KR101759445B1 - Cathode active materials with dopant for reducing remaining lithium and lithiumsecondary battery using the same, and preparation method thereof - Google Patents

Cathode active materials with dopant for reducing remaining lithium and lithiumsecondary battery using the same, and preparation method thereof Download PDF

Info

Publication number
KR101759445B1
KR101759445B1 KR1020160112621A KR20160112621A KR101759445B1 KR 101759445 B1 KR101759445 B1 KR 101759445B1 KR 1020160112621 A KR1020160112621 A KR 1020160112621A KR 20160112621 A KR20160112621 A KR 20160112621A KR 101759445 B1 KR101759445 B1 KR 101759445B1
Authority
KR
South Korea
Prior art keywords
active material
cathode active
sugar
present
pctfe
Prior art date
Application number
KR1020160112621A
Other languages
Korean (ko)
Inventor
이선진
신지웅
손종태
신미라
Original Assignee
한국교통대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국교통대학교산학협력단 filed Critical 한국교통대학교산학협력단
Priority to KR1020160112621A priority Critical patent/KR101759445B1/en
Application granted granted Critical
Publication of KR101759445B1 publication Critical patent/KR101759445B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/54

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 F를 포함한 고분자물질(PCTFE)를 첨가하거나, 설탕을 코팅하여, 잔류리튬이온을 감소시킨 양극활물질 및 그 제조방법에 관한 것이다. 보다 상세하게는 양극활물질을 제조하는 제1단계; 상기 양극활물질에 고분자물질을 혼합하여 혼합물을 제조하는 제2단계; 및 상기 혼합물을 가열하여 PCTFE가 첨가된 양극활물질을 제조하는 제3단계를 포함하는 것을 특징으로 하는 PCTFE를 첨가한 양극활물질의 제조방법, 그리고 양극활물질을 제조하는 제1단계; 상기 양극활물질 대비 특정 중량 %를 갖는 설탕을 준비하는 제2단계; 상기 설탕을 용매에 용해하여 설탕용액을 제조하는 제3단계; 상기 설탕용액에 상기 양극활물질을 혼합하여 혼합물을 제조하는 제4단계; 및 상기 혼합물을 건조한 후. 가열하여 설탕이 코팅된 양극활물질을 제조하는 제5단계;를 포함하는 것을 특징으로 하는 설탕을 코팅한 양극활물질의 제조방법에 관한 것이다. The present invention relates to a positive electrode active material in which a polymer material (F) containing F is added or coated with sugar to reduce residual lithium ions and a method for producing the same. More particularly, the present invention relates to a cathode active material, A second step of preparing a mixture by mixing a polymer material with the cathode active material; And a third step of heating the mixture to produce a cathode active material to which PCTFE is added. The method of manufacturing a cathode active material to which PCTFE is added, and a first step of preparing a cathode active material; A second step of preparing sugar having a specific weight percentage relative to the cathode active material; A third step of dissolving the sugar in a solvent to prepare a sugar solution; A fourth step of mixing the sugar solution and the cathode active material to prepare a mixture; And after drying the mixture. And a fifth step of heating the mixture to prepare a cathode active material coated with sugar. The present invention also relates to a method for producing a sugar-coated cathode active material.

Description

잔류리튬 감소를 위해 도펀트를 첨가한 양극활물질, 그 양극활물질의 제조방법 및 리튬이차전지{Cathode active materials with dopant for reducing remaining lithium and lithiumsecondary battery using the same, and preparation method thereof}[0001] The present invention relates to a positive electrode active material to which a dopant is added for reducing residual lithium, a method for producing the positive electrode active material, and a lithium secondary battery using the lithium secondary battery,

본 발명은 도펀트를 첨가한 양극활물질, 그 양극활물질의 제조방법 및 리튬이차전지에 대한 것이다. 보다 상세하게는, F를 포함한 고분자물질(PCTFE)를 첨가하거나, 설탕을 코팅하여, 잔류리튬을 감소시킨 양극활물질 및 그 제조방법에 관한 것이다. The present invention relates to a cathode active material doped with a dopant, a method for producing the cathode active material, and a lithium secondary battery. More specifically, the present invention relates to a positive electrode active material in which a high molecular weight material (F) is added or coated with sugar to reduce residual lithium and a method for producing the same.

최근 전자기기의 소형화는 휴대전화, 노트북(PC) ,휴대용개인 정보 단말기(PDA)등으로 점점 다양해지고 있으며, 이에 따른 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다.Recently, miniaturization of electronic devices has been diversified into mobile phones, notebook computers (PCs), and portable personal digital assistants (PDAs), and the interest in energy storage technology has been increasing.

또한 하이브리드자동차(HEV), 전기 자동차(EV) 등에 사용되는 전지의 경우 고용량,고출력뿐만 아니라 안정성 또한 큰 과제로 남아있다. 적용분야가 확대되면서 저장기술에 대한 연구와 개발이 활발히 이루어지고 있다. 이러한 측면에서 충전,방전이 가능한 이차전지의 개발에 대한 관심이 고조되고 있다.In addition, in the case of batteries used in hybrid vehicles (HEV) and electric vehicles (EV), not only high capacity and high output, but also stability are a big problem. As application fields expand, research and development on storage technologies are being actively carried out. In this respect, there is a growing interest in the development of secondary batteries capable of charging and discharging.

이차전지는 양극, 음극 및 전해액 등으로 구성되어 있는데, 그 중 양극의 비율이 가장 높고 중요하다. 양극재료는 양극활물질로서 일반적으로 충,방전시 높은 에너지밀도를 가지는 동시에, 가역리튬이온의 층간 삽입, 탈리에 의해 구조가 파괴되지 않아야 한다. 또한, 전기전도도가 높아야 하며, 전해질로 사용되는 유기용매에 대한 화학적 안정성이 높아야 한다. 그리고 제조비용이 낮고,환경오염 문제가 최소가 되는 물질이어야 한다.The secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte, and the ratio of the positive electrode is the most important. The cathode material is a cathode active material and generally has a high energy density during charging and discharging, and the structure should not be destroyed by intercalation or desorption of reversible lithium ions. In addition, the electrical conductivity should be high, and the chemical stability of the organic solvent used as the electrolyte should be high. It should be a material that has low manufacturing cost and minimizes environmental pollution problems.

이러한 리튬이온 이차전지의 양극활물질로서는 리튬이온의 삽입, 탈리가 가능한 층상화합물인 니켈산리튬(LiNiO2), 코발트산리튬(LiCoO2), 망간산리튬(LiMnO2)등이 있다. 이중 니켈산리튬(LiNiO2)은 전기용량이 높으나 충, 방전시 사이클특성, 안정성 등에 문제가 있어서 실용화되지 못하고 있는 실정이다. 또한, 코발트산리튬(LiCoO2)은 용량이 클 뿐만 아니라 사이클 수명과 용량률(rate capability) 특성이 우수하고 합성이 쉽다는 장점을 가지고 있지만, 코발트의 높은 가격과 인체에 유해하며 고온에서 열적 불안정성 등의 단점을 가지고 있다.Examples of the positive electrode active material of such a lithium ion secondary battery include lithium nickel oxide (LiNiO 2 ), lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMnO 2 ), and the like, which are layered compounds capable of intercalating and deintercalating lithium ions. Lithium nickel oxide (LiNiO 2 ) has a high electric capacity, but it has not been put to practical use due to problems such as cycle characteristics and stability during charging and discharging. In addition, lithium cobalt oxide (LiCoO 2 ) is advantageous in terms of cycle life and rate capability as well as capacity, and is easy to synthesize. However, since cobalt is expensive and harmful to human body, thermal instability And the like.

또한, 양극활물질은 전구체에 수산화리튬을 혼합하여 열처리하여 제조되게 되는데, 이러한 열처리 과정 후, 양극활물질 제조 반응에 참여하지 못한 잔류 LiOH, Li2CO3가 존재하게 된다.In addition, the cathode active material is prepared by mixing lithium hydroxide and a precursor with heat treatment. After the heat treatment, residual LiOH and Li 2 CO 3 that are not involved in the cathode active material reaction exist.

이러한 잔류 LiOH는 슬러리를 제조하는 과정에서 슬러리의 pH를 증가시켜 슬러리의 고화현상이 일어나 극판 제조시 문제점을 발생시키게 된다. 또한, 잔류 Li2CO3는 cell의 스웰링 현상을 증가시켜 사이클을 감소시킬 뿐만 아니라 배터리가 부푸는 원인이 된다.Such residual LiOH increases the pH of the slurry in the process of producing the slurry, causing the solidification of the slurry to cause problems in the production of the electrode plate. In addition, residual Li 2 CO 3 increases cell swelling and not only reduces the cycle, but also causes the battery to swell.

따라서, 이러한 잔류 리튬이온의 농도를 감소시키기 위한 방법이 요구되었다.Therefore, a method for reducing the concentration of such residual lithium ions has been required.

대한민국 공개 특허 제2014-0001720호Korea Patent Publication No. 2014-0001720 대한민국 공개 특허 제2013-0030479호Korean Patent Publication No. 2013-0030479

따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 일실시예에 따르면, Dopant 물질로서 첨가된 F를 포함한 고분자물질(PCTFE) 또는 설탕을 코팅한 양극활물질은 잔류리튬이온의 농도를 감소시키게 되며, 또한, F를 포함한 고분자물질(PCTFE) 또는 설탕의 첨가로부터 표면응집 현상이 제어되고 표면 거칠기 또한 감소시킴으로써 표면적을 증가시키게 되고, 전하이동저항이 감소하고 리튬확산이 증가함으로써 리튬의 삽입 /탈리에 용이하게 작용하게 되어, 충전, 방전용량을 증가시킬 수 있는 F를 포함한 고분자물질(PCTFE) 또는 설탕을 첨가한 양극활물질 및 그 제조방법을 제공하는데 목적이 있다. SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned problems occurring in the prior art. Accordingly, it is an object of the present invention to provide a positive electrode active material coated with a polymer material (PCTFE) (PCTFE) or the addition of sugar, the surface cohesion is controlled and the surface roughness is also decreased, thereby increasing the surface area, decreasing the charge transfer resistance and increasing the lithium diffusion (PCTFE) or a positive electrode active material to which sugar is added, and a method of manufacturing the same.

한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are not intended to limit the invention to the precise form disclosed. It can be understood.

본 발명의 제1목적은, 양극활물질을 제조하는 제1단계; 상기 양극활물질에 고분자물질을 혼합하여 혼합물을 제조하는 제2단계; 및 상기 혼합물을 가열하여 도펀트가 첨가된 양극활물질을 제조하는 제3단계를 포함하는 것을 특징으로 하는 도펀트를 첨가한 양극활물질의 제조방법으로서 달성될 수 있다. A first object of the present invention is to provide a method for manufacturing a positive electrode active material, A second step of preparing a mixture by mixing a polymer material with the cathode active material; And a third step of heating the mixture to produce a cathode active material doped with a dopant. The cathode active material may be doped with a dopant.

또한, 고분자물질은 F를 포함한 고분자물질이고, 필렛 형태인 것을 특징으로 할 수 있다. Further, the polymer material is a polymer material including F, and may be characterized by being in the form of a fillet.

그리고, 상기 제3단계에서, 상기 혼합물을 3 ~ 8℃/min의 승온속도로 300 ~ 500℃까지 가열한 후, 8 ~ 10시간 동안 유지하는 것을 특징으로 할 수 있다. In the third step, the mixture is heated to 300 to 500 ° C at a heating rate of 3 to 8 ° C / min, and then maintained for 8 to 10 hours.

또한, 상기 F를 포함한 고분자물질은 0.09 ~ 1.5 wt%로 혼합되는 것을 특징으로 할 수 있다. The F-containing polymer material may be mixed in an amount of 0.09 to 1.5 wt%.

본 발명의 제2목적은, 양극활물질을 제조하는 제1단계; 상기 양극활물질 대비 특정 중량 %를 갖는 설탕을 준비하는 제2단계; 상기 설탕을 용매에 용해하여 설탕용액을 제조하는 제3단계; 상기 설탕용액에 상기 양극활물질을 혼합하여 혼합물을 제조하는 제4단계; 및 상기 혼합물을 건조한 후. 가열하여 도펀트가 첨가된 양극활물질을 제조하는 제5단계;를 포함하는 것을 특징으로 하는 도펀트를 첨가한 양극활물질의 제조방법로서 달성될 수 있다. A second object of the present invention is to provide a method for manufacturing a positive electrode active material, A second step of preparing sugar having a specific weight percentage relative to the cathode active material; A third step of dissolving the sugar in a solvent to prepare a sugar solution; A fourth step of mixing the sugar solution and the cathode active material to prepare a mixture; And after drying the mixture. And a fifth step of preparing a cathode active material doped with a dopant by heating the cathode active material.

또한, 상기 제2단계에서, 상기 설탕의 비율은 상기 양극활물질 대비 0.9 ~ 6.0 wt%인 것을 특징으로 할 수 있다. In addition, in the second step, the ratio of the sugar may be 0.9 to 6.0 wt% of the cathode active material.

그리고, 상기 제3단계에서, 상기 용매는 N-메틸피롤리돈인 것을 특징으로 할 수 있다. In the third step, the solvent may be N-methyl pyrrolidone.

또한, 상기 제4단계에서, 50 ~ 70℃ 하에서 5 ~ 7시간 동안 300 ~ 500 RPM으로 교반하는 것을 특징으로 할 수 있다. Further, in the fourth step, stirring may be performed at 50 to 70 DEG C for 5 to 7 hours at 300 to 500 RPM.

그리고, 상기 제5단계에서, 상기 혼합물을 필터링한 후, 100 ~ 120℃의 진공오븐에서 20 ~ 28시간동안 건조하는 것을 특징으로 할 수 있다. In the fifth step, the mixture is filtered and then dried in a vacuum oven at 100 to 120 ° C for 20 to 28 hours.

또한, 상기 건조 후, 3 ~ 8℃/min의 승온속도로 500 ~ 700℃까지 가열한 후, 4 ~ 6시간 동안 유지하는 것을 특징으로 할 수 있다. After drying, the substrate is heated to 500 to 700 ° C at a temperature raising rate of 3 to 8 ° C / min, and then maintained for 4 to 6 hours.

본 발명의 일실시예에 따르면, Dopant 물질로서 첨가된 F를 포함한 고분자물질(PCTFE) 또는 설탕을 코팅한 양극활물질은 잔류리튬이온의 농도를 감소시키게 되며, 또한, F를 포함한 고분자물질(PCTFE) 또는 설탕의 첨가로부터 표면응집 현상이 제어되고 표면 거칠기 또한 감소시킴으로써 표면적을 증가시키게 되고, 전하이동저항이 감소하고 리튬확산이 증가함으로써 리튬의 삽입 /탈리에 용 이하게 작용하게 되어, 충전, 방전용량을 증가시킬 수 있는 효과를 갖는다.According to one embodiment of the present invention, a polymer material (F) -containing F material added as a dopant material (PCTFE) or a sugar-coated positive electrode material reduces the concentration of residual lithium ions, Or the surface agglomeration phenomenon is controlled from the addition of sugar and the surface roughness is also decreased to increase the surface area, the charge transfer resistance is decreased, and the lithium diffusion is increased, so that the charge / Can be increased.

한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.It should be understood, however, that the effects obtained by the present invention are not limited to the above-mentioned effects, and other effects not mentioned may be clearly understood by those skilled in the art to which the present invention belongs It will be possible.

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.
도 1은 본 발명의 일실시예에 따른 PCTFE를 첨가한 양극활물질 제조방법의 흐름도,
도 2는 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 잔류 Li2CO3, LiOH 대비표,
도 3은 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 주사전자현미경으로 관찰한 입자형상 사진,
도 4는 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 저항분석 그래프,
도 5는 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 전하이동저항분석 대비표,
도 6은 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 초기 충/방전 특성 그래프,
도 7은 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 초기 충/방전 용량, 쿨롱효율 대비표,
도 8은 본 발명의 일실시예에 따른 설탕을 코팅한 양극활물질 제조방법의 흐름도,
도 9는 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 잔류 Li2CO3, LiOH 대비표,
도 10은 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 주사전자현미경으로 관찰한 입자형상 사진,
도 11은 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 저항분석 그래프,
도 12는 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 전하이동저항분석 대비표,
도 13은 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 초기 충/방전 특성 그래프,
도 14는 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 초기 충/방전 용량, 쿨롱효율 대비표를 도시한 것이다.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and, together with the description, serve to further the understanding of the technical idea of the invention, It should not be construed as limited.
1 is a flow chart of a method for producing a cathode active material to which PCTFE is added according to an embodiment of the present invention,
2 is a graph showing the relationship between the residual Li 2 CO 3 and LiOH of the positive electrode active material to which PCTFE is added according to Examples 1 and 2 of the present invention and the positive electrode active material according to Comparative Example,
FIG. 3 is a photograph of a particle shape observed by a scanning electron microscope of a cathode active material to which PCTFE is added according to Examples 1 and 2 of the present invention and a cathode active material according to a comparative example,
FIG. 4 is a graph showing resistance analysis of a cathode active material to which PCTFE is added according to Examples 1 and 2 of the present invention and a cathode active material according to a comparative example,
5 is a table showing charge transfer resistance analysis results of the positive electrode active material to which PCTFE is added according to Examples 1 and 2 of the present invention and the positive electrode active material according to Comparative Example,
6 is a graph showing the initial charge / discharge characteristics of the positive electrode active material to which PCTFE is added and the positive electrode active material according to the comparative example according to the first and second embodiments of the present invention,
7 is a graph showing the relationship between the initial charge / discharge capacity of the positive electrode active material to which PCTFE is added and the positive electrode active material according to the comparative example according to Examples 1 and 2 of the present invention,
FIG. 8 is a flow chart of a method for manufacturing a sugar-coated cathode active material according to an embodiment of the present invention;
FIG. 9 is a graph comparing the residual Li 2 CO 3 and LiOH values of the positive electrode active material coated with sugar according to Examples 1, 2, and 3 of the present invention and the positive electrode active material according to Comparative Example,
FIG. 10 is a graph showing particle photographs observed with a scanning electron microscope of a sugar-coated cathode active material according to Examples 1, 2, and 3 of the present invention and a cathode active material according to a comparative example;
11 is a graph showing resistance analysis of a sugar-coated positive electrode active material according to Examples 1, 2, and 3 of the present invention and a positive electrode active material according to a comparative example,
12 is a table showing the charge transfer resistance analysis of the positive electrode active material coated with the sugar according to Examples 1, 2, and 3 of the present invention and the positive active material according to the comparative example,
13 is a graph showing the initial charging / discharging characteristics of the cathode active material coated with sugar according to Examples 1, 2, and 3 of the present invention and the cathode active material according to the comparative example,
FIG. 14 is a table showing the initial charge / discharge capacity and coulon efficiency of the positive electrode active material coated with the sugar according to Examples 1, 2, and 3 of the present invention and the positive electrode active material according to the comparative example.

이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more readily apparent from the following description of preferred embodiments with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Rather, the embodiments disclosed herein are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. In this specification, when an element is referred to as being on another element, it may be directly formed on another element, or a third element may be interposed therebetween.

본 명세서의 다양한 실시예들에서 제1, 제2 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다.Although the terms first, second, etc. have been used in various embodiments of the present disclosure to describe various components, these components should not be limited by these terms. These terms have only been used to distinguish one component from another. The embodiments described and exemplified herein also include their complementary embodiments.

본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of illustrating embodiments and is not intended to be limiting of the present invention. In the present specification, the singular form includes plural forms unless otherwise specified in the specification. The terms "comprises" and / or "comprising" used in the specification do not exclude the presence or addition of one or more other elements.

아래의 특정 실시예들을 기술하는데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는데 있어 별 이유 없이 혼돈이 오는 것을 막기 위해 기술하지 않음을 미리 언급해 둔다.In describing the specific embodiments below, various specific details have been set forth in order to explain the invention in greater detail and to assist in understanding it. However, it will be appreciated by those skilled in the art that the present invention may be understood by those skilled in the art without departing from such specific details. In some instances, it should be noted that portions of the invention that are not commonly known in the description of the invention and are not significantly related to the invention do not describe confusing reasons to explain the present invention.

<F를 포함하는 고분자물질(PCTFE)를 첨가한 양극활물질의 구성 및 제조방법>&Lt; Configuration and Manufacturing Method of Cathode Active Material to which Polymer Material Containing F (PCTFE) is Added >

이하에서는 본 발명의 일실시예에 따른 F를 포함하는 고분자물질(PCTFE)를 첨가한 양극활물질의 구성 및 제조방법에 대해 설명하도록 한다. 먼저, 도 1은 본 발명의 일실시예에 따른 PCTFE를 첨가한 양극활물질 제조방법의 흐름도를 도시한 것이다. Hereinafter, a configuration and a manufacturing method of a cathode active material to which a polymer material (PCTFE) containing F is added according to an embodiment of the present invention will be described. 1 is a flowchart illustrating a method of manufacturing a cathode active material to which PCTFE is added according to an embodiment of the present invention.

먼저, F를 포함하는 고분자물질(PCTFE)를 첨가할 양극활물질을 제조하게 된다(S1). 이러한 본 발명에 적용되는 양극활물질은 제한되지 않는다. 구체적 실시예로서는 니켈(Ni), 코발트(Co), 망간(Mn)에 증류수를 용매로 하여 금속수용액을 제조하고, 이러한 금속수용액에 대하여 탄산나트륨을 침전제로, 암모니아수를 킬레이트제로하여 전구체를 침전시키게 된다. 그리고 침전된 전구체를 여과 및 세척한 후 건조한 후, 전구체에 수산화 리튬을 혼합하여 승온가열 후 자연냉각하여 양극활물질을 제조할 수 있다. 이는 구체적 실시예를 제시한 것일 뿐, F를 포함하는 고분자물질(PCTFE)를 첨가할 양극활물질의 조성, 제조방법은 이것에 제한해석되는 것은 아니다. First, a cathode active material to which a high molecular substance (PCTFE) containing F is to be added is prepared (S1). The cathode active material to which the present invention is applied is not limited. As a specific example, a metal aqueous solution is prepared from nickel (Ni), cobalt (Co) and manganese (Mn) using distilled water as a solvent, and sodium carbonate is used as a precipitant and ammonia water is used as a chelating agent to precipitate the precursor. Then, the precipitated precursor is filtered and washed, dried, mixed with lithium hydroxide in the precursor, heated at an elevated temperature, and then naturally cooled to produce a cathode active material. This is only a concrete example, and the composition and manufacturing method of the cathode active material to which the F-containing polymer material (PCTFE) is to be added is not limited to this.

그리고, 제조된 양극활물질에 고분자물질을 혼합하여 혼합물을 제조하게 된다(S2). 이러한 고분자물질은 필렛 형태를 가지며, F를 포함한 고분자물질(PCTFE)에 해당한다. Then, the prepared cathode active material is mixed with a polymer material to prepare a mixture (S2). Such a polymer material has a fillet shape and corresponds to a polymer material (FT-containing polymer).

또한, 이러한 F를 포함한 고분자물질은 양극활물질의 중량대비 0.09 ~ 1.5 wt%로 혼합되게 된다. In addition, the polymer material including F is mixed with 0.09 to 1.5 wt% of the weight of the cathode active material.

그리고, 이러한 혼합물을 가열하여 F를 포함한 고분자물질(PCTFE)가 첨가된 양극활물질을 제조하게 된다. 보다 구체적으로 파우더 형태의 혼합물을 3 ~ 8℃/min의 승온속도로 300 ~ 500℃까지 가열한 후, 8 ~ 10시간 동안 유지하게 된다. Then, the mixture is heated to produce a cathode active material to which a high molecular substance (PCTFE) containing F is added. More specifically, the powdery mixture is heated to 300 to 500 DEG C at a heating rate of 3 to 8 DEG C / min, and then maintained for 8 to 10 hours.

<F를 포함하는 고분자물질(PCTFE)를 첨가한 양극활물질의 실험데이터>&Lt; Experimental data of a cathode active material to which a polymer substance (PCTFE) containing F is added >

이하에서는 앞서 언급한 본 발명에 따른 F를 포함하는 고분자물질(PCTFE)를 첨가한 양극활물질에 대한 실험데이터를 설명하도록 한다. 먼저, 실험에 적용된 본 발명의 실시예 1과, 실시예 2 및 비교예에 대해 설명하도록 한다. Hereinafter, experimental data on the cathode active material to which the F-containing polymer material (PCTFE) according to the present invention is added will be described. First, Embodiment 1, Embodiment 2, and Comparative Example of the present invention applied to the experiment will be described.

비교예(pristine CSG131)는 PCTFE를 첨가하지 않은 양극활물질로서, Ni0.8031Co0.1168Mn0.0801(OH)2의 전구체를 제조한 후, 수산화 리튬을 혼합하여 승온가열 후 자연냉각하여 PCTFE를 첨가할 비교예에 따른 양극활물질을 제조하였다. Comparative Example (pristine CSG131) is a comparative example to be as a positive electrode active material is not added to the PCTFE, Ni 0.8031 Co 0.1168 Mn 0.0801 (OH) After preparing a precursor of a second, after heating temperature was raised by mixing lithium hydroxide and natural cooling was added to PCTFE To prepare a cathode active material.

실시예 1(PCTFE 0.1wt%)은 비교예의 양극활물질 10g에 필렛형태의 PCTFE를 0.1wt%의 비율로 유발로 섞고, 섞어준 파우더를 분당 승온속도 5℃로 하여 350℃까지 온도를 올린 후 9시간 동안 유지시켜 제조하였다. In Example 1 (0.1 wt% of PCTFE), 10 g of the cathode active material of the comparative example was mixed with a PCTFE in the form of a fillet at a ratio of 0.1 wt%, the temperature of the mixed powder was raised to 350 ° C. at a rate of 5 ° C. per minute, Lt; / RTI &gt;

또한, 실시예 2(PCTFE 1wt%)는 비교예의 양극활물질 10g에 필렛형태의 PCTFE를 1wt%의 비율로 유발로 섞고, 섞어준 파우더를 분당 승온속도 5℃ 로 하여 350℃까지 온도를 올린 후 9시간 동안 유지시켜 제조하였다. In Example 2 (PCTFE 1 wt%), 10 g of the cathode active material of the comparative example was mixed with a PCTFE in the form of a fillet at a ratio of 1 wt%, the temperature of the mixed powder was raised to 350 캜 at a rate of 5 캜 per minute, Lt; / RTI &gt;

도 2는 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 잔류 Li2CO3, LiOH 대비표를 도시한 것이다. 실시DP 1,2와 같이, F을 포함한 고분자를 0.1, 1 wt%을 첨가하였을 때, 각각 LiOH는 1,780, 1,664 ppm으로 비교예에 비해 각각 2002, 2118 ppm 감소하였다. 하지만, Li2CO3는 7,808, 4,249 ppm으로 4,007, 448ppm 증가하였다. 비록 Li2CO3의 양이 소량 증가하였지만 1 wt%의 PCTFE를 첨가하였을 때, LiOH가 2118 ppm 감소량을 보임으로써 효과적인 첨가물임을 알 수 있다. FIG. 2 is a table showing the residual Li 2 CO 3 and LiOH contrast of the cathode active material to which PCTFE is added according to Examples 1 and 2 of the present invention and the cathode active material according to Comparative Example. As in DP 1,2, when 0.1 and 1 wt% of F-containing polymer were added, LiOH was decreased to 1,780 and 1,664 ppm, respectively, compared to the comparative examples, 2002 and 2118 ppm, respectively. However, Li 2 CO 3 increased by 4,007 and 448 ppm at 7,808 and 4,249 ppm, respectively. Although the amount of Li 2 CO 3 is slightly increased, it can be seen that adding 1 wt% of PCTFE is an effective additive because of the reduction of LiOH by 2118 ppm.

도 3은 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 전계방사형 주사전자현미경(Field Emission Scanning Electron Microscope, FE-SEM)으로 관찰한 입자형상 사진을 도시한 것이다. 도 3에 도시된 바아ㅗ 같이, 구형의 형태를 가지는 비교예의 양극활물질은 약 10 ㎛의 지름을 가지며, 직경이 약 200~300 nm를 가지는 1차 입자들이 응집된 형태를 이루고 있음을 알 수 있다. 저배율인 10,000배에서는 표면에서 차이를 확인할 수 없었으나, 25,000배, 100,000배의 고배율에서 1차입자의 차이점을 확인할 수 있었다. PCTFE를 첨가한 실시예 1,2의 양에 따라서 비교예 양극활물질의 1차 입자 위에 거친 돌기가 표면에 형성되는 것을 확인했다. 이는 고분자인 PCTFE가 1차 입자의 표면을 감싸면서 형성하는 돌기로 판단된다. FIG. 3 is a graph showing the particle shape of a cathode active material to which PCTFE is added according to Examples 1 and 2 of the present invention and a cathode active material according to a comparative example, which were observed with an F- electron Scanning Electron Microscope (FE-SEM) FIG. As shown in FIG. 3, it can be seen that the cathode active material of the comparative example having a spherical shape has a diameter of about 10 탆 and primary particles having a diameter of about 200 to 300 nm are aggregated . At the low magnification of 10,000, we could not confirm the difference on the surface, but we could confirm the difference of the first investor at the high magnification of 25,000 times and 100,000 times. It was confirmed that rough protrusions were formed on the surface of the primary particles of the comparative positive electrode active material according to the amounts of Examples 1 and 2 to which PCTFE was added. It is judged that this is a protrusion formed by wrapping the surface of the primary particle of PCTFE.

도 4는 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 저항분석 그래프를 도시한 것이다. 그리고, 도 5는 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 전하이동저항분석 대비표를 도시한 것이다. FIG. 4 is a graph showing resistance analysis of a cathode active material to which PCTFE is added according to Examples 1 and 2 of the present invention and a cathode active material according to a comparative example. 5 is a graph showing the charge transfer resistance analysis table of the positive electrode active material to which PCTFE is added and the positive electrode active material according to the comparative example according to Examples 1 and 2 of the present invention.

즉, 도 4는 비교예와, 비교에에 따른 양극활물질에 F을 포함한 고분자 물질인 PCTFE를 0.1, 1 wt% 첨가한 실시예 1,2의 양극활물질을 주파수 범위 0.01Hz~10,000Hz 내에서 측정한 양극 활물질의 Nyquist plot을 도시하였다. 두 플롯 모두 고주파 영역에서 하나의 반원을 갖고, 저주파 영역에서 가파른 직선을 갖는다. 고주파 영역에서 반원의 지름은 전극과 전해질 계면에서의 전하이동 저항(Rct)을 나타낸다. F을 포함한 고분자물질(PCTFE)을 0.1, 1 wt% 첨가한 실시예 1,2의 양극 활물질 Rct 값은 각각 269.6, 321.5Ω으로 비교예에 비해 1.5, 53.4Ω의 증가를 보였다. 이는 고분자물질을 첨가함으로써 전하이동 저항이 높아지는 것을 확인하였다.That is, FIG. 4 is a graph showing the results of measurement of the cathode active materials of Examples 1 and 2, in which 0.1 wt% and 1 wt% of PCTFE, which is a polymeric substance containing F, was added to the cathode active material according to the comparative example in a frequency range of 0.01 Hz to 10,000 Hz A Nyquist plot of a cathode active material is shown. Both plots have one semicircle in the high frequency region and a steep straight line in the low frequency region. The diameter of the semicircle in the high frequency region represents the charge transfer resistance (R ct ) at the interface between the electrode and the electrolyte. The Rct values of the cathode active materials R and C added with 0.1 and 1 wt% of polymeric substance (PCTFE) containing F were 269.6 and 321.5?, Respectively, which were 1.5 and 53.4? It was confirmed that the charge transfer resistance was increased by adding a polymer material.

도 6은 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 초기 충/방전 특성 그래프를 도시한 것이고, 도 7은 본 발명의 실시예 1,2에 따른 PCTFE를 첨가한 양극활물질과 비교예에 따른 양극활물질의 초기 충/방전 용량, 쿨롱효율 대비표를 도시한 것이다. 6 is a graph showing initial charging / discharging characteristics of a cathode active material to which PCTFE is added according to Examples 1 and 2 of the present invention and a cathode active material according to a comparative example. Discharge capacity and Coulomb efficiency of the cathode active material with PCTFE added and the cathode active material according to the comparative example.

즉, 도 6은 비교예와 비교예에 따른 양극활물질에 F을 포함한 고분자 물질인 PCTFE를 0.1, 1 wt% 첨가한 실시예 1,2 각각의 양극활물질을 상온에서 0.1C-rate로 3.0-4.3V 까지 측정한 초기 충전과 방전 용량을 도시한 것이다. PCTFE를 0.1, 1wt% 첨가한 실시예 1,2 양극활물질의 충전 용량은 각각 200.86, 199.54 mAh/g으로 비교예에 비하여 8.38, 7.06 mAh/g 증가하였으며, 방전용량은 182.65, 190.82 mAh/g으로 비교예에 비하여 19.61, 27.78 mAh/g 증가하였음을 알 수 있다. 또한, 도 7에 도시된 바와 같이, 쿨롱효율이 비교예에 비하여 각각 6.23, 10.93 % 만큼 증가하는 것을 확인하였다. 이는 PCTFE를 첨가함에 따라 잔류리튬 양이감소하였고 따라서 효과적인 전기화학적인 특성을 보여주었다.That is, FIG. 6 is a graph showing that the cathode active materials of Examples 1 and 2, in which 0.1 wt% and 1 wt% of PCTFE, which is a polymer material containing F, were added to the cathode active materials of Comparative Examples and Comparative Examples, V shown in FIG. The charge capacities of the cathode active materials of Examples 1 and 2, in which PCTFE was added at 0.1 and 1 wt%, were 200.86 and 199.54 mAh / g, respectively, which were 8.38 and 7.06 mAh / g, respectively, and discharge capacities were 182.65 and 190.82 mAh / g, Which is 19.61 and 27.78 mAh / g, as compared with the comparative example. Also, as shown in FIG. 7, it was confirmed that the coulombic efficiency was increased by 6.23 and 10.93%, respectively, as compared with the comparative example. This shows that the addition of PCTFE reduced the amount of residual lithium and thus exhibited effective electrochemical properties.

<설탕을 코팅한 양극활물질의 구성 및 제조방법><Composition and Manufacturing Method of Cationic Active Material Coated with Sugar>

이하에서는 본 발명의 일실시예에 따른 설탕을 코팅한 양극활물질의 구성 및 제조방법에 대해 설명하도록 한다. 도 8은 본 발명의 일실시예에 따른 설탕을 코팅한 양극활물질 제조방법의 흐름도를 도시한 것이다. Hereinafter, the structure and manufacturing method of the sugar-coated cathode active material according to one embodiment of the present invention will be described. 8 is a flowchart illustrating a method of manufacturing a cathode active material coated with sugar according to an embodiment of the present invention.

먼저, 설탕을 코팅할 양극활물질을 제조하게 된다(S10). 이러한 본 발명에 적용되는 양극활물질은 제한되지 않는다. 구체적 실시예로서는 니켈(Ni), 코발트(Co), 망간(Mn)에 증류수를 용매로 하여 금속수용액을 제조하고, 이러한 금속수용액에 대하여 탄산나트륨을 침전제로, 암모니아수를 킬레이트제로하여 전구체를 침전시키게 된다. 그리고 침전된 전구체를 여과 및 세척한 후 건조한 후, 전구체에 수산화 리튬을 혼합하여 승온가열 후 자연냉각하여 양극활물질을 제조할 수 있다. 이는 구체적 실시예를 제시한 것일 뿐, 설탕을 코팅할 양극활물질의 조성, 제조방법은 이것에 제한해석되는 것은 아니다. First, a cathode active material to be coated with sugar is prepared (S10). The cathode active material to which the present invention is applied is not limited. As a specific example, a metal aqueous solution is prepared from nickel (Ni), cobalt (Co) and manganese (Mn) using distilled water as a solvent, and sodium carbonate is used as a precipitant and ammonia water is used as a chelating agent to precipitate the precursor. Then, the precipitated precursor is filtered and washed, dried, mixed with lithium hydroxide in the precursor, heated at an elevated temperature, and then naturally cooled to produce a cathode active material. This is merely a specific example, and the composition and manufacturing method of the cathode active material to be coated with sugar are not limited thereto.

그리고, 제조된 양극활물질 대비 특정 중량 %를 갖는 설탕을 준비하게 된다(S20). 이러한 설탕의 비율은 상기 양극활물질 대비 0.9 ~ 5.5 wt% 정도에 해당한다. Then, a sugar having a specific weight percentage with respect to the prepared cathode active material is prepared (S20). The proportion of such sugar corresponds to about 0.9 to 5.5 wt% of the cathode active material.

그리고, 설탕을 용매에 용해하여 설탕용액을 제조하게 된다(S30). 용매로서 N-메틸피롤리돈(N-methylpyrrolidone, NMP)을 적용할 수 있다. Then, sugar is dissolved in a solvent to prepare a sugar solution (S30). N-methylpyrrolidone (NMP) can be applied as a solvent.

그리고, 이러한 설탕용액에 앞서 준비한 양극활물질을 혼합, 교반하여 혼합물을 제조하게 된다(S40). 이러한 단계는 50 ~ 70℃ 하에서 5 ~ 7시간 동안 300 ~ 500 RPM으로 교반하는 것이 바람직하다. Then, the prepared cathode active material is mixed and stirred to prepare a mixture (S40). This step is preferably carried out at 50 to 70 ° C for 5 to 7 hours at 300 to 500 RPM.

그리고, 혼합물을 건조한 후. 가열하여 설탕을 코팅한 양극활물질을 제조하게 된다(S50). 보다 구체적으로, 혼합물을 필터링한 후, 100 ~ 120℃의 진공오븐에서 20 ~ 28시간동안 건조하게 된다. 그리고, 건조 후, 3 ~ 8℃/min의 승온속도로 500 ~ 700℃까지 가열한 후, 4 ~ 6시간 동안 유지하여 본 발명의 일실시예에 따른 설탕을 코팅한 양극활물질을 제조하게 된다. Then, after drying the mixture. Followed by heating to produce a positive electrode active material coated with sugar (S50). More specifically, the mixture is filtered and then dried in a vacuum oven at 100-120 &lt; 0 &gt; C for 20-28 hours. After drying, the mixture is heated to a temperature of 500 to 700 ° C. at a temperature raising rate of 3 to 8 ° C./min and maintained for 4 to 6 hours to produce a sugar-coated cathode active material according to an embodiment of the present invention.

<설탕을 코팅한 양극활물질의 실험데이터><Experimental Data of Cationic Active Material Coated with Sugar>

이하에서는 앞서 언급한 본 발명에 따른 설탕을 코팅한 양극활물질에 대한 실험데이터를 설명하도록 한다. 먼저, 실험에 적용된 본 발명의 실시예 1과, 실시예 2, 실시예 3 및 비교예에 대해 설명하도록 한다. Hereinafter, experimental data on the sugar-coated cathode active material according to the present invention will be described. First, Example 1, Example 2, Example 3 and Comparative Example of the present invention applied to the experiment will be described.

비교예(pristine CSG131)는 PCTFE를 첨가하지 않은 양극활물질로서, Ni0.8031Co0.1168Mn0.0801(OH)2의 전구체를 제조한 후, 수산화 리튬을 혼합하여 승온가열 후 자연냉각하여 비교예에 따른 양극활물질을 제조하였다. Comparative Example (pristine CSG131) is a positive electrode active material is not added to the PCTFE, Ni 0.8031 Co 0.1168 Mn 0.0801 (OH) After preparing a precursor of a second, after heating temperature was raised by mixing the lithium hydroxide to cool naturally the positive electrode active material according to Comparative Example .

실시예 1(Sugar 1wt%)은 비교예의 양극활물질 10g대비 1wt%의 비율로 설탕을 준비하고, 설탕을 N-메틸피롤리돈에 400 RPM, 60℃ 하에서 1시간동안 녹였다. 그리고, 설탕이 녹은 용액에 비교예에 따른 양극활물질을 넣고 400 RPM, 60℃ 하에서,6시간 동안 교반하였다. 그리고, 교반이 끝난 용액를 필터링한 후 110℃ 진공오븐에서 24시간동안 건조시켰다. 그리고, 건조시킨 파우더를 분당 승온속도 5℃로 하여 350℃ 까지 온도를 올린 후 1시간동안 유지시켜 제조하였다.In Example 1 (1 wt% of Sugar), sugar was prepared at a ratio of 1 wt% based on 10 g of the cathode active material of the comparative example, and the sugar was dissolved in N-methylpyrrolidone at 400 RPM and 60 ° C for 1 hour. Then, the positive electrode active material according to Comparative Example was added to the solution in which the sugar was dissolved, and the mixture was stirred at 400 RPM and 60 ° C for 6 hours. The stirred solution was filtered and then dried in a vacuum oven at 110 ° C for 24 hours. The dried powder was heated at a rate of 5 ° C per minute to 350 ° C and maintained for 1 hour.

실시예 2(Sugar 3wt%)은 비교예의 양극활물질 10g대비 3wt%의 비율로 설탕을 준비하고, 설탕을 N-메틸피롤리돈에 400 RPM, 60℃ 하에서 1시간동안 녹였다. 그리고, 설탕이 녹은 용액에 비교예에 따른 양극활물질을 넣고 400 RPM, 60℃ 하에서,6시간 동안 교반하였다. 그리고, 교반이 끝난 용액를 필터링한 후 110℃ 진공오븐에서 24시간동안 건조시켰다. 그리고, 건조시킨 파우더를 분당 승온속도 5℃로 하여 350℃ 까지 온도를 올린 후 1시간동안 유지시켜 제조하였다.In Example 2 (Sugar 3 wt%), sugar was prepared at a ratio of 3 wt% with respect to 10 g of the cathode active material of the comparative example, and the sugar was dissolved in N-methylpyrrolidone at 400 RPM and 60 ° C for 1 hour. Then, the positive electrode active material according to Comparative Example was added to the solution in which the sugar was dissolved, and the mixture was stirred at 400 RPM and 60 ° C for 6 hours. The stirred solution was filtered and then dried in a vacuum oven at 110 ° C for 24 hours. The dried powder was heated at a rate of 5 ° C per minute to 350 ° C and maintained for 1 hour.

실시예 3(Sugar 5wt%)은 비교예의 양극활물질 10g대비 5wt%의 비율로 설탕을 준비하고, 설탕을 N-메틸피롤리돈에 400 RPM, 60℃ 하에서 1시간동안 녹였다. 그리고, 설탕이 녹은 용액에 비교예에 따른 양극활물질을 넣고 400 RPM, 60℃ 하에서,6시간 동안 교반하였다. 그리고, 교반이 끝난 용액를 필터링한 후 110℃ 진공오븐에서 24시간동안 건조시켰다. 그리고, 건조시킨 파우더를 분당 승온속도 5℃로 하여 350℃ 까지 온도를 올린 후 1시간동안 유지시켜 제조하였다.In Example 3 (Sugar 5 wt%), sugar was prepared at a ratio of 5 wt% based on 10 g of the cathode active material of the comparative example, and the sugar was dissolved in N-methylpyrrolidone at 400 RPM and 60 ° C for 1 hour. Then, the positive electrode active material according to Comparative Example was added to the solution in which the sugar was dissolved, and the mixture was stirred at 400 RPM and 60 ° C for 6 hours. The stirred solution was filtered and then dried in a vacuum oven at 110 ° C for 24 hours. The dried powder was heated at a rate of 5 ° C per minute to 350 ° C and maintained for 1 hour.

도 9는 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 잔류 Li2CO3, LiOH 대비표를 도시한 것이다. 즉, 도 9는 ㅅ서설탕을 코팅하지 않은 비교예에 따른 양극활물질과 1, 3, 5 wt%의 설탕을 각각 코팅한 실시예 1,2,3에 따른 양극활물질의 LiOH와 Li2CO3의 양을 분석한 결과를 나타낸 것이다. 설탕을 1, 3, 5 wt% 코팅하였을 때, LiOH는 각각 2,389, 1,921, 2,156 ppm으로 비교예에 비해 1,393, 1861, 1626 ppn 감소하였다. 하지만, Li2CO3에서는 6,351, 6,971, 7,148 ppm으로 CSG131에 비하여 2,550, 3,170, 3347 ppm 증가하였다. FIG. 9 is a table showing the residual Li 2 CO 3 and LiOH of the positive electrode active material coated with the sugar according to Examples 1, 2, and 3 of the present invention and the positive electrode active material according to the comparative example. That is, FIG. 9 is a graph showing the results of measurements of LiOH and Li 2 CO 3 of the cathode active material according to Examples 1, 2, and 3 in which the cathode active material according to the comparative example in which no sugar is coated and 1, 3, and 5 wt% The results are as follows. When 1, 3, and 5 wt% of sugar were coated, the LiOH was decreased to 1,383, 1,921, and 2,156 ppm, respectively, by 1,393, 1861, and 1626 ppn, respectively. However, in Li 2 CO 3 , it was 6,351, 6,971, and 7,148 ppm, which was increased by 2,550, 3,170, and 3347 ppm compared to CSG131.

도 10은 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 주사전자현미경으로 관찰한 입자형상 사진을 도시한 것이다. 즉, 도 10은 비교예에 따른 양극활물질과 1, 3, 5 wt%의 설탕을 각각 첨가한 실시예 1,2,3에 따른 양극활물질의 전계방사형 주사현미경의 이미지를 나타낸 것이다. 구형의 형태를 가지는 양극활물질은 약 10㎛의 지름을 가지며, 직경이 약 200~300nm를 가지는 1차 입자들이 응집된 형태를 이루고 있다. 저배율인 10,000배에서는 표면에서 차이를 확인 할 수 없었으나, 25,000배, 100,000배의 고배율에서 1차입자의 차이점을 확인할 수 있다. 설탕을 첨가한 양에 따라서 양극활물질의 1차 입자 위에 탄소가 코팅되는 것을 확인했다. FIG. 10 is a photograph of particles observed with a scanning electron microscope of a sugar-coated cathode active material according to Examples 1, 2, and 3 of the present invention and a cathode active material according to a comparative example. That is, FIG. 10 shows an image of a field emission scanning microscope of a cathode active material according to Examples 1, 2, and 3 in which a cathode active material according to a comparative example and 1, 3, and 5 wt% of sugar were added, respectively. The cathode active material having a spherical shape has a diameter of about 10 mu m, and primary particles having a diameter of about 200 to 300 nm are aggregated. At the low magnification of 10,000 times, we could not confirm the difference on the surface, but we can confirm the difference of the first investor at the high magnification of 25,000 times and 100,000 times. It was confirmed that carbon was coated on the primary particles of the cathode active material according to the amount of added sugar.

도 11은 본 발명의 실시예 1,2에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 저항분석 그래프를 도시한 것이다. 또한, 도 12는 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 전하이동저항분석 대비표를 도시한 것이다. FIG. 11 is a graph showing resistance analysis of a sugar-coated cathode active material according to Examples 1 and 2 of the present invention and a cathode active material according to a comparative example. 12 is a graph showing a charge transfer resistance analysis table of a sugar-coated positive electrode active material according to Examples 1, 2, and 3 of the present invention and a positive electrode active material according to a comparative example.

즉, 도 11은 비교예와, 비교예에 설탕을 각각 1, 3, 5 wt%로 코팅한 실시예 1,2,3에 대해 주파수 범위 0.01Hz~10,000Hz 내에서 측정한 양극활물질의 Nyquist plot을 도시한 것이다. 두 플롯 모두 고주파 영역에서 하나의 반원을 갖고, 저주파 영역에서 가파른 직선을 갖는다. 고주파 영역에서 반원의 지름은 전극과 전해질 계면에서의 전하이동 저항(Rct)을 나타낸다. 1, 3, 5 wt%의 설탕을 코팅한 실시예 1,2,3에 따른 양극활물질의 Rct값은 각각 309, 296.4, 192.5Ω으로 5 wt%의 설탕을 코팅한 실시예 3이 비교예에 비해 75.6 Ω의 감소를 보였다. That is, FIG. 11 is a graph showing the results of the Nyquist plot of the cathode active material measured in the frequency range of 0.01 Hz to 10,000 Hz for Examples 1, 2, and 3 coated with 1, 3, and 5 wt% FIG. Both plots have one semicircle in the high frequency region and a steep straight line in the low frequency region. The diameter of the semicircle in the high frequency region represents the charge transfer resistance (R ct ) at the interface between the electrode and the electrolyte. The Rct values of the cathode active materials according to Examples 1, 2, and 3 coated with 1, 3, and 5 wt% of sugar were 309, 296.4, and 192.5Ω, respectively, and Example 3 in which 5 wt% 75.6 Ω compared to the conventional one.

도 13은 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 초기 충/방전 특성 그래프를 도시한 것이고, 도 14는 본 발명의 실시예 1,2,3에 따른 설탕을 코팅한 양극활물질과 비교예에 따른 양극활물질의 초기 충/방전 용량, 쿨롱효율 대비표를 도시한 것이다. FIG. 13 is a graph showing initial charge / discharge characteristics of a cathode active material coated with sugar according to Examples 1, 2, and 3 of the present invention and a cathode active material according to a comparative example. FIG. 2 is a graph showing the initial charge / discharge capacity and Coulomb efficiency of a cathode active material coated with a sugar according to Comparative Examples 2 and 3 and a cathode active material according to a comparative example.

즉, 도 13 및 도 14는 비교예에 따른 양극활물질과, 1, 3, 5wt%의 설탕을 적용한 실시예 1,2,3에 따른 양극활물질의 초기 충/방전 특성, 용량 및 쿨롱효율을 측정한 결과를 나타낸 것이다. 1, 3, 5wt%의 설탕을 적용한 실시예 1,2,3에 따른 양극활물질의 초기 충전 용량은 각각 216.56, 216.33, 218.99mAh/g, 초기 방전 용량은 각각 188.42, 184.01, 191.75mAh/g으로 비교예에 따른 양극활물질의 초기 충/방전 용량 192.48과 163.04mAh/g에 비해 약 24~2 mAh/g가 늘어나는 것을 확인할 수 있었다. 또한 쿨롱 효율도 84.70%에서 85~87%로 약 2 % 가 증가하는 것을 확인할 수 있었다.That is, FIGS. 13 and 14 show the initial charge / discharge characteristics, the capacity and the coulombic efficiency of the cathode active material according to the comparative example and the cathode active materials according to Examples 1, 2 and 3 to which 1, 3 and 5 wt% . The initial charge capacities of the cathode active materials according to Examples 1, 2 and 3 to which 1, 3 and 5 wt% of the sugar were applied were 216.56, 216.33 and 218.99 mAh / g, respectively, and the initial discharge capacities were 188.42, 184.01 and 191.75 mAh / g It was confirmed that the initial charge / discharge capacity of the cathode active material according to the comparative example was increased by about 24 to 2 mAh / g compared with 192.48 and 163.04 mAh / g. Also, the Coulomb efficiency was increased from 84.70% to 85% to 87%, which was about 2%.

Claims (15)

양극활물질을 제조하는 제1단계;
상기 양극활물질 대비 0.9 ~ 6.0 wt%를 갖는 설탕을 준비하는 제2단계;
상기 설탕을 N-메틸피롤리돈에 용해하여 설탕용액을 제조하는 제3단계;
상기 설탕용액에 상기 양극활물질을 혼합하여 50 ~ 70℃ 하에서 5 ~ 7시간 동안 300 ~ 500 RPM으로 교반하는 제4단계; 및
혼합물을 필터링한 후, 100 ~ 120℃의 진공오븐에서 20 ~ 28시간동안 건조하고, 건조 후, 3 ~ 8℃/min의 승온속도로 500 ~ 700℃까지 가열한 후, 4 ~ 6시간 동안 유지하는 제5단계를 포함하는 것을 특징으로 하는 도펀트를 첨가한 양극활물질의 제조방법.
A first step of preparing a cathode active material;
A second step of preparing sugar having 0.9 to 6.0 wt% with respect to the cathode active material;
A third step of dissolving the sugar in N-methylpyrrolidone to prepare a sugar solution;
Mixing the sugar solution with the cathode active material and stirring the mixture at 50 to 70 ° C for 5 to 7 hours at 300 to 500 rpm; And
The mixture was filtered and dried in a vacuum oven at 100 to 120 ° C for 20 to 28 hours, dried and heated to a temperature of 500 to 700 ° C at a heating rate of 3 to 8 ° C / min, and then maintained for 4 to 6 hours And a fifth step of adding the dopant to the cathode active material.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제 1항에 따른 제조방법에 의해 제조된 것을 특징으로 하는 도펀트를 첨가한 양극활물질.
A positive electrode active material to which a dopant is added, which is produced by the production method according to claim 1.
제 1항에 따른 제조방법에 의해 제조된 리튬이차전지용 양극활물질, 음극 및 전해액을 포함하는 것을 특징으로 하는 리튬이차전지.A lithium secondary battery comprising a cathode active material for a lithium secondary battery, a cathode, and an electrolyte prepared by the manufacturing method according to claim 1. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020160112621A 2016-09-01 2016-09-01 Cathode active materials with dopant for reducing remaining lithium and lithiumsecondary battery using the same, and preparation method thereof KR101759445B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160112621A KR101759445B1 (en) 2016-09-01 2016-09-01 Cathode active materials with dopant for reducing remaining lithium and lithiumsecondary battery using the same, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160112621A KR101759445B1 (en) 2016-09-01 2016-09-01 Cathode active materials with dopant for reducing remaining lithium and lithiumsecondary battery using the same, and preparation method thereof

Publications (1)

Publication Number Publication Date
KR101759445B1 true KR101759445B1 (en) 2017-07-20

Family

ID=59443309

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160112621A KR101759445B1 (en) 2016-09-01 2016-09-01 Cathode active materials with dopant for reducing remaining lithium and lithiumsecondary battery using the same, and preparation method thereof

Country Status (1)

Country Link
KR (1) KR101759445B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029803A (en) * 2018-09-11 2020-03-19 주식회사 포스코 Positive electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
WO2021066229A1 (en) * 2019-10-02 2021-04-08 주식회사 포스코 Cathode active material for lithium secondary battery, and lithium secondary battery including same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029803A (en) * 2018-09-11 2020-03-19 주식회사 포스코 Positive electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
KR102178807B1 (en) * 2018-09-11 2020-11-13 주식회사 포스코 Positive electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
WO2021066229A1 (en) * 2019-10-02 2021-04-08 주식회사 포스코 Cathode active material for lithium secondary battery, and lithium secondary battery including same

Similar Documents

Publication Publication Date Title
Chen et al. Recent progress in surface coating of layered LiNixCoyMnzO2 for lithium-ion batteries
KR102699307B1 (en) Positive electrode additive and its manufacturing method, positive electrode and its manufacturing method and lithium ion battery
US8088305B2 (en) Lithium iron phosphate cathode material
JP5244966B2 (en) Cathode material for lithium batteries
KR101647198B1 (en) Heat treatment method for reducing remaining lithium cathode active materials and lithiumsecondary battery using the same, and preparation method thereof
CN101630729B (en) Composite electrode materials for high power lithium secondary battery and preparation method thereof
KR101718668B1 (en) Boric acid cleaning cathode active materials for reducing remaining lithium and lithiumsecondary battery using the same, and preparation method thereof
CN111403693B (en) Negative active material, and negative electrode sheet, electrochemical device, and electronic device using same
JP2016530692A (en) Aqueous cathode slurry for lithium ion battery
KR20110031291A (en) Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries
KR20130038382A (en) Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery
Zhong et al. Better cycle stability and rate capability of high-voltage LiNi0. 5Mn1. 5O4 cathode using water soluble binder
Kobylianska et al. Surface modification of the LiNi0. 5Co0. 2Mn0. 3O2 cathode by a protective interface layer of Li1. 3Ti1. 7Al0. 3 (PO4) 3
JP2010529608A (en) New composition for the production of electrodes, and electrodes and batteries obtained from the composition
US20150228966A1 (en) Positive electrode material, secondary battery, and methods respectively for producing positive electrode material and secondary battery
JP2006524884A (en) Polymer binder for molten salt electrolyte battery
WO2003069701A1 (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
Kang et al. Physical and electrochemical properties of CuO-coated Li [Ni0. 8Co0. 1Mn0. 1] O2 cathodes at elevated temperature for lithium ion batteries
Huang et al. Enhanced electrochemical properties of LiFePO4 cathode using waterborne lithiated ionomer binder in Li-ion batteries with low amount
JP2013196910A (en) Nonaqueous electrolyte secondary battery
CN108269992B (en) High-capacity lithium ion battery composite cathode material and preparation method thereof
Mohanty et al. Effect of carbon coating on electrochemical properties of Li3V2 (PO4) 3 cathode synthesized by citric-acid gel method for lithium-ion batteries
JP2013225488A (en) Nonaqueous electrolyte secondary battery
KR101759445B1 (en) Cathode active materials with dopant for reducing remaining lithium and lithiumsecondary battery using the same, and preparation method thereof
Tsai et al. Effect of Single-Walled Carbon Nanotube Sub-carbon Additives and Graphene Oxide Coating for Enhancing the 5 V LiNi0. 5Mn1. 5O4 Cathode Material Performance in Lithium-Ion Batteries

Legal Events

Date Code Title Description
GRNT Written decision to grant