KR101749681B1 - A novel soil microorganism, a novel oxidoreductase seperated from the said soil microorganism, a gene encoding the said oxidoreductase and a methods for producing flavonoid aglycone using thereof - Google Patents
A novel soil microorganism, a novel oxidoreductase seperated from the said soil microorganism, a gene encoding the said oxidoreductase and a methods for producing flavonoid aglycone using thereof Download PDFInfo
- Publication number
- KR101749681B1 KR101749681B1 KR1020100066307A KR20100066307A KR101749681B1 KR 101749681 B1 KR101749681 B1 KR 101749681B1 KR 1020100066307 A KR1020100066307 A KR 1020100066307A KR 20100066307 A KR20100066307 A KR 20100066307A KR 101749681 B1 KR101749681 B1 KR 101749681B1
- Authority
- KR
- South Korea
- Prior art keywords
- oxidoreductase
- flavonoid
- novel
- gly
- gin611
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/02—Oxygen as only ring hetero atoms
- C12P17/06—Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/32—Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 신규한 리조비움 sp. GIN611(Rhizobium sp. GIN611) KCTC11708BP, 그의 세포 추출물, 리조비움 sp. GIN611 유래의 산환환원효소, 이를 암호화하는 유전자 및 재조합 벡터 단백질, 또는 재조합 단백질을 암호화하는 발현벡터를 포함하는 재조합 균주를 생촉매로 사용하는 플라보노이드 비당체(aglycone)의 생산 방법을 제공한다. 본 발명의 신규 미생물에서 분리한 신규한 효소는 글루코시데이즈 (glucosidase)군에 속하지 않고 산화환원효소 군에 속하는 효소로서 천연물의 당 분해 활성을 갖는다. 이 신규한 산화환원효소는 다양한 플라보노이드 배당체에서 당을 산화시켜 분해함으로써 다양한 플라보노이드 비당체를 생산할 수 있게 한다.The present invention relates to a novel Rhodobium sp. GIN611 ( Rhizobium sp. GIN611) KCTC11708BP, its cell extract, Rizobium sp. There is provided a method for producing a flavonoid aglycone using a recombinant strain comprising a GIN611-derived oxidative reductase, a gene encoding the same and a recombinant vector protein or an expression vector encoding the recombinant protein as a biocatalyst. The novel enzyme isolated from the novel microorganism of the present invention does not belong to the glucosidase group but belongs to the oxidoreductase group and has an activity of saccharifying the natural product. This novel oxidoreductase is able to produce diverse flavonoid amygdaloids by oxidizing and degrading sugars in various flavonoid glycosides.
Description
본 발명은 토양에서 분리한 신규 미생물과 그 미생물에서 분리한 산화환원효소 및 이들을 이용한 다양한 플라보노이드 배당체의 당 분해 방법 및 다양한 플라보노이드 비당체를 생산하는 방법에 관한 발명이다.The present invention relates to a novel microorganism isolated from soil, an oxidoreductase isolated from the microorganism, a method for degrading sugar of various flavonoid glycosides using the same, and a method for producing various flavonoid asparagines.
인삼(Panax ginseng C.A. Meyer)은 한국, 중국, 일본 등 아시아 국가에서 전통적으로 각종 질병의 치료 및 예방에 사용되어온 약재 중의 하나이다. 진세노사이드라 불리는 인삼 사포닌은 이러한 인삼의 주요 활성 성분으로 항노화, 항염증, 중추 신경계와 심혈관계 및 면역계에서 항산화 활성, 항 당뇨 활성 및 항종양 활성 등 다양한 생리 활성을 가지는 것으로 알려져 있다. Ginseng (Panax ginseng C.A. Meyer) is one of the medicines traditionally used for the treatment and prevention of various diseases in Asian countries such as Korea, China and Japan. Ginseng saponin, which is called Jinsen-no-said, is a major active ingredient of ginseng and is known to have various physiological activities such as anti-aging, anti-inflammation, antioxidant activity in the central nervous system and cardiovascular and immune system, antidiabetic activity and antitumor activity.
진세노사이드는 섭취 후 사람의 장내 미생물에 의해 대사되어 그 대사산물이 다양한 생리활성을 가지는 것으로 알려져 있다. 예를 들어, 대표적인 프로토파낙사다이올계 사포닌인 Rb1, Rb2, Rc는 사람의 장내세균에 의해 CK로 대사되고, 프로토파낙사트라이올계 사포닌인 Re와 Rg1은 장내세균에 의해 Rh1이나 혹은 F1으로 대사되어 다양한 생리 활성을 나타낸다. CK의 경우는 종양의 침입을 막고 종양 형성을 예방하는 항전이 또는 항암 효과를 유도한다고 알려져 있으며, 비당체인 PPD(S)는 그것에 당이 붙어있는 Rh2 에 비해 생리활성효과가 높다는 연구가 있다. It is known that ginsenosides are metabolized by intestinal microorganisms after ingestion, and their metabolites have various physiological activities. For example, representative protopanaxyl diol saponins Rb1, Rb2, and Rc are metabolized to CK by intestinal bacteria in humans. Re and Rg1, protopanaxate triol saponins, are metabolized by intestinal bacteria to Rh1 or F1 And exhibits various physiological activities. In the case of CK, it is known that PPD (S), which is a non-sugar chain, has a higher physiological activity effect than Rh2, which has a sugar attached thereto, to prevent tumor invasion and prevent tumor formation.
따라서 진세노사이드를 당이 감소된 대사산물 형태로 전환시키려는 연구가 진행되어 왔다. 효소적 방법 이외에 약산 가수분해 반응, 알칼리 분해 등의 방법이 보고되어 있으나 이러한 방법은 에피머화(epimerization), 수화(hydration), 히드록실화(hydroxylation) 등과 같은 여러 가지 부반응을 야기시키므로, 최근에는 효소와 장내 미생물 등을 이용한 활성 진세노사이드로 전환하는 방법들이 연구되고 있다. 그러나 보고된 일부 미생물들의 경우 대부분 장내 미생물로서 혐기성 미생물인 경우가 많기 때문에 산업적 이용에 한계가 있다. 또한 대부분의 효소가 비당체로 전환하는 활성이 거의 없고, 각각의 특이성을 갖기 때문에 특정 진세노사이드 생산에만 응용될 수 있다는 한계를 가지고 있다. Therefore, research has been conducted to convert ginsenosides into a reduced sugar metabolite form. In addition to the enzymatic methods, weak acid hydrolysis and alkali decomposition have been reported. However, this method causes various side reactions such as epimerization, hydration, and hydroxylation, And intestinal microorganisms into active ginsenosides have been studied. However, some of the reported microorganisms are mostly anaerobic microorganisms as intestinal microorganisms, which limits industrial use. In addition, most of the enzymes have little activity to convert to asglycosides, and because of their specificity, they are limited to specific ginsenoside production.
현재까지 보고된 바에 의하면 진세노사이드 Rb1에서부터 장내세균에 의해 대산된 산물인 CK 까지의 생변환에 대한 연구는 많이 수행되었으나, 비당체에 대한 생산 연구는 부족하다. 또한 사포닌 골격에 하나의 당을 가지고 있는 진세노사이드는 미생물 효소에 의해 더 이상 분해되지 않는 것으로 많이 보고되어 있다. 그러나 비당체 형태의 진세노사이드는 혈류를 통해 더 쉽게 흡수되어 활성형의 화합물로 작용한다고 알려져 있다. 또한 다양한 진세노사이드의 골격인 비당체의 생산을 통해 원하는 형태의 진세노사이드만을 특정하게 생산할 수 있는 기반 기술이 될 수 있다. 따라서 진세노사이드의 비당체 생산에 관여하는 효소를 탐색할 필요가 있었다. 아울러 탐색된 효소가 진세노사이드의 비당 이외의 다른 쳔연물의 비당체를 생산하는지 여부도 탐색할 필요가 있었다.
To date, there have been many studies on the biotransformation from ginsenoside Rb1 to intestinally produced product CK, but production studies on aspergillosis are lacking. It has also been reported that ginsenosides, which have one sugar in the saponin skeleton, are no longer degraded by microbial enzymes. However, it is known that ginsenosides in the form of the aspirin are more easily absorbed through the bloodstream and act as active compounds. In addition, it can be a base technology that can specifically produce the desired form of ginsenoside through the production of the unglycoside, which is the skeleton of various ginsenosides. Therefore, it was necessary to search for enzymes involved in the production of antiserum of ginsenosides. In addition, it was necessary to investigate whether the enzyme that was searched produces non-saccharides of other components other than the nonsenoside of ginsenoside.
따라서, 본 발명은 상기 문제점을 해결하기 위해, 신규 미생물과 그 미생물에서 분리한 당 분해 활성을 보이는 신규 산화환원효소, 이를 암호화하는 유전자 및 재조합 단백질을 이용한 다양한 플라보노이드 비당체의 생산 방법을 제공한다.Accordingly, in order to solve the above problems, the present invention provides a novel microorganism and a method for producing various flavonoid antigens using the novel redox enzyme exhibiting a sugar-cleaving activity isolated from the microorganism, a gene encoding the same, and a recombinant protein.
본 발명은 리조비움 sp. GIN611(Rhizobium sp. GIN611) KCTC11708BP 또는 그의 세포 추출물을 생촉매로 사용하는 플라보노이드 비당체(flavonoid aglycone)의 생산 방법을 제공한다.The present invention relates to a process for the preparation of a medicament, The present invention provides a method for producing a flavonoid aglycone using GIN611 ( Rhizobium sp. GIN611) KCTC11708BP or a cell extract thereof as a biocatalyst.
또한, 본 발명은 리조비움 sp. GIN611 유래의 산환환원효소를 생촉매를 사용하는 플라보노이드 비당체의 생산 방법을 제공한다.In addition, A method for producing a flavonoid non-saccharide using an oxidative reductase derived from GIN611 as a biocatalyst.
또한, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 산화환원효소, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 및 서열번호 3의 아미노산 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소를 포함하는 세포 추출물로 이루어진 군에서 선택되는 하나 이상을 생촉매를 사용하는 플라보노이드 비당체의 생산 방법을 제공한다.The present invention also relates to a method for producing a cell extract comprising an oxidoreductase comprising the amino acid sequence of SEQ ID NO: 3, an oxidoreductase comprising the amino acid sequence of SEQ ID NO: 3, a DNA encoding the oxidoreductase comprising the amino acid sequence of SEQ ID NO: 3, a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA encoding an oxidoreductase consisting of the amino acid sequence of SEQ ID NO: 3, the amino acid sequence of SEQ ID NO: 3, A cell extract comprising a redox enzyme having 60% or more homology with the sequence and having a saccharide-degrading activity and an oxidoreductase having 60% or more homology with the amino acid sequence of SEQ ID NO: 3 and having a saccharide-degrading activity Lt; RTI ID = 0.0 > biochemical < / RTI > using one or more biocatalysts.
본 발명에서는 기존에 알려진 글루코시데이즈 군에 속하지 않는 산화환원효소 군에 속하는 효소가 플라보노이드 배당체의 당 분해 활성을 갖는 것을 확인하였다. 이 신규한 산화환원효소는 기존의 당 분해 관련 효소군의 서열과 완전히 상이하고 산화환원효소 군과 서열 유사도가 있으며, 플라보노이드 배당체에서 당을 산화시킴으로서 자발적인 당 분해를 유도하여 플라보노이드 비당체를 생산하는 효과가 있다.In the present invention, it was confirmed that the enzyme belonging to the oxidoreductase group which does not belong to the previously known glucosideases group had a sugar-degrading activity of the flavonoid glycosides. This novel redox enzyme is completely different from the sequence of the conventional enzymes of glucose degradation and has sequence similarity with that of the redox enzyme group and oxidizes sugar in the flavonoid glycoside to induce spontaneous glucose degradation to produce flavonoid glycoside .
도 1은 완전 배지와 M9/진세노사이드 배지에서 발현되는 단백질을 비교한 SDS 폴리아크릴 아마이드 젤 결과를 나타낸 것이다.
도 2는 완전 배지와 M9/진세노사이드 배지에서 배양된 셀로부터 제조된 단백질을 이용하여 반응성을 비교한 결과를 나타낸 것이다.
도 3은 진세노사이드를 탄소원으로 하여 자라는 신규 토양 미생물 리조비움 sp. GIN611 의 16S DNA 서열을 나타낸 것이다.
도 4는 리조비움 sp. GIN611 로부터 생산된 산화환원효소의 아미노산 서열 및 이를 암호화 하는 유전자 서열을 나타낸 것이다.
도 5은 카멜리아사이드 A 와 카멜리아사이드 B 혼합물의 당분해 활성을 측정한 결과를 나타낸 것이다.
도 6은 이카린의 당분해 활성을 측정한 결과를 나타낸 것이다. Figure 1 shows the SDS polyacrylamide gel results comparing the protein expressed in the complete medium with the M9 / ginsenoside medium.
Figure 2 shows the results of a comparison of reactivity using proteins prepared from cells cultured in complete medium and M9 / ginsenoside medium.
Fig. 3 shows the results of a new soil microorganism, respisum sp., Grown using ginsenoside as a carbon source. 16S DNA sequence of GIN611.
Fig. The amino acid sequence of the oxidoreductase produced from GIN611 and the gene sequence encoding the amino acid sequence are shown.
Fig. 5 shows the result of measuring the sugar chain activity of Camellia side A and Camellia side B mixture.
Fig. 6 shows the result of measuring the sugar activity of icarin.
본 발명은 신규한 리조비움 sp. GIN611(Rhizobium sp. GIN611) KCTC11708BP 또는 그의 세포 추출물을 생촉매로 사용하는 플라보노이드 비당체(aglycone)의 생산 방법을 제공한다. 본 발명에서는 다양한 진세노사이드 혼합물을 탄소원으로 사용하여 자라는 미생물을 선별하였고, 선별된 미생물의 진세노사이드 CK를 기질로 사용한 반응성 유무를 관찰한 결과 높은 반응성을 갖는 것을 확인하였다. The present invention relates to a novel Rhodobium sp. A method of producing a flavonoid aglycone using GIN611 ( Rhizobium sp. GIN611) KCTC11708BP or a cell extract thereof as a biocatalyst. In the present invention, microorganisms growing by using various ginsenoside mixtures as carbon sources were selected, and it was confirmed that they have high reactivity as a result of observing the reactivity using ginsenoside CK of the selected microorganism as a substrate.
또한, 본 발명의 일 실시예는 상기 신규 미생물 또는 그의 세포 추출물을 생촉매로 사용하는 플라보노이드 배당체(glycoside)의 당 분해 방법을 제공한다. In addition, an embodiment of the present invention provides a method for sugar degradation of a flavonoid glycoside using the novel microorganism or cell extract thereof as a biocatalyst.
또한, 본 발명의 일 실시예는 리조비움 sp. GIN611 유래의 산환환원효소를 생촉매를 사용하는 플라보노이드 비당체의 생산 방법을 제공한다. In addition, one embodiment of the present invention is a method of treating a disease selected from the group consisting of Rhizobium sp. A method for producing a flavonoid non-saccharide using an oxidative reductase derived from GIN611 as a biocatalyst.
또한, 본 발명의 일 실시예는 리조비움 sp. GIN611 유래의 산환환원효소를 생촉매를 사용하는 플라보노이드 배당체의 당 분해 방법을 제공한다. In addition, one embodiment of the present invention is a method of treating a disease selected from the group consisting of Rhizobium sp. A method for sugar degradation of a flavonoid glycoside using an oxidative reducing enzyme derived from GIN611 as a biocatalyst.
또한, 본 발명의 일 실시예는 서열번호 3의 아미노산 서열로 이루어진 산화환원효소, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소 및 서열번호 3의 아미노산 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소를 포함하는 세포 추출물로 이루어진 군에서 선택되는 하나 이상을 생촉매를 사용하는 플라보노이드 비당체의 생산 방법을 제공한다. In addition, one embodiment of the present invention is a cell extract comprising an oxidoreductase comprising the amino acid sequence of SEQ ID NO: 3, an oxidoreductase comprising the amino acid sequence of SEQ ID NO: 3, a redox enzyme comprising the amino acid sequence of SEQ ID NO: A cell extract containing a host cell transformed with a recombinant DNA vector comprising a DNA encoding an oxidoreductase comprising the amino acid sequence of SEQ ID NO: 3; A cell extract comprising a redox enzyme having 60% or more homology with the amino acid sequence of SEQ ID NO: 3 and having a saccharide-degrading activity and an oxidoreductase having 60% or more homology with the amino acid sequence of SEQ ID NO: 3 and having a saccharide- A method of producing a flavonoid aspartate using one or more biocatalysts selected from the group consisting of to provide.
서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA는 서열번호 2의 서열로 이루어질 수 있다.The DNA encoding the oxidoreductase comprising the amino acid sequence of SEQ ID NO: 3 may be the sequence of SEQ ID NO: 2.
상기 서열번호 3의 아미노산 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소는 아그로박테리움(Agrobacterium) sp., 스핑고박테리움(Sphingobacterium) sp. 또는 스테노트로포모나제(Stenotrophomonase) sp. 에서 유래하는 것일 수 있다.The redox enzyme having 60% or more homology with the amino acid sequence of SEQ ID NO: 3 and having a saccharide-degrading activity can be selected from the group consisting of Agrobacterium sp., Sphingobacterium sp. Or Stenotrophomonase sp. . ≪ / RTI >
상기 리조비움 sp.GIN611의 세포추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 포함하는 세포추출물, 서열번호 3의 아미노산 서열로 이루어진 산화환원효소를 암호화하는 DNA를 포함하는 재조합 DNA 벡터로 형질전환된 숙주세포를 포함하는 세포추출물, 서열번호 2의 서열로 이루어진 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포 추출물, 서열번호 3의 아미노산 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 단백질을 암호화하는 DNA를 포함하는 재조합 DNA벡터로 형질전환된 숙주세포를 포함하는 세포추출물 또는 서열번호 3의 아미노산 서열과 60% 이상 상동성을 가지고 당 분해 활성을 가지는 산화환원효소를 포함하는 세포추출물은 진세노사이드를 첨가하여 효소 발현을 유도하여 제조한 것일 수 있다.A cell extract comprising the cell extract of Rhizobium sp. GIN611, a cell extract comprising an oxidoreductase comprising the amino acid sequence of SEQ ID NO: 3, and a DNA encoding a redox enzyme comprising the amino acid sequence of SEQ ID NO: 3 A cell extract comprising a transformed host cell, a cell extract comprising a host cell transformed with a recombinant DNA vector comprising a DNA consisting of the sequence of SEQ ID NO: 2, an amino acid sequence having at least 60% homology with the amino acid sequence of SEQ ID NO: 3 A cell extract comprising a host cell transformed with a recombinant DNA vector comprising DNA encoding a protein having a glucose-degrading activity, or a cell extract having a homology of at least 60% to the amino acid sequence of SEQ ID NO: 3 and having a saccharide- May be prepared by inducing enzyme expression by adding ginsenoside.
상기 플라보노이드 비당체는 플라보노이드 배당체에서 당을 분해하여 생산할 수 있고, 상기 당의 분해는 당을 산화시켜서 분해하는 것으로, 예를 들어, 글루코오스인 경우 글루코오스 잔기의 3번 위치 하이드록실기(OH)를 산화시켜서 자발적으로 당 분해가 일어나게 한다.The flavonoid asparagine can be produced by decomposing a sugar in a flavonoid glycoside. The sugar is decomposed by oxidizing the sugar. For example, in the case of glucose, the hydroxyl group (OH) at the 3-position of the glucose residue is oxidized Spontaneous sugar degradation occurs.
상기 당은 특별히 제한되지는 않으나, 글루코오스, 갈락토오스, 람노스, 아라비노스 및 자일로스로 이루어진 군에서 선택된 것일 수 있다.The sugar may be selected from the group consisting of glucose, galactose, rhamnose, arabinose, and xylose, though it is not particularly limited.
상기 플라보노이드 배당체는 특별히 제한되지는 않으나, 예를 들어 이카린, 카멜리아사이드 A 및 카멜리아사이드 B로 이루어진 군에서 선택된 것일 수 있다.The flavonoid glycoside may be selected from the group consisting of, for example, icarin, camellia side A and camellia side B, although not particularly limited.
(1) 진세노사이드: 인삼사포닌으로 인삼의 활성 성분(1) Ginsenoside: active ingredient of ginseng with ginseng saponin
(2) 컴파운드 K(Compound K: CK): 20-O-β-D-글루코피라노실(glucopyranosyl)-20(S)-프로토파낙사디올(protopanaxadiol)(2) Compound K (CK): 20- O- ? -D-glucopyranosyl-20 ( S ) -protopanaxadiol
(3) 진세노사이드 Rh2: 3-O-베타-D-글리코피라노실-20(S)-프로토파낙사디올(3-O-beta-D-glycopyranosyl-20(S)-protopanaxadiol)(3) Ginsenoside Rh2: 3- O - beta -D- glycoside pyrazol nosil -20 (S) - Prototype wave incident diol (3- O -beta-D-glycopyranosyl -20 (S) -protopanaxadiol)
(4) 진세노사이드 F2: 3-O-(베타-D-글루코피라노시)-20-O-(베타-D-글루코피라노실)-20(S) 프로토파낙사디올(3-O-(beta-D-glucopyranosy)-20-O-(beta-D-glucopyranosyl) -20(S) protopanaxadiol)4, ginsenoside F2: 3- O - (beta -D- glucoside pyrazol-shi) -20- O - (beta -D- glucopyranosyl) -20 (S) protocol wave incident diol (3- O - ( beta-D-glucopyranosyl) -20- O- (beta-D-glucopyranosyl) -20 ( S ) protopanaxadiol)
(5) 진세노사이드 Rb1: 3-O-[(베타-D-글루코피라노시)(1,2)-베타-D-글루코피라노실]-20-O-[(베타-D-글루코피라노실)(1,6)-베타-D-글루코피라노실]-20(S) 프로코파낙사디올(3-O-[(beta-D-glucopyranosy)(1,2)-beta-D-glucopyranosyl]-20-O-[(beta-D-glucopyranosyl)(1,6)-beta-D-glucopyranosyl]-20(S) protopanaxadiol)(5) Ginsenoside Rb1: 3- O - [(beta-D-glucopyranosyl) (1,2) -beta-D-glucopyranosyl] -20- O - [(beta-D- glucopyranosyl ) (1,6) - beta -D- glucopyranosyl] -20 (S) Pro Coppa incident diol (3- O - [(beta- D-glucopyranosy) (1,2) -beta-D-glucopyranosyl] - O- [beta-D-glucopyranosyl] (1,6) -beta-D-glucopyranosyl] -20 ( S ) protopanaxadiol)
(6) 진세노사이드 Rb2: 3-O-[(베타-D-글루코피라노시)(1,2)-베타-D-글루코피라노실]-20-O-[(알파-L-아라비노피라노실)(1,6)-베타-D-글루코피라노실]-20(S) 프로토파낙사디올(3-O-[(beta-D-glucopyranosy)(1,2)-beta-D-glucopyranosyl] -20-O-[(alpha-L-arabinopyranosyl)(1,6)-beta-D-glucopyranosyl]-20(S)protopanaxadiol)6, ginsenoside Rb2: 3- O-[(beta -D- glucoside pyrazol-shi) (1,2) - beta -D- glucopyranosyl] -20- O-[(alpha -L- arabino pyrazol nosil) (1,6) - beta -D- glucoside pyrazol nosil] -20 (S) protocol wave incident diol (3- O - [(beta- D-glucopyranosy) (1,2) -beta-D-glucopyranosyl] -20- O- [(alpha-L-arabinopyranosyl) (1,6) -beta-D-glucopyranosyl] -20 ( S ) protopanaxadiol)
(7) 진세노사이드 Rc : 3-O-[(베타-D-글루코피라노시)(1,2)-베타-D-글루코피라노실] -20-O-[(알파-L-아라비노푸라노실)(1, 6)-베타-D-글루코피라노실]-20(S) 프로토파낙사디올(3-O-[(beta-D-glucopyranosy)(1,2)-beta-D-glucopyranosyl] -20-O-[(alpha-L-arabinofuranosyl) (1, 6)-beta-D-glucopyranosyl]-20(S) protopanaxadiol)(7) Ginsenoside Rc: 3- O - [(beta-D-glucopyranosyl) (1,2) -beta-D-glucopyranosyl] -20- O - [(alpha-L-arabinofura nosil) (1,6) - beta -D- glucoside pyrazol nosil] -20 (S) protocol wave incident diol (3- O - [(beta- D-glucopyranosy) (1,2) -beta-D-glucopyranosyl] -20- O- [(alpha-L-arabinofuranosyl) (1,6) -beta-D-glucopyranosyl] -20 ( S ) protopanaxadiol)
(8) 진세노사이드 F1: 20-O-베타-D-글루코피라노실-20(S)-프로토파낙사디올(20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol)8 ginsenoside F1: 20- O - beta -D- glucopyranosyl -20 (S) - Prototype wave incident diol (20- O -beta-D-glucopyranosyl -20 (S) -protopanaxadiol)
(9) 진세노사이드 Re: 6-O-[알파-L-람노피라노실 (1, 2)-베타-D-글루코피라노실]-20-O-(베타-D-글루코피라노실)-20(S)-프로토파낙사디올(6-O-[alpha-L-rhamnopyranosyl (1, 2)-beta-D- glucopyranosyl]-20-O-(beta-D-glucopyranosyl)-20(S)-protopanaxatriol )(9) Ginsenoside Re: 6- O- [alpha-L-rhamnopyranosyl (1, 2) -beta-D-glucopyranosyl] -20- O- (beta-D- (S) - Prototype wave incident diol (6- O - [alpha-L -rhamnopyranosyl (1, 2) -beta-D- glucopyranosyl] -20- O - (beta-D-glucopyranosyl) -20 (S) -protopanaxatriol )
(10) PPD(S): 20(S)-프로토파낙사디올(protopanaxadiol)(10) PPD (S): 20 ( S ) -protopanaxadiol
(11) PPT(S) : 20(S)-프로토파낙사트리올(protopanaxatriol)(11) PPT (S): 20 ( S ) -protopanaxatriol
(12) 진세노사이드 Rg2: 6-O-[알파-L-람노피라노실(1, 2)-베타-D-글루코피라노실]-20(S)-프로토파낙사트리올(6-O-[alpha-L-rhamnopyranosyl (1, 2)-beta-D- glucopyranosyl]-20(S)-protopanaxatriol )12 ginsenoside Rg2: 6- O - [alpha -L- ramno pyrazol nosil 1,2-beta -D- glucoside pyrazol nosil] -20 (S) - Prototype wave incident triol (6- O - [alpha] -L-rhamnopyranosyl (1,2) -beta-D-glucopyranosyl] -20 ( S ) -protopanaxatriol)
(13) 이카린(Icariin):3,4',5,7-Tetrahydroxy-8-prenylflavone-4'-Me ether-3-O-alpha-L-rhamnopyranoside, 7-O-beta-D-glucopyranoside(13) Icariin: 3,4 ', 5,7-Tetrahydroxy-8-prenylflavone-4'-Me ether-3-O-alpha-L-rhamnopyranoside, 7-O-beta-D-glucopyranoside
(14) 카멜리아사이드 A(Camelliaside A): 캄페롤 3-O-(2-O-갈락토피라노실-6-O-람노피라노실)글라이코사이드(Kampferol 3-O-(2-O-galactopyranoyl-6-O-rhamnopyranosyl)glucopyranoside)(14) Camelliaside A: Camperol 3-O- (2-O-galactopyranosyl-6-O-ramaminopyranosyl) glycoxide (Kampferol 3-O- (2-O-galactopyranoyl -6-O-rhamnopyranosyl) glucopyranoside)
(15) 카멜리아사이드 B(Camelliaside B): 캄페롤 3-O-(2-O-자이로피라노실-6-O-람노피라노실)글라이코사이드 (Kampferol 3-O-(2-O-xylopyranosyl-6-O-rhamnopyranosyl)glucopyranoside)(15) Camelliaside B: Camperol 3-O- (2-O-giopyranosyl-6-O-ramaminopyranosyl) glycoside (Kampferol 3-O- (2-O-xylopyranosyl- 6-O-rhamnopyranosyl) glucopyranoside)
(16) 글라이콘(Glycone): 비당체에 결합된 다양한 당 분자. (16) Glycone: A variety of sugar molecules bound to the asparagus.
(17) 전세포 반응: 세포를 파쇄하거나 효소를 분리정제 하지 않고 온전한 세포 전체를 이용한 반응(17) Whole cell reaction: Whole cell whole reaction without breaking cells or separating enzyme
(18) 산화환원효소: 생체에 필요한 에너지를 공급하기 위해 산화 환원반응을 촉매하는 효소. 유기화합물의 산화는 대부분 탈수소에 의해 일어난다. (18) Redox enzyme: An enzyme that catalyzes a redox reaction to supply energy required for a living body. The oxidation of organic compounds is mostly caused by dehydrogenation.
(19) 산화환원효소 추출물: 산화환원 효소가 포함된 리조비움 sp. GIN611 또는 산화환원 효소를 발현하는 재조합 단백질의 세포를 파쇄하여 얻은 세포 추출액(19) Redox enzyme extract: Rhodobium sp. Containing redox enzyme. Cell extracts obtained by disrupting cells of GIN611 or a recombinant protein expressing an oxidoreductase
(20) MALDI-TOF 질량분석기: Matrix Assisted Laser Desorption/ Ionization(레이저 보조 탈착/이온화)-Time of flight (20) MALDI-TOF mass spectrometer: Matrix Assisted Laser Desorption / Ionization -Time of flight
(21) HPLC: 고성능 액체크로마토그래피(High Performance Liquid Chromatography)(21) HPLC: High Performance Liquid Chromatography
(22) PCR: 중합 효소 연쇄 반응 - DNA의 어떤 영역을 특이적으로 증폭시키는 방법(22) PCR: Polymerase chain reaction - A method of specifically amplifying certain regions of DNA
(23) 클로닝: DNA 절편을 재조합 DNA 클로닝 벡터에 혼입시키고 이러한 재조합 DNA를 사용하는 숙주세포를 형질 전환시키는 방법(23) Cloning: A method of incorporating a DNA fragment into a recombinant DNA cloning vector and transforming a host cell using such a recombinant DNA
(24) bp: 염기쌍
(24) bp: base pair
이하, 본 발명의 실시예를 참조하여 본 발명을 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in detail with reference to examples of the present invention. It is to be understood by those skilled in the art that these embodiments are merely illustrative examples of the present invention in order to more particularly illustrate the present invention and that the scope of the present invention is not limited by these embodiments .
실시예Example 1) One) 리조비움Risibium spsp . . GIN611GIN611 의 선별Selection of
토양 시료 10 g을 Phosphate Buffered Saline (PBS) 50 mL에 첨가하여, 상온에서 2 시간 교반하였다. 혼탁액을 거름 종이를 이용하여 부유물을 걸러낸 후, 걸러진 미생물 용액을 하기 표 1의 최소배지 10 mL에 0.2 mL 첨가하고 30℃에서 3일간 배양하는 과정을 3회 반복한 후, 배양액 0.2 mL을 상기 액체 최소 배지와 1.5 % 한천으로 구성되는 고체 최소 배지에 도말하여 30℃에서 24 시간 배양하여, 각각의 미생물을 액체 최소 배지에 3 mL씩 배양하여 반응시키고, 진세노사이드 CK에 활성이 높은 콜로니를 동정한 결과, 리조비움 종으로 명명하였다. 10 g of soil sample was added to 50 mL of phosphate buffered saline (PBS), and the mixture was stirred at room temperature for 2 hours. The suspended solution was filtered using a filter paper, and 0.2 mL of the filtered microorganism solution was added to the minimum amount of 10 mL of the following Table 1, followed by 3 times of incubation at 30 DEG C for 3 days. Then, 0.2 mL of the culture solution was added The cells were cultured at 30 ° C. for 24 hours in a solid minimal medium consisting of the liquid minimal medium and 1.5% agar. Each of the microorganisms was cultured in a liquid minimal medium in an amount of 3 mL each. The colonies were cultured in a colony of high activity for ginsenoside CK Was identified as Rhizobium species.
실시예Example 2) 당 분해 효소 추출물의 제조 2) Preparation of glucosease digestion enzyme extract
효모추출물(5 g/L), 펩톤(10 g/L), 염화나트륨(10 g/L)으로 구성된 배지(이하 완전배지)에 배양된 세포를 PBS 완충용액(pH 7.0) 으로 3회 세척하여 회수된 세포 외부의 배지 성분을 제거하였다. 회수된 세포를 세포 부피의 5배의 20 mM 인산 완충용액, 1 mM EDTA (ethylenediaminetetraacetic acid), 1 mM phenylmethanesulfonylfluoride (PMSF), 1 mM Dithiothretiol (DTT)로 구성 (이하 파쇄 용액) 된 완충용액에 혼탁한 후, 초음파파쇄기를 이용하여 세포를 파쇄한 후, 13,000 rpm에서 30 분간 원심분리한 후, 상등액을 회수하여 최종 당 분해 효소 추출물을 생산하였다.
Cells cultured in a medium consisting of yeast extract (5 g / L), peptone (10 g / L) and sodium chloride (10 g / L) (hereinafter referred to as complete medium) were washed three times with PBS buffer The medium components outside the cells were removed. The recovered cells were suspended in a buffer solution consisting of 20 mM phosphate buffer, 1 mM ethylenediaminetetraacetic acid (EDTA), 1 mM phenylmethanesulfonylfluoride (PMSF), and 1 mM dithiothreitol (DTT) After the cells were disrupted using an ultrasonic disrupter, the cells were centrifuged at 13,000 rpm for 30 minutes, and the supernatant was recovered to produce a final saccharolytic enzyme extract.
실시예Example 3) 3) 진세노사이드Gin Senocide 첨가에 의한 당 분해 효소의 발현 유도 Induction of glucosease-induced expression of glucosease
표 1에 제시한 액체 최소배지(이하 M9/진세노사이드 배지)를 이용하여 배양된 세포를 PBS 완충용액으로 3회 세척하여 회수된 세포 외부의 배지 성분을 제거하였다. 회수된 세포를 5 배 부피의 파쇄용액에 혼탁한 후, 초음파 파쇄기를 이용하여 세포를 파쇄한 후, 13,000 rpm에서 30 분간 원심분리 후, 상등액을 회수하여 최소 배지에서 발현 유도된 당 분해 효소를 포함한 세포추출물을 생산하였다.
Cells cultured using the liquid minimal medium (hereinafter referred to as M9 / ginsenoside medium) shown in Table 1 were washed three times with PBS buffer solution to remove the medium components outside the recovered cells. The recovered cells were suspended in a 5-fold volume of a disruption solution, and the cells were disrupted using an ultrasonic disrupter. After centrifugation at 13,000 rpm for 30 minutes, the supernatant was recovered, Cell extracts.
실시예Example 4) 4) 완전배지와With a complete badge M9M9 // 진세노사이드Gin Senocide 배지에서 제조된 단백질의 반응성 및 발현양 비교 Comparison of the reactivity and expression level of the protein produced in the medium
상기한 실시예 2와 실시예 3에서 생산된 세포 추출물의 단백질 양을 정량한 후, 동일한 양의 단백질을 사용하여 진세노사이드 CK에 대한 반응성을 비교하였다. 비교한 결과 실시예 3에서 생산된 세포 추출물이 실시예 2에서 생산된 세포 추출물에 비해 높은 반응성이 나타남을 확인할 수 있었다. 이를 도 2에 나타내었다. 동일한 양의 단백질을 사용하여 반응을 보낸 후 각 단백질 양에 따라 반응성을 비교하였다. 결과에서 보이는 바와 같이 실시예 2의 완전 배지에 배양된 셀로부터 제조된 단백질의 경우 500이상의 단백질 사용시 진세노사이드 CK 가 완전히 PPD(S)로 전환되는 반면, 실시예 3의 M9/진세노사이드 배지에 배양된 셀로부터 제조된 단백질은 100이상에서 진세노사이드 CK 가 PPD(S)로 전환되는 것을 볼 수 있었다. 또한 두 추출물의 단백질 발현 차이를 SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis)로 비교하여 도 1에 나타내었다. 도 1의 화살표로 표시된 것은 실시예 2와 실시예 3에서의 효소 추출물의 단백질 발현 정도를 비교하였을 때 발현량이 다른 단백질을 나타낸 것이다.
The amounts of the protein extracts of the cell extracts produced in Examples 2 and 3 were quantified, and then the reactivity to ginsenoside CK was compared using the same amount of protein. As a result of the comparison, it was confirmed that the cell extract produced in Example 3 showed higher reactivity than the cell extract produced in Example 2. This is shown in FIG. After reacting using the same amount of protein, the reactivity was compared according to the amount of each protein. As shown in the results, in the case of the protein prepared from the cell cultured in the complete medium of Example 2, when the protein of 500 or more was used, the ginsenoside CK was completely converted to PPD (S), whereas the M9 / ginsenoside culture medium of Example 3 Showed that the protein prepared from the cells cultured in the medium was converted to PPD (S) by a ginsenoside CK of 100 or more. The differences in the protein expression of the two extracts were compared by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and are shown in FIG. The arrows in FIG. 1 indicate proteins having different expression levels when the protein expression levels of the enzyme extracts in Examples 2 and 3 were compared.
실시예Example 5) 당 분해 효소의 분리 정제 5) Isolation and purification of glucosease
신규한 리조비움 sp. GIN611로부터 당 분해 반응을 수행하는 효소를 정제하기 위하여 10L 진세노사이드를 첨가한 표 1의 액체 제한 배지를 이용하여 미생물을 배양하였다. 배양한 미생물에서 실시예 2와 같은 방법으로 효소 추출물을 제조하였다. 제조된 효소 추출물을 60-70% 포화된 암모늄 설페이트 침전 분획법을 통해 준비하였다. 준비된 단백질을 FPLC 및 여러 가지 컬럼을 이용하여 분리 정제하였다. 분리 정제된 단백질은 최종적으로 Native-gel을 이용하여 최종 반응성을 확인하였다.
Novel phosphoribum sp. The microorganisms were cultured using the liquid restriction medium of Table 1 to which 10 L ginsenoside was added to purify the enzyme that performs the glucose degradation reaction from GIN611. An enzyme extract was prepared from the cultured microorganism in the same manner as in Example 2. The prepared enzyme extract was prepared by 60-70% saturated ammonium sulfate precipitation fractionation. The prepared proteins were separated and purified using FPLC and various columns. The final purified proteins were finally reacted using Native-gel.
실시예Example 6) 신규효소의 N 말단 및 내부 6) N-terminal and internal 펩타이드Peptides 서열 결정 Sequencing
실시예 5에서 분리정제하여 얻어진 산화환원효소의 N-말단 아미노산의 서열은 12% SDS-PAGE 전기영동 후 절을 PVDF 막으로 옮긴 후 (바이오 래드), 에드만 분석기법을 이용하는 procise 491 sequencer(어플라이드 바이오 시스템, 칼리프)를 이용하여 결정하였다. 내부 펩타이드의 서열 결정은 서열 결정용 트립신(프로메가)으로 처리 후 얻어진 펩타이드 단편의 서열을 LTQ-orbitrap 질량 분석기를 이용하여 분석 후, PEAKS 프로그램을 이용하여 서열을 결정하였다.
The sequence of the N-terminal amino acid of the oxidoreductase obtained by separation and purification in Example 5 was determined by 12% SDS-PAGE electrophoresis and then transferred to a PVDF membrane (BioRad), followed by a procise 491 sequencer Biosystems, Calif.). The sequence of the peptide fragments obtained after treatment with trypsin (promega) for sequencing was analyzed using an LTQ-orbitrap mass spectrometer and sequenced using the PEAKS program.
실시예Example 7) 7) 리조비움Risibium spsp . . GIN611 로부터From GIN611 전체 세포 Whole cell DNADNA 단리 Isolation
완전 배지에 배양된 세포를 4℃에서 4,000 rpm으로 10분 원심분리하여 세포를 침전시켰다. 상층액을 제거하고 세포를 10 mL 의 lysis 완충용액(15% 수크로즈, 25 mM EDTA, 25 mM Tris 완충용액)으로 녹인 후 1.2 mL EDTA(0.5M) 과 0.13 mL pronase를 첨가 후 37℃에서 10분간 방치하였다. 이후 10% SDS 1 mL를 넣고 70℃에서 10 분간 방치 후 얼음물에 10분간 방치하였다. 이후 5M 포타슘아세테이트 2.5 mL을 놓고 얼음물에 15분간 반응시켰다. 상기 용액의 양과 동일한 양의 페놀-클로로포름 혼합물(50:50)을 넣고 30 분 혼합하여 준 다음 4℃, 4,000 rpm에서 10분간 원심분리 후 상등액을 획득하였다. 얻어진 용액의 0.5배에 달하는 클로로포름을 더하고 서서히 혼합한 후 4℃, 4,000 rpm에서 10분간 원심분리하고 상등액을 획득한 후 50mg/mL의 양에 달하도록 RNase 처리 후 37℃에서 1시간 반응하게 하였다. 이후 0.8배에 달하는 아이소프로판올을 첨가 후 2.5 배에 달하는 80% 에탄올을 첨가하고 서서히 흔들어준 다음 파스퇴르 피펫을 이용하여 전체 세포 DNA를 수집하여 1.5 mL 마이크로 튜브에 옮긴 후, 건조시킨 후 멸균수에 녹여 사용하였다.
Cells cultured in complete medium were centrifuged at 4,000 rpm for 10 minutes at 4 ° C to precipitate the cells. The supernatant was removed and the cells were dissolved in 10 mL of lysis buffer (15% sucrose, 25 mM EDTA, 25 mM Tris buffer), and then 1.2 mL EDTA (0.5 M) and 0.13 mL pronase were added, Min. Then, 1 mL of 10% SDS was added, and the mixture was allowed to stand at 70 ° C for 10 minutes and then left in ice water for 10 minutes. Then, 2.5 mL of 5M potassium acetate was placed and allowed to react in ice water for 15 minutes. A phenol-chloroform mixture (50:50) in an amount equal to the amount of the solution was added and mixed for 30 minutes. Then, the supernatant was obtained by centrifugation at 4,000 rpm for 10 minutes at 4 ° C. The resulting solution was added with 0.5 times of chloroform, and the mixture was slowly mixed. The mixture was centrifuged at 4,000 rpm for 10 minutes at 4 ° C, and the supernatant was obtained. After the RNase treatment, the mixture was reacted at 37 ° C for 1 hour. After adding 0.8 times as much isopropanol, 2.5 times of 80% ethanol was added and gently shaken. Then, whole cell DNA was collected using a Pasteur pipette, transferred to a 1.5 mL microtube, dried and dissolved in sterilized water Respectively.
실시예Example 8) 8) PCRPCR 을 이용한 당 분해 효소의 유전자서열 분석Gene sequence analysis of glucosease
실시예 6을 거쳐 얻어진 N-말단 아미노산 서열과 내부 서열로부터 프라이머를 제작한 후 실시예 7의 과정을 거쳐 분리된 게놈 DNA을 주형으로 이용하여 산화환원효소의 부분 DNA 단편을 얻었다. 얻어진 DAN 단편에 특이적으로 붙는 프라이머를 제작하여 역전사(Inverse) PCR 방법을 이용하여 나머지 서열을 획득하였다. Inverse PCR 에 사용된 주형은 게놈 DNA 단편을 Hind III 제한 효소로 절단한 후 라이게이즈를 처리하여 셀프라이게이션이 된 DNA 라이브러리를 사용하였다.
A primer was prepared from the N-terminal amino acid sequence and the internal sequence obtained through Example 6, and the genomic DNA isolated through the procedure of Example 7 was used as a template to obtain a partial DNA fragment of an oxidoreductase. A primer specifically attached to the obtained DAN fragment was prepared and the remaining sequence was obtained using an inverse PCR method. For the template used for the inverse PCR, the genomic DNA fragment was digested with Hind III restriction enzyme, and the library was subjected to ligation and the self-ligated DNA library was used.
실시예Example 9) 발현용 벡터에의 재조합 및 형질 전환된 9) recombination into an expression vector and transformation 대장균에서의In E. coli 발현 Expression
얻어진 산화환원효소의 유전자 서열은 각각 BamHI/SalI 제한 효소로 소화하여 그 분획을 각각 pETDuet-1 (노바젠)에 라이게이션하여 재조합 플라스미드를 생성, 발현용 대장균인 Rosetta-gami2(DE3)에 형질 전환 시켰다. 얻어진 형질 전환 대장균은 암피실린을 함유한 배지에서 배양하였으며, 세포현탁도가 0.3 내지 0.7이 되었을 때 IPTG를 부가하고 20℃에서 15시간을 더 배양함으로써 효소의 발현을 유도하였다.
Gene sequences of the obtained oxidoreductase were digested with BamHI / SalI restriction enzyme, and the fractions were ligated to pETDuet-1 (Novagen), respectively, to generate recombinant plasmids. Transformed into Escherichia coli Rosetta-gami2 (DE3) . The resulting transformed E. coli was cultured in a medium containing ampicillin. When the cell suspension degree was 0.3 to 0.7, IPTG was added and the expression of the enzyme was induced by further culturing at 20 ° C for 15 hours.
실시예Example 10) 서열번호 3의 신규 효소와 유사도 60% 이상인 3개의 효소의 10) a mutant of three enzymes having a degree of similarity of 60% or more with the novel enzyme of SEQ ID NO: 3 진세노사이드Gin Senocide 및 천연물 유래 And natural products 글라이코사이드의Glycoside 글루코오스 분해 반응성 조사 Investigation of glucose degradation reactivity
아그로박테리움(Agrobacterium) sp., 스핑고박테리움(Sphingobacterium) sp., 스테노트로포모나제(Stenotrophomonase) sp. 유래의 서열번호 3과 60% 이상의 아미노산 유사도가 있는 효소를 클로닝하여 진세노사이드에 대한 글루코오스 분해 반응성을 조사하였다. 각 미생물 유래의 효소는 진세노사이드의 글루코오스 잔기에 산화반응을 통해 당 분해하는 것을 확인하였다. 또한, 플라보노이드계 이카린(Icarlin), 카멜리아사이드 A(Camelliaside A), 카멜리아사이드 B(Camelliaside B)를 이용하여 당분해 활성이 있음을 확인하였다.
Agrobacterium sp., Sphingobacterium sp., Stenotrophomonase sp., Agrobacterium sp. And an enzyme having an amino acid similarity of 60% or more to the resulting sequence number 3 was cloned to examine the glucose degradation reactivity to ginsenoside. It was confirmed that the enzyme derived from each microorganism was degraded to glucose by the oxidation reaction to the glucose residue of ginsenoside. In addition, it was confirmed that sugar chains were active using flavonoids such as Icarlin, Camelliaside A and Camelliaside B.
실시예Example 11) 유도발현된 효소를 이용한 11) Induced expression of the enzyme 비당체Antiserum 생산 활성 측정 Production activity measurement
실시예 10에서 발현이 유도된 효소를 실시예 2의 효소 제조 방법으로 제조 한 후 진세노사이드 CK를 기질로 하여 비당체 생산 활성을 측정하였다. 또한, 플라보노이드계 이카린, 카멜리아사이드 A, 카멜리아사이드 B를 이용하여 당분해 활성이 있음을 확인하였다.
The expression-induced enzyme in Example 10 was prepared by the enzyme preparation method of Example 2, and the activity of producing an aspartic acid was measured using ginsenoside CK as a substrate. In addition, it was confirmed that sugar chains were active using flavonoid icarin, camellia side A and camellia side B.
실시예Example 12) 다양한 12) Various 비당체Antiserum 구조에 따른 According to structure 당분해Sugar 활성 측정 및 Active measurement and 글라이콘에On the glacier 대한 기질특이성 조사 Investigation of substrate specificity
리조비움 sp. GIN611 유래의 산화환원 효소로부터 발현이 유도된 효소를 플라보노이드계 이카린, 카멜리아사이드 A, 카멜리아사이드 B를 기질로 하여 상기 반응 방법에 따라 반응시킨 후, 말디 질량분석기를 이용하여 활성을 측정한 결과, 카멜리아사이드 A에 붙어 있는 갈락토오즈(galactose)의 산화반응 및 당분해 활성을 확인하였다. 또한 카멜리아사이드 B에 붙어 있는 자일로스(Xylose)의 산화반응 및 당분해 활성을 확인하였다. 즉, 플라보노이드계열의 비당체 구조에 결합된 당에 대한 당분해 활성을 보이며, 글루코즈 이외에 갈락토오스, 자일로스를 산화시킨 후 당을 분해하는 기능이 있음을 확인하였다 (도 5). 또한, 이카린에 붙어 있는 글루코오스(glucose)의 산화반응 및 당분해 활성을 확인하였다 (도 6).
Rizobium sp. An enzyme whose expression was induced from GIN611-derived oxidoreductase was reacted according to the above reaction method using flavonoid icarin, camellia side A, and camellia side B as substrates, and then activity was measured using a Mali mass spectrometer. As a result, The oxidation reaction and galactolytic activity of galactose on Camellia side A were confirmed. In addition, the oxidation reaction and the sugar chain activity of Xylose on Camellia side B were confirmed. In other words, it showed a sugar-soluble activity for sugar bound to a flavonoid-based non-sugar body structure, and it had a function of oxidizing galactose and xylose in addition to glucose and then decomposing sugar (Fig. 5). In addition, the oxidation reaction of glucose attached to icarin and the activity of sugar disruption were confirmed (Fig. 6).
실시예Example 13) 13) 글라이콘Glacial 결합에 대한 기질특이성 조사 Investigation of substrate specificity for binding
4-나이트로페놀-알파-D-글루코피라노사이드(4-Nitrophenyl α-D-glucopyranoside), 4-나이트로페놀 베타-D-글루코피라노사이드(4-Nitrophenyl β-D-glucopyranoside), 4-나이트로페놀-알4-Nitrophenyl? -D-glucopyranoside, 4-Nitrophenyl? -D-glucopyranoside, 4-Nitrophenyl? -D-glucopyranoside, - Nitrophenol-Al
파-D-갈락토피라노사이드(4-Nitrophenyl α-D-galactopyranoside), 4-나이트로페놀-베타-D-갈락토피라노사이드(p-Nitrophenyl β-D-galactopyranoside)를 이용하여 알파 결합 및 베타 결합에 대한 효소의 특이성을 조사한 결과 알파와 베타에 모두 활성이 있음을 확인하였다.(표 2)D-galactopyranoside, 4-Nitrophenyl-D-galactopyranoside, and 4-Nitrophenyl-D-galactopyranoside. And beta-linkage, the results showed that both alpha and beta were active. (Table 2)
<110> AMOREPACIFIC CORPORATION <120> A NOVEL SOIL MICROORGANISM, A NOVEL OXIDOREDUCTASE SEPERATED FROM THE SAID SOIL MICROORGANISM, A GENE ENCODING THE SAID OXIDOREDUCTASE AND A METHODS FOR PRODUCING FLAVONOID AGLYCONE USING THEREOF <130> 10P315IND <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 971 <212> DNA <213> Rhizobium sp. GIN611 <400> 1 gaatgcgagc ttaccatgca gtcgagcgcc ccgcaagggg agcggcagac gggtgagtaa 60 cgcgtgggaa tctaccgagc cctgcggaat agctccggga aactggaatt aataccgcat 120 acgccctacg ggggaaagat ttatcggggt ttgatgagcc cgcgttggat tagctagttg 180 gtggggtaaa ggcctaccaa ggcgacgatc catagctggt ctgagaggat gatcagccac 240 attgggactg agacacggcc caaactccta cgggaggcag cagtggggaa tattggacaa 300 tgggcgcaag cctgatccag ccatgccgcg tgagtgatga aggccctagg gttgtaaagc 360 tctttcaacg gtgaagataa tgacggtaac cgtagaagaa gccccggcta acttcgtgcc 420 agcagccgcg gtaatacgaa gggggctagc gttgttcgga attactgggc gtaaagcgca 480 cgtaggcgga tatttaagtc aggggtgaaa tcccggggct caacctcgga actgcctttg 540 atactgggta tcttgagtat ggaagaggta agtggaattg cgagtgtaga ggtgaaattc 600 gtagatattc gcaggaacac cagtggcgaa ggcggcttac tggtccatta ctgacgctga 660 ggtgcgaaag cgtggggagc aaacaggatt agataccctg gtagtccacg ccgtaaacga 720 tgaatgttag ccgtcgggca gtatactgtt cggtggcgca gctaacgcat taaacattcc 780 gcctggggag tacggtcgca agattaaaac tcaaaggaat tgacgggggc ccgcacaagc 840 ggtggagcat gtggtttaat tcgaagcaac gcgcagaacc ttaccagctc ttgacattcg 900 gggtatgggc agtggagaca ttgtccttca gttaggctgg ccccagaaca ggtgctgcat 960 ggctgtcgtc a 971 <210> 2 <211> 1686 <212> DNA <213> Rhizobium sp. GIN611 <400> 2 atggcgaata atcattacga cgcgattgtt gtcggttcgg ggatcagcgg aggctgggcc 60 gcaaaagaac tcacacaaaa gggtctaaaa gttcttcttc ttgaacgtgg cagaaacatt 120 gaacacatca ccgattacca gaatgcagac aaggaagcgt gggactaccc tcaccgcaat 180 cgtgccacgc aggaaatgaa ggcaaagtat ccggttctga gccgcgatta tctgttggaa 240 gaagccacac tcggcatgtg ggctgacgaa caagaaacgc cttacgtcga agaaaaacgt 300 ttcgattggt tccgtgggta ccacgtgggt ggtcgttctc tcctttgggg ccgtcaaacc 360 tatcgatggt cacagaccga ttttgaggcc aatgcaaaag aaggcatcgc tgttgattgg 420 cctattcgtt accaggatgt tgcgccgtgg tacgactacg ttgaacggtt tgcgggcatt 480 tccggcagca aagaagggct cgatatcctt cctgatggtg aattccttcc accaatccct 540 ttgaactgcg tagaagaaga tgtggcgcgt cgtctgaagg acaggttcaa gggcacgcgt 600 cacctgatca attcccgctg cgccaacatc acacaggaac ttcctgacca ggatcgcaca 660 cgctgtcagt tcagaaacaa gtgtcggttg ggctgtccgt tcggcggtta cttcagcaca 720 caatcatcaa ccctgcctgc ggccgtcgcg accggcaatc tcaccctgcg gccgttctca 780 atcgtcaagg agatccttta cgacaaggac aagaagaagg cccgcggtgt cgagatcatc 840 gatgccgaaa ccaacatgac ctatgaatat accgcagaca ttatcttcct gaatgcctca 900 acgctgaatt cgacctgggt cctgatgaac tcagccaccg acgtgtggga agggggattg 960 ggaagcagtt ccggcgaact cggccacaat gtcatggacc atcatttccg catgggtgcg 1020 acgggtgagg tcgaaggatt tgacgagttc tatttcaagg gacgccgccc ggcaggtttc 1080 tacattcctc gcttccgcaa catcggcgat gaaaagcgta aatatctgcg tggttttggt 1140 tatcagggtt cggcaagccg ctcccgctgg gagcgcgaaa tcgccgagat gaatattgga 1200 gcagattata aagacgcgtt gaccgaacca ggcggctgga caatcggcat gacagccttt 1260 ggcgagatgc tgccctacca cgaaaatcgc gtgaagcttg accaaaacaa aaaggacaaa 1320 tgggggttgc cggtcctttc aatgaatgtc gagttgaaac aaaacgaact cgatatgcgt 1380 gaagacatgg tgaatgacgc tgtcgaaatg tttgaggccg tcggcatcaa gaacgtcaaa 1440 ccgacccgag gcagctacgc acccggtatg ggtattcacg aaatgggaac ggcgcgcatg 1500 ggccgcgatc caaagtcttc ggttctaaat ggcaacaacc aggtgtggga tgcccctaac 1560 gtgttcgtga cggatggtgc ctgcatgacg tctgctgcct gtgtaaatcc gtctctcacc 1620 tacatggcac tgacggcacg tgccgccgat tttgccgtgt cagagctcaa gaagggaaat 1680 ctgtaa 1686 <210> 3 <211> 561 <212> PRT <213> Rhizobium sp. GIN611 <400> 3 Met Ala Asn Asn His Tyr Asp Ala Ile Val Val Gly Ser Gly Ile Ser 1 5 10 15 Gly Gly Trp Ala Ala Lys Glu Leu Thr Gln Lys Gly Leu Lys Val Leu 20 25 30 Leu Leu Glu Arg Gly Arg Asn Ile Glu His Ile Thr Asp Tyr Gln Asn 35 40 45 Ala Asp Lys Glu Ala Trp Asp Tyr Pro His Arg Asn Arg Ala Thr Gln 50 55 60 Glu Met Lys Ala Lys Tyr Pro Val Leu Ser Arg Asp Tyr Leu Leu Glu 65 70 75 80 Glu Ala Thr Leu Gly Met Trp Ala Asp Glu Gln Glu Thr Pro Tyr Val 85 90 95 Glu Glu Lys Arg Phe Asp Trp Phe Arg Gly Tyr His Val Gly Gly Arg 100 105 110 Ser Leu Leu Trp Gly Arg Gln Thr Tyr Arg Trp Ser Gln Thr Asp Phe 115 120 125 Glu Ala Asn Ala Lys Glu Gly Ile Ala Val Asp Trp Pro Ile Arg Tyr 130 135 140 Gln Asp Val Ala Pro Trp Tyr Asp Tyr Val Glu Arg Phe Ala Gly Ile 145 150 155 160 Ser Gly Ser Lys Glu Gly Leu Asp Ile Leu Pro Asp Gly Glu Phe Leu 165 170 175 Pro Pro Ile Pro Leu Asn Cys Val Glu Glu Asp Val Ala Arg Arg Leu 180 185 190 Lys Asp Arg Phe Lys Gly Thr Arg His Leu Ile Asn Ser Arg Cys Ala 195 200 205 Asn Ile Thr Gln Glu Leu Pro Asp Gln Asp Arg Thr Arg Cys Gln Phe 210 215 220 Arg Asn Lys Cys Arg Leu Gly Cys Pro Phe Gly Gly Tyr Phe Ser Thr 225 230 235 240 Gln Ser Ser Thr Leu Pro Ala Ala Val Ala Thr Gly Asn Leu Thr Leu 245 250 255 Arg Pro Phe Ser Ile Val Lys Glu Ile Leu Tyr Asp Lys Asp Lys Lys 260 265 270 Lys Ala Arg Gly Val Glu Ile Ile Asp Ala Glu Thr Asn Met Thr Tyr 275 280 285 Glu Tyr Thr Ala Asp Ile Ile Phe Leu Asn Ala Ser Thr Leu Asn Ser 290 295 300 Thr Trp Val Leu Met Asn Ser Ala Thr Asp Val Trp Glu Gly Gly Leu 305 310 315 320 Gly Ser Ser Ser Gly Glu Leu Gly His Asn Val Met Asp His His Phe 325 330 335 Arg Met Gly Ala Thr Gly Glu Val Glu Gly Phe Asp Glu Phe Tyr Phe 340 345 350 Lys Gly Arg Arg Pro Ala Gly Phe Tyr Ile Pro Arg Phe Arg Asn Ile 355 360 365 Gly Asp Glu Lys Arg Lys Tyr Leu Arg Gly Phe Gly Tyr Gln Gly Ser 370 375 380 Ala Ser Arg Ser Arg Trp Glu Arg Glu Ile Ala Glu Met Asn Ile Gly 385 390 395 400 Ala Asp Tyr Lys Asp Ala Leu Thr Glu Pro Gly Gly Trp Thr Ile Gly 405 410 415 Met Thr Ala Phe Gly Glu Met Leu Pro Tyr His Glu Asn Arg Val Lys 420 425 430 Leu Asp Gln Asn Lys Lys Asp Lys Trp Gly Leu Pro Val Leu Ser Met 435 440 445 Asn Val Glu Leu Lys Gln Asn Glu Leu Asp Met Arg Glu Asp Met Val 450 455 460 Asn Asp Ala Val Glu Met Phe Glu Ala Val Gly Ile Lys Asn Val Lys 465 470 475 480 Pro Thr Arg Gly Ser Tyr Ala Pro Gly Met Gly Ile His Glu Met Gly 485 490 495 Thr Ala Arg Met Gly Arg Asp Pro Lys Ser Ser Val Leu Asn Gly Asn 500 505 510 Asn Gln Val Trp Asp Ala Pro Asn Val Phe Val Thr Asp Gly Ala Cys 515 520 525 Met Thr Ser Ala Ala Cys Val Asn Pro Ser Leu Thr Tyr Met Ala Leu 530 535 540 Thr Ala Arg Ala Ala Asp Phe Ala Val Ser Glu Leu Lys Lys Gly Asn 545 550 555 560 Leu <110> AMOREPACIFIC CORPORATION <120> A NOVEL SOIL MICROORGANISM, A NOVEL OXIDOREDUCTASE SEPERATED FROM THE SAID SOIL MICROORGANISM, A GENE ENCODING THE SAID OXIDOREDUCTASE AND A METHODS FOR PRODUCING FLAVONOID AGLYCONE USING THEREOF <130> 10P315IND <160> 3 <170> Kopatentin 1.71 <210> 1 <211> 971 <212> DNA <213> Rhizobium sp. GIN611 <400> 1 gaatgcgagc ttaccatgca gtcgagcgcc ccgcaagggg agcggcagac gggtgagtaa 60 cgcgtgggaa tctaccgagc cctgcggaat agctccggga aactggaatt aataccgcat 120 acgccctacg ggggaaagat ttatcggggt ttgatgagcc cgcgttggat tagctagttg 180 gtggggtaaa ggcctaccaa ggcgacgatc catagctggt ctgagaggat gatcagccac 240 attgggactg agacacggcc caaactccta cgggaggcag cagtggggaa tattggacaa 300 tgggcgcaag cctgatccag ccatgccgcg tgagtgatga aggccctagg gttgtaaagc 360 tctttcaacg gtgaagataa tgacggtaac cgtagaagaa gccccggcta acttcgtgcc 420 agcagccgcg gtaatacgaa gggggctagc gttgttcgga attactgggc gtaaagcgca 480 cgtaggcgga tatttaagtc aggggtgaaa tcccggggct caacctcgga actgcctttg 540 atactgggta tcttgagtat ggaagaggta agtggaattg cgagtgtaga ggtgaaattc 600 gtagatattc gcaggaacac cagtggcgaa ggcggcttac tggtccatta ctgacgctga 660 ggtgcgaaag cgtggggagc aaacaggatt agataccctg gtagtccacg ccgtaaacga 720 tgaatgttag ccgtcgggca gtatactgtt cggtggcgca gctaacgcat taaacattcc 780 gcctggggag tacggtcgca agattaaaac tcaaaggaat tgacgggggc ccgcacaagc 840 ggtggagcat gtggtttaat tcgaagcaac gcgcagaacc ttaccagctc ttgacattcg 900 gggtatgggc agtggagaca ttgtccttca gttaggctgg ccccagaaca ggtgctgcat 960 ggctgtcgtc a 971 <210> 2 <211> 1686 <212> DNA <213> Rhizobium sp. GIN611 <400> 2 atggcgaata atcattacga cgcgattgtt gtcggttcgg ggatcagcgg aggctgggcc 60 gcaaaagaac tcacacaaaa gggtctaaaa gttcttcttc ttgaacgtgg cagaaacatt 120 gaacacatca ccgattacca gaatgcagac aaggaagcgt gggactaccc tcaccgcaat 180 cgtgccacgc aggaaatgaa ggcaaagtat ccggttctga gccgcgatta tctgttggaa 240 gaagccacac tcggcatgtg ggctgacgaa caagaaacgc cttacgtcga agaaaaacgt 300 ttcgattggt tccgtgggta ccacgtgggt ggtcgttctc tcctttgggg ccgtcaaacc 360 tatcgatggt cacagaccga ttttgaggcc aatgcaaaag aaggcatcgc tgttgattgg 420 cctattcgtt accaggatgt tgcgccgtgg tacgactacg ttgaacggtt tgcgggcatt 480 tccggcagca aagaagggct cgatatcctt cctgatggtg aattccttcc accaatccct 540 ttgaactgcg tagaagaaga tgtggcgcgt cgtctgaagg acaggttcaa gggcacgcgt 600 cacctgatca attcccgctg cgccaacatc acacaggaac ttcctgacca ggatcgcaca 660 cgctgtcagt tcagaaacaa gtgtcggttg ggctgtccgt tcggcggtta cttcagcaca 720 caatcatcaa ccctgcctgc ggccgtcgcg accggcaatc tcaccctgcg gccgttctca 780 atcgtcaagg agatccttta cgacaaggac aagaagaagg cccgcggtgt cgagatcatc 840 gatgccgaaa ccaacatgac ctatgaatat accgcagaca ttatcttcct gaatgcctca 900 acgctgaatt cgacctgggt cctgatgaac tcagccaccg acgtgtggga agggggattg 960 ggaagcagtt ccggcgaact cggccacaat gtcatggacc atcatttccg catgggtgcg 1020 acgggtgagg tcgaaggatt tgacgagttc tatttcaagg gacgccgccc ggcaggtttc 1080 tacattcctc gcttccgcaa catcggcgat gaaaagcgta aatatctgcg tggttttggt 1140 tatcagggtt cggcaagccg ctcccgctgg gagcgcgaaa tcgccgagat gaatattgga 1200 gcagattata aagacgcgtt gaccgaacca ggcggctgga caatcggcat gacagccttt 1260 ggcgagatgc tgccctacca cgaaaatcgc gtgaagcttg accaaaacaa aaaggacaaa 1320 tgggggttgc cggtcctttc aatgaatgtc gagttgaaac aaaacgaact cgatatgcgt 1380 gaagacatgg tgaatgacgc tgtcgaaatg tttgaggccg tcggcatcaa gaacgtcaaa 1440 ccgacccgag gcagctacgc acccggtatg ggtattcacg aaatgggaac ggcgcgcatg 1500 ggccgcgatc caaagtcttc ggttctaaat ggcaacaacc aggtgtggga tgcccctaac 1560 gtgttcgtga cggatggtgc ctgcatgacg tctgctgcct gtgtaaatcc gtctctcacc 1620 tacatggcac tgacggcacg tgccgccgat tttgccgtgt cagagctcaa gaagggaaat 1680 ctgtaa 1686 <210> 3 <211> 561 <212> PRT <213> Rhizobium sp. GIN611 <400> 3 Met Ala Asn Asn His Tyr Asp Ala Ile Val Val Gly Ser Gly Ile Ser 1 5 10 15 Gly Gly Trp Ala Ala Lys Glu Leu Thr Gln Lys Gly Leu Lys Val Leu 20 25 30 Leu Leu Glu Arg Gly Arg Asn Ile Glu His Ile Thr Asp Tyr Gln Asn 35 40 45 Ala Asp Lys Glu Ala Trp Asp Tyr Pro His Arg Asn Arg Ala Thr Gln 50 55 60 Glu Met Lys Ala Lys Tyr Pro Val Leu Ser Arg Asp Tyr Leu Leu Glu 65 70 75 80 Glu Ala Thr Leu Gly Met Trp Ala Asp Glu Gln Glu Thr Pro Tyr Val 85 90 95 Glu Glu Lys Arg Phe Asp Trp Phe Arg Gly Tyr His Val Gly Gly Arg 100 105 110 Ser Leu Leu Trp Gly Arg Gln Thr Tyr Arg Trp Ser Gln Thr Asp Phe 115 120 125 Glu Ala Asn Ala Lys Glu Gly Ile Ala Val Asp Trp Pro Ile Arg Tyr 130 135 140 Gln Asp Val Ala Pro Trp Tyr Asp Tyr Val Glu Arg Phe Ala Gly Ile 145 150 155 160 Ser Gly Ser Lys Glu Gly Leu Asp Ile Leu Pro Asp Gly Glu Phe Leu 165 170 175 Pro Pro Ile Pro Leu Asn Cys Val Glu Glu Asp Val Ala Arg Arg Leu 180 185 190 Lys Asp Arg Phe Lys Gly Thr Arg His Leu Ile Asn Ser Arg Cys Ala 195 200 205 Asn Ile Thr Gln Glu Leu Pro Asp Gln Asp Arg Thr Arg Cys Gln Phe 210 215 220 Arg Asn Lys Cys Arg Leu Gly Cys Pro Phe Gly Gly Tyr Phe Ser Thr 225 230 235 240 Gln Ser Ser Thr Leu Pro Ala Ala Val Ala Thr Gly Asn Leu Thr Leu 245 250 255 Arg Pro Phe Ser Ile Val Lys Glu Ile Leu Tyr Asp Lys Asp Lys Lys 260 265 270 Lys Ala Arg Gly Val Glu Ile Ile Asp Ala Glu Thr Asn Met Thr Tyr 275 280 285 Glu Tyr Thr Ala Asp Ile Phe Leu Asn Ala Ser Thr Leu Asn Ser 290 295 300 Thr Trp Val Leu Met Asn Ser Ala Thr Asp Val Trp Glu Gly Gly Leu 305 310 315 320 Gly Ser Ser Ser Gly Glu Leu Gly His Asn Val Met Asp His His Phe 325 330 335 Arg Met Gly Ala Thr Gly Glu Val Glu Gly Phe Asp Glu Phe Tyr Phe 340 345 350 Lys Gly Arg Arg Pro Ala Gly Phe Tyr Ile Pro Arg Phe Arg Asn Ile 355 360 365 Gly Asp Glu Lys Arg Lys Tyr Leu Arg Gly Phe Gly Tyr Gln Gly Ser 370 375 380 Ala Ser Arg Ser Arg Trp Glu Arg Glu Ile Ala Glu Met Asn Ile Gly 385 390 395 400 Ala Asp Tyr Lys Asp Ala Leu Thr Glu Pro Gly Gly Trp Thr Ile Gly 405 410 415 Met Thr Ala Phe Gly Glu Met Leu Pro Tyr His Glu Asn Arg Val Lys 420 425 430 Leu Asp Gln Asn Lys Lys Asp Lys Trp Gly Leu Pro Val Leu Ser Met 435 440 445 Asn Val Glu Leu Lys Gln Asn Glu Leu Asp Met Arg Glu Asp Met Val 450 455 460 Asn Asp Ala Val Glu Met Phe Glu Ala Val Gly Ile Lys Asn Val Lys 465 470 475 480 Pro Thr Arg Gly Ser Tyr Ala Pro Gly Met Gly Ile His Glu Met Gly 485 490 495 Thr Ala Arg Met Gly Arg Asp Pro Lys Ser Ser Val Leu Asn Gly Asn 500 505 510 Asn Gln Val Trp Asp Ala Pro Asn Val Phe Val Thr Asp Gly Ala Cys 515 520 525 Met Thr Ser Ala Ala Cys Val Asn Pro Ser Leu Thr Tyr Met Ala Leu 530 535 540 Thr Ala Arg Ala Asp Phe Ala Val Ser Glu Leu Lys Lys Gly Asn 545 550 555 560 Leu
Claims (9)
상기 생산 방법은 리조비움 sp. GIN611(Rhizobium sp. GIN611) KCTC11708BP 또는 그의 세포 추출물을 생촉매로 사용하고,
상기 플라보노이드 비당체는 플라보노이드 배당체(glycoside)에서 당을 분해하여 생산하는 것이며,
상기 플라보노이드 배당체는 이카린, 카멜리아사이드 A 및 카멜리아사이드 B로 이루어진 군에서 선택된 하나 이상인, 플라보노이드 비당체의 생산 방법.As a method for producing flavonoid aglycone,
The production method described above is a method for producing Ribium sp. GIN611 ( Rhizobium sp. GIN611) KCTC11708BP or a cell extract thereof was used as a biocatalyst,
The flavonoid asparagine is produced by decomposing sugar in a flavonoid glycoside,
Wherein the flavonoid glycosides are at least one selected from the group consisting of Icarin, Camelliaceide A and Camelliaceide B.
상기 플라보노이드 비당체는 플라보노이드 배당체(glycoside)에서 당을 분해하여 생산하는 것을 특징으로 하는 플라보노이드 비당체의 생산 방법.The method of claim 3,
Wherein the flavonoid aspartate is produced by degrading a sugar in a flavonoid glycoside.
상기 플라보노이드 배당체는 이카린, 카멜리아사이드 A 및 카멜리아사이드 B로 이루어진 군에서 선택된 것을 특징으로 하는 플라보노이드 비당체의 생산 방법.5. The method of claim 4,
Wherein the flavonoid glycoside is selected from the group consisting of icarin, camellia side A, and camellia side B.
상기 당은 글루코오스, 갈락토오스, 람노스, 아라비노스 및 자일로스로 이루어진 군에서 선택된 것을 특징으로 하는 플라보노이드 비당체의 생산 방법.The method according to claim 1 or 4,
Wherein the saccharide is selected from the group consisting of glucose, galactose, rhamnose, arabinose and xylose.
상기 당 분해는 당을 산화시켜서 분해하는 것을 특징으로 하는 플라보노이드 비당체의 생산 방법.The method according to claim 1 or 4,
Wherein the sugar chain is decomposed by oxidizing the saccharide.
상기 세포추출물은 진세노사이드를 첨가하여 효소 발현을 유도하여 제조한 것을 특징으로 하는 플라보노이드 비당체의 생산 방법.The method according to claim 1 or 3,
Wherein the cell extract is prepared by adding ginsenoside to induce expression of the enzyme.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100066307A KR101749681B1 (en) | 2010-07-09 | 2010-07-09 | A novel soil microorganism, a novel oxidoreductase seperated from the said soil microorganism, a gene encoding the said oxidoreductase and a methods for producing flavonoid aglycone using thereof |
US13/704,210 US20130084601A1 (en) | 2010-06-14 | 2011-06-14 | Novel soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene |
CN201180038765.9A CN103237884B (en) | 2010-06-14 | 2011-06-14 | New soil microorganisms, the new oxydo-reductase be separated from described soil microorganisms, the gene of encoding described oxydo-reductase and use described microorganism, oxydo-reductase and gene to produce the method for aglycone |
PCT/KR2011/004361 WO2011159092A2 (en) | 2010-06-14 | 2011-06-14 | Novel soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene |
JP2013515263A JP5878524B2 (en) | 2010-06-14 | 2011-06-14 | Novel soil microorganisms, novel oxidoreductases isolated from the soil microorganisms, genes encoding the oxidoreductases, and methods for producing aglycosides using them |
HK13112245.3A HK1184823A1 (en) | 2010-06-14 | 2013-10-30 | Novel soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene |
US14/588,790 US9394562B2 (en) | 2010-06-14 | 2015-01-02 | Soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100066307A KR101749681B1 (en) | 2010-07-09 | 2010-07-09 | A novel soil microorganism, a novel oxidoreductase seperated from the said soil microorganism, a gene encoding the said oxidoreductase and a methods for producing flavonoid aglycone using thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120005707A KR20120005707A (en) | 2012-01-17 |
KR101749681B1 true KR101749681B1 (en) | 2017-06-23 |
Family
ID=45611702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100066307A KR101749681B1 (en) | 2010-06-14 | 2010-07-09 | A novel soil microorganism, a novel oxidoreductase seperated from the said soil microorganism, a gene encoding the said oxidoreductase and a methods for producing flavonoid aglycone using thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101749681B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050209313A1 (en) * | 2001-06-29 | 2005-09-22 | Biorex Health Limited | Flavonoid concentrates |
-
2010
- 2010-07-09 KR KR1020100066307A patent/KR101749681B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050209313A1 (en) * | 2001-06-29 | 2005-09-22 | Biorex Health Limited | Flavonoid concentrates |
Also Published As
Publication number | Publication date |
---|---|
KR20120005707A (en) | 2012-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9394562B2 (en) | Soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene | |
Luo et al. | Biotransformation of saponins by endophytes isolated from Panax notoginseng | |
US10870857B2 (en) | Method of producing ginsenosides 20(S)-Rg3 and 20(S)-Rh2 using ginsenoside glycosidases | |
KR101079293B1 (en) | Method of rare ginsenosides production using thermostable beta-glycosidase | |
KR20160086498A (en) | Strain having ginsenoside bioconversion activity and manufacturing method of fermented red ginseng extract using the same | |
KR101851628B1 (en) | Novel purification method of 3,6-anhydro-L-galactose using microorganisms | |
Gao et al. | A highly selective ginsenoside Rb1-hydrolyzing β-D-glucosidase from Cladosporium fulvum | |
KR102258788B1 (en) | Novel Aspergillus niger C2-2 isolated from Nu-ruk producing ginsenoside compound K biotransformation enzyme and use thereof | |
DE60035801T2 (en) | BACTERIAL STRAINS OF GENUS KLEBSIELLA AND ITS GENERATING ENCODES FOR ISOMALTULOSE SYNTHASE | |
CN113980931B (en) | Application of glucuronic acid hydrolase and mutant thereof in preparation of oleanolic acid-beta-D-glucopyranosyl ester | |
KR101328785B1 (en) | Novel β-Glucosidase Protein and Use Thereof | |
CN109182439A (en) | The bioconversion method of the rare saponin(e Rg3 of ginseng | |
KR101749681B1 (en) | A novel soil microorganism, a novel oxidoreductase seperated from the said soil microorganism, a gene encoding the said oxidoreductase and a methods for producing flavonoid aglycone using thereof | |
KR101749680B1 (en) | A novel soil microorganism, a novel oxidoreductase seperated from the said soil microorganism, a gene encoding the said oxidoreductase and a methods for producing effective ginsenosides using thereof | |
CN113373168B (en) | Bacterial-derived alpha-L-rhamnosidase gene, gene expression and application thereof | |
KR101345942B1 (en) | Novel β-Glycosidase Protein and Use Thereof | |
US9926585B2 (en) | Method for producing a minor ginsenoside using a ginsenoside glycosidase | |
KR101781259B1 (en) | A method for production of gypenoside LXXV using ginsenoside glycosidase | |
KR101408985B1 (en) | Manufacturing method for various rare ginsenosides by β-glucosidase from Penicillium aculeatum | |
KR102644347B1 (en) | GH117A α-NEOAGAROBIOSE HYDROLASE DERIVED FROM A NOVEL AGAR-DEGRADING BACTERIUM AND PRODUCING METHOD OF L-AHG USING THE SAME | |
KR101385893B1 (en) | Novel β-Glycosidase Protein and Use Thereof | |
CN117660416A (en) | Glycosyl hydrolase, gene, vector, host cell and application | |
KR20060109189A (en) | Method of producing active ginsenoside from ginseng | |
KR101253470B1 (en) | Method for preparing beta-glycosidase protein and converting ginsenoside | |
GINSENOSIDE | Development of Functional Red Ginseng Products Using New Material Engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |