음 탱크(2) 내로 배출되게 된다. 그러므로 탱크(2)는 윤활 액체와 제3 액체로 구성된 혼합물을 담고 있다.
윤활 액체는 계속해서 제2 회로(20)에서 흐르고, 기계 시스템(3)에 윤활 작용을 행하도록 제2 열 교환기(23)를 통과하여 노즐(24)에 도달한다. 하지만, 제3 회로(30)에는 어떠한 제3 액체도 더 이상 존재하지 않는다. 따라서 윤활 액체는 제2 열 교환기(23)에서 더 이상 냉각되지 않는다. 그러므로 제2 윤활 회로에 의해 수행된 윤활 작용은 효과적이지 않다.
제2 열 교환기(23)에서 이러한 누설이 발생한 후에는, 제1 윤활 회로(10)에 의해서만 기계 시스템(3)에 효과적인 윤활 작용이 이루어진다.
기계 시스템(3)의 윤활 작용이 감소되기 때문에, 기계 시스템(3)에 대한 스트레스를 감소시키는 것이 적절하다.
더구나, 제3 회로(30) 역시 2개의 윤활 회로(10,20)에서의 압력 강하 후 비상 윤활 회로로서 작용한다. 2개의 윤활 회로(10,20)에서의 그러한 압력 강하가 있는 경우, 제3 회로(30)에서 흐르는 제3 액체가 노즐(34)에 도달하고 기계 시스템(3)에 윤활 작용을 행하는 것을 허용하도록, 제3 밸브(35)가 열린다. 하지만, 이러한 윤활 작용은 제3 탱크(37)에 담기는 제3 액체의 양에 따라, 제한된 지속시간 동안에만 일어날 수 있다.
그러한 상황 하에서는, 더 이상 윤활 작용이 이루어지지 않을 때 품질 저하를 겪는 것을 회피하기 위해, 기계 시스템(3)이 신속하게 정지될 필요가 있다.
삼중 회로 누설 장치(1)의 제1 실시예에서 또는 제2 실시예에서, 제3 회로(30)에서 누설이 나타날 때, 제3 액체가 삼중 회로 윤활 장치(1)와 기계 시스템(3) 외부로 배출된다. 그러므로 제3 회로(30)는 이러한 누설의 결과로서 제3 액체가 완전히 비워지게 된다. 제2 윤활 회로(20)에서의 윤활 액체는 제2 열 교환기(23)에서 더 이상 냉각되지 않는다.
그런 다음, 기계 시스템(3)은 제3 회로(30)에서의 누설이 존재하는 결과, 제1 윤활 회로(10)에 의해서만 효과적으로 윤활 작용이 이루어진다. 그럴 경우, 기계 시스템(3)의 윤활 작용이 감소되기 때문에, 기계 시스템에 대한 스트레스를 감소시키는 것이 적절하다.
마찬가지로, 제1 윤활 회로(10)에 누설이 나타날 때에는, 그리고 그것이 삼중 회로 윤활 장치(1)의 제1 실시예 또는 제2 실시예인지 관계없이, 제1 윤활 회로(10)에서 흐르는 윤활 액체는 삼중 회로 윤활 장치(1)와 기계 시스템(3)의 외부에 배출된다. 탱크(2)에 존재하는 윤활 액체의 레벨은 감소하고, 그 레벨이 제1 흡입 포인트(16)의 레벨 아래로 떨어지자마자, 제1 펌프(11)가 비워지고, 제1 윤활 회로(10)를 통한 윤활 액체의 흐름이 누설의 결과로서 정지된다. 기계 시스템(3)은 이제 더 이상 제1 윤활 회로(10)에 의해 윤활 작용이 이루어지지 않는다.
그러므로 기계 시스템(3)은 제1 윤활 회로(10)로부터의 이러한 누설의 존재 결과로 인해, 제2 윤활 회로(20)에 의해서만 효과적으로 윤활 작용이 이루어진다. 기계 시스템(3)의 윤활 작용이 감소되므로, 기계 시스템(3)에 대한 스트레스를 감소시키는 것이 적절하다.
그러므로 이러한 삼중 회로 윤활 장치(1)는 기계 시스템(3)에 윤활 작용을 하는 신뢰도를 증가시킨 시스템을 제안하는 것을 가능하게 한다. 이러한 삼중 회로 윤활 장치(1)는 윤활 회로(10)와 윤활 회로(20) 모두로부터 동시에 누설이 존재하는 특별한 상황을 제외하고, 윤활 액체가 계속해서 냉각되는 것과 누설이 탐지된 후 윤활의 지속 시간에 대한 한계가 없는 것을 보장하는 역할을 한다.
물론, 본 발명은 그것의 구현에 있어서 다수의 변형예를 가질 수 있다. 비록 몇몇 실시예가 설명되었지만, 모든 가능한 실시예를 남김없이 확인하는 것은 생각할 수 없다는 점을 바로 알게 된다. 물론 본 발명의 범위를 벗어나지 않으면서 설명된 수단 중 임의의 것을 동등한 수단으로 대체하는 것을 예상하는 것이 가능하다.
Claims (11)
- 기계 시스템(3)에 윤활 작용을 하는 삼중 회로 윤활 장치(1)로서,
상기 윤활 장치(1)에는 탱크(2)와, 2개의 윤활 회로(10,20)가 제공되고, 상기 탱크(2)는 윤활 액체를 담고 있으며,
제1 윤활 회로(10)는 제1 펌프(11), 제1 파이프, 제1 압력 센서(12), 제1 열 교환기(13), 제1 스프레이 노즐(14), 및 상기 윤활 액체를 흡입하기 위한 제1 흡입 포인트(16)를 포함하고,
제2 윤활 회로(20)는 제2 펌프(21), 제2 파이프, 제2 압력 센서(22), 제2 열 교환기(23), 제2 스프레이 노즐(24), 및 상기 윤활 액체를 흡입하기 위한 제2 흡입 포인트(26)를 포함하며,
상기 제1 흡입 포인트(16) 및 상기 제2 흡입 포인트(26)는 상기 탱크(2)에 위치하고, 상기 제1 흡입 포인트(16) 및 상기 제2 흡입 포인트(26)를 통해 작용하는 각 펌프(11,21)는 상기 윤활 액체를 각각 상기 제1 파이프와 상기 제2 파이프 내로, 그리고 상기 제1 스프레이 노즐(14)과 상기 제2 스프레이 노즐(24) 내로 전달하여 상기 기계 시스템(3)에 윤활 작용을 하고,
상기 삼중 회로 윤활 장치(1)는 제3 액체가 흐르는 제3 회로(30)를 포함하고, 상기 제3 회로(30)는 제3 펌프(31), 제3 파이프, 제3 압력 센서(32), 상기 제2 열 교환기(23), 및 제3 열 교환기(33)를 포함하며, 상기 제3 펌프(31)는 상기 제3 액체가 상기 제2 열 교환기(23)와 상기 제3 열 교환기(33)를 통해 흐르게 하는 역할을 하고, 상기 제2 흡입 포인트(26)는 상기 제1 흡입 포인트(16) 아래에 위치하는, 삼중 회로 윤활 장치. - 제1 항에 있어서,
상기 제3 회로(30)는 닫힌 회로인, 삼중 회로 윤활 장치. - 제1 항에 있어서,
상기 제3 회로(30)는 제3 탱크(37)와 제3 흡입 포인트(36)를 포함하고, 상기 제3 흡입 포인트(36)는 상기 제3 탱크(37)에 위치하며, 상기 제3 펌프(31)는 상기 제3 흡입 포인트(36)를 통해 상기 제3 액체를 상기 제3 파이프와, 상기 제2 열 교환기(23) 및 상기 제3 열 교환기(33) 내로 전달하는, 삼중 회로 윤활 장치. - 제1 항에 있어서,
상기 윤활 액체는 제2 압력(P2)으로 상기 제2 윤활 회로(20)에서 흐르고, 상기 제3 액체는 제3 압력(P3)으로 상기 제3 회로(30)에서 흐르며, 상기 윤활 액체의 상기 제2 압력(P2)은 상기 제3 액체의 상기 제3 압력(P3)보다 명백히 더 큰, 삼중 회로 윤활 장치. - 제1 항에 있어서,
상기 윤활 액체는 제2 압력(P2)으로 상기 제2 윤활 회로(20)에서 흐르고, 상기 제3 액체는 제3 압력(P3)으로 상기 제3 회로(30)에서 흐르며, 상기 윤활 액체의 상기 제2 압력(P2)은 상기 제3 액체의 상기 제3 압력(P3)보다 명백히 더 작은, 삼중 회로 윤활 장치. - 제1 항에 있어서,
상기 제2 열 교환기(23)는 상기 기계 시스템(3) 내부에 위치하기에 적합한, 삼중 회로 윤활 장치. - 제1 항에 있어서,
상기 제2 열 교환기(23)는 상기 탱크(2) 위에 위치하기에 적합한, 삼중 회로 윤활 장치. - 제1 항에 있어서,
상기 제2 열 교환기(23)는 상기 탱크(2)의 벽에 맞닿아 위치하기에 적합한, 삼중 회로 윤활 장치. - 제1 항에 있어서,
상기 제3 회로(30)는 제3 밸브(38)와 제3 스프레이 노즐(34)을 포함하는, 삼중 회로 윤활 장치. - 제1 항에 있어서,
상기 기계 시스템(3)은 회전익 항공기(30)의 메인 파워 변속기(31)인, 삼중 회로 윤활 장치. - 회전익 항공기용 메인 파워 변속기로서,
상기 메인 파워 변속기에는 제10 항에 따른 윤활 장치(1)가 제공되고, 상기 탱크(2)는 상기 메인 파워 변속기의 케이싱으로 구성되는, 회전익 항공기용 메인 파워 변속기.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1402468A FR3027992B1 (fr) | 2014-10-31 | 2014-10-31 | Dispositif de lubrification a fiabilite augmentee a triple circuit d'une boite de transmission principale de puissance d'un aeronef |
FR1402468 | 2014-10-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160051646A KR20160051646A (ko) | 2016-05-11 |
KR101787739B1 true KR101787739B1 (ko) | 2017-10-18 |
Family
ID=52339191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150150937A KR101787739B1 (ko) | 2014-10-31 | 2015-10-29 | 항공기의 메인 파워 변속기에 관한 신뢰도가 증가한 삼중 회로 윤활 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9829088B2 (ko) |
EP (1) | EP3015743B1 (ko) |
KR (1) | KR101787739B1 (ko) |
CN (1) | CN105570441B (ko) |
FR (1) | FR3027992B1 (ko) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3027998B1 (fr) * | 2014-10-31 | 2017-08-25 | Airbus Helicopters | Procede et dispositif de lubrification a fiabilitee a double circuit d'une boite de transmission principale de puissance d'un aeronef |
EP3332103B1 (en) * | 2015-08-07 | 2022-09-14 | Sikorsky Aircraft Corporation | Lubrication systems for transmissions |
US10190672B2 (en) * | 2016-04-04 | 2019-01-29 | Bell Helicopter Textron Inc. | Gearbox lubrication system |
US10801409B2 (en) * | 2016-08-02 | 2020-10-13 | Rolls-Royce North American Technologies, Inc. | Systems and methods for selectively augmenting power output of a gas turbine engine |
FR3055936B1 (fr) * | 2016-09-09 | 2019-06-21 | Airbus Helicopters | Dispositif de lubrification muni de plusieurs reservoirs de recuperation du liquide de lubrification et de moyens d'acheminement optimises et fiables vers un reservoir principal |
CN106499803A (zh) * | 2016-11-30 | 2017-03-15 | 广州市花都全球自动变速箱有限公司 | 一种带有冷却系统的自动变速箱 |
FR3068006B1 (fr) * | 2017-06-23 | 2020-05-22 | Airbus Helicopters | Systeme de recuperation d'energie thermique d'une boite de tranmission principale de puissance d'un aeronef pour le chauffage l'habitacle de l'aeronef |
CN109869618B (zh) * | 2017-12-01 | 2021-05-11 | 空客直升机 | 设有多个润滑液回收槽罐以及至主槽罐的优化且可靠的输送装置的润滑装置 |
KR102018747B1 (ko) * | 2017-12-01 | 2019-09-05 | 에어버스 헬리콥터스 | 윤활액이 담긴 복수의 리커버리 탱크와 메인 탱크로의 최적화되고 믿을 수 있는 전달 수단이 제공된 윤활 장치 |
US10844948B2 (en) | 2017-12-08 | 2020-11-24 | Airbus Helicopters | Lubrication device having a plurality of lubrication liquid recovery tanks, and optimized and reliable delivery means to a main tank |
US10816085B2 (en) * | 2018-01-18 | 2020-10-27 | Bell Helicopter Textron Inc. | Aircraft lubrication system |
US11280398B2 (en) * | 2018-07-02 | 2022-03-22 | Textron Innovations Inc. | Lubrication management systems for tiltrotor aircraft |
US11067000B2 (en) | 2019-02-13 | 2021-07-20 | General Electric Company | Hydraulically driven local pump |
US11391363B2 (en) * | 2019-04-25 | 2022-07-19 | Lockheed Martin Corporation | Low profile auxiliary lubrication system |
FR3134440B1 (fr) * | 2022-04-07 | 2024-03-15 | Airbus Helicopters | Système mécanique muni d’un carter logeant au-dessus d’éléments à lubrifier ou à refroidir un réservoir d’un système fluidique lubrifiant |
US12078239B2 (en) | 2022-10-25 | 2024-09-03 | Lockheed Martin Corporation | Gearbox lubrication system for an aircraft |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070261922A1 (en) | 2006-01-05 | 2007-11-15 | Sikorsky Aircraft Corporation | Secondary lubrication system with injectable additive |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1194993A (fr) * | 1958-04-22 | 1959-11-13 | Cie Int Machines Agricoles | Dispositif de lubrification par aspersion en circuit fermé des transmissions par engrenages |
US3463269A (en) * | 1967-06-14 | 1969-08-26 | Federal Aviat Usa | Lubrication system |
US3800913A (en) * | 1972-08-04 | 1974-04-02 | Caterpillar Tractor Co | Recirculating oil system |
US4717000A (en) | 1986-08-05 | 1988-01-05 | Avco Corporation | Integrated emergency lubrication system |
IT1232583B (it) * | 1989-02-14 | 1992-02-26 | Fiat Aviazione | Impianto di lubrificazione di organi meccanici particolarmente di impigo aeronautico provvisto di un dispositivo di emergenza atto a garantire una fornitura minima di olio lubrificante |
FR2658577A1 (fr) * | 1990-02-20 | 1991-08-23 | Aerospatiale | Dispositif de lubrification de secours pour reducteur notamment pour boite de transmission principale de giravion. |
FR2685758B1 (fr) * | 1991-12-26 | 1995-03-31 | Aerospatiale | Systeme de lubrification et de refroidissement de secours d'un multiplicateur/reducteur mecanique du type "boite de transmission" d'helicoptere en cas de defaillance du circuit de lubrification. |
FI105848B (fi) * | 1999-03-26 | 2000-10-13 | Valmet Corp | Menetelmä paperikoneen tai vastaavan telahydrauliikan painejärjestelmässä ja telahydrauliikan monipainejärjestelmä |
DE10051356B4 (de) * | 2000-10-17 | 2004-05-06 | Daimlerchrysler Ag | Getriebe für eine Hubkolbenbrennkraftmaschine |
JP3937754B2 (ja) * | 2001-05-22 | 2007-06-27 | 日産自動車株式会社 | 歯車の潤滑装置 |
FR2826094B1 (fr) * | 2001-06-15 | 2003-11-28 | Eurocopter France | Systeme de lubrification et de refroidissement d'un ensemble mecanique |
FR2831938B1 (fr) * | 2001-11-07 | 2004-02-20 | Eurocopter France | Installation de lubrification pour boite de transmission de puissance basculante |
US8459413B2 (en) * | 2007-01-19 | 2013-06-11 | Sirkorsky Aircraft Corporation | Lubrication system with prolonged loss of lubricant operation |
US8230835B2 (en) | 2009-03-10 | 2012-07-31 | Honeywell International Inc. | Emergency engine lubrication systems and methods |
US20120241258A1 (en) * | 2011-03-23 | 2012-09-27 | Pradip Radhakrishnan Subramaniam | Lubricant supply system and method for controlling gearbox lubrication |
US9458923B2 (en) | 2011-03-31 | 2016-10-04 | Textron Innovations Inc. | Gearbox with passive lubrication system |
DE102011100849A1 (de) * | 2011-05-06 | 2012-11-08 | Audi Ag | Doppelkupplungsgetriebe |
EP2610525B1 (en) * | 2011-12-30 | 2017-09-06 | LEONARDO S.p.A. | Epicyclic gear train for a hovering aircraft having annularly arranged lubricant nozzles |
US9726056B2 (en) * | 2012-05-21 | 2017-08-08 | Fca Us Llc | High efficiency oil circuit |
US8905193B2 (en) * | 2012-07-25 | 2014-12-09 | Bell Helicopter Textron Inc. | Direct drive rotation device for passively moving fluid |
FR3027998B1 (fr) * | 2014-10-31 | 2017-08-25 | Airbus Helicopters | Procede et dispositif de lubrification a fiabilitee a double circuit d'une boite de transmission principale de puissance d'un aeronef |
US9765875B2 (en) * | 2015-06-19 | 2017-09-19 | Sikorsky Aircraft Corporation | Lubrication systems for gearbox assemblies |
US10337607B2 (en) * | 2015-09-29 | 2019-07-02 | Allison Transmission, Inc. | Selectively controllable filtration system of a transmission and method thereof |
-
2014
- 2014-10-31 FR FR1402468A patent/FR3027992B1/fr active Active
-
2015
- 2015-09-25 EP EP15186803.1A patent/EP3015743B1/fr active Active
- 2015-10-23 CN CN201510695500.6A patent/CN105570441B/zh active Active
- 2015-10-28 US US14/924,776 patent/US9829088B2/en active Active
- 2015-10-29 KR KR1020150150937A patent/KR101787739B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070261922A1 (en) | 2006-01-05 | 2007-11-15 | Sikorsky Aircraft Corporation | Secondary lubrication system with injectable additive |
Also Published As
Publication number | Publication date |
---|---|
US20160123456A1 (en) | 2016-05-05 |
FR3027992B1 (fr) | 2016-12-09 |
FR3027992A1 (fr) | 2016-05-06 |
US9829088B2 (en) | 2017-11-28 |
EP3015743A1 (fr) | 2016-05-04 |
CN105570441A (zh) | 2016-05-11 |
EP3015743B1 (fr) | 2017-05-24 |
KR20160051646A (ko) | 2016-05-11 |
CN105570441B (zh) | 2018-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101787739B1 (ko) | 항공기의 메인 파워 변속기에 관한 신뢰도가 증가한 삼중 회로 윤활 장치 | |
US9732840B2 (en) | Dual circuit lubrication method and device with increased reliability for a main power transmission gearbox of an aircraft | |
US10415692B2 (en) | Emergency lubrication device of simplified architecture for a power transmission main gearbox of an aircraft | |
US10012305B2 (en) | Power transmission gearbox and an aircraft | |
US9765875B2 (en) | Lubrication systems for gearbox assemblies | |
JP5214992B2 (ja) | エンジン用予備潤滑装置および方法 | |
US20130068562A1 (en) | Monitoring Overfilling In An Aeroplane Engine Lubrication System | |
JP4139797B2 (ja) | 潤滑装置および潤滑方法 | |
US12013082B2 (en) | Method for monitoring a fluid system lubricating a mechanical system | |
CA2688674C (en) | Flow restrictor for lubrication line | |
US11280397B2 (en) | Method of retrofitting a gear box assembly with an emergency lubrication system | |
EP3425243B1 (en) | Sea water seal without oil lubrication for pods | |
CN102575650A (zh) | 为传动系统提供紧急润滑的润滑系统 | |
US20220107018A1 (en) | Lubrication system with a reserve tank | |
US9759094B2 (en) | Pump for a turbine engine | |
US5320196A (en) | Pressure system for detecting malfunctions of a fuel/oil heat exchanger | |
US11391363B2 (en) | Low profile auxiliary lubrication system | |
KR102631131B1 (ko) | 압축기 또는 진공 펌프 장치, 이러한 압축기 또는 진공 펌프 장치를 위한 액체 회수 시스템 및 이러한 압축기 또는 진공 펌프 장치의 기어박스로부터 액체를 배출하는 방법 | |
RU2108510C1 (ru) | Система охлаждения главного редуктора вертолета | |
US2322577A (en) | Hydraulic clutch structure | |
RU2674106C1 (ru) | Главный редуктор вертолета | |
RU2703602C1 (ru) | Маслосистема главного редуктора | |
CN206958224U (zh) | 一种卧螺机差速器补油装置 | |
Linke-Diesinger | Engine Lubrication System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |