KR101766257B1 - System and Method for Carbon Dioxide Conversion for Offshore Production Facilties - Google Patents

System and Method for Carbon Dioxide Conversion for Offshore Production Facilties Download PDF

Info

Publication number
KR101766257B1
KR101766257B1 KR1020160042781A KR20160042781A KR101766257B1 KR 101766257 B1 KR101766257 B1 KR 101766257B1 KR 1020160042781 A KR1020160042781 A KR 1020160042781A KR 20160042781 A KR20160042781 A KR 20160042781A KR 101766257 B1 KR101766257 B1 KR 101766257B1
Authority
KR
South Korea
Prior art keywords
hydrogen
fuel gas
carbon dioxide
gas
reaction
Prior art date
Application number
KR1020160042781A
Other languages
Korean (ko)
Inventor
유창열
김성배
문영식
최동규
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to KR1020160042781A priority Critical patent/KR101766257B1/en
Application granted granted Critical
Publication of KR101766257B1 publication Critical patent/KR101766257B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0082Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0095Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/60Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/80Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/80Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/02Integration in an installation for exchanging heat, e.g. for waste heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

According to one aspect of the present invention, a system for converting carbon dioxide in fuel gas generated from a gas processing device (10) of marine production facilities comprises: a hydrogen supplier (20) installed to mix hydrogen in the fuel gas; a methane conversion reactor (30) installed to generate methane by causing a chemical reaction with the fuel gas and the hydrogen; and a heat exchanger (40) installed to recover heat generated by the chemical reaction as a heating medium. Accordingly, the amount of carbon dioxide which causes corrosion of piping and equipment can be reduced, the amount of heat generated by the fuel gas can be increased by about 18%, and the heat of reaction can be recovered and used as a heat source in marine production facilities.

Description

해양생산설비의 이산화탄소 전환 시스템 및 방법{System and Method for Carbon Dioxide Conversion for Offshore Production Facilties}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide conversion system for a marine production facility,

본 발명은 해양생산설비에 관한 것으로서, 보다 구체적으로는 해양의 석유나 가스 자원을 채굴하여 정제하는 과정에서 발생되는 이산화탄소를 감소시키기 위한 해양생산설비의 이산화탄소 전환 시스템 및 방법에 관한 것이다.The present invention relates to a marine production facility, and more particularly, to a system and method for converting carbon dioxide in a marine production facility to reduce carbon dioxide generated during the process of mining and refining offshore oil or gas resources.

해양생산설비의 처리시설에서 이산화탄소(CO2)는 유정(Well)의 특성에 따라 다량 또는 일부 포함된다. 이 이산화탄소를 포함한 유체는 해양 생산설비에서 분리 및 탈수 압축 공정을 거쳐 해양생산설비 내 연료가스로 사용되고, 이외의 가스는 가스배관을 통한 육상이송 또는 유정으로 재 주입된다. In the processing facilities of marine production facilities, carbon dioxide (CO 2 ) is included in a large amount or partly depending on the characteristics of the well. This carbon dioxide-containing fluid is separated from the offshore production facility and subjected to dehydration and compression process to be used as fuel gas in marine production facilities, while other gases are re-injected into the land transportation or oil wells through gas pipelines.

그러나, 높은 함량의 이산화탄소는 가스상 내 물(H2O)과의 반응으로 탄산(H2CO3)을 생성하기 때문에 배관 및 장비부식의 원인이 된다. 이에 CO2 제거 공정(Acid gas removal 공정)을 적용하지 않을 경우 부식 방지를 위해 높은 등급의 소재와 더불어 부식방지제가 사용되어야 한다.However, the high content of carbon dioxide causes carbonate (H 2 CO 3 ) by reaction with water (H 2 O) in the gaseous phase, which causes corrosion of piping and equipment. Therefore, corrosion inhibitors should be used in addition to high grade materials to prevent corrosion when the CO 2 removal process (Acid gas removal process) is not applied.

이와 같은 이산화탄소의 폐단을 해소하기 위해 참조할 수 있는 선행기술문헌으로서 한국 공개특허공보 제2013-0037935호, 한국 등록특허공보 제1413142호 등이 알려져 있다.Korean Patent Laid-Open Publication No. 2013-0037935 and Korean Patent Registration No. 1413142 are known as prior art documents which can be referred to for solving such a problem of carbon dioxide.

전자는 이산화탄소를 수산화마그네슘 수용액에 반응시켜 용존무기탄소를 생성하는 반응조; 상기 반응조 내로 해수를 공급하는 해수 공급장치; 상기 이산화탄소를 해수에 고르게 분배하기 위한 기체 분배기; 상기 반응물을 교반하기 위한 교반기; 등으로 구성한다. 이에. 장비의 설비비용 및 운용비용을 절감하고, 백화현상과 같은 해양생태계 영향을 최소화하는 효과를 기대한다.The former is a reaction tank that reacts carbon dioxide with an aqueous solution of magnesium hydroxide to produce dissolved inorganic carbon; A seawater supply device for supplying seawater into the reaction tank; A gas distributor for evenly distributing the carbon dioxide to seawater; A stirrer for stirring the reactant; . Therefore. It is expected that the equipment cost and operation cost of equipment will be reduced and the effect of marine ecosystem such as whitening will be minimized.

후자는 배가스를 공급하는 배가스 라인; 배가스 라인에 수소를 공급하는 수소 저장조; 고농도 이산화탄소가 저장되고 공급하는 고농도 이산화탄소 저장조; 혼합 가스를 공급하는 혼합조; 혼합가스의 이산화탄소를 메탄으로 전환시켜 배출하는 생물학적 이산화탄소 저감조; 등으로 구성한다. 이에, 배가스를 수소와 반응시켜 이산화단소를 메탄으로 전환시키는 효과를 기대한다.The latter is a flue-gas line that supplies flue gas; A hydrogen storage tank for supplying hydrogen to the flue gas line; A high-concentration carbon dioxide storage tank storing and supplying high-concentration carbon dioxide; A mixing tank for supplying a mixed gas; A biological carbon dioxide reducing tank that converts and discharges the carbon dioxide of the mixed gas into methane; . Therefore, it is expected that the effect of converting exhaust gas to methane by reacting flue gas with hydrogen.

다만, 상기한 특허문헌에 의하면 해양생산설비에 적용하여 이산화탄소의 감소와 관련된 제반 효용성을 확보하는 측면에서 개선의 여지가 크다.However, according to the above-mentioned patent documents, there is a lot of room for improvement in terms of securing various usefulness related to the reduction of carbon dioxide by applying to marine production facilities.

1. 한국 공개특허공보 제10-2013-0037935호 "이산화탄소 변환 방법 및 장치, 이를 이용한 이산화탄소 제거 방법 및 장치" (공개일자 : 2013.04.17.)1. KOKAI Publication No. 10-2013-0037935 entitled " CO 2 CONVERSION METHOD AND APPARATUS, METHOD AND APPARATUS FOR EXTRACTION OF CARBON DIOXIDE USING THE SAME, "(Open date: Apr. 17, 2013). 2. 한국 등록특허공보 제10-1413142호 "배가스 내 이산화탄소의 생물학적 메탄 전환 장치" (공개일자 : 2014.07.04.)2. Korean Patent Registration No. 10-1413142 entitled " Biological Methane Conversion Apparatus for Carbon Dioxide in Flue Gas "(Open date: 2014.07.04.)

상기와 같은 종래의 문제점들을 개선하기 위한 본 발명의 목적은, 해양의 석유나 가스 자원을 생산하는 과정에서 발생되는 이산화탄소를 저감하면서 이에 연계되는 부수적 프로세스로 효용성을 높이기 위한 해양생산설비의 이산화탄소 전환 시스템 및 방법을 제공하는 데 있다.SUMMARY OF THE INVENTION It is an object of the present invention to overcome the above-mentioned problems of the prior art by providing a carbon dioxide conversion system for a marine production facility for enhancing utility by an ancillary process associated with reducing carbon dioxide And a method.

상기 목적을 달성하기 위하여, 본 발명의 일면에 의하면, 해양생산설비의 가스처리장치에서 생성되는 연료가스의 이산화탄소를 전환하는 시스템에 있어서: 상기 연료가스에 수소를 혼합하도록 설치되는 수소공급기; 상기 연료가스와 수소에 의한 화학반응을 유발하여 메탄을 생성하도록 설치되는 메탄전환 반응기; 및 상기 화학반응에 의하여 생성되는 열을 열매체로 회수하도록 설치되는 열교환기;를 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, according to one aspect of the present invention, there is provided a system for converting carbon dioxide of a fuel gas generated in a gas processing apparatus of a marine production facility, the system comprising: a hydrogen supplier installed to mix hydrogen in the fuel gas; A methane conversion reactor installed to generate methane by causing a chemical reaction between the fuel gas and hydrogen; And a heat exchanger installed to recover the heat generated by the chemical reaction as a heating medium.

본 발명의 세부 구성으로서, 상기 메탄전환 반응기는 Au, Bi, Cu, Al, Zn, Cr 중에서 선택되는 금속을 1종 이상 포함하는 촉매를 사용하는 것을 특징으로 한다.As a detailed construction of the present invention, the methane conversion reactor is characterized by using a catalyst containing at least one metal selected from Au, Bi, Cu, Al, Zn and Cr.

본 발명의 변형예로서, 상기 촉매는 나노 구조의 원소를 지닌 성형품 형태로 형성되어 탑재되는 것을 특징으로 한다.In a modification of the present invention, the catalyst is formed and mounted in the form of a molded article having an element of a nanostructure.

본 발명의 세부 구성으로서, 상기 열교환기는 해양생산설비에서 생산공정에 소요되는 냉각수를 투입하도록 연결되는 것을 특징으로 한다.In the detailed construction of the present invention, the heat exchanger is connected to input the cooling water required for the production process in the offshore production facility.

본 발명의 세부 구성으로서, 상기 열교환기의 하류측에 연료가스의 발열량을 높이도록 기액분리기를 설치하는 것을 특징으로 한다.As a detailed configuration of the present invention, a gas-liquid separator is provided on the downstream side of the heat exchanger so as to increase the heat generation amount of the fuel gas.

본 발명의 다른 일면에 의하면, 해양생산설비의 가스처리장치에서 생성되는 이산화탄소를 전환하는 방법에 있어서: 상기 연료가스에 수소를 혼합하여 [반응식 1]을 유발하는 반응단계; 및 According to another aspect of the present invention, there is provided a method for converting carbon dioxide produced in a gas processing apparatus of an offshore production facility, comprising: a reaction step of mixing hydrogen with the fuel gas to generate Reaction Scheme 1; And

[반응식 1] CO2 + 4H2 -> CH4 + 2H2O[Reaction 1] CO 2 + 4H 2 -> CH 4 + 2H 2 O

상기 반응과정에서 발생하는 열을 열매체로 회수하는 회수단계;를 포함하여 이루어지는 것을 특징으로 한다.And a recovery step of recovering the heat generated in the reaction process as a heating medium.

본 발명의 변형예로서, 상기 반응단계는 금속의 산화에 의하여 수소를 발생하는 공정, 광촉매를 이용하여 수소를 발생하는 공정 중 적어도 하나를 더 포함하는 특징으로 한다.As a modification of the present invention, the reaction step further includes at least one of a step of generating hydrogen by oxidation of metal, and a step of generating hydrogen using a photocatalyst.

이상과 같이 본 발명에 의하면, 배관 및 장비 부식의 원인되는 이산화탄소의 저감이 가능하고, 연료 가스의 발열량을 약 18% 이상 증대하며, 반응열을 회수하여 해양생산설비 내의 열원으로 사용 가능한 효과가 있다.As described above, according to the present invention, it is possible to reduce the amount of carbon dioxide which causes corrosion of piping and equipment, increase the amount of heat generated by the fuel gas by about 18% or more, and recover the heat of reaction to use as a heat source in a marine production facility.

도 1은 본 발명에 따른 시스템의 주요부를 개략적으로 나타내는 블록도
도 2는 본 발명에 따른 시스템의 시뮬레이션 결과를 나타내는 도표
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram schematically illustrating the main part of a system according to the present invention;
2 is a graph showing simulation results of the system according to the present invention

이하, 첨부된 도면에 의거하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 일면에 의하면, 해양생산설비의 가스처리장치(10)에서 생성되는 연료가스의 이산화탄소를 전환하는 시스템에 관하여 제안한다. 보편적으로 가스처리장치(10)는 생산되는 가스 중 탈수, 압축 등의 공정을 거쳐 연료가스 사용을 위한 생성가스를 배출한다. 도 1처럼 일부의 가스는 고압 상태로 이송되거나 재주입되고, 일부의 가스는 저압 상태의 연료가스로 취출된다.According to one aspect of the present invention, a system for converting carbon dioxide of a fuel gas generated in a gas processing apparatus 10 of an offshore production facility is proposed. Generally, the gas processing apparatus 10 discharges the generated gas for use of the fuel gas through a process such as dehydration, compression, etc. among the produced gases. As shown in FIG. 1, some of the gases are transported or re-injected into the high pressure state, and some of the gases are taken out into the low-pressure fuel gas.

한편, 가스처리장치(10)의 연료가스는 이산화탄소 외에 메탄, 에탄, 프로판 등을 포함한다.On the other hand, the fuel gas of the gas processing apparatus 10 includes methane, ethane, propane, etc. in addition to carbon dioxide.

본 발명에 따르면 수소공급기(20)가 상기 연료가스에 수소를 혼합하도록 설치되는 구조이다. 수소의 안정적 공급을 위해 수소공급기(20)는 봄베를 사용하는 방안이 유용하다. 해양생산설비의 공정 중에 발생되는 합성가스(일산화탄소와 수소 함유)로부터 수소를 생성하는 방법이 있으나 통상적으로 이산화탄소도 함께 생성되므로 극히 제한적으로 적용된다.According to the present invention, the hydrogen supplier 20 is installed to mix hydrogen with the fuel gas. It is useful to use a bomb in the hydrogen supplier 20 for stable supply of hydrogen. There is a method of generating hydrogen from syngas (including carbon monoxide and hydrogen) generated during the process of offshore production facilities, but it is extremely limited because carbon dioxide is also produced together.

또, 본 발명에 따르면 메탄전환 반응기(30)가 상기 연료가스와 수소에 의한 화학반응을 유발하여 메탄을 생성하도록 설치되는 구조이다. 가스처리장치(10)와 수소공급기(20)는 혼합기(25)로 연결되고 혼합기(25)의 하류측으로 메탄전환 반응기(30)가 연결된다. 혼합기(25)는 연료가스의 성분 변동에 따라 수소의 투입량을 조절하도록 구성된다.According to the present invention, the methane conversion reactor (30) is installed to generate methane by causing a chemical reaction with the fuel gas and hydrogen. The gas treatment unit 10 and the hydrogen supplier 20 are connected to the mixer 25 and the methane conversion reactor 30 is connected to the downstream side of the mixer 25. The mixer 25 is configured to regulate the input amount of hydrogen in accordance with the component variation of the fuel gas.

본 발명의 세부 구성으로서, 상기 메탄전환 반응기(30)는 Au, Bi, Cu, Al, Zn, Cr 중에서 선택되는 금속을 1종 이상 포함하는 촉매를 사용하는 것을 특징으로 한다. Au, Bi 등은 독성이 없고 환경에 미치는 영향도 매우 적어 메탄전환 반응기(30)의 이산화탄소 전환 공정에 선호된다. 특히, 비스무트(Bismuth)는 상업적 이용성이 매우 낮아 저렴한 가격으로 경제성을 확보하는 측면의 장점도 있다. 이외에 메탄화 반응을 위한 촉매로서 CuO-ZnO 등의 이원계 촉매, CuO-ZnO-Cr2O3 등의 삼원계 촉매를 사용할 수 있다. As a detailed configuration of the present invention, the methane conversion reactor 30 is characterized in that a catalyst containing at least one metal selected from Au, Bi, Cu, Al, Zn, and Cr is used. Au, and Bi are not toxic and have a very low environmental impact, which is favored in the conversion process of methane conversion reactor (30). In particular, Bismuth is very low in commercial availability and has an advantage of securing economical efficiency at low cost. In addition, a binary catalyst such as CuO-ZnO or a ternary catalyst such as CuO-ZnO-Cr 2 O 3 can be used as a catalyst for the methanation reaction.

본 발명의 변형예로서, 상기 촉매는 나노 구조의 원소를 지닌 성형품 형태로 형성되어 탑재되는 것을 특징으로 한다. 특히 화학반응을 일으키지 않는 Au는 5~50nm의 크기에서 반응성이 급증하여 촉매로 작용할 수 있다. Au 이외의 다른 금속들도 나노 구조를 적용하면 반응성을 높일 수 있다. 어느 경우에나 이산화탄소의 전환을 촉진하는 촉매는 분말 상으로 사용하는 것보다 성형품 형태로 사용하는 것이 신뢰성과 내구성 측면에서 유리하다.In a modification of the present invention, the catalyst is formed and mounted in the form of a molded article having an element of a nanostructure. In particular, Au, which does not cause a chemical reaction, can act as a catalyst due to a rapid increase in reactivity at a size of 5 to 50 nm. Other metals besides Au can also increase reactivity by applying nanostructures. In any case, it is advantageous in terms of reliability and durability that the catalyst for promoting the conversion of carbon dioxide is used in the form of a molded product rather than being used in powder form.

또, 본 발명에 따르면 열교환기(40)가 상기 화학반응에 의하여 생성되는 열을 열매체로 회수하도록 설치되는 구조이다. 메탄전환 반응기(30)의 하류측에 열교환기(40)를 두면 화학반응에 의해 생성된 고열을 회수하여 해양생산설비에 소요되는 열원으로 사용하여 효율을 높일 수 있다.Further, according to the present invention, the heat exchanger (40) is structured so as to recover heat generated by the chemical reaction as a heating medium. When the heat exchanger (40) is disposed on the downstream side of the methane conversion reactor (30), the high heat generated by the chemical reaction can be recovered and used as a heat source for the marine production facility to increase the efficiency.

본 발명의 세부 구성으로서, 상기 열교환기(40)는 해양생산설비에서 생산공정에 소요되는 냉각수를 투입하도록 연결되는 것을 특징으로 한다. 열매체로 사용되는 냉각수는 해양생산설비에 설치된 히터(도시 생략)에 공급되어 열원으로 작용한다. 물론 해양생산설비의 생산공정은 정제와 직간접적으로 연계되는 모든 공정을 포함하는 의미로 이해될 수 있다.In the detailed construction of the present invention, the heat exchanger (40) is connected to input the cooling water required for the production process in the offshore production facility. Cooling water used as a heating medium is supplied to a heater (not shown) installed in a marine production facility and functions as a heat source. Of course, the production process of offshore production facilities can be understood to include all processes connected directly or indirectly with the purification.

본 발명의 세부 구성으로서, 상기 열교환기(40)의 하류측에 연료가스의 발열량을 높이도록 기액분리기(50)를 설치하는 것을 특징으로 한다. 열교환기(40)를 거치면서 냉각된 가스는 메탄화 반응에 의해 생성된 물을 포함한다. 이에 기액분리기(50)를 거쳐 수분이 제거된 가스를 해양생산설비 내의 주전원 발생을 위한 가스터빈 또는 가스 발전기에 공급할 수 있다.As a detailed configuration of the present invention, a gas-liquid separator (50) is provided downstream of the heat exchanger (40) so as to increase the heating value of the fuel gas. The gas cooled through the heat exchanger 40 contains water produced by the methanation reaction. Liquid separator 50 to the gas turbine or the gas generator for generating main power in the marine production facility.

본 발명의 다른 일면에 의하면, 해양생산설비의 가스처리장치(10)에서 생성되는 이산화탄소를 전환하는 방법에 관하여 제안한다.According to another aspect of the present invention, a method for converting carbon dioxide produced in the gas processing apparatus 10 of a marine production facility is proposed.

본 발명에 따르면 상기 연료가스에 수소를 혼합하여 [반응식 1]을 유발하는 반응단계를 거친다. 반응단계는 해양생산설비에서 생산되는 가스 중 연료가스로 사용되는 가스에 포함된 이산화탄소를 수소와의 화학반응을 통해 메탄가스로 전환하는 과정이다. According to the present invention, the fuel gas is subjected to a reaction step of mixing hydrogen with [Reaction 1]. The reaction step is the conversion of carbon dioxide contained in the gas used as the fuel gas in the gas produced in offshore production facilities to methane gas through a chemical reaction with hydrogen.

[반응식 1] CO2 + 4H2 -> CH4 + 2H2O[Reaction 1] CO 2 + 4H 2 -> CH 4 + 2H 2 O

또, 본 발명에 따르면 상기 반응과정에서 발생하는 열을 열매체로 회수하는 회수단계를 거친다. 회수단계의 반응열은 해양생산설비 내의 열원으로 사용되며, 도 2의 시뮬레이션에 의하면 약 26MW의 열 회수가 가능한 것으로 나타난다. 이는 연료가스의 입구온도 740℃ 및 출구온도 60℃, 열매체의 입구온도 25℃ 및 출구온도 73℃를 기준으로 산출된다.According to the present invention, the heat generated during the reaction is recovered as a heating medium. The heat of reaction in the recovery stage is used as a heat source in the offshore production facility, and the simulation of FIG. 2 shows that about 26 MW of heat recovery is possible. This is calculated based on the inlet temperature of the fuel gas of 740 캜 and the outlet temperature of 60 캜, the inlet temperature of the heating medium of 25 캜 and the outlet temperature of 73 캜.

도 2에서, 반응전의 연료가스가 메탄 50%, 에탄 5%, 프로판 5%, 이산화탄소 40%로 설정되는 경우, 반응후의 연료가스는 메탄 86.48%, 에탄 4.97%, 프로판 4.97%, 이산화탄소 5%, 물 0.58%로 생성된다. 연료가스의 이산화탄소가 대폭적으로 감소되는 동시에 발열량((LHV, kJ/kg)은 38,703에서 45,666로 약 18% 증가되는 것으로 나타난다.2, when the fuel gas before the reaction was set to 50% methane, 5% ethane, 5% propane, and 40% carbon dioxide, the fuel gas after the reaction contained 86.48% methane, 4.97% ethane, 4.97% propane, And 0.58% of water. The amount of carbon dioxide in the fuel gas is greatly reduced, and the calorific value (LHV, kJ / kg) is increased by about 18% from 38,703 to 45,666.

본 발명의 변형예로서, 상기 반응단계는 금속의 산화에 의하여 수소를 발생하는 공정, 광촉매를 이용하여 수소를 발생하는 공정 중 적어도 하나를 더 포함하는 특징으로 한다. 전자는 수소보다 이온화 경향이 높은 금속(철, 니켈 등)을 염기수 등에 침지하여 산화반응으로 수소를 생성한다. 후자는 태양-수소 에너지 전환율을 높이도록 TiO2 나노입자의 광촉매를 이용한 물분해로 수소를 생성한다. 이외에 해양생산설비의 합성가스로부터 수성가스화촉매와 이산화탄소흡착제 기반의 회수증진수성가스화(SEWGS, Sorption Enhanced Water Gas Shift) 반응으로 생성되는 수소를 사용할 수도 있다. 어느 방식을 적용하거나 전술한 수소공급기(20)의 보조적 수단으로 설치하여 수소의 안정적인 공급 상태를 유지한다.As a modification of the present invention, the reaction step further includes at least one of a step of generating hydrogen by oxidation of metal, and a step of generating hydrogen using a photocatalyst. The electrons immerse metals (iron, nickel, etc.), which tend to ionize more than hydrogen, into base water or the like to generate hydrogen by an oxidation reaction. The latter produces hydrogen by decomposition of water using photocatalyst of TiO 2 nanoparticles to increase the solar-to-hydrogen energy conversion. In addition, hydrogas produced from syngas of offshore production facilities and hydrogen produced by sorption enhanced water gas shift (SEWGS) based on carbon dioxide sorbent may be used. Either method may be applied or it may be installed as an auxiliary means of the hydrogen supplier 20 described above to maintain a stable supply of hydrogen.

이와 같이 본 발명에 의하면 해양생산설비의 연료가스 사용을 위한 생성가스 중 이산화탄소를 화학반응을 통해 메탄가스로 전환하여 연료의 발열량 증대와 함께 이산화탄소에 의해 발생할 수 있는 부식에 대한 원인을 감소시킨다. 이에 더불어 이러한 화학반응은 발열반응으로 높은 반응열을 생성하므로 해양생산설비 내의 열원으로 리사이클링이 가능하다.As described above, according to the present invention, the carbon dioxide in the generated gas for use in the marine production facility is converted into methane gas through the chemical reaction, thereby increasing the heating value of the fuel and reducing the cause of the corrosion caused by the carbon dioxide. In addition, these chemical reactions generate high heat of reaction due to exothermic reactions, which makes recycling possible as a heat source in marine production facilities.

본 발명은 기재된 실시예에 한정되는 것은 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention as defined by the appended claims. It is therefore intended that such variations and modifications fall within the scope of the appended claims.

10: 가스처리장치 20: 수소공급기
25: 혼합기 30: 메탄전환 반응기
40: 열교환기 50: 기액분리기
10: gas treatment device 20: hydrogen supplier
25: Mixer 30: methane conversion reactor
40: heat exchanger 50: gas-liquid separator

Claims (7)

해양생산설비의 가스처리장치(10)에서 탈수와 압축을 거쳐 생성되는 연료가스의 이산화탄소를 전환하는 시스템에 있어서:
상기 연료가스에 수소를 혼합하도록 설치되는 수소공급기(20);
상기 연료가스와 수소에 의한 화학반응을 유발하여 메탄을 생성하도록 설치되는 메탄전환 반응기(30); 및
상기 화학반응에 의하여 생성되는 열을 열매체로 회수하도록 설치되는 열교환기(40);를 포함하여 이루어지되,
상기 가스처리장치(10)와 수소공급기(20)를 연결하는 혼합기(25)는 연료가스의 성분 변동에 따라 수소의 투입량을 조절하도록 설치되고,
상기 메탄전환 반응기(30)는 Au, Bi, Cu, Al, Zn, Cr 중에서 선택되는 금속을 1종 이상 포함하는 촉매를 사용하고,
상기 촉매는 나노 구조의 원소를 지닌 성형품 형태로 형성되어 탑재되며,
상기 열교환기(40)의 하류측에 연료가스의 발열량을 높이도록 기액분리기(50)를 설치하고,
상기 열교환기(40)는 해양생산설비에서 생산공정에 소요되는 냉각수를 투입하도록 연결되는 것을 특징으로 하는 해양생산설비의 이산화탄소 전환 시스템.
A system for converting carbon dioxide in a fuel gas produced by dehydration and compression in a gas processing apparatus (10) of a marine production facility, the system comprising:
A hydrogen supplier (20) installed to mix hydrogen in the fuel gas;
A methane conversion reactor (30) installed to generate methane by causing a chemical reaction by the fuel gas and hydrogen; And
And a heat exchanger (40) installed to recover the heat generated by the chemical reaction as a heating medium,
A mixer (25) for connecting the gas processing apparatus (10) and the hydrogen supplier (20) is provided to regulate the amount of hydrogen input according to the variation of the component of the fuel gas,
The methane conversion reactor 30 uses a catalyst containing at least one metal selected from Au, Bi, Cu, Al, Zn, and Cr,
The catalyst is formed and mounted in the form of a molded article having an element of a nanostructure,
A gas-liquid separator (50) is installed on the downstream side of the heat exchanger (40) so as to increase the heat generation amount of the fuel gas,
Wherein the heat exchanger (40) is connected to input the cooling water required for the production process in the offshore production facility.
삭제delete 삭제delete 삭제delete 삭제delete 청구항 1의 시스템을 기반으로 해양생산설비의 가스처리장치(10)에서 생성되는 이산화탄소를 전환하는 방법에 있어서:
상기 연료가스에 수소를 혼합하여 [반응식 1]을 유발하는 반응단계; 및
[반응식 1] CO2 + 4H2 -> CH4 + 2H2O
상기 반응단계에서 발생하는 열을 열매체로 회수하는 회수단계;를 포함하여 이루어지되,
상기 반응단계는 금속의 산화에 의하여 수소를 발생하는 공정, 광촉매를 이용하여 수소를 발생하는 공정 중 적어도 하나를 더 포함하는 특징으로 하는 해양생산설비의 이산화탄소 전환 방법.
A method for converting carbon dioxide produced in a gas processing apparatus (10) of a marine production facility, based on the system of claim 1, comprising:
A reaction step in which hydrogen is mixed with the fuel gas to generate Reaction Scheme 1; And
[Reaction 1] CO 2 + 4H 2 -> CH 4 + 2H 2 O
And a recovery step of recovering heat generated in the reaction step as a heating medium,
Wherein the reaction step further comprises at least one of a step of generating hydrogen by oxidation of metal, and a step of generating hydrogen using a photocatalyst.
삭제delete
KR1020160042781A 2016-04-07 2016-04-07 System and Method for Carbon Dioxide Conversion for Offshore Production Facilties KR101766257B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160042781A KR101766257B1 (en) 2016-04-07 2016-04-07 System and Method for Carbon Dioxide Conversion for Offshore Production Facilties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160042781A KR101766257B1 (en) 2016-04-07 2016-04-07 System and Method for Carbon Dioxide Conversion for Offshore Production Facilties

Publications (1)

Publication Number Publication Date
KR101766257B1 true KR101766257B1 (en) 2017-08-09

Family

ID=59652600

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160042781A KR101766257B1 (en) 2016-04-07 2016-04-07 System and Method for Carbon Dioxide Conversion for Offshore Production Facilties

Country Status (1)

Country Link
KR (1) KR101766257B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102132123B1 (en) * 2019-04-18 2020-07-09 한국조선해양 주식회사 treatment system for gas and vessel having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3787364B2 (en) 1996-12-20 2006-06-21 クヴェルナー・プロセス・テクノロジー・リミテッド Methanol production method and plant
JP2008503609A (en) 2004-06-18 2008-02-07 エクソンモービル アップストリーム リサーチ カンパニー A liquefied natural gas plant with appreciable capacity
KR101566572B1 (en) * 2008-07-11 2015-11-05 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Apparatus and process for treating offshore natural gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3787364B2 (en) 1996-12-20 2006-06-21 クヴェルナー・プロセス・テクノロジー・リミテッド Methanol production method and plant
JP2008503609A (en) 2004-06-18 2008-02-07 エクソンモービル アップストリーム リサーチ カンパニー A liquefied natural gas plant with appreciable capacity
KR101566572B1 (en) * 2008-07-11 2015-11-05 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Apparatus and process for treating offshore natural gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102132123B1 (en) * 2019-04-18 2020-07-09 한국조선해양 주식회사 treatment system for gas and vessel having the same

Similar Documents

Publication Publication Date Title
Ausfelder et al. Hydrogen in the chemical industry
US7337612B2 (en) Method for the utilization of energy from cyclic thermochemical processes to produce mechanical energy and plant for this purpose
Shi et al. Process design and simulation study: CO2 utilization through mixed reforming of methane for methanol synthesis
US20160251228A1 (en) Ammonia synthesis for fertilizer production
GB2039518A (en) A process and a plant for preparing a gas rich in methane
Southall et al. Hydrogen Storage and Transportation Technologies to Enable the Hydrogen Economy: Liquid Organic Hydrogen Carriers: Overview and perspectives on liquid organic hydrogen carriers technology
KR101766257B1 (en) System and Method for Carbon Dioxide Conversion for Offshore Production Facilties
White et al. Thermodynamic modelling and energy balance of direct methanation of glycerol for Bio-SNG production
Moniri et al. Exergy analysis of hydrogen production from different sulfur-containing compounds based on H2S splitting cycle
Ali et al. How sustainable and profitable are large-scale hydrogen production plants from CH4 and H2S?
JP2015189721A (en) Method of producing natural gas treated product and natural gas treatment plant
US7665328B2 (en) Method of producing hydrogen, and rendering a contaminated biomass inert
RU2515477C2 (en) Method of obtaining hydrogen
EP4148109A1 (en) Energy and hydrogen logistics
US20070161716A1 (en) Joint process for preparing alcohol/ether mixtures alcohol/hydrocarbon mixtures, and synthesisng ammonia
JP4594751B2 (en) Apparatus and method for producing hydrogen generating substance
Galusnyak et al. Assessment of CO2 Utilization Technologies Into Valuable C1 Organic Chemicals: a Modelling and Simulation Analysis
JP2008207969A (en) Apparatus, system and method for producing hydrogen
CN105347302B (en) A kind of method of natural gas conversion production synthesis gas
US11187113B2 (en) Method and apparatus for electrical power generation from natural gas with zero carbon emmision
JP2005330170A (en) Hydrogen production system and hydrogen production method
CA2662053A1 (en) Method for the transformation of energy with energy carrier regeneration in a cyclic process
US11795121B2 (en) Hydrocarbon generation system and hydrocarbon generation method
JP2018165322A (en) Transportation method and transportation system
US11897828B1 (en) Thermochemical reactions using geothermal energy

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant