KR101755121B1 - Lithium metal electrode for lithium secondary battery with safe protective layer and lithium secondary battery comprising the same - Google Patents

Lithium metal electrode for lithium secondary battery with safe protective layer and lithium secondary battery comprising the same Download PDF

Info

Publication number
KR101755121B1
KR101755121B1 KR1020150149883A KR20150149883A KR101755121B1 KR 101755121 B1 KR101755121 B1 KR 101755121B1 KR 1020150149883 A KR1020150149883 A KR 1020150149883A KR 20150149883 A KR20150149883 A KR 20150149883A KR 101755121 B1 KR101755121 B1 KR 101755121B1
Authority
KR
South Korea
Prior art keywords
lithium
protective layer
lithium metal
secondary battery
polymer protective
Prior art date
Application number
KR1020150149883A
Other languages
Korean (ko)
Other versions
KR20160052351A (en
Inventor
손병국
장민철
양두경
최정훈
김택경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20160052351A publication Critical patent/KR20160052351A/en
Application granted granted Critical
Publication of KR101755121B1 publication Critical patent/KR101755121B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명의 안정한 보호층을 갖는 리튬금속 전극은 리튬 덴드라이트 흡수성 물질이 고분자 보호막에 포함되어 있어서 충방전에 의해 생긴 유리된(free) 리튬 이온 또는 리튬 덴드라이트를 인터칼레이션하여 흡수하여 전지의 내부단락 발생을 방지하고 충방전 사이클 수명특성을 향상시킨다. 또한, 이들 리튬 덴드라이트 흡수성 물질 자체는 상대적으로 반응성이 낮기 때문에 전지 안정성이 향상된다. The lithium metal electrode having a stable protective layer according to the present invention includes a lithium dendrite absorbing material contained in a polymer protective layer and intercalates and absorbs free lithium ions or lithium dendrites generated by charge and discharge, Short circuit is prevented and charge / discharge cycle life characteristics are improved. In addition, since the lithium dendrite absorbent material itself is relatively low in reactivity, the battery stability is improved.

Description

안정한 보호층을 갖는 리튬금속 전극 및 이를 포함하는 리튬 이차전지 {LITHIUM METAL ELECTRODE FOR LITHIUM SECONDARY BATTERY WITH SAFE PROTECTIVE LAYER AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}FIELD OF THE INVENTION [0001] The present invention relates to a lithium metal electrode having a stable protective layer, and a lithium secondary battery comprising the same. BACKGROUND OF THE INVENTION [0002]

본 발명은 안정한 보호층을 갖는 리튬금속 전극 및 이를 포함하는 리튬 이차전지에 대한 것으로서, 보다 상세하게는 리튬금속 전극 상에 리튬 덴드라이트 흡수성 물질이 분포된 고분자 보호층이 형성된 전극을 제공하는 것이다.The present invention relates to a lithium metal electrode having a stable protective layer and a lithium secondary battery including the same, and more particularly, to an electrode having a polymer protective layer on which a lithium dendrite absorbing material is distributed on a lithium metal electrode.

이동 전화기부터 시작하여, 무선 가전 기기, 전기 자동차에 이르기까지 전지를 필요로 하는 다양한 기기들이 개발되고 있다. 이러한 기기들의 개발에 따라 이차 전지에 대한 수요 역시 증가하고 있다. 특히, 전자 제품의 소형화 경향과 더불어 이차 전지도 경량화 및 소형화되고 있는 추세이다.Various devices that require batteries ranging from mobile phones to wireless home appliances and electric vehicles are being developed. With the development of these devices, the demand for secondary batteries is also increasing. Particularly, along with the tendency of miniaturization of electronic products, secondary batteries are also becoming lighter and smaller.

이러한 추세에 부합하여 최근 리튬 금속 이차 전지(Lithium Metal Battery, LMB)가 각광을 받고 있다. 리튬금속은 산화환원전위가 낮고(표준수소전극에 대해 -3.045V) 중량 에너지 밀도가 크다는(3,860mAhg-1) 특성을 가지고 있어 고용량 이차전지의 음극재료로 기대되고 있다. Recently, a lithium metal secondary battery (LMB) has come into the spotlight in accordance with this trend. The lithium metal has a low redox potential (-3.045 V versus the standard hydrogen electrode) and a large weight energy density (3,860 mAhg -1 ), which is expected as a cathode material for high capacity secondary batteries.

그러나 음극 소재로 리튬 금속을 사용할 경우 안전성이 취약하고 수명이 짧다는 문제가 있어 실용화가 늦어지고 있다. 이러한 문제는 전지의 충방전 과정에서 생성되는 리튬 덴드라이트(dendritic lithium)의 성장으로 인한 전지의 단락과 고립 리튬(dead lithium)이 그 원인으로 알려져 있으며, 이 문제를 해결하기 위한 많은 연구들이 진행되고 있다. However, when lithium metal is used as a cathode material, its safety is poor and its life is short. This problem is known to be caused by the short circuit of the battery and the dead lithium due to the growth of the dendritic lithium produced during the charging and discharging of the battery, and many studies have been conducted to solve this problem have.

지금까지의 연구보고를 살펴보면 리튬 덴드라이트의 성장을 억제하기 위한 방법으로 신규 전해질 및 첨가제의 탐색이 주류를 이루고 있으며 그 외에도 리튬염의 농도, 전류밀도, 온도를 제어하는 방법들이 제안되어 있으나 아직까지는 완전한 문제 해결에는 이르지 못하고 있다.In the previous research reports, the search for new electrolytes and additives was the main method for suppressing the growth of lithium dendrite. In addition, methods for controlling the concentration, current density, and temperature of lithium salt have been proposed The problem has not been solved.

본 발명의 목적은 리튬 덴드라이트의 성장을 억제할 수 있고 리튬 금속의 반응성을 제어하여 활용도가 높은 리튬금속 전극을 제공하는 것이다. An object of the present invention is to provide a lithium metal electrode which can inhibit the growth of lithium dendrites and controls the reactivity of the lithium metal and thus has high utilization.

본 발명의 또 다른 목적은 리튬 금속을 음극으로 사용하여 에너지 효율이 높으면서도 안전성과 충방전 사이클 반복에 의한 수명특성이 우수한 리튬 이차전지를 제공하는 것이다.Another object of the present invention is to provide a lithium secondary battery which uses lithium metal as a negative electrode and which has high energy efficiency and excellent safety and lifetime characteristics by repetition of charge / discharge cycles.

본 발명의 일 실시예에 따른 리튬 이차전지용 전극은 리튬 금속판; 및 상기 리튬 금속판 상에 형성된 고분자 보호층;을 포함하고, 상기 고분자 보호층 내에 하기 a) 탄소질 재료, b) 규소질 재료 및 이들의 혼합물 중에서 선택된 어느 하나의 리튬 덴드라이트 흡수성 물질이 분포되어 있다. An electrode for a lithium secondary battery according to an embodiment of the present invention includes a lithium metal plate; And a polymeric protective layer formed on the lithium metal plate, wherein the polymeric protective layer contains any one of the following materials: a) a carbonaceous material, b) a silicon-based material, and mixtures thereof .

a) 결정질 탄소, 비결정질 탄소, 탄소 복합체, 및 이들의 혼합물 중에서 선택된 어느 하나의 탄소질 재료; 및a) a carbonaceous material selected from a crystalline carbon, an amorphous carbon, a carbon composite, and a mixture thereof; And

b) 실리콘(Si), 일산화규소(silicon monoxide) 및 이들의 혼합물 중에서 선택된 어느 하나의 규소질 재료.b) a silicon-containing material selected from silicon (Si), silicon monoxide and mixtures thereof.

상기 고분자 보호막에 포함되어 있는 리튬 덴드라이트 흡수성 물질이 충방전에 의해 생긴 유리된(free) 리튬 입자 또는 리튬 덴드라이트를 인터칼레이션하여 흡수하여 전지의 내부단락 발생을 방지하고 충방전 사이클 수명특성을 향상시킨다. 또한, 이들 리튬 덴드라이트 흡수성 물질 자체는 상대적으로 반응성이 낮기 때문에 전지 안정성이 향상된다.The lithium dendrite absorbent material contained in the polymer protective film absorbs and absorbs free lithium particles or lithium dendrites generated by charging and discharging to prevent internal short-circuiting of the battery, . In addition, since the lithium dendrite absorbent material itself is relatively low in reactivity, the battery stability is improved.

일 예에서, 상기 리튬 덴드라이트 흡수성 물질은 흑연 또는 실리콘 일 수 있다.In one example, the lithium dendrite absorbent material may be graphite or silicon.

일 예에서, 상기 고분자 보호층의 두께는 0.1 내지 50 ㎛ 일 수 있다.In one example, the thickness of the polymeric protective layer may be 0.1 to 50 탆.

일 예에서, 상기 리튬 덴드라이트 흡수성 물질의 크기는 0.01 내지 20 ㎛ 일 수 있다.In one example, the size of the lithium dendrite-absorbing material may be 0.01 to 20 [mu] m.

일 예에서, 상기 고분자 보호층은 폴리비닐리덴플로라이드-헥사플루오로프로필렌 공중합체, 테트라플루오로에틸렌, 폴리비닐리덴 플로라이드, 테트라플루오로에틸렌-헥사플루오로프로필렌 공중합체, 및 이들의 혼합물, 복합체 또는 공중합체 중에서 선택된 어느 하나일 수 있다. In one example, the polymeric protective layer comprises a polyvinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, and mixtures thereof, ≪ / RTI > complexes or copolymers.

일 예에서, 상기 리튬 덴드라이트 흡수성 물질은 흑연 또는 실리콘 일 수 있다.In one example, the lithium dendrite absorbent material may be graphite or silicon.

일 예에서, 상기 고분자 보호층의 두께는 0.1 내지 50 ㎛ 일 수 있다.In one example, the thickness of the polymeric protective layer may be 0.1 to 50 탆.

일 예에서, 상기 리튬 덴드라이트 흡수성 물질의 크기는 0.01 내지 20 ㎛ 일 수 있다.In one example, the size of the lithium dendrite-absorbing material may be 0.01 to 20 [mu] m.

일 예에서, 상기 고분자 보호층 내에 리튬 덴드라이트 흡수성 물질과 함께 알루미늄(Al), 마그네슘(Mg), 주석(Sn), 이산화망간(MnO2), 오산화바나듐(V2O5) 및 이들의 혼합물 중에서 선택된 어느 하나의 충진제가 더욱 포함될 수 있다. In one example, the polymeric protective layer may be formed by adding a lithium dendritic water absorbing material together with at least one compound selected from the group consisting of aluminum (Al), magnesium (Mg), tin (Sn), manganese dioxide (MnO 2 ), vanadium pentoxide (V 2 O 5 ) Any one selected filler may be further included.

본 발명의 일 실시예에 따른 리튬 이차전지는 음극, 양극, 및 상기 양극과 음극 사이에 개재되는 분리막을 포함하고, 상기 음극으로서 상술한 안정한 보호층을 갖는 리튬금속 전극을 이용한다. A lithium secondary battery according to an embodiment of the present invention includes a cathode, an anode, and a separator interposed between the anode and the cathode, and uses the lithium metal electrode having the above-described stable protective layer as the cathode.

본 발명의 리튬 이차전지용 고분자 보호막에 포함되어 있는 리튬 덴드라이트 흡수성 물질이 충방전에 의해 생긴 유리된(free) 리튬 입자 또는 리튬 덴드라이트를 인터칼레이션하여 흡수하여 전지의 내부단락 발생을 방지하고 충방전 사이클 수명특성을 향상시킬 수 있다.The lithium dendrite absorbent material contained in the polymer protective film for a lithium secondary battery of the present invention intercalates and absorbs free lithium particles or lithium dendrites generated by charging and discharging to prevent occurrence of internal short circuit of the battery, Discharge cycle life characteristics can be improved.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present invention, terms such as "comprises" or "having" are intended to specify that there are stated features, numbers, steps, operations, elements, parts or combinations thereof, and that one or more other features But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, parts, or combinations thereof.

본 발명의 일 실시예에 따른 리튬금속 전극은 리튬 금속판과 상기 리튬 금속판 상에 형성된 고분자 보호층을 포함한다. 상기 고분자 보호층 내에는 리튬 덴드라이트의 흡수가 가능한 물질이 분포되어 있다. 이하, 각 요소별로 상세히 살펴본다.
A lithium metal electrode according to an embodiment of the present invention includes a lithium metal plate and a polymer protective layer formed on the lithium metal plate. In the polymer protective layer, a substance capable of absorbing lithium dendrite is distributed. Hereinafter, each element will be described in detail.

리튬 금속판Lithium metal plate

상기 리튬 금속판은 리튬 금속판이거나 집전체 상에 리튬 금속 박막이 형성된 금속판일 수 있다. 상기 집전체는 구리, 알루미늄, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 금속일 수 있다. 리튬금속 박막의 형성방법은 특별히 제한되지 않으며, 공지의 금속박막 형성방법인 라미네이션법, 스퍼터링법 등이 이용될 수 있다. 또한, 집전체에 리튬 박막이 없는 상태로 전지를 조립한 후 초기 충전에 의해 금속판 상에 금속 리튬 박막이 형성되는 경우도 본 발명의 리튬 금속판에 포함된다. The lithium metal plate may be a lithium metal plate or a metal plate on which a lithium metal thin film is formed on the current collector. The current collector may be any one selected from the group consisting of copper, aluminum, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof. The method of forming the lithium metal thin film is not particularly limited, and a known metal thin film forming method such as a lamination method and a sputtering method can be used. Also, a case where a metal lithium thin film is formed on the metal plate by initial charging after assembling the battery without the lithium thin film in the current collector is also included in the lithium metal plate of the present invention.

상기 리튬 금속판은 전극 제조에 용이하도록 전극 형태에 따라 폭이 조절될 수 있다. 리튬 금속판의 두께는 30 내지 500 ㎛일 수 있다.
The width of the lithium metal plate may be adjusted according to the shape of the electrode to facilitate the production of the electrode. The thickness of the lithium metal plate may be 30 to 500 탆.

고분자 보호층Polymer protective layer

상기 고분자 보호층은 리튬금속판의 반응성을 상대적으로 낮추고 리튬금속 전극이 전해액에 직접 노출되는 것을 방지함으로써 불균일한 부동태층의 형성을 방지한다. 고분자층은 이온전도성을 가지면서 전지내 환경에서 안정한 물질로 형성되는 것이 바람직하고 예를 들어, 폴리비닐리덴플로라이드-헥사플루오로프로필렌 공중합체, 테트라플루오로에틸렌, 폴리비닐리덴 플로라이드, 테트라플루오로에틸렌-헥사플루오로프로필렌 공중합체, 및 이들의 혼합물, 복합체 또는 공중합체 중에서 선택되는 어느 하나일 수 있다. The polymer protective layer relatively reduces the reactivity of the lithium metal plate and prevents the lithium metal electrode from being directly exposed to the electrolyte, thereby preventing the formation of an uneven passivation layer. The polymer layer is preferably formed of a material having ionic conductivity and stable in the environment of the battery, and examples thereof include polyvinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene, Ethylene-hexafluoropropylene copolymer, a mixture thereof, a complex or a copolymer thereof.

고분자 보호층은 리튬금속판의 일면 또는 양면에 형성될 수 있고, 전극 표면의 전체에 균일한 두께로 도포되는 것이 바람직하다. 고분자 보호층의 형성방법은 특별히 제한되지 않으며 공지의 다양한 코팅방법으로 수행될 수 있다. 예를 들어, 스핀 코팅(spin coating), 닥터 블레이드(doctor blade) 코팅, 딥(dip) 코팅, 그라비어(gravure) 코팅, 슬릿다이(slit die) 코팅, 스크린(screen) 코팅 등의 방법이 있으나 이에 한정되는 것은 아니다. The polymer protective layer may be formed on one side or both sides of the lithium metal sheet and is preferably applied to the entire surface of the electrode with a uniform thickness. The method of forming the polymer protective layer is not particularly limited and may be carried out by various known coating methods. For example, there are methods such as spin coating, doctor blade coating, dip coating, gravure coating, slit die coating, and screen coating. But is not limited thereto.

고분자 보호층의 두께가 0.1 ㎛ 미만이면 리튬 금속판의 충분한 보호 기능을 발휘하기 어렵고 이온전도성 및 전자전도성이 부족하여 전지 용량 감소가 초래되고, 반대로 50 ㎛를 초과할 경우 동일규격 대비 에너지밀도 저하를 초래하므로, 바람직한 것은 0.1 내지 50 ㎛ 범위로 유지하는 것이다.
If the thickness of the polymer protective layer is less than 0.1 탆, it is difficult to exhibit a sufficient protective function of the lithium metal plate and the ion conductivity and electron conductivity are insufficient, resulting in a reduction in battery capacity. On the contrary, when the thickness exceeds 50 탆, Therefore, it is preferable to keep the thickness in the range of 0.1 to 50 mu m.

리튬 덴드라이트 흡수성 물질Lithium dendrite absorbent material

상기 리튬 덴드라이트 흡수성 물질은 음극 상의 충방전에 관여하지 않는 불활성 리튬 또는 리튬 덴드라이트와 반응하여 리튬이 인터칼레이션된 물질을 형성하는 등의 방법으로 흡수한다. 이에 따라, 전지의 내부 단락이 방지되어 충방전시 사이클 수명 특성이 향상된다.The lithium dendritic water absorbent material is absorbed by reacting with inert lithium or lithium dendrites which are not involved in charging and discharging on the negative electrode to form a lithium intercalated material. As a result, the internal short circuit of the battery is prevented, and the cycle life characteristics at the time of charging and discharging are improved.

상기 리튬 덴드라이트 흡수성 물질은 하기 a) 탄소질 재료, b) 규소질 재료 및 이들의 혼합물 중에서 선택되는 어느 하나인 것이 바람직하다. It is preferable that the lithium dendritic water absorbent material is any one selected from the group consisting of a) a carbonaceous material, b) a siliconaceous material, and mixtures thereof.

상기 탄소질 재료는 결정질 탄소, 비결정질 탄소, 탄소 복합체, 및 이들의 혼합물 중에서 선택된 어느 하나일 수 있고, 상기 규소질 재료는 실리콘(Si), 일산화규소(silicon monoxide) 및 이들의 혼합물 중에서 선택된 어느 하나일 수 있다.The carbonaceous material may be any one selected from a crystalline carbon, an amorphous carbon, a carbon composite, and a mixture thereof, and the siliconaceous material may be any one selected from silicon (Si), silicon monoxide, Lt; / RTI >

상기 탄소질 재료의 바람직한 예로는, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌블랙, 케첸블랙, 탄소섬유 등을 들 수 있다. 이러한 탄소질 재료는 리튬 이온의 확산속도가 빠르고 리튬 덴드라이트와의 반응 속도가 빠르기 때문에 본 발명에 바람직하게 적용가능하다. Preferable examples of the carbonaceous material include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and the like. Such a carbonaceous material is preferably applicable to the present invention because the diffusion rate of lithium ions is fast and the reaction rate with lithium dendrites is fast.

상기 리튬 덴드라이트 흡수성 물질의 형상은 구형, 판형, 섬유형, 또는 무정형 등 특별히 제한되지 않는다. The shape of the lithium dendritic water absorbent material is not particularly limited, such as spherical shape, plate shape, fiber shape, or amorphous shape.

상기 리튬 덴드라이트 흡수성 물질이 서로 접촉하여 응집되면 전도성 네트워크가 형성되고, 이에 따라 음극에 충전이 이루어지기 전에 전도성 네트워크에 먼저 충전이 이루어지게 된다. 결국 덴드라이트 흡수량이 저하되고 전지의 사이클 특성의 저하를 초래할 수 있다. 따라서, 상기 리튬 덴드라이트 흡수성 물질은 균일하게 분포하는 것이 바람직하므로, 도포량은 단위면적당 1 내지 5 mg/cm2가 바람직하다.When the lithium dendrite absorbent material is brought into contact with and agglomerates, a conductive network is formed, so that the conductive network is charged first before the cathode is charged. As a result, the amount of dendrite absorption decreases and the cycle characteristics of the battery may be deteriorated. Therefore, it is preferable that the lithium dendrite-absorbing material is uniformly distributed, so that the application amount is preferably 1 to 5 mg / cm 2 per unit area.

상기 리튬 덴드라이트 흡수성 물질의 입경은 특별히 제한되지 않지만, 20 ㎛를 초과하면 전극표면의 균일성이 저하되고 접착력이 저하되는 문제가 있고, 입경이 0.01 ㎛ 미만이면 응집이 발생하여 도전성 네트워크를 형성할 수 있으므로 바람직한 것은 0.01 내지 20 ㎛ 범위로 유지하는 것이다.The particle diameter of the lithium dendritic water absorbent material is not particularly limited, but if it exceeds 20 m, the uniformity of the electrode surface is lowered and the adhesive strength is lowered. When the particle diameter is less than 0.01 탆, aggregation occurs to form a conductive network So that it is preferable to maintain the thickness in the range of 0.01 to 20 mu m.

본 발명의 일 예에 따르면, 상기 리튬 덴드라이트 흡수성 물질과 함께 전지에 내에서 화학변화를 야기하지 않고 소정의 강도를 갖는 충진제를 더욱 포함할 수 있다. According to an embodiment of the present invention, the lithium dendrite absorbent material may further include a filler having a predetermined strength without causing a chemical change in the battery.

상기 충진제는 예를 들어, 알루미늄(Al), 마그네슘(Mg), 주석(Sn), 이산화망간(MnO2), 오산화바나듐(V2O5) 및 이들의 혼합물 중에서 선택된 어느 하나일 수 있다. 상기 충진제들은 강도를 보강해줄 수 있을 뿐만 아니라 리튬과 합금을 형성하여 리튬 덴드라이트 흡수 기능을 부분적으로 보조할 수도 있다.
The filler may be, for example, aluminum (Al), magnesium (Mg), tin (Sn), manganese dioxide (MnO 2), vanadium pentoxide (V 2 O 5) and any one selected from a mixture thereof. The fillers can not only reinforce the strength but also form an alloy with lithium to partially assist the lithium dendrite absorption function.

본 발명의 또 다른 측면은 상술한 안정한 보호층을 갖는 리튬금속 전극을 음극에 포함한 리튬 이차전지에 관한 것이다. Another aspect of the present invention relates to a lithium secondary battery including the above-described lithium metal electrode having a stable protective layer in a negative electrode.

상기 리튬 이차전지는 특별히 한정되지 않으며 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있고, 본 발명에서는 이들 모두를 포함한다. The lithium secondary battery is not particularly limited and may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery depending on the type of the separator and the electrolyte used. The lithium secondary battery may be classified into a cylindrical shape, a square shape, a coin shape, And can be divided into a bulk type and a thin film type depending on the size, and all of them are included in the present invention.

일 예에서, 리튬 이차전지는 음극과 양극 사이에 분리막을 배치하여 전극 조립체를 제조하고, 이를 케이스에 위치시키며 리튬염 함유 비수계 전해질을 주입함으로써 제조할 수 있다. 여기서, 음극은 앞서 설명한 본 발명에 따른 전극이 바람직하게 이용될 수 있다. In one example, the lithium secondary battery can be manufactured by disposing a separator between a cathode and an anode to prepare an electrode assembly, placing the electrode assembly in a case, and injecting a non-aqueous electrolyte containing a lithium salt. Here, as the cathode, the electrode according to the present invention described above can be preferably used.

상기 분리막은 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 내지 10 ㎛이고, 두께는 일반적으로 5 내지 300 ㎛ 이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.The separator is made of an insulating thin film having high ion permeability and mechanical strength. The pore diameter of the separator is generally 0.01 to 10 mu m, and the thickness is generally 5 to 300 mu m. Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.

상기 전해질은 비수 전해질과 리튬으로 이루어져 있다. 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다. The electrolyte is composed of a nonaqueous electrolyte and lithium. As the non-aqueous electrolyte, a non-aqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte and the like are used.

상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로퓨란(tetrahydrofuran, THF), 2-메틸 테트라하이드로퓨란, 디메틸술폭시드, 1,3-디옥솔란(1,3-dioxolan), 포름아미드, 디메틸포름아미드, 디옥솔란(dioxolan), 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란(dioxolan) 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로퓨란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the nonaqueous electrolytic solution include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, Such as tetrahydrofuran, tetrahydrofuran (THF), 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylform Amide, dioxolan, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, dioxolan derivatives, sulfolane, methylsulfolane, 1,3-dimethyl- -Ammonic organic solvents such as imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl pyrophosphate and ethyl propionate can be used.

상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolyte include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.

상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.

상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬 등이 사용될 수 있다. The lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, may be used, such as chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate.

또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
For the purpose of improving charge / discharge characteristics, flame retardancy, etc., non-aqueous electrolytes may be used in the form of, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, etc. are added It is possible. In some cases, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further added to impart nonflammability, or a carbon dioxide gas may be further added to improve high-temperature storage characteristics.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

(( 실시예Example 1) One)

음극으로 20 ㎛ 두께의 리튬 금속(Li metal)판을 사용하였다. 상기 리튬 금속판상에 폴리비닐리덴 플로라이드 헥사플루오로 프로필렌 공중합체(두께 20 ㎛)로 이루어진 고분자 보호층을 형성하였다.A 20 m thick lithium metal plate was used as the cathode. A polymer protective layer made of a polyvinylidene fluoride hexafluoropropylene copolymer (thickness: 20 mu m) was formed on the lithium metal plate.

상기 고분자 보호층 내에는 리튬 덴드라이트 흡수성 물질로 입경 5 ㎛의 흑연을 고루 분포되게 하였다. 흑연은 고분자 보호층 전체 중량에 대하여 10 wt%로 포함되었다.In the polymer protective layer, graphite having a particle size of 5 占 퐉 was evenly distributed as a lithium dendrite-absorbing material. Graphite was included in an amount of 10 wt% based on the total weight of the polymer protective layer.

LCO계 양극 활물질, Super-P 및 PVdF를 95:2.5:2.5의 중량비로 혼합한 후, 이를 알루미늄 집전체에 도포하여 양극 활물질층을 형성하였다.The LCO-based cathode active material, Super-P and PVdF were mixed at a weight ratio of 95: 2.5: 2.5 and then applied to an aluminum current collector to form a cathode active material layer.

상기 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 전해질을 주입하여 리튬 이차전지를 제조하였다.A lithium secondary battery was fabricated by preparing an electrode assembly between the prepared positive electrode and negative electrode through a porous polyethylene separator, placing the electrode assembly inside the case, and then injecting an electrolyte.

상기 전해질은 EC:EMC(혼합 부피비=1:1)로 이루어진 유기용매에 1 M 농도의 LiPF6를 용해시켜 제조한 것을 사용하였다.
The electrolyte was prepared by dissolving 1 M LiPF 6 in an organic solvent composed of EC: EMC (mixing volume ratio = 1: 1).

(( 실시예Example 2) 2)

리튬 덴드라이트 흡수성 물질로 입경 5 ㎛의 실리콘 10 wt%를 사용한 것을 제외하고 상기 실시예 1과 동일하게 제조하였다.
Except that 10 wt% of silicon having a particle diameter of 5 탆 was used as a lithium dendrite water absorbing material.

(( 실시예Example 3) 3)

리튬 덴드라이트 흡수성 물질로 입경 5 ㎛의 흑연 5 wt%, 입경 5 ㎛의 실리콘 5 wt%를 동시에 사용한 것을 제외하고 상기 실시예 1과 동일하게 제조하였다.
Except that 5 wt% of graphite having a particle diameter of 5 탆 and 5 wt% of silicon having a particle diameter of 5 탆 were simultaneously used as a lithium dendrite water absorbing material.

(( 실시예Example 4) 4)

리튬 덴드라이트 흡수성 물질의 크기를 증가시켜 입경 10 ㎛의 실리콘 10 wt%를 사용한 것을 제외하고 상기 실시예 1과 동일하게 제조하였다.
The procedure of Example 1 was repeated except that 10 wt% of silicon having a particle diameter of 10 탆 was used to increase the size of the lithium dendritic water absorbing material.

(( 실시예Example 5) 5)

리튬 덴드라이트 흡수성 물질의 크기를 감소시켜 입경 2 ㎛의 실리콘 10 wt%를 사용한 것을 제외하고 상기 실시예 1과 동일하게 제조하였다.
The same procedure as in Example 1 was carried out except that the size of the lithium dendritic water absorbing material was reduced and 10 wt% of silicon having a particle diameter of 2 탆 was used.

(( 실시예Example 6) 6)

고분자 보호층의 두께를 증가시켜 두께 30㎛의 폴리비닐리덴 플로라이드 헥사플루오로 프로필렌 공중합체로 이루어진 고분자 보호층을 형성한 것을 제외하고 상기 실시예 1과 동일하게 제조하였다.
And a polymer protective layer made of a polyvinylidene fluoride hexafluoropropylene copolymer having a thickness of 30 탆 was formed by increasing the thickness of the polymer protective layer.

(( 실시예Example 7) 7)

고분자 보호층의 두께를 감소시켜 두께 10㎛의 폴리비닐리덴 플로라이드 헥사플루오로 프로필렌 공중합체로 이루어진 고분자 보호층을 형성한 것을 제외하고 상기 실시예 1과 동일하게 제조하였다.
And a polymer protective layer made of a polyvinylidene fluoride hexafluoropropylene copolymer having a thickness of 10 탆 was formed by reducing the thickness of the polymer protective layer.

(( 비교예Comparative Example 1) One)

고분자 보호층을 형성시키지 않은 것을 제외하고 상기 실시예 1과 동일하게 제조하였다.
The procedure of Example 1 was repeated except that the polymer protective layer was not formed.

(( 비교예Comparative Example 2) 2)

고분자 보호층에 덴드라이트 흡수성 물질을 포함시키지 않은 것을 제외하고 상기 실시예 1과 동일하게 제조하였다.
The procedure of Example 1 was repeated except that the dendritic water absorbing material was not included in the polymer protective layer.

[[ 실험예Experimental Example : 제조된 리튬 이차전지의 성능 측정]: Measurement of performance of manufactured lithium secondary battery]

상기 실시예 및 비교예에 따른 각각의 리튬 이차전지에 대하여 상기 양극에서 음극으로 C-rate 1C, DOD(depth of discharge) 10% 방전 후 충전하는 사이클을 15회 반복한 후 양쪽의 리튬이 모두 소모되는 시점에서 사이클이 종료되며, 사이클 횟수로 효율을 산출하였다. 그 결과를 하기 표 1에 나타내었다.Each of the lithium secondary batteries according to Examples and Comparative Examples was charged with C-rate 1C and DOD (depth of discharge) of 10% discharged from the anode to the cathode, and the cycle of charging was repeated 15 times. The cycle ends, and the efficiency is calculated by the number of cycles. The results are shown in Table 1 below.

리튬 충방전 효율(%)Lithium charge / discharge efficiency (%) 실시예1Example 1 7575 실시예2Example 2 8686 실시예3Example 3 8181 실시예4Example 4 7272 실시예5Example 5 7979 실시예6Example 6 6161 실시예7Example 7 7575 비교예1Comparative Example 1 6363 비교예2Comparative Example 2 6868

상기 표 1을 살펴보면, 고분자 보호층으로 흑연을 사용한 실시예 1과 실리콘을 사용한 실시예 2를 통하여 작은 비용량의 흑연과 실리콘의 리튬 덴드라이트 흡수 효과 차이를 확인할 수 있었다. 흑연을 이용한 경우와 실리콘을 이용한 경우 모두 75 % 이상의 우수한 충방전 효율을 나타내었다.As shown in Table 1, the difference in the lithium dendrite absorption effect between small amounts of graphite and silicon was confirmed through Example 1 using graphite as a polymer protective layer and Example 2 using silicon. In the case of using graphite and silicon, excellent charging / discharging efficiency of 75% or more was exhibited.

흑연과 실리콘을 동시에 사용한 실시예 3을 통하여 혼합사용시에도 우수한 리튬 덴드라이트 흡수 효과를 확인할 수 있었다.Example 3 using graphite and silicon at the same time also demonstrated excellent lithium dendrite absorption effect even when mixed.

실시예 2, 4 및 5를 통하여 실리콘 크기에 따른 리튬 덴드라이트 흡수 효과 차이를 확인한 결과, 실리콘 크기가 증가하면 실리콘 내부까지 리튬 흡수가 이루어지지 않고, 실리콘 크기가 감소하면 비표면적 증가에 따른 부반응이 증가하여 리튬 충방전 효율이 감소되는 것을 알 수 있었다.As a result of examining the difference in the effect of absorbing lithium dendrite according to the size of silicon through Examples 2, 4 and 5, it was found that lithium absorption did not occur to the inside of silicon when silicon size was increased, And the charge / discharge efficiency of lithium was decreased.

실시예 1, 6 및 7을 살펴본 결과 고분자 보호층 두께에 따른 리튬 충방전 효율을 관찰 할 수 있었고, 그 결과 고분자 보호층이 두꺼우면 셀 저항이 증가하여 효율이 감소하고, 보호층 두께가 얇아지면 리튬 덴드라이트 성장이 충분하게 이루어지지 않아서 리튬 충방전 효율이 떨어지는 것을 확인할 수 있었다.As a result of examining Examples 1, 6 and 7, it was possible to observe the lithium charging / discharging efficiency according to the thickness of the polymer protective layer. As a result, when the polymer protective layer is thick, the cell resistance increases and the efficiency decreases. It was confirmed that the dendrite growth was not sufficiently performed and the lithium charging / discharging efficiency was inferior.

보호층이 없는 비교예 1의 경우와, 보호층이 있으나 리튬 덴드라이트 흡수성 물질을 포함하지 않는 비교예 2의 경우에는 리튬 충방전 효율이 각각 63 %, 68 %로 실시예에 비하여 매우 낮은 것을 확인할 수 있었다.
In the case of Comparative Example 1 in which there is no protective layer and in Comparative Example 2 in which the protective layer is provided but not the lithium dendrite absorbing material, the lithium charge / discharge efficiencies are respectively 63% and 68% I could.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, Of the right.

Claims (7)

리튬 금속판; 및
상기 리튬 금속판 상에 형성된 고분자 보호층;을 포함하고,
상기 고분자 보호층 내에 흑연, 실리콘 및 이들의 혼합물 중에서 선택된 어느 하나의 리튬 덴드라이트 흡수성 물질이 분포되어 있고,
상기 고분자 보호층은 폴리비닐리덴플로라이드-헥사플루오로프로필렌 공중합체, 테트라플루오로에틸렌, 테트라플루오로에틸렌-헥사플루오로프로필렌 공중합체, 및 이들의 혼합물, 복합체 또는 공중합체 중에서 선택되는 어느 하나인 것인
안정한 보호층을 갖는 리튬금속 전극.
Lithium metal plate; And
And a polymer protective layer formed on the lithium metal plate,
Wherein at least one lithium dendrite absorbing material selected from graphite, silicon, and mixtures thereof is distributed in the polymer protective layer,
The polymer protective layer may be any one selected from polyvinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, and mixtures, complexes and copolymers thereof One
A lithium metal electrode having a stable protective layer.
삭제delete 삭제delete 제1항에 있어서,
상기 고분자 보호층의 두께는 0.1 내지 50 ㎛인 것을 특징으로 하는, 안정한 보호층을 갖는 리튬금속 전극.
The method according to claim 1,
Wherein the polymer protective layer has a thickness of 0.1 to 50 占 퐉.
제1항에 있어서,
상기 리튬 덴드라이트 흡수성 물질의 크기는 0.01 내지 20 ㎛인 것을 특징으로 하는, 안정한 보호층을 갖는 리튬금속 전극.
The method according to claim 1,
Characterized in that the size of the lithium dendrite-absorbing material is 0.01 to 20 占 퐉.
제1항에 있어서,
상기 고분자 보호층 내에 리튬 덴드라이트 흡수성 물질과 함께 알루미늄(Al), 마그네슘(Mg), 주석(Sn), 이산화망간(MnO2), 오산화바나듐(V2O5) 및 이들의 혼합물 중에서 선택된 어느 하나의 충진제가 더욱 포함된 것을 특징으로 하는, 안정한 보호층을 갖는 리튬금속 전극.
The method according to claim 1,
With lithium dendrites absorbent material in the polymer protective layer of aluminum (Al), magnesium (Mg), tin (Sn), manganese dioxide (MnO 2), vanadium pentoxide (V 2 O 5) and any one selected from a mixture thereof A lithium metal electrode having a stable protective layer, characterized by further comprising a filler.
음극, 양극, 및 상기 양극과 음극 사이에 개재되는 분리막을 포함하고, 상기 음극은 제1항, 제4항, 제5항 및 제6항 중 어느 한 항에 따른 안정한 보호층을 갖는 리튬금속 전극인, 리튬 이차전지.
And a separator interposed between the positive electrode and the negative electrode, wherein the negative electrode is a lithium metal electrode having a stable protective layer according to any one of claims 1, 4, 5, and 6, In lithium secondary battery.
KR1020150149883A 2014-10-31 2015-10-28 Lithium metal electrode for lithium secondary battery with safe protective layer and lithium secondary battery comprising the same KR101755121B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140149977 2014-10-31
KR20140149977 2014-10-31

Publications (2)

Publication Number Publication Date
KR20160052351A KR20160052351A (en) 2016-05-12
KR101755121B1 true KR101755121B1 (en) 2017-07-06

Family

ID=56024824

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150149883A KR101755121B1 (en) 2014-10-31 2015-10-28 Lithium metal electrode for lithium secondary battery with safe protective layer and lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR101755121B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103282A1 (en) * 2017-11-24 2019-05-31 주식회사 엘지화학 Lithium electrode and lithium secondary battery comprising same
US11158857B2 (en) 2017-11-24 2021-10-26 Lg Chem, Ltd. Lithium electrode and lithium secondary battery comprising the same

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
KR101984721B1 (en) * 2016-07-14 2019-05-31 주식회사 엘지화학 Lithium secondary battery comprising cathode with Li metal, manufacturing method thereof
KR101976173B1 (en) 2016-08-26 2019-05-09 주식회사 엘지화학 Method for preparing lithium electrode and lithium electrode manufactured by the same
KR102003307B1 (en) 2016-09-21 2019-07-24 주식회사 엘지화학 Anode comprising multi passivation layers and lithium secondary battery comprising the same
WO2018056615A1 (en) * 2016-09-21 2018-03-29 주식회사 엘지화학 Negative electrode comprising multiple protection layers and lithium secondary battery comprising same
EP3386008B1 (en) 2016-09-30 2020-04-08 LG Chem, Ltd. Anode having double-protection layer formed thereon for lithium secondary battery, and lithium secondary battery comprising same
KR101990617B1 (en) 2016-09-30 2019-06-18 주식회사 엘지화학 Lithium secondary battery
WO2018062934A1 (en) 2016-09-30 2018-04-05 주식회사 엘지화학 Anode having double-protection layer formed thereon for lithium secondary battery, and lithium secondary battery comprising same
KR102006726B1 (en) 2016-10-05 2019-08-02 주식회사 엘지화학 Positive electrode active material for secondary battery and secondary battery comprising the same
WO2018066928A1 (en) * 2016-10-05 2018-04-12 주식회사 엘지화학 Cathode active material for secondary battery and secondary battery comprising same
EP3447828B1 (en) 2016-10-13 2023-09-20 LG Energy Solution, Ltd. Method for producing a negative electrode for lithium ion secondary batteries
KR102003306B1 (en) 2016-10-31 2019-07-24 주식회사 엘지화학 Lithium electrode and lithium battery compring the same
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
KR102148504B1 (en) 2017-03-03 2020-08-26 주식회사 엘지화학 Lithium secondary battery
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10770721B2 (en) * 2017-04-10 2020-09-08 Global Graphene Group, Inc. Lithium metal secondary battery containing anode-protecting polymer layer and manufacturing method
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
KR20180125370A (en) 2017-05-15 2018-11-23 주식회사 엘지화학 Lithium electrode and lithium battery compring the same
WO2018212438A2 (en) 2017-05-15 2018-11-22 주식회사 엘지화학 Lithium electrode and lithium secondary battery comprising same
KR102244904B1 (en) 2017-07-13 2021-04-26 주식회사 엘지화학 Anode comprising electrode protective layer and lithium secondary battery comprising the same
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
WO2019078571A2 (en) * 2017-10-16 2019-04-25 주식회사 엘지화학 Lithium electrode and lithium secondary battery comprising same
CN111201645B (en) * 2017-10-16 2023-07-25 株式会社Lg新能源 Lithium electrode and lithium secondary battery comprising same
KR102328258B1 (en) 2017-10-17 2021-11-18 주식회사 엘지에너지솔루션 Electrolyte for lithium metal battery and lithium metal battery comprising thereof
WO2019078526A2 (en) 2017-10-17 2019-04-25 주식회사 엘지화학 Electrolyte for lithium metal battery and lithium metal battery comprising same
KR102305481B1 (en) 2017-12-04 2021-09-27 주식회사 엘지에너지솔루션 Lithium Metal Electrode, Method for Preparing the Same and Lithium Secondary Battery
KR102038669B1 (en) * 2018-01-11 2019-10-30 주식회사 엘지화학 Method for manufacturing the lithium metal secondary battery including lithium electrode
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
KR102274611B1 (en) 2018-04-06 2021-07-06 주식회사 엘지에너지솔루션 Lithium metal secondary battery with improved extended performances
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
KR102543244B1 (en) 2018-06-21 2023-06-14 주식회사 엘지에너지솔루션 Electrolyte for lithium metal battery and lithium metal battery comprising thereof
KR102448076B1 (en) * 2018-06-22 2022-09-26 주식회사 엘지에너지솔루션 Method for Preparing Lithium Metal Electrode
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
WO2020013766A1 (en) * 2018-07-13 2020-01-16 Nanyang Technological University Electrochemically active interlayers for rechargeable batteries
KR102468501B1 (en) 2018-08-07 2022-11-17 주식회사 엘지에너지솔루션 Negative electrode for lithium metal battery comprising polymer protective layer and lithium metal battery comprising the same
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
EP3761405A4 (en) * 2018-10-31 2021-05-26 Lg Chem, Ltd. Lithium secondary battery
KR102415166B1 (en) 2019-01-11 2022-06-29 주식회사 엘지에너지솔루션 Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
CN110380057A (en) * 2019-07-22 2019-10-25 珠海冠宇电池有限公司 A kind of overcharge-resisting lithium ion battery
CN110600678A (en) * 2019-10-18 2019-12-20 珠海冠宇电池有限公司 Overcharge-resistant pole piece, preparation method thereof and lithium ion battery
JP7309032B2 (en) 2020-02-27 2023-07-14 エルジー エナジー ソリューション リミテッド Method for manufacturing lithium metal negative electrode, lithium metal negative electrode manufactured by the same, and lithium-sulfur battery including the same
KR20210109455A (en) 2020-02-27 2021-09-06 주식회사 엘지에너지솔루션 Method for preparing lithium metal negative electrode, lithium metal negative electrode prepared by the same and lithium-sulfur battery including the same
KR20210113055A (en) 2020-03-06 2021-09-15 주식회사 엘지에너지솔루션 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
US20220376300A1 (en) 2020-03-06 2022-11-24 Lg Energy Solution, Ltd. Lithium-sulfur battery electrolyte and lithium-sulfur battery including same
KR20210120858A (en) 2020-03-27 2021-10-07 주식회사 엘지에너지솔루션 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
WO2021194231A1 (en) 2020-03-27 2021-09-30 주식회사 엘지에너지솔루션 Electrolyte for lithium-sulfur battery, and lithium-sulfur battery including same
KR20210127622A (en) 2020-04-14 2021-10-22 주식회사 엘지화학 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
WO2021210854A1 (en) 2020-04-14 2021-10-21 주식회사 엘지에너지솔루션 Lithium-sulfur battery electrolyte and lithium-sulfur battery comprising same
US20210351411A1 (en) * 2020-05-06 2021-11-11 Samsung Electronics Co., Ltd. Secondary battery and method of preparing the same
KR20220163101A (en) 2021-06-02 2022-12-09 주식회사 엘지에너지솔루션 Lithium metal electrode and lithium secondary battery comprising the same
KR20220163580A (en) 2021-06-03 2022-12-12 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
KR20240013517A (en) * 2022-07-22 2024-01-30 삼성에스디아이 주식회사 Anode for lithium metal battery, Lithium metal battery comprising anode and Preparation method for anode for lithium metal battery
EP4333091A3 (en) 2022-08-31 2024-03-20 LG Energy Solution, Ltd. Negative electrode including lithium-lanthanum alloy and lithium ion secondary battery including the same
EP4350796A1 (en) 2022-08-31 2024-04-10 LG Energy Solution, Ltd. Negative electrode for a lithium secondary battery, a method for preparing the same and a lithium secondary battery comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103282A1 (en) * 2017-11-24 2019-05-31 주식회사 엘지화학 Lithium electrode and lithium secondary battery comprising same
US11158857B2 (en) 2017-11-24 2021-10-26 Lg Chem, Ltd. Lithium electrode and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
KR20160052351A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
KR101755121B1 (en) Lithium metal electrode for lithium secondary battery with safe protective layer and lithium secondary battery comprising the same
KR101542055B1 (en) The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same
KR101607024B1 (en) Lithium secondary battery
KR20190001556A (en) Lithium secondary battery
KR20140148355A (en) Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Comprising The Same
KR101595333B1 (en) Electrode for Secondary Battery Improved Energy Density and Lithium Secondary Battery Comprising the Same
KR101603082B1 (en) The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same
KR20200049684A (en) Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
KR20130116028A (en) The method for preparing electrodes and the electrodes prepared by using the same
KR20180118913A (en) Cathode Electrode of Multi-layered Structure and Method of Preparing the Same
KR101623719B1 (en) The Method for Preparing Cathode Material for Lithium Secondary Battery
KR20130116038A (en) Multi layered electrode and the method of the same
KR20130116806A (en) Anode for secondary battery
KR101506452B1 (en) Cathode for Secondary Battery
KR101507450B1 (en) Lithium Battery Having Higher Performance
KR101515361B1 (en) Cathode Active Material and Lithium Secondary Battery Comprising The Same
KR101588252B1 (en) Secondary Battery Cell
KR20130116033A (en) The method for preparing electrode mixture and the electrode mixture prepared by using the same
KR20130116027A (en) The method for preparing electrodes and the electrodes prepared by using the same
KR101608635B1 (en) Anode Electrodes for Secondary Battery having High Capacity
KR20130117732A (en) Cathode active material and lithium secondary battery comprising the same
KR101684338B1 (en) Electrode Material for Secondary Battery and Lithium Secondary Battery Comprising the Same
KR101930480B1 (en) Electrode for lithium secondary battery and high power lithium secondary battery comprising the same
KR101493255B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101595328B1 (en) Anode Electrodes for Secondary Battery and Lithium Secondary Battery Containing The Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right