KR101745440B1 - 세탁기용 스팀발생장치 및 세탁기 - Google Patents

세탁기용 스팀발생장치 및 세탁기 Download PDF

Info

Publication number
KR101745440B1
KR101745440B1 KR1020150069500A KR20150069500A KR101745440B1 KR 101745440 B1 KR101745440 B1 KR 101745440B1 KR 1020150069500 A KR1020150069500 A KR 1020150069500A KR 20150069500 A KR20150069500 A KR 20150069500A KR 101745440 B1 KR101745440 B1 KR 101745440B1
Authority
KR
South Korea
Prior art keywords
water
steam
heater
duct
nozzle
Prior art date
Application number
KR1020150069500A
Other languages
English (en)
Other versions
KR20160135961A (ko
Inventor
김윤진
조진우
신권우
박지선
Original Assignee
주식회사 대화알로이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대화알로이테크 filed Critical 주식회사 대화알로이테크
Priority to KR1020150069500A priority Critical patent/KR101745440B1/ko
Publication of KR20160135961A publication Critical patent/KR20160135961A/ko
Application granted granted Critical
Publication of KR101745440B1 publication Critical patent/KR101745440B1/ko

Links

Images

Classifications

    • D06F39/008
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/04Rotary receptacles, e.g. drums adapted for rotation or oscillation about a horizontal or inclined axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

본 발명의 일 실시 예에 따른 세탁기용 스팀발생장치는 발열 페이스트 조성물을 통해서 형성되는 면상 발열체를 적어도 하나 이상 구비하고, 세탁수를 저장하는 터브와 연통하도록 구성되는 덕트내에 설치되어 상기 덕트내의 소정의 공간만을 가열하는 히터, 기 가열된 소정의 공간에 물을 공급하는 노즐, 및 상기 히터를 통해서 생성된 스팀을 상기 터브에 공급하도록 상기 소정의 공간을 향해 공기를 불어내는 블로워를 포함하고, 상기 발열 페이스트 조성물은 발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부, 분산제 0.5 내지 5중량부를 포함하고, 상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되거나 또는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되는 것을 특징으로 한다.

Description

세탁기용 스팀발생장치 및 세탁기{STEAM GENERATOR FOR WASHING MACHIN AND WASHING MACHINE USING THE SAME}
본 발명은 세탁기용 스팀발생장치 및 세탁기에 관한 것이다.
일반적으로 세탁기는 세탁물을 세제와 기계적 마찰을 이용하여 세탁하는 장치이다. 구조적 측면, 보다 상세하게는 세탁물을 수용하는 터브의 배향(orientation)에 따라, 상기 세탁기는 크게 탑 로딩(top-loading) 세탁기와 프론트 로딩(front-loading) 세탁기로 구분될 수 있다. 상기 탑 로딩 세탁기에서, 터브는 세탁기의 하우징내에서 세워지며, 이의 상부(top portion)에 입구가 형성된다. 따라서, 세탁물은 하우징의 상부에 형성되며 상기 터브의 입구와 연통하는 개구부를 통해 상기 터브내에 넣어진다. 또한, 상기 프론트 로딩 세탁기에서, 터브는 캐비닛내에서 뉘어지며, 이의 입구는 세탁기의 전면과 마주한다. 따라서, 세탁물은 상기 하우징의 전면에 형성되며 상기 터브의 입구와 연통하는 개구부를 통해 상기 터브내에 넣어진다. 상기 탑로딩 및 프론트 로딩 세탁기 둘 다에 있어서, 도어가 상기 하우징에 설치되며, 상기 하우징의 개구부들을 개폐한다.
이러한 형태의 세탁기들은 기본적인 세탁기능에 추가적으로 다른 다양한 기능을 가질 수 있다. 예를 들어, 세탁기는 세탁뿐만 아니라 건조도 수행할 수 있도록 설계될 수 있으며, 건조를 위한 뜨거운 공기를 공급하는 메커니즘을 추가적으로 포함할 수 있다. 또한, 세탁기는 세탁물을 리프레쉬(refresh)하는 기능을 가질 수 있다. 이러한 리프레쉬 기능을 위해, 세탁기는 세탁물에 스팀을 공급하는 메커니즘을 포함할 수 있다. 스팀은 액체상태의 물을 가열하여 만들어진 기체상태의 물이므로, 높은 온도를 가지며 세탁물에 쉽게 수분을 공급할 수 있다. 따라서, 공급된 스팀은 세탁물의 구김, 냄새, 및 정전기등을 제거할 수 있다. 또한, 이와 같은 리프레쉬 기능에 부가적으로, 스팀은 높은 온도 및 수분으로 인해 세탁물을 살균할 수 있다. 또한, 세탁단계에 공급되는 경우, 스팀은 세탁물을 수용하는 드럼 또는 터브내에 높은 온도 및 높은 습도를 갖는 분위기를 조성하고 이러한 분위기에 의해 세탁성능을 크게 향상시킬 수도 있다.
세탁기는 이러한 스팀을 공급하기 위해 다양한 방법을 사용할 수 있다. 예를 들어, 세탁기는 건조를 위해 제공된 메커니즘을 스팀 발생을 위해 사용할 수도 있으며, 이러한 방법과 관련하여 다음과 같은 종래기술들이 존재한다.
먼저 한국특허 KR 10-0709943은 뜨거운 공기를 순환시키기 위한 순환유로와 상기 순환유로내에 설치된 히터 및 송풍기를 갖는다. 물이 상기 송풍기의 흡입부에 인접하게 공급되며, 공급된 물은 송풍기로부터 토출된다. 토출된 물은 송풍기에 의해 생성된 공기유동에 의해 히터까지 운반되며, 상기 히터에 의해 스팀으로 변환된다.
또한, 한국실용신안공개공보 KR 1997-0039170은 순환유로의 토출부에 물을 분사하며, 분사된 물은 히터를 지나면서 가열된 공기 유동에 의해 스팀으로 변환된다.
끝으로, PCT 공개공보 WO 2004/059070은 순환유로내에 물을 수용하는 별도의 팬(pan)을 갖는다. 순환유로내의 뜨거운 공기유동을 이용하여 상기 팬(pan)내의 물은 가열되며, 스팀이 생성된다.
이와 같은 종래기술들은 스팀 발생을 위해 추가적인 장치를 요구하지 않으므로, 세탁기는 이러한 종래기술에 따라 생산비용을 증가시키지 않으면서도 스팀을 세탁물에 공급할 수 있다. 그러나, 상기 종래기술들은 건조용 메커니즘을 최적으로 제어 또는 활용하지 못하므로, 스팀만을 생성하도록 구성되는 독립적인 장치인 스팀 제네레이터와 비교할 때, 충분한 량의 스팀을 효율적으로 생성하지 못한다. 또한, 같은 이유로 상기 종래기술들은 의도된 기능, 즉 리프레쉬, 살균 및 분위기 조성기능들을 효과적으로 달성할 수 없다.
본 발명의 목적은 스팀발생장치의 효율을 높임과 동시에 컴팩트한 설계가 가능하게 하고, 효율적으로 스팀을 생성할 수 있는 세탁기용 스팀발생장치 및 세탁기를 제공하는 데 있다.
본 발명의 다른 목적은 스팀발생장치를 통하여 고온의 물이 드럼 내부로 공급되는 것을 방지하는 한편, 수위감지센서에서의 오작동을 방지하고, 스팀공급에 의해 의도된 기능들을 효과적으로 수행할 수 있는 세탁기용 스팀발생장치 및 세탁기를 제공하는 데 있다.
본 발명의 또 다른 목적은 고내열성을 가져 온도에 따른 저항 변화가 작고, 비저항이 낮아 저전압 및 저전력으로 구동 가능한 발열 페이스트 조성물을 포함하는 세탁기용 스팀발생장치 및 세탁기를 제공하는 데 있다.
상기와 같은 기술적 과제를 해결하기 위해, 본 발명의 일 실시 예에 따른 세탁기용 스팀발생장치는 발열 페이스트 조성물을 통해서 형성되는 면상 발열체를 적어도 하나 이상 구비하고, 세탁수를 저장하는 터브와 연통하도록 구성되는 덕트내에 설치되어 상기 덕트내의 소정의 공간만을 가열하는 히터, 기 가열된 소정의 공간에 물을 공급하는 노즐, 및 상기 히터를 통해서 생성된 스팀을 상기 터브에 공급하도록 상기 소정의 공간을 향해 공기를 불어내는 블로워를 포함하고, 상기 발열 페이스트 조성물은 발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부, 분산제 0.5 내지 5중량부를 포함하고, 상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되거나 또는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되는 것을 특징으로 한다.
실시 예에 있어서, 상기 혼합 바인더는 에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈 수지 10 내지 150 중량부, 페놀계수지 100 내지 500 중량부가 혼합될 수 있다.
실시 예에 있어서, 발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함할 수 있다.
실시 예에 있어서, 상기 탄소나노튜브 입자는 다중벽 탄소나노튜브 입자일 수 있다.
실시 예에 있어서, 상기 유기 용매는 카비톨 아세테이트, 부틸 카비톨 아세테이트, DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올 및 옥탄올 중에서 선택되는 2 이상의 혼합 용매일 수 있다.
실시 예에 있어서, 상기 면상 발열체는 상기 발열 페이스트 조성물이 기판 상에 스크린 인쇄, 그라비아 인쇄 또는 콤마코팅되어 형성될 수 있다.
실시 예에 있어서, 상기 기판은 폴리이미드 기판, 유리섬유 매트 또는 세라믹 유리일 수 있다.
실시 예에 있어서, 상기 면상 발열체는 상기 면상 발열체 상부면에 코팅되는 것으로, 실리카 또는 카본블랙과 같은 흑색 안료를 구비하는 유기물로 형성되는 보호층을 더 포함할 수 있다.
실시 예에 있어서, 상기 면상 발열체에 전력을 공급하는 전력 공급부를 더 포함할 수 있다.
상기와 같은 기술적 과제를 해결하기 위해, 본 발명의 다른 일 실시 예에 따른 세탁기는 세탁수를 저장하는 터브, 상기 터브내에 회전가능하게 제공되며 세탁물을 수용하는 드럼, 상기 터브와 연통하도록 구성되는 덕트, 발열 페이스트 조성물을 통해서 형성되는 면상 발열체를 적어도 하나 이상 구비하고, 상기 덕트내에 설치되며 상기 덕트내의 소정공간만을 가열하도록 구성되는 히터, 상기 덕트에 설치되며 스팀을 생성하도록 상기 가열된 소정공간에 물을 직접적으로 공급하는 노즐, 및 상기 덕트에 설치되며, 상기 생성된 스팀을 상기 터브에 공급하도록 상기 소정 공간을 향해 공기를 불어내는 블로워를 포함하고, 상기 발열 페이스트 조성물은 발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부, 분산제 0.5 내지 5중량부를 포함하고, 상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되거나 또는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되는 것을 특징으로 한다.
실시 예에 있어서, 상기 노즐은 미스트를 상기 가열된 소정 공간에 직접적으로 분사할 수 있다.
실시 예에 있어서, 상기 노즐은 상기 덕트내의 공기유동 방향과 동일방향으로 상기 소정공간을 향해 물을 분사할 수 있다.
실시 예에 있어서, 상기 노즐은 상기 소정공간을 향해 배향될 수 있다.
실시 예에 있어서, 상기 노즐은 상기 히터와 상기 블로워 사이에 배치될 수 있다.
실시 예에 있어서, 상기 노즐은 상기 블로워에 가까워지게 상기 히터로부터 소정간격으로 이격될 수 있다.
실시 예에 있어서, 상기 노즐은 상기 블로워의 배출부에 인접하게 설치될 수 있다.
실시 예에 있어서, 상기 히터가 상기 소정공간을 가열하는 동안, 상기 블로워 및 노즐은 정지될 수 있다.
실시 예에 있어서, 상기 노즐이 물을 상기 소정공간에 직접 공급하는 동안, 상기 블로워는 정지될 수 있다.
실시 예에 있어서, 상기 블로워는 상기 히터 또는 노즐이 작동되는 동안에는 정지될 수 있다.
실시 예에 있어서, 상기 블로워가 공기를 불어내는 동안, 상기 히터 및 노즐은 정지할 수 있다.
실시 예에 있어서, 상기 노즐은 상기 블로워를 감싸는 하우징에 설치될 수 있다.
실시 예에 있어서, 상기 노즐은 그 내부에 나선형으로 연장되는 유로를 포함할 수 있다.
본 발명에 따른 세탁기용 스팀발생장치 및 세탁기의 효과에 대해 설명하면 다음과 같다.
본 발명의 실시 예들 중 적어도 하나에 의하면, 스팀발생장치의 효율을 높임과 동시에 컴팩트한 설계가 가능하게 하고, 효율적으로 스팀을 생성할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 스팀발생장치를 통하여 고온의 물이 드럼 내부로 공급되는 것을 방지하는 한편, 수위감지센서에서의 오작동을 방지하고, 스팀공급에 의해 의도된 기능들을 효과적으로 수행할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 고내열성을 가져 온도에 따른 저항 변화가 작고, 비저항이 낮아 저전압 및 저전력으로 구동 가능한 발열 페이스트 조성물을 포함할 수 있다.
도 1은 본 발명에 따른 세탁기를 나타내는 사시도;
도 2는 도 1의 세탁기를 나타내는 단면도;
도 3은 본 발명에 따른 세탁기의 덕트를 나타내는 사시도;
도 4는 도 3에 도시된 덕트의 블로워 하우징의 커버를 나타내는 사시도;
도 5는 세탁기의 덕트를 나타내는 평면도;
도 6은 세탁기의 덕트에 설치되는 노즐을 나타내는 사시도;
도 7은 도 6의 노즐을 나타내는 단면도;
도 8은 도 6의 노즐을 나타내는 부분 단면도;
도 9는 덕트의 변형예를 나타내는 사시도;
도 10은 도 9의 덕트를 나타내는 측면도;
도 11은 도 9의 덕트에 설치된 히터를 나타내는 사시도;
도 12는 덕트의 변형예를 나타내는 사시도;
도 13은 도 13의 덕트에 설치된 히터를 나타내는 사시도;
도 14는 덕트의 변형예를 나타내는 사시도;
도 15는 도 15의 덕트를 나타내는 평면도;
도 16은 본 발명에 따른 세탁기 제어방법을 나타내는 순서도;
도 17은 도 16의 제어방법을 나타내는 테이블;
도 18은 급수량을 판단하는 단계를 더 포함하는 세탁기 제어방법을 나타내는 순서도;
도 19는 공급된 물의 량을 판단하는 단계를 나타내는 순서도;
도 20은 충분한 물이 공급되지 않은 경우 수행되는 단계들을 나타내는 순서도; 그리고
도 21은 도 16의 스팀공급단계를 포함하는 세탁기 제어방법을 나타내는 순서도이다.
도 22는 본 발명의 일 실시 예에 따른 세탁기용 스팀발생장치 및 세탁기에 포함되는 발열 페이스트 조성물을 이용한 면상 발열체의 시편의 이미지이다.
도 23은 본 발명의 일 실시 예에 따른 세탁기용 스팀발생장치 및 세탁기의 실시 예 및 비교 예에 따라 제조된 면상 발열체의 발열 안정성 시험 모습의 이미지이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 도면들을 참조하여 본 발명의 실시 예에 대해 상세히 설명하기로 한다. 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
즉, 본 발명은 도면들에서 나타나는 바와 같이 프론트 로딩 세탁기의 구조를 참조하여 설명되나 실질적인 변형없이 탑 로딩 세탁기에도 적용될 수 있다.
도 1은 본 발명에 따른 세탁기를 나타내는 사시도이며, 도 2는 도 1의 세탁기를 나타내는 단면도이다.
도 1에 도시된 바와 같이, 세탁기는 외형을 형성하며 작동에 필요한 부품들을 수용하는 하우징(10)을 가질 수 있다. 상기 하우징(10)은 상기 세탁기 전체를 감싸도록 형성될 수 있다. 그러나, 유지보수를 위해 용이하게 분해될 수 있도록 도 1에 도시된 바와 같이, 상기 하우징(10)은 세탁기 일부분만을 감싼다. 대신에, 상기 세탁기의 전방부를 형성하도록 프론트 커버(12)가 상기 하우징(10)의 전방부에 장착되며, 상기 프론트 커버(12)의 위쪽에는 세탁기 조작을 위해 컨트롤 패널(13)이 장착된다. 또한, 상기 세탁기의 최상부를 덮도록 탑 플레이트(14)가 상기 하우징(10)에 제공된다. 상기 프론트 커버(12), 탑 플레이트(14), 및 컨트롤 패널(13)도 상기 하우징(10)과 마찬가지로 세탁기의 외형을 형성하므로, 상기 하우징(10)의 일부로 간주될 수 있다. 상기 하우징(10), 정확하게는 프론트 커버(12)는 이의 전면에 형성된 개구부(11)를 가지며, 상기 개구부(11)는 마찬가지로 하우징(10)에 설치되는 도어(20)에 의해 개방 및 폐쇄된다. 상기 도어(20)는 일반적으로 원형 형상을 가지나, 도 1에 도시된 바와 같이, 실질적으로 사각형상을 갖도록 제작될 수도 있다. 이러한 사각도어(20)는 상기 개구부(11) 및 드럼(40)의 입구를 사용자에게 크게 보이게 하므로, 세탁기의 외관을 향상시키는데 유리하다. 도 2에 도시된 바와 같이, 상기 도어(20)에는 도어 글래스(21)가 설치되며, 사용자는 이러한 도어 글래스(21)를 통해 세탁물의 상태를 확인하기 위해 세탁기 내부를 들여다 볼 수 있다.
도 2를 참조하면, 상기 하우징(10) 내부에는 터브(30) 및 드럼(40)이 설치된다. 상기 터브(30)는 상기 하우징(10) 내부에 세탁수를 저장하도록 설치되며, 상기 드럼(40)은 상기 터브(30) 내에 회전 가능하게 설치된다. 상기 터브(30) 및 드럼(40)은 이의 입구들이 상기 하우징(10)의 전방부를 마주하도록 배향된다(oriented). 상기 터브 및 드럼(30,40)의 입구들은 앞서 언급된 하우징의 개구부(11)과 연통되며, 이에 따라 일단 도어(20)가 개방되면 사용자는 상기 개구부(11) 및 터브/드럼(30,40)의 입구들을 통해 세탁물을 상기 드럼(40)내에 넣을 수 있다. 또한, 상기 개구부(11)와 터브(30)사이에는 세탁물 및 세탁수의 누출을 방지하기 위해 개스킷(22)이 제공된다. 상기 터브(30)는 재료비를 절감하는 것과 더불어 무게를 줄이기 위해 플라스틱 재질의 소재로 형성될 수 있다. 반면, 상기 드럼(40)은 무거운 젖은 세탁물을 수용하며 세탁중 이러한 세탁물에 의한 충격을 반복적으로 받으므로 충분한 강도 및 강성을 갖도록 금속재질로 이루어질 수 있다. 상기 드럼(40)에는 상기 터브(30)내의 세탁수가 그 내부로 들어오게 하는 다수개의 통공(40a)이 형성된다. 또한, 상기 터브(30)의 주위에는 상기 드럼(40)과 연결되는 소정의 동력장치가 설치되며, 상기 드럼(40)은 상기 동력장치에 의해 회전된다. 일반적으로, 세탁기는 도 2에 도시된 바와 같이, 설치된 플로워에 실질적으로 수평한 중심축을 갖도록 배향된 터브(30) 및 드럼(40)을 갖는다. 그러나, 세탁기는 위쪽방향으로 경사지게 배향된 터브(30) 및 드럼(40)을 가질 수 있다. 즉, 상기 터브(30) 및 드럼(40)의 입구들(즉, 전방부들)은 이들의 후방부들보다 높게 위치된다. 이러한 터브(30) 및 드럼(40)의 입구들뿐만 아니라 이들과 연계된 개구부(11)와 도어(20)는 도 2에 도시된 입구들과 개구부(11) 및 도어(20)보다 높게 배치된다. 따라서, 사용자는 허리를 굽히지 않고도, 세탁기에 세탁물을 넣거나 세탁기로부터 세탁물을 꺼낼 수 있다.
세탁기의 세탁성능을 더욱 향상시키기 위해, 세탁물의 종류 및 상태에 따라서 따뜻하거나 뜨거운 세탁수가 요구된다. 이러한 목적으로 본 발명의 세탁기는 자체적으로 뜨겁거나 따뜻한 세탁수를 만들어낼 수 있도록 히터(80)와 섬프(sump)(33)을 포함하는 히터 어셈블리를 가질 수 있다. 이러한 히터 어셈블리는 도 2에 도시된 바와 같이 상기 터브(30)에 제공되며 상기 터브(30)에 저장된 세탁수를 원하는 온도로 가열한다.
상기 히터(80)는 발열 페이스트 조성물을 통해서 형성되는 면상 발열체를 적어도 하나 이상 구비하고, 세탁수를 가열하도록 구성되며, 상기 섬프(33)는 이러한 히터(80) 및 세탁수를 수용하도록 구성된다. 상기 히터(80)에 포함되는 면상 발열체 및 면상 발열체를 형성하는 발열 페이스트 조성물은 이후에 보다 구체적으로 설명한다.
도 2를 참조하면, 상기 히터 어셈블리는 세탁수를 가열하도록 구성되는 히터(80)로 이루어질 수 있다. 또한, 상기 히터 어셈블리는 상기 히터(80)을 수용하도록 구성되는 섬프(33)를 가질 수 있다. 상기 히터(80)는 도시된 바와 같이, 상기 섬프(33)에 형성된 소정크기의 개구부(33a)를 통해 상기 터브(40)내에, 정확하게는 상기 섬프(33)내에 삽입될 수 있다. 상기 섬프(33)는 상기 터브(30)의 바닥부에 일체로 형성되는 캐버티(cavity) 또는 리세스(recess)로 이루어질 수 있다. 따라서, 상기 섬프(33)는 개방된 상부를 가지며, 터브(30)에 공급된 세탁수의 일부를 수용할 수 있도록 그 내부에 소정크기의 공간을 형성한다. 상기 섬프(33)는 앞서 설명된 바와 같이, 저장된 세탁수를 배출하기에 유리한 터브(30)의 바닥부에 형성되므로, 상기 섬프(33)의 바닥부에 배수구(33b)가 형성되며, 배수관(91)에 의해 배수펌프(90)과 연결된다. 따라서, 상기 터브(30)내의 세탁수는 상기 배수구(33b), 배수관(91) 및 배수펌프(90)를 거쳐 세탁기 외부로 배출될 수 있다. 상기 배수구(33b)는 상기 섬프(33)의 바닥부 대신에 상기 터브(30)의 다른 부위에도 형성될 수 있다. 상기 섬프(33) 및 히터(80)을 이용하여 세탁기는 세탁수를 자체적으로 가열하고 뜨겁거나 따뜻한 세탁수를 세탁에 이용할 수 있다.
한편, 상기 세탁기는 사용자의 편의를 위해 또한 세탁된 세탁물을 건조할 수 있도록 구성될 수 있다. 이러한 목적으로 상기 세탁기는 뜨거운 공기를 생성하고 공급하기 위한 건조 메커니즘을 가질 수 있다. 상기 건조 메커니즘으로서 상기 세탁기는 상기 터브(30)와 연통되도록 구성되는 덕트(100)을 가질 수 있다. 상기 덕트(100)는 이의 양 끝단이 터브(30)과 각각 연결되므로, 터브(30) 뿐만 아니라 드럼(40)내의 공기도 상기 덕트(100)를 통해 순환될 수 있다. 상기 덕트(100)는 구조적으로 하나의 어섬블리로 형성되나, 기능적으로 건조덕트(110) 및 응축덕트(120)로 구분될 수 있다. 상기 건조덕트(110)는 기본적으로 세탁물의 건조를 위한 뜨거운 공기를 생성하도록 구성되며, 상기 응축덕트(120)는 상기 세탁물로부터 가져온 순환하는 공기중의 수분을 응축하도록 구성된다.
먼저, 상기 건조덕트(110)은 상기 응축덕트(120)와 터브(30)와 연결되도록 상기 하우징(10)내에 설치될 수 있다. 상기 건조덕트(110)내에는 히터(130)과 블로워(blower)(140)가 내장될 수 있다. 또한, 응축덕트(120)도 상기 하우징(10)내에 배치되며, 상기 건조덕트(110) 및 터브(30)와 각각 연결될 수 있다. 이러한 응축덕트(120)는 공기 중의 수분을 응축시켜 제거하도록 물을 공급하는 급수장치(160)를 포함할 수 있다. 상기 건조덕트(110) 및 응축덕트(120), 즉 덕트(100)는 앞서 설명된 바와 같이, 기본적으로 하우징(10)내에 배치되나, 필요한 경우, 부분적으로 하우징(10)외부로 노출될 수도 있다.
상기 건조덕트(110)는 상기 히터(130)를 이용하여 공기를 가열하며, 상기 블로워(140)를 이용하여 가열된 공기를 터브(30) 및 그 내부에 배치된 드럼(40)을 향해 불어낼 수 있다. 따라서, 뜨겁고 건조한 공기가 상기 건조덕트(110)로부터 세탁물을 건조하도록 상기 터브(30)를 거쳐 드럼(40)에 공급될 수 있다. 또한, 상기 블로워(140)와 히터(130)는 함께 작동되므로, 가열되지 않은 새로운 공기는 상기 블로워(140)에 의해 상기 히터(130)로 공급되며, 이후 상기 터브(30) 및 드럼(40)에 공급되도록 상기 히터(130)를 통과하면서 가열될 수 있다. 즉, 뜨겁고 건조한 공기의 공급은 상기 히터(130) 및 블로워(140)의 동시적인 작동에 의해 계속적으로 수행될 수 있다. 한편, 공급된 뜨거운 공기는 상기 세탁물을 건조시키고, 이후 상기 드럼(40)으로부터 터브(30)를 거쳐 상기 응축덕트(120)로 배출될 수 있다. 상기 응축덕트(120)는 상기 급수장치(160)를 이용하여 배출된 공기로부터 수분을 제거하여 건조한 공기로 만들고 이러한 건조한 공기를 다시 가열되도록 상기 건조덕트(110)에 공급할 수 있다. 이러한 공급은 실제적으로 상기 블로워(140)의 작동에 의해 발생되는 건조덕트(110)와 응축덕트(120)사이의 압력차에 의해 발생될 수 있다. 즉, 배출된 공기는 응축덕트(120) 및 건조 덕트(110)을 거치면서 뜨겁고 건조한 공기로 변환될 수 있다. 따라서, 상기 세탁기내의 공기는 계속적으로 상기 터브(30), 드럼(40), 응축 및 건조덕트(120,110)를 거쳐 순환하면서 상기 세탁물을 건조시킬 수 있다. 앞서 설명된 순환하는 공기의 유동을 고려할 때, 상기 뜨겁고 건조한 공기를 공급하는 덕트(100)의 끝단부, 즉 상기 건조덕트(110)의 터브(30) 및 드럼(40)과 연통하는 끝단부 또는 개구부는 상기 덕트(100)의 배출부 또는 배출구(110a)를 형성할 수 있다. 또한, 습한 공기를 받는 덕트(100)의 끝단부, 즉 상기 응축덕트(120)의 터브(30) 및 드럼(40)가 연통하는 끝단부 또는 개구부는 상기 덕트(100)의 흡입부 또는 흡입구(120a)를 형성할 수 있다.
상기 건조덕트(110), 정확하게는 배출부(110a)는 도 2에 도시된 바와 같이, 상기 터브(30)과 드럼(40)과 연통하도록 상기 개스킷(22)에 연결될 수 있다. 다른 한편, 도 2에 점선으로 도시된 바와 같이, 상기 건조덕트(110), 정확하게는 상기 배출부(110a)는 상기 터브(30)의 전방부의 상부영역에 연결될 수도 있다. 이러한 경우, 상기 터브(30)에는 이와 같은 건조덕트(110)와 연통하는 흡입구(31)가 형성되며, 상기 드럼(40)에는 상기 흡입구(31)를 통해 상기 건조덕트와 연통하는 흡입구(41)가 형성될 수 있다. 또한, 상기 응축덕트(120), 즉 흡입부(120a)는 상기 터브(30)의 후방부에 연결될 수 있으며, 이러한 응축덕트(70)와 연통하도록 토출구(32)가 마찬가지로 상기 터브의 후방부의 하부영역에 형성될 수 있다. 이와 같은 건조 및 응축덕트(110,120) 및 상기 터브(30)의 연결부들의 위치로 인해, 상기 뜨겁고 건조한 공기는 화살표로 도시된 바와 같이, 상기 드럼(40)의 내부에서 상기 드럼(40)의 전방부로부터 후방부까지 유동할 수 있다. 정확하게는, 상기 뜨겁고 건조한 공기는 상기 드럼의 전방부의 상부영역에서부터 상기 드럼의 후방부의 하부영역까지 유동할 수 있다. 즉, 상기 뜨겁고 건조한 공기는 상기 드럼(40)내부에서 대각선 방향으로 유동할 수 있다. 결과적으로, 상기 건조 및 응축덕트(110,120)는 이의 적절한 장착위치로 인해 상기 뜨겁고 건조한 공기가 상기 드럼(40)의 내부공간을 완전하게 가로지르게 하도록 구성될 수 있다. 따라서, 상기 뜨겁고 건조한 공기가 상기 드럼(40)의 전체 내부공간에 균일하게 확산됨으로써 건조효율 및 성능이 크게 향상될 수 있다.
상기 덕트(100)는 다양한 부품들을 수용한다. 따라서, 이러한 부품들이 그 내부에 용이하게 설치될 수 있도록 상기 덕트(100) 즉, 건조 및 응축덕트(110,120)는 분리가능한 파트들(parts)로 이루어질 수 있다. 특히, 대부분의 부품들, 예를 들어 히터(130) 및 블로워(140)등은 상기 건조덕트(110)와 연동하도록 배치되므로, 상기 건조덕트(110)가 분리가능한 파트들로 이루어질 수 있다. 상기 건조덕트(110)가 이와 같이 분해가능하므로, 그 내부의 부품들은 유지보수를 위해 상기 건조덕트(110)로부터 용이하게 꺼내질 수 있다. 보다 상세하게는, 상기 건조덕트(110)는 하부 파트(111)를 가질 수 있다. 상기 하부파트(111)는 그 내부에 실질적으로 공간을 가지며, 상기 부품들은 이러한 공간내에 수용될 수 있다. 또한, 상기 건조덕트(110)는 상기 하부파트(111)를 덮는 커버(112)를 가질 수 있다. 상기 하부파트(111)와 커버(112)는 소정의 체결부재를 이용하여 서로 체결될 수 있다. 또한, 상기 덕트(100)는 고속으로 회전하는 블로워(140)를 안정적으로 수용하도록 구성된 별도의 하우징(113)을 가질 수 있다. 상기 하우징(113)도 상기 블로워(140)의 용이한 설치 및 유지보수를 위해 분리가능한 파트들로 이루어질 수 있다. 상기 하우징(113)은 상기 블로워(140)를 수용하는 하부 하우징(113a)으로 이루어질 수 있으며, 또한, 상기 하부 하우징(113a)을 덮는 상부 하우징(113b)으로 이루어질 수 있다. 분리되어야하는 상부 하우징(113b)을 제외하고, 상기 하부 하우징(113a)은 덕트(100)의 부품수를 줄이기 위해 건조덕트의 하부파트(111)와 일체로 형성될 수 있다. 도 3-도 5는 서로 일체화된 하부파트(111)와 하부 하우징(113a)을 도시한다. 이러한 경우, 상기 건조덕트(110) 자체가 상기 하우징(113)과 일체화된다고 간주될 수 있으며, 이에 따라 상기 건조덕트(110)가 블로워(140)도 수용한다고 간주될 수 있다. 다른 한편, 상기 하부 하우징(113a)은 상기 응축덕트(120)과 일체로 형성될 수도 있다. 상기 건조덕트(110)는 높은 온도의 공기를 생성 및 이송하므로, 높은 내열성과 열전도성을 요구한다. 또한, 상기 하우징(113a)은 고속회전하는 블로워를 안정적으로 지지해야 하므로 높은 강성 및 강도를 가져야한다. 따라서, 서로 일체화된 하부 하우징(113a)과 하부 파트(111)는 금속재질로 이루어질 수 있다. 반면, 이러한 금속재질의 하부 하우징(113a)과 하부파트(111)에 의해 요구조건들이 만족되므로, 상기 커버(112) 및 상부 하우징(113b)은 덕트(110)의 중량을 줄이기 위해 플라스틱으로 제조될 수 있다.
더 나아가, 본 발명에 따른 세탁기는 사용자에게 보다 다양한 기능을 제공하기 위해 세탁물에 스팀을 공급하도록 구성될 수 있다. 이미 앞서 종래기술과 관련하여 논의된 바와 같이, 스팀의 공급에 의해 구김, 정전기, 냄새등을 제거함으로써 세탁물은 리프레쉬될 수 있다. 또한, 스팀은 세탁물을 살균할 수 있으며, 세탁에 최적화된 분위기를 조성할 수도 있다. 이러한 기능들은 모두 세탁기의 기본적인 세탁 코스중에 수행될 수 있으며, 다른 한편 세탁기는 각각의 기능들을 수행하도록 최적화된 별도의 프로세스 또는 코스를 가질 수 있다. 이러한 기능들을 위한 스팀을 공급하도록 세탁기는 스팀만을 생성하도록 설계된 독립된 스팀 제네레이터를 가질 수 있다. 그러나, 다른 한편으로, 세탁기는 스팀공급을 위해 다른 기능을 위해 제공된 메커니즘을 스팀을 생성 및 공급하기 위해 이용할 수도 있다. 예를 들어, 앞서 설명된 바와 같이 건조 메커니즘은 열원을 제공하는 히터(130) 및 터브(30) 및 드럼(40)으로의 이송수단을 제공하는 덕트(100) 및 블로워(140)등을 포함하므로, 뜨거운 공기뿐만 아니라 스팀의 공급을 위해서도 사용될 수 있다. 그럼에도 불구하고, 스팀 공급을 위해 상기 통상의 건조 메커니즘은 실제적으로 약간의 변형이 요구되며, 그와 같이 스팀공급을 위해 변형된 건조 메커니즘이 도 3-도 15를 참조하여 다음에서 설명된다. 상기 도면들 중에서, 도 3, 5, 9, 12, 14는 상기 덕트(100)내부의 구조를 보다 잘 보여주기 위해서 건조덕트의 커버(112)가 제거된 덕트(100)를 도시한다.
먼저, 스팀 공급을 위해 스팀을 생성하기에 적합한 고온의 환경이 조성될 필요가 있다. 따라서, 상기 히터(130)는 상기 덕트(100)내의 소정공간(S)을 가열하도록 구성될 수 있다. 공지된 바와 같이, 공기 자체는 낮은 열전도성을 가지므로, 만일 세탁기가 히터(130)로부터 발산되는 열을 덕트(100)의 다른 영역들로 강제적으로 이동시키는 수단, 예를 들어 블로워(140)로부터의 공기유동을 제공하지 않는다면, 상기 히터(130)는 자신이 차지하는 공간 자체 및 이의 주변공간만을 가열할 수 있다. 따라서, 히터(130)는 스팀 공급을 위해 덕트(100)내의 공간을 국부적으로 높은 온도까지 가열할 수 있다. 즉, 상기 히터(130)는 상기 덕트(100)내 공간의 일부인 상기 소정공간(S)을 덕트내의 다른 공간의 온도보다 높은 온도로 가열할 수 있다. 보다 상세하게는, 그와 같은 상대적으로 높은 온도로의 가열을 위해, 상기 히터(130)는 상기 소정공간(S)만을 가열할 수 있으며, 다른 한편으로, 이러한 소정공간(S)을 직접적으로 가열할 수 있다. 이러한 경우, 상기 소정공간(S)은 상기 히터(130) 자체, 즉, 상기 히터(130) 자신이 차지하는 공간과 상기 히터(130)에 인접하는 덕트내의 주변공간으로 이루어질 수 있다. 즉, 상기 소정공간(S)은 히터(130) 자체를 포함하는 개념이다. 국부적이고 직접적인 높은 온도로의 가열로 인해, 상기 소정공간(S)은 스팀생성에 적합한 환경으로 신속하게 형성될 수 있다.
상기 히터(130)는 도 3 및 도 5에 도시된 바와 같이, 크게 몸체(131)로 이루어질 수 있다. 상기 몸체(131)는 실질적으로 상기 덕트(100)내에 위치되며 가열을 위한 열을 발생시킬 수 있다. 이를 위해 상기 몸체(131)는 다양한 가열 메커니즘을 이용할 수 있으나 일반적으로 가열도선(hot wire)으로 이루어질 수 있다. 보다 상세하게는, 상기 몸체(131)는 덕트(100)내에 존재할 수도 있는 수분에 의한 고장을 방지하도록 방수구조를 갖는 시스히터(sheath heater)로 이루어질 수 있다. 또한 바람직하게는 상기 몸체(131)는 동일 평면상에서 다수회 절곡되어 좁은 공간에서 최대의 열을 발생시킬 수 있다. 상기 히터(130)는 상기 몸체(131)에 전기를 공급하기 위해 상기 몸체(131)와 전기적으로 연결되는 터미널(132)을 가질 수 있다. 상기 단자(132)는 상기 몸체(131)의 끝단에 배치될 수 있다. 이러한 단자(82)는 외부 전원과의 연결을 위해 상기 덕트(100)의 외부에 위치될 수 있다. 상기 몸체(131)와 터미널(132)사이에는 밀폐부재가 개재될 수 있으며, 덕트(100)내의 공기 및 스팀의 누출을 방지하도록 상기 덕트(100)를 밀폐할 수 있다.
또한, 상기 히터(130)는 브라켓(111b)을 이용하여 상기 덕트(100)의 바닥부(bottom)(정확하게는, 건조덕트의 하부파트(111))에 고정될 수 있다. 또한, 상기 브라켓(111b)과 연계하여 보스(111a)가 상기 덕트(100)의 바닥부에 제공될 수 있다. 상기 보스(111a)는 상기 덕트(100)의 바닥부로부터 소정길이로 돌출될 수 있다. 실제적으로 상기 보스(111a)는 상기 덕트(100)의 바닥부의 양 측에 각각 구비될 수 있다. 상기 브라켓(111b)은 상기 히터(130)의 고정을 위해 상기 보스(111a)에 체결될 수 있다. 더 나아가, 상기 브라켓(111b)은 상기 히터(130)의 몸체(131)를 지지하도록 구성될 수 있다. 상기 브라켓(111b)은 도시된 바와 같이 상기 몸체(131)를 지지하도록 몸체(131)를 가로질러 연장되며, 상기 몸체(131)를 감쌀 수 있다. 또한, 상기 브라켓(111b)은 상기 몸체(131)의 형상에 맞게 절곡되는 절곡부를 가지며, 이러한 절곡부에 의해 상기 몸체(131)가 움직이지 않도록 지지할 수 있다. 상기 브라켓(111b)은 상기 보스(111a)에 체결되도록 관통공을 포함하며, 체결부재 및 관통공을 이용하여 상기 보스(111a)에 체결될 수 있다. 따라서, 상기 브라켓(111b)과 보스(111a) 둘 다를 이용하는 경우, 상기 히터(130)는 상기 덕트(100)내에서 보다 안정적으로 고정 및 지지될 수 있다. 또한 상기 보스(111a)에 의해 덕트 바닥부와 소정의 거리로 이격되므로, 상기 히터(130)는 공기유동을 원할하게 하면서도 더 많은 공기와 접촉할 수 있다. 상기 브라켓(111b)은 상기 몸체(131)의 열을 견디도록 금속으로 만들어질 수 있다.
상기 소정공간(S)에서 스팀을 생성하기 위해서는 소정량의 물이 요구된다. 따라서, 상기 소정공간(S)에 물을 공급하도록 노즐(150)이 추가적으로 상기 덕트(100)에 제공될 수 있다.
일반적으로 스팀은 액체상태의 물을 가열함으로써 생성되는 기체상태의 물(vapor phase of water)을 의미한다. 즉, 액체상태의 물이 임계온도이상으로 가열되면 상변화를 통해 기체상태로 변한다. 반면, 미스트(mist)는 액체상태의 작은 물 입자를 의미한다. 즉, 미스트는 단순히 액체상태의 물을 작은 입자로 분해함으로써 생성되며, 상 변화나 가열을 수반하지 않는다. 따라서, 스팀과 미스트는 적어도 이들의 상태(phase) 및 온도에 있어서 서로 명확하게 구별되며, 단지 대상물에 수분(moisture)을 공급할 수 있는 능력에 있어서는 공통이다. 이러한 미스트는 작은 입자로 이루어지므로 통상의 액체상태의 물에 비해 넓은 표면적을 가진다. 따라서, 상기 미스트는 쉽게 열을 흡수하여 상변화를 통해 고온의 스팀으로 변화될 수 있다. 이러한 이유로, 본 발명의 세탁기는 액체상태의 물을 그대로 공급하는 아웃렛 대신에 액체상태의 물을 작은 입자로 분해할 수 있는 노즐(150)을 물 공급의 수단으로서 사용할 수 있다. 그럼에도 불구하고, 본 발명의 세탁기는 소량의 물을 상기 소정공간(S)에 공급하는 통상적인 아웃렛을 채택할 수도 있다. 다른 한편, 노즐(150)에 공급되는 수압을 조절함으로써, 상기 노즐(150)은 미스트 대신에 물, 즉 워터 젯(water jet)을 공급할 수도 있다. 어떠한 경우들에 있어서도, 상기 소정공간(S)은 스팀발생에 충분한 환경을 가지고 있으므로, 스팀은 생성될 수 있다.
스팀의 생성을 위해 물은 상기 소정공간(S)에 간접적으로 제공될 수도 있다. 예를 들어, 상기 노즐(150)은 물을 상기 소정공간(S)이 아닌 덕트(100)내의 다른 공간에 공급할 수 있으며, 이러한 물은 블로워(140)에서 제공되는 공기유동에 의해 상기 소정공간(S)으로 스팀생성을 위해 이송될 수도 있다. 그러나, 이러한 이송도중, 물은 덕트(100)의 내면에 들러붙으므로, 제공된 물이 모두 상기 소정공간(S)에 도달하지 못한다. 또한, 상기 소정공간(S)은 앞서 설명된 바와 같이, 국부적이고 직접적인 가열에 의해 스팀 생성에 최적의 조건을 가지므로, 공급된 물을 충분히 스팀으로 변환시킬 수 있다.
앞서 언급된 이유들을 고려할 때, 효율적인 스팀생성을 위해 상기 노즐(150)은 상기 소정공간(S)에 직접 물을 공급할 수 있다. 또한, 같은 이유로 상기 노즐(150)은 오직 상기 소정공간(S)에만 물을 공급할 수 있다. 더 나아가, 상기 노즐(150)은 상기 소정공간(S)에 미스트를 분사할 수 있다. 앞서 이미 정의된 바와 같이, 상기 소정공간(S)은 히터(130) 자체를 포함하므로, 이러한 상기 소정공간(S)에 대한 어떠한 수분, 즉 물 또는 미스트의 제공은 상기 히터(130)에 대한 수분제공을 포함한다. 만일 상기 노즐(150)이 상기 소정공간(S)에 직접적으로 미스트를 분사한다면, 상기 소정공간(S)에 조성된 최적의 환경을 고려할 때, 스팀은 적은 에너지를 사용하면서도 효과적으로 생성될 수 있다. 또한, 이러한 직접적인 미스트 분사가 상기 소정공간(S)에만 수행되면, 스팀의 생성은 더욱 효과적이 될 수 있다.
상기 히터(130)를 포함하는 소정공간(S)에 직접적으로 물을 공급하기 위해서, 상기 노즐(150)은 상기 소정공간(S)(히터(130)포함)을 향해 배향될 수 있다. 즉, 상기 노즐(150)의 배출구가 적어도 상기 소정공간(S)을 향해 배향될 수 있다. 이러한 경우, 상기 소정공간(S)에 물을 직접 공급하도록 상기 노즐(150)은 상기 소정공간(S)의 바로 위(above)에 배치될 수 있으며, 또는 상기 소정공간(S)의 바로 아래(below)에 배치될 수도 있다. 그러나, 상기 노즐(150)에서 공급되는 물(정확하게는 미스트)는 도 3 및 도 5에 도시된 바와 같이, 수압으로 인해 소정의 각도로 확산되면서 소정거리를 이동한다. 반면, 상기 덕트(100)의 높이는 세탁기를 컴팩트하게 만들기 위해서는 상당히 제한된다. 즉, 상기 소정공간(S)의 높이도 마찬가지로 제한된다. 따라서, 상기 노즐(150)이 상기 소정공간(S)의 바로 위 또는 바로 아래에 배치되면, 물은 이의 확산각도 및 이동거리를 고려할 때, 상기 소정공간(S) 전체에 균일하게 상기 노즐(150)로부터 공급되지 못할 수 있으며, 이에 따라 스팀이 효율적으로 생성되지 못할 수 있다. 같은 이유로, 이러한 비효율적 스팀 생성은 상기 노즐(150)이 상기 소정공간(S)의 양 측부들에 배치되는 경우에도 유사하게 발생될 수 있다.
다른 한편, 상기 노즐(150)은 상기 소정공간(S)의 양 끝단들, 즉 영역들(A, B)중 어느 하나에 배치될 수도 있다. 앞서 설명된 바와 같이, 블로워(140)가 작동되면, 덕트(100)내의 공기는 블로워(140)로부터 토출되어 상기 히터(130) 즉, 상기 소정공간(S)을 통과한다. 이러한 공기유동의 방향을 고려하면, 상기 영역(A)는 덕트내 공기유동 방향에 있어서 상기 소정공간(S)의 전방부 또는 흡입부에 해당하며, 상기 영역(B)은 상기 소정공간(S)의 후방부 또는 배출부에 해당할 수 있다. 또한, 상기 영역(A) 및 영역(B)은 상기 소정공간(S)의 입구 및 출구에 해당할 수 있다. 따라서, 상기 노즐(150)은 덕트내 공기유동방향에 있어서, 상기 소정공간(S)의 전방부 또는 흡입부 (즉, 상기 영역(A))에 배치될 수 있다. 다른 한편으로 상기 노즐(150)은 덕트내 공기유동방향에 있어서, 상기 소정공간(S)의 후방부 또는 배출부 (즉, 상기 영역(B))에 배치될 수도 있다. 이와 같이 상기 노즐(150)이 상기 영역(A) 또는 영역(B)에 배출되는 경우에도, 상기 노즐(150)로부터 공급된 물이 모두 상기 소정영역(S)내에 도달되지 않을 수도 있으며, 일부 물이 상기 소정영역(S)밖에 잔류될 수도 있다. 그러나, 만일 상기 노즐(150)이 상기 후방부 또는 배출부(B)에 배치되는 경우, 상기 소정공간(S)에 도달되지 못한 물은 상기 후방부 또는 배출부(B) 부근에 머물게 된다. 따라서, 만일 블로워(140)가 작동되면, 이러한 물들은 스팀으로 변하지 못한 채로 터브(30)에 공급될 수 있다. 반면, 만일 상기 노즐(150)이 상기 전방부 또는 흡입부(A)에 배치되는 경우, 상기 소정공간(S)에 도달하지 못한 물은 상기 블로워(140)에서 공급되는 공기유동에 의해 상기 소정공간(S)에 진입할 수 있다. 따라서, 상기 영역(A)에 노즐(150)을 배치함으로써, 공급된 모든 물을 스팀으로 효율적으로 변화시킬 수 있다. 이와 같이, 효율적인 스팀 생성을 위해 상기 노즐(150)은 상기 영역(A) 즉, 공기유동방향에 있어서 상기 소정공간(S)의 전방부 또는 흡입부에 배치될 수 있다. 또한, 덕트(100)내 공기유동방향의 측면에서 상기 영역(B)에 배치된 노즐(150)은 상기 공기유동방향과 동일방향으로 물을 공급하게 되는 반면, 상기 영역(A)에 배치된 노즐(150)은 상기 공기유동방향과 반대방향으로 물을 공급하게 된다. 따라서, 앞서 논의된 것과 같은 이유로, 공기유동방향의 관점에서 상기 노즐(150)은 상기 덕트내 공기유동방향과 동일한 방향으로 상기 소정공간(S)(히터 포함)에 물을 공급할 수 있다. 한편, 앞서 논의된 이유들에도 불구하고, 필요한 경우 상기 노즐(150)은 상기 영역들(A,B), 소정공간(S)의 양측부들, 소정공간(S)의 바로 위 및 바로 아래 부위들 중 어느 하나에 설치되거나 이들중 2개 이상의 부위들에 설치될 수도 있다.
앞서 논의된 바와 같이, 효율적인 물 공급 및 스팀 생성을 위해 상기 노즐(150)은 상기 소정공간(S) 직접 물을 공급하며, 상기 소정공간(S)을 향해 배향될 수 있다. 같은 이유로, 상기 노즐(150)은 상기 소정공간(S)에 상기 덕트내의 공기유동방향과 동일방향으로 물을 공급할 수 있다. 이러한 조건들을 모두 만족시키기 위해서는, 이미 앞서 결정된 바와 같이, 상기 노즐(150)이 상기 영역(A), 즉 공기유동방향에 있어서 소정공간(S)의 전방부 또는 흡입부에 배치되는 것이 최적이다. 이러한 영역(A)는 상기 덕트(100)의 구조적 측면에서 상기 히터(130)와 상기 블로워(140)사이의 영역에 해당한다. 따라서, 상기 노즐(150)은 상기 덕트(100)의 구조적 측면에서 상기 히터(130)와 블로워(140)의 사이에 배치될 수 있다. 바꿔 말하면, 상기 노즐(150)은 상기 소정공간(S)과 공기유동의 공급원 사이에 배치될 수 있다. 더 나아가, 상기 노즐(150)은 상기 소정공간(S)의 흡입부와 상기 블로워(140)의 배출부 사이에 배치될 수 있다. 또한, 앞서 언급된 바와 같이, 상기 노즐(150)에서 공급되는 물은 소정각도로 확산된다. 만일 상기 노즐(150)이 상기 소정영역(S), 정확하게는 이의 흡입부에 가까이 배치되면, 확산각도를 고려할 때, 공급되는 물의 많은 부분이 소정영역(S)(히터(130) 포함) 대신에 덕트(100)의 벽면에 직접 공급된다. 실제적으로 상기 소정영역(S)에서 상기 히터(130)가 가장 높은 온도를 가지므로, 공급되는 물이 가능한 많이 상기 소정영역(S) 중 상기 히터(130)에 직접 진입 및 접촉하는 것이 스팀 생성의 효율증가에 유리하다. 따라서, 가능한 한 많은 량의 물이 상기 소정공간(S)(즉, 히터(130)에 바로 진입할 수 있도록 상기 노즐(150)은 상기 소정공간(S)으로부터 가능한 멀리 배치될 수 있다. 상기 노즐(150)이 상기 소정공간으로부터 떨어져서 배치되면, 물의 확산을 고려할 때 공급되는 물은 실질적으로 상기 소정공간(S)의 흡입부, 즉 입구에서부터 전체적으로 분포될 수 있으며, 상기 소정공간(S)의 효율적 사용, 즉 효율적 열교환 및 스팀생성이 달성될 수 있다. 상기 노즐(150)이 상기 소정영역(S)으로부터 멀어질수록, 상기 노즐(150)은 상기 블로워(140)에 가까워질 수 있다. 이러한 이유로, 상기 노즐(150)은 상기 블로워(140)에 근접하게 배치되며, 동시에 상기 히터(130)로부터 소정간격으로 이격되게 배치될 수 있다. 또한, 상기 히터(130)로부터 가능한 한 멀리 이격되도록, 이러한 노즐(150)은 상기 블로워(140)의 토출부에 인접하게 배치될 수 있다. 상기 노즐(150)이 상기 블로워(140)의 토출부에 인접하는 경우, 공급되는 물은 토출되는 공기유동, 즉 블로워(140)의 토출력에 직접 영향받을 수 있으며, 상기 소정영역(S) 전체와 균일하게 접촉하도록 보다 멀리 이동할 수 있다. 다른 한편으로, 이러한 공기유동의 도움에 의해 상기 노즐(150)에는 높은 수압이 가해지지 않을 수 있으며, 이에 따라 노즐(150)의 가격이 저하되고 사용수명은 증가될 수 있다. 더 나아가, 상기 블로워(140)의 토출구에 인접한 배치를 위해, 도 3 및 도 5에 도시된 바와 같이, 상기 노즐(150)은 상기 블로워 하우징(113)에 설치될 수 있다. 또한, 용이한 설치 및 유지보수를 위해 상기 노즐(150)은 분리가능한 상기 상부 하우징(113b)에 설치될 수 있다. 도 4에 도시된 바와 같이, 상기 노즐(150)의 설치를 위해, 상기 상부 하우징(113b)은 구멍(113c)을 포함하며, 상기 노즐(150)은 상기 구멍(113c)에 상기 소정공간(S)을 향해 배향되면서 끼워질 수 있다.
도 6-도 8을 참조하면, 상기 노즐(150)은 몸체(151)와 헤드(152)로 이루어질 수 있다. 상기 몸체(151)는 상기 구멍(113c)에 삽입되도록 대체적으로 원통형상을 가질 수 있다. 상기 몸체(151)는 이로부터 연장되는 플랜지(151a)를 가질 수 있다. 상기 플랜지(151a)는 체결공을 가지며, 이를 이용하여 상기 덕트(100)에 체결될 수 있다. 상기 플랜지(151a)의 강도를 보강하기 위해, 도 6에 도시된 바와 같이, 리브가 상기 플랜지(151a)와 몸체(151)를 연결하도록 형성될 수 있다. 또한, 상기 몸체(151)는 이의 외주에 형성되는 리브(151b)를 가질 수 있다. 상기 리브(151b)는 상기 구멍(113c)의 엣지에 걸리며 상기 노즐(151)이 상기 덕트(100), 정확하게는 상부 하우징(113b)으로부터 분리되는 것을 방지한다. 이러한 리브(151b)는 상기 노즐(150)의 정확한 설치위치를 결정하는 역할도 할 수 있다.
상기 헤드(152)는 도 7 및 도 8에 도시된 바와 같이, 이의 끝단에 토출구(152a)를 포함할 수 있다. 상기 토출구(152a)는 일정한 수압을 갖는 물이 공급되면 이러한 물을 작은 입자, 즉 미스트로 분해할 수 있도록 설계될 수 있다. 또한, 상기 토출구(152a)는 공급되는 물에 추가적으로 압력을 가하도록 설계될 수 있으며, 이에 따라 공급되는 물은 소정의 각도로 확산되며 소정거리로 이동할 수 있다. 이러한 공급되는 물의 확산 각도(a)는 예를 들어, 40°가 될 수 있다. 상기 헤드(152)는 이로부터 반경방향으로 연장되는 플랜지(152b)를 가질 수 있다. 유사하게, 상기 몸체(151)도 이러한 플랜지(152)와 마주하며 이로부터 반경방향으로 연장되는 플랜지(151d)를 가질 수 있다. 만일 상기 몸체(151)와 헤드(152)가 플라스틱으로 이루어지는 경우, 이들 플랜지들(152b,151d)은 서로 융착(melt-joinning)되며, 이에 따라 상기 몸체(151)와 헤드(152)는 결합될 수 있다. 만일 상기 몸체(151)와 헤드(152)가 플라스틱과는 다른 재질로 이루어지는 경우, 상기 플랜지들(152b,151d)은 체결부재를 이용하여 서로 결합될 수 있다. 또한, 도 8에 상세하게 도시된 바와 같이, 상기 헤드(152)는 상기 플랜지(152b)에 형성되는 리브(152c)를 가질 수 있으며, 상기 몸체(151)는 상기 플랜지(151d)에 형성되는 홈(151c)을 가질 수 있다. 상기 리브(152c)는 상기 홈(151c)에 삽입되며, 상기 몸체(151)와 헤드(152) 사이의 접촉면적을 증가시킨다. 따라서, 상기 몸체(151)와 헤드(152)는 서로 보다 견고하게 결합될 수 있다. 또한, 상기 노즐(150), 정확하게는 상기 몸체(151)는 그 내부에 공급되는 물을 안내하는 유로(153)를 포함한다. 상기 유로(153)는 도 7 및 도 8에 도시된 바와 같이, 상기 몸체(151)의 끝단부, 즉 토출부에서 나선형으로 연장될 수 있다. 이러한 나선형 유로(153)에 의해 물은 소용돌이치며(swirl) 상기 헤드(152)에 도달하며, 이에 따라 보다 큰 확산각도와 보다 긴 이동거리를 갖도록 상기 노즐(150)로부터 배출될 수 있다.
상기 소정공간(S)에서 스팀이 생성되면, 생성된 스팀은 의도된 기능을 수행하도록 상기 터브(30) 및 드럼(40) 뿐만 아니라 최종적으로 세탁물에까지 이송될 필요가 있다. 따라서, 생성된 스팀을 이송하기 위해 상기 블로워(140)는 상기 소정공간(S)(히터(130)포함)을 향해 공기를 불어낼 수 있다. 즉, 상기 블로워(140)는 상기 소정공간(S)에 공기유동을 공급할 수 있다. 생성된 스팀은 이러한 공기유동에 실려 덕트(100)를 따라 이동하며, 터브(30), 드럼(40)을 거쳐 최종적으로 세탁물까지 도달할 수 있다. 이러한 스팀은 의도된 기능들을 수행하며, 예를 들어 세탁물을 리프레쉬하거나, 세탁물을 살균하거나 최적의 세탁환경을 조성할 수 있다.
한편, 도 9, 도 10, 도 12, 도 14에 공통적으로 도시된 바와 같이, 상기 덕트(100)는 소정크기의 리세스(114)를 가질 수 있다. 상기 리세스(114)는 소정량의 물을 수용하도록 구성될 수 있다. 이와 같이 소정량의 물을 수용하기 위해서, 상기 리세스(114)는 덕트(100)의 바닥부에 배치될 수 있으며, 상세하게는 건조덕트의 하부파트(112)에 제공될 수 있다. 여러가지 이유들로, 상기 덕트(100)내에는 물이 잔류할 수 있다. 예를 들어, 상기 노즐(150)에서 공급된 물의 일부는 스팀으로 변경되지 않고 그대로 덕트(100)내에 잔류할 수 있다. 한편으로 공급된 물은 스팀으로 변환되었다 하더라도 덕트(100)와의 열교환으로 인해 다시 물로 응축될 수도 있다. 또한, 통상적인 세탁물의 건조중 공기 중에 포함된 수분(moisture)도 덕트(100)와의 열교환에 의해 응축될 수 있다. 상기 리세스(114)는 이러한 잔류하는 물을 수집할 수 있다. 도 10에 명확하게 도시된 바와 같이, 상기 리세스(114)는 잔류하는 물을 용이하게 수집하기 위해 소정의 경사를 가질 수도 있다.
상기 리세스(114)는 수용된 물을 사용하여 추가적으로 스팀을 생성할 수 있다. 상기 수용된 물을 스팀으로 변환하기 위해서는 가열이 요구된다. 따라서, 상기 리세스(114)는 수용된 물이 히터(130)에 의해 가열될 수 있도록 상기 히터(130)의 바로 아래에 배치될 수 있다. 즉, 상기 리세스(114)는 상기 소정공간(S)의 바로 아래에 배치된다고 간주될 수 있다. 더 나아가, 상기 리세스(114)내의 공간도 상기 히터(110)에 의해 가열되므로, 상기 소정공간(S)은 상기 리세스(114)내의 공간까지 확장될 수 있다. 즉, 상기 소정공간(S)은 도 8에 점선으로 표시된 바와 같이, 상기 리세스(114)내의 공간을 포함할 수 있다. 이와 같은 구성(configuration)에 의해, 상기 노즐(150)에서 공급된 물로부터 발생되는 스팀에 추가적으로, 상기 리세스(114)내의 물은 상기 히터(130)의 가열에 의해 스팀으로 변환될 수 있다. 따라서, 실질적으로 더 많은 량의 스팀이 공급될 수 있으며, 의도된 기능은 보다 효과적으로 수행될 수 있다.
보다 상세하게는, 도 9 및 도 11에 도시된 바와 같이, 상기 히터(130)는 상기 리세스(114)내의 물을 직접 가열하도록 구성될 수 있다. 이와 같은 직접가열을 위해 상기 히터(130)의 일부는 상기 리세스(114)내의 물에 잠길 수 있다. 즉, 상기 히터(130)는 상기 리세스(114)내의 물과 직접적으로 접촉할 수 있다. 상기 히터(130)는 여러가지 방법으로 상기 리세스(114)내의 물에 잠길 수 있으나, 도 9 및 11에 도시된 바와 같이, 상기 히터(130)의 일부가 상기 리세스를 향해 절곡될 수 있다. 바꿔 말하면, 상기 히터(130)는 리세스(114)내의 물에 잠기는 절곡부(131a)를 가질 수 있다.
다른 한편, 도 12-도 15에 도시된 바와 같이, 상기 히터(130)는 상기 리세스(114)내의 물을 간접적으로 가열할 수 있다. 예를 들어, 도 12 및 13에 도시된 바와 같이, 상기 히터(130)는 상기 히터(130)에 장착되며, 상기 리세스(114)내의 물에 잠기는 히트싱크(heat sink)(133)를 가열부재로써 가질 수 있다. 상기 히트싱크(133)는 도시된 바와 같이, 다수개의 휜(fin)을 가지며, 이에 따라 방열에 적합한 구조를 갖는다. 따라서, 상기 히터(130)의 열은 상기 히트 싱크(133)를 거쳐 상기 리세스(114)내의 물에 전달된다. 또한, 도 14-도 15에 도시된 바와 같이, 상기 히터(130)는 가열부재로써 상기 리세스(114)의 바닥부로부터 연장되며 상기 히터(130)를 지지하는 지지부(111c)를 가질 수 있다. 앞서 언급된 바와 같이, 상기 하부 파트(111)는 높은 열전도성 및 강도를 갖도록 금속재질로 만들어질 수 있으며, 이러한 경우, 상기 지지부(111c)도 같은 금속재질로 상기 하부파트(111)와 일체로 형성될 수 있다. 상기 지지부(111c)는 상기 히터(130)를 안정적으로 지지하고 넓은 전열면적을 갖기 위해 상기 히터(130)를 수용하는 홈을 가질 수 있다. 따라서, 상기 히터(130)의 열은 상기 지지부(111c)를 거쳐 상기 리세스(114)내의 물에 전달된다. 이와 같은 히트싱크(133) 및 지지부(111c), 즉 가열부재에 의해 상기 히터(130)는 상기 리세스(114)내의 물과 간접적으로 접촉하게 된다. 보다 상세하게는, 상기 가열부재(133,111c)는 상기 히터(130)와 상기 리세스(114)내의 물을 열적으로 연결하며, 상기 히터의 열을 이용하여 상기 물을 가열할 수 있다.
앞서 언급된 절곡부(131a) 및 가열부재(113,112c)에 의해 상기 히터(130)는 상기 리세스(114)내의 물과 직접 또는 간접적으로 접촉하며, 상기 물을 보다 효과적으로 가열할 수 있다. 이와 같은 직접적 또는 간접적 접촉을 위한 구조없이도, 상기 히터(130)는 공기를 통한 열전달에 의해 상기 리세스(114)내의 물을 가열하고 스팀을 생성할 수 있다.
앞서 도 2-도 15를 참조하여 설명된 스팀공급 메커니즘을 이용하여, 스팀이 세탁기에 제공되며, 예를 들어 세탁물의 리프레쉬먼트, 세탁물의 살균, 및 세탁 분위기 조성등이 수행될 수 있다. 또한, 예를 들어 스팀공급의 타이밍, 스팀공급량등을 적절하게 제어함으로써 다른 많은 기능들이 수행될 수도 있다. 이러한 기능들은 모두 세탁기의 기본적인 세탁 코스 중에 수행될 수 있다. 다른 한편 세탁기는 각각의 기능들을 수행하도록 최적화된 별도의 코스를 가질 수 있다. 이와 같은 별도의 코스로써 다음에서는 스팀을 이용하여 세탁물을 리프레쉬하는데 최적화된 코스가 도 16-도 17을 참조하여 설명된다. 이러한 리프레쉬 코스를 제어하기 위해 본 발명의 세탁기는 소정의 제어장치를 포함할 수 있다. 상기 제어장치는 후술되는 리프레쉬코스뿐만 아니라 본 발명의 세탁기에서 구현가능한 모든 코스를 제어하도록 구성될 있다. 또한, 이러한 제어장치에 의해 앞서 설명된 스팀공급 메커니즘을 포함하는 세탁기의 각 부품의 모든 작동이 수행되거나 정지될 수 있다. 따라서, 앞서 설명된 스팀공급 메커니즘의 모든 기능 및 후술되는 제어방법의 모든 단계들은 모두 상기 제어장치의 제어하에 있다.
먼저, 상기 리프레쉬 코스에 있어서, 상기 소정공간(S)이 가열될 수 있다(S3). 그리고 이러한 가열은 여러장치중 상기 히터(130)에 의해 수행될 수 있다. 이러한 가열단계(S3)는 기본적으로 스팀을 생성하기에 적합한 고온의 환경을 조성할 수 있다.
상기 소정공간(S)은 앞서 정의된 바와 같이 스팀생성을 위해 기 설정된 소정공간을 의미한다. 다른 외부적인 변화가 이에 주어지지 않는다면, 상기 히터(130)는 공기의 낮은 열전도성으로 인해 자신이 차지하는 공간 자체 및 이의 주변공간만을 가열하게 된다. 따라서, 상기 가열단계(S3)는 상기 히터(130)를 이용하여 상기 덕트(100)의 공간을 국부적으로 높은 온도까지 가열할 수 있다. 즉, 상기 가열단계(S3)는 상기 덕트(100)내 공간의 일부인 상기 소정공간(S)을 덕트내의 다른 공간의 온도보다 높은 온도로 가열할 수 있다. 이러한 경우, 상기 소정공간(S)은 상기 히터(130) 자체 (정확하게는, 상기 히터(130) 자신이 차지하는 공간)과 상기 히터(130)에 의해 가열되는 이의 주변공간으로 이루어질 수 있다. 즉, 상기 소정공간(S)은 히터(130) 자체를 포함하는 개념이며, 상기 소정공간(S)에 수행되는 모든 작동은 상기 히터(130)에 대해서도 동일하게 수행될 수 있다. 보다 상세하게는, 그와 같은 상대적으로 높은 온도로의 가열을 유효하게 수행하기 위해, 상기 히터(130)를 이용하여 상기 가열단계(S3)는 상기 소정공간(S)만을 가열할 수 있다. 더 나아가, 같은 목적으로 상기 가열단계(S3)는 상기 히터(130)를 이용하여 상기 소정공간(S)을 직접적으로 가열할 수 있다. 이와 같이, 상기 가열단계(S3)는 국부적이고 직접적인 높은 온도로의 가열에 기초하여, 상기 소정공간(S)을 스팀생성에 적합한 환경으로 신속하게 형성될 수 있다. 또한, 상기 가열단계(S3)는 스팀생성에 요구되는 최소한의 공간, 즉 상기 소정공간(S)만을 가열하므로, 상당히 짧은 시간동안의 가열만을 요구한다. 따라서, 상기 가열단계(S3)는 국부적이고 직접적인 가열뿐만 아니라 순간적인 가열을 이용하므로 에너지 사용을 최소화할 수 있다. 이러한 가열은 의도된 스팀생성을 위한 소정의 환경이 형성될 수 있다면, 적어도 상기 가열단계(S3)의 일부기간 동안 수행될 수 있다. 또한, 바람직하게는 상기 가열은 상기 가열단계(S3)의 전체 기간 동안 수행될 수 있다.
만일 상기 가열단계(S3)도중에 외부적인 변화가 상기 소정공간(S)에 주어지는 경우, 예를 들어, 공기유동이 상기 소정공간(S)이 주어지는 경우, 히터(130)로부터 발산되는 열은 덕트(100)의 다른 영역들로 강제적으로 이동될 수 있으며, 그와 같은 다른 영역들을 불필요하게 가열할 수 있다. 따라서, 국부적이고 순간적인 가열이 불가능해질 수 있다. 또한, 스팀생성에 적합한 환경을 상기 소정공간(S)에 만들기 어려워지며, 에너지의 초과적 사용이 예상될 수 있다. 이러한 이유로, 상기 가열단계(S3)는 상기 소정공간(S)에 대한 공기유동의 공급없이 수행되는 것이 바람직하다. 더 나아가, 상기 공기유동이 상기 덕트 시스템 전체에 걸쳐 수행되는 경우, 즉 상기 덕트(100) 및 터브(30)들을 통해 공기가 순환되는 경우, 앞서 설명된 결과가 보다 현저하게 나타난다. 따라서, 상기 가열단계(S3)는 상기 덕트(100)를 이용한 공기순환없이 수행될 수 있다. 한편, 상기 가열단계(S3)가 진행되는 도중, 즉 완료되기 전에는 상기 소정공간(S)은 충분하게 가열되지 않을 수 있다. 만일 상기 가열단계(S3)도중 물이 상기 소정공간(S)에 공급된다면, 많은 량의 물이 스팀으로 변환되지 않으며 원하는 량의 스팀이 생성되지 않을 수 있다. 따라서, 상기 가열단계(S3)는 상기 소정공간(S)에 대한 물 공급없이 수행될 수 있다. 상기 공기유동공급 및/또는 물 공급의 배제는 바람직하게는 상기 가열단계(S3)의 전체기간 동안 유지될 수 있다. 그러나, 상기 공기유동공급 및/또는 물 공급의 배제는 상기 가열단계(S3)의 일부기간 동안만 유지될 수도 있다.
이와 같은 공기유동 공급 및 물 공급의 배제는 다양한 방법에 의해 수행될 수 있다. 그러나, 이러한 배제를 수행하기 위해 상기 스팀공급 메커니즘, 즉 덕트(100)장치내의 부품들이 일차적으로 제어될 수 있다. 예를 들어, 상기 블로워(140)는 공기유동 및 공기순환을 발생시킬 수 있는 주된 부품이다. 따라서, 도 17에 도시된 바와 같이, 블로워(140)는 상기 소정공간(S)에 대한 공기유동의 공급을 배제하기 위해 상기 가열단계(S3)동안 정지될 수 있다. 또한, 앞서 설명된 바와 같이, 상기 노즐(150)은 덕트(100)내에서 물공급을 위한 주된 부품이다. 따라서, 도 17에 도시된 바와 같이, 상기 노즐(150)은 상기 소정공간(S)에 대한 물 공급을 피하기 위해 상기 가열단계(S3)동안 정지될 수 있다. 이와 같은 블로워(140) 및 노즐(150)의 작동 정지는 상기 가열단계(S3)의 전체기간 동안 계속적으로 유지되는 것이 바람직하다. 그러나, 상기 블로워(140) 및 노즐(150)의 작동정지는 상기 가열단계(S3)의 일부기간 동안만 유지될 수도 있다. 한편, 상기 가열단계(S3)의 전체기간 동안 상기 히터(130)는 계속적으로 작동될 수 있다. 또한, 상기 히터(130)는 가열단계(S3)의 일부기간 동안 작동될 수도 있다.
앞서 논의된 바와 같이, 상기 공기유동공급은 기본적으로 스팀생성을 위한 최적의 고온환경을 형성하는 것을 방해한다. 상기 가열단계(S3)에 있어 이러한 환경형성이 가장 중요하므로, 상기 가열단계(S3)는 적어도 공기유동의 공급없이 수행되는 것이 중요하다. 또한, 추가적으로 생성될 스팀의 품질을 고려하여, 상기 가열단계(S3)는 공기유동의 공급뿐만 아니라 물 공급없이 수행될 수 있다. 그러나, 공기유동 배제의 중요성에도 불구하고, 상기 가열단계(S3)는 공기유동의 배제없이 물공급을 배제하면서 수행될 수도 있다. 이러한 이유들로, 상기 가열단계(S3)는 적어도 상기 블로워(140)를 정지시키는 단계를 포함할 수 있다. 또한, 가열단계(S3)는 상기 블로워(140) 및 노즐(150)을 정지시키는 단계를 포함할 수 있다. 더 나아가, 상기 가열단계(S3)는 블로워(140)의 작동정지 없이 노즐(150)만을 정지시키는 단계로 이루어질 수도 있다. 이와 같은 블로워(140) 및/또는 노즐(150)의 선택적인 정지중에도 상기 히터(130)는 상기 가열단계(S3)의 전체기간 동안 계속적으로 작동될 수 있다. 즉, 도 17에 도시된 바와 같이, 스팀공급 메커니즘의 주요부품인 히터(130), 블로워(150), 노즐(150)에 중에서, 상기 히터(130)만이 상기 가열단계(S3)동안 계속적으로 작동될 수 있다. 그럼에도 불구하고, 상기 히터(130)는 의도된 스팀생성을 위한 소정의 환경, 즉 고온의 환경이 달성될 수 있다면, 상기 가열단계(S3)의 일부 기간동안만 작동될 수도 있다.
도 17을 참조하면, 상기 가열단계(S3)는 실제적으로 상당히 짧은 시간인 20초 동안 수행될 수 있다. 그러나, 상기 가열단계(S3)는 상기 소정공간(S)만에 대한 국부적이고 직접적인 가열을 수행하므로, 이러한 짧은 시간내에도 에너지 사용을 최소화하면서 상기 소정공간(S)을 스팀 생성에 적합한 고온의 환경으로 만들 수 있다.
상기 가열단계(S3)가 완료되면, 상기 가열된 소정공간(S)에 물이 공급된다(S4). 이러한 물 공급은 여러장치 중 노즐(150)에 의해 이루어질 수 있다. 이러한 물공급단계(S4)는 상기 소정공간(S)의 기 형성된 환경에서 스팀생성을 위한 재료를 제공할 수 있다.
스팀의 생성을 위해 물은 상기 노즐(150)을 이용하여 상기 소정공간(S)에 간접적으로 제공될 수 있다. 또한, 물의 간접적인 공급은 상기 노즐(150)과는 다른 장치, 예를 들어 통상적인 아웃렛을 이용할 수도 있다. 예를 들어, 물은 다양한 장치를 이용하여 상기 소정공간(S)이 아닌 덕트(100)내의 다른 공간에 공급할 수 있으며, 이러한 물은 블로워(140)에서 제공되는 공기유동에 의해 상기 소정공간(S)으로 스팀생성을 위해 이송될 수도 있다. 그러나, 이러한 이송도중, 물은 덕트(100)의 내면에 들러붙으므로, 제공된 물이 모두 상기 소정공간(S)에 도달하지 못할 수 있다. 반면, 상기 소정공간(S)은 앞서 설명된 바와 같이, 국부적이고 직접적인 가열에 의해 이미 스팀 생성에 최적의 조건을 갖는다. 따라서, 상기 물 공급단계(S4)는 상기 노즐(150)을 이용하여 상기 소정공간(S)에 물을 직접 공급할 수 있다. 또한, 같은 이유로 상기 물공급단계(S4)는 상기 노즐(150)을 이용하여 오직 상기 소정공간(S)에만 물을 공급할 수 있다. 이러한 물 공급은 의도된 바와 같이 충분한 량의 스팀이 만들어질 수 있다면 적어도 상기 물공급단계(S4)의 일부기간 동안 수행될 수 있다. 그러나 바람직하게는 상기 물 공급은 상기 물공급단계(S4)의 전체 기간 동안 수행될 수 있다.
앞서 정의된 바와 같이, 스팀은 액체상태의 물을 가열함으로써 생성되는 기체상태의 물(vapor phase of water)을 의미하는 반면, 미스트(mist)는 액체상태의 작은 물 입자를 의미한다. 이러한 미스트는 쉽게 열을 흡수하여 상변화를 통해 고온의 스팀으로 변화될 수 있다. 이러한 이유로, 상기 물공급단계(S4)는 상기 노즐(150)을 이용하여 상기 소정공간(S)을 향해 미스트를 분사할 수 있다. 이미 앞서 도 6-8을 통해 설명된 바와 같이, 상기 노즐(150)은 미스트를 생성하고 공급하는데 최적으로 설계될 수 있다. 이러한 미스트의 공급에 의해 상기 물공급 단계(S4)는 상기 소정공간(S)에서 충분한 량의 스팀을 효율적으로 생성할 수 있다. 다른 한편, 노즐(150)에 공급되는 수압을 조절함으로써, 상기 노즐(150)은 미스트 대신에 물, 즉 워터 스트림 또는 워터 젯(water strean or water jet)을 공급할 수도 있다. 이러한 경우에 있어서도, 상기 소정공간(S)은 스팀발생에 충분한 환경을 가지고 있으므로, 스팀은 생성될 수 있다. 앞서 이미 정의된 바와 같이, 상기 소정공간(S)은 히터(130) 자체를 포함하므로, 상기 물공급단계(S4)에서의 상기 소정공간(S)에 대한 어떠한 수분, 즉 물 또는 미스트의 제공은 상기 히터(130)에 대해 수분을 공급하는 단계를 포함할 수 있다. 만일 상기 물공급단계(S4)가 상기 노즐(150)을 이용하여 상기 소정공간(S)에 직접적으로 미스트를 분사한다면, 상기 소정공간(S)에 조성된 최적의 환경을 고려할 때, 스팀을 적은 에너지를 사용하면서도 효율적으로 만들어질 수 있다. 또한, 상기 물공급단계(S4)가 이러한 직접적인 미스트 분사를 상기 소정공간(S)에만 수행하면, 스팀의 생성은 더욱 효율적이 될 수 있다.
상기 물공급단계(S4)가 진행되는 도중에는 아직 충분한 량의 물이 공급되지 않았으므로, 의도된 바와 같은 충분한 량의 스팀이 발생되지 않을 수 있다. 만일 물공급단계(S4)도중 공기유동이 상기 소정공간(S)에 공급되면, 충분하지 않은 량의스팀이 이러한 공기유동과 함께 터브(30)에 공급될 수 있다. 또한, 공급된 물이 스팀으로 변환되기까지는 소정의 시간이 필요하므로, 상기 물 공급단계(S4)가 진행되는 도중에는 아직 많은 량의 액체상태의 물이 상기 소정공간(S)내에 존재할 수 있다. 만일 앞서 언급된 바와 같이 공기유동이 물공급단계(S4)중에 공급되면, 상당한 량의 액체상태의 물이 스팀과 함께 상기 공기유동에 운반되어 상기 터브(30)에 공급될 수 있다. 즉, 물공급단계(S4)에서 공기유동의 공급은 터브(30)에 공급되는 스팀의 품질을 저하시킬 수 있으며, 이에 따라 의도된 기능이 효과적으로 수행될 수 없을 수 있다. 따라서, 상기 물공급단계(S4)는 상기 소정공간(S)에 대한 공기유동의 공급없이 수행될 수 있다. 더 나아가, 상기 공기유동이 상기 덕트 시스템 전체에 걸쳐 수행되는 경우, 즉 상기 덕트(100) 및 터브(30)들을 통해 공기가 순환되는 경우, 앞서 설명된 결과들이 보다 현저하게 나타날 수 있다. 따라서, 상기 물공급단계(S4)는 같은 이유로 공기순환없이 수행될 수 있다. 이러한 공기유동/순환의 공급배제는 바람직하게는 상기 물 공급단계(S5)의 전체기간 동안 유지되나, 상기 물공급단계(S5)의 일부기간 동안만 유지될 수도 있다. 한편, 상기 물공급단계(S4)동안 공급된 물은 상기 소정공간(S)내의 에너지, 즉 열을 흡수하므로, 상기 소정공간(S)의 온도는 내려간다. 이러한 온도저하로 인해 상기 소정공간(S)은 스팀생성을 위한 최적의 환경을 갖지 못할 수 있으며, 이에 따라 상당한 량의 액체상태의 물의 존재로 인해 충분한 량의 스팀이 생성되지 못하고 스팀의 품질이 저하될 수 있다. 따라서, 스팀생성을 위한 최적의 환경을 상기 물공급단계(S4)동안 계속적으로 유지하기 위해서는 상기 소정공간(S)에 대한 가열이 상기 물공급단계(S4)에서도 바람직하다. 이러한 이유로, 상기 물공급단계(S4)는 상기 소정공간(S)에 대한 가열과 함께 수행될 수 있다. 이러한 경우, 상기 가열은 적어도 상기 물공급단계(S4)의 일부기간 동안 수행될 수 있으며, 더 나아가 상기 물공급단계(S4)의 전체기간 동안 수행될 수도 있다. 그럼에도 불구하고, 앞서 충분하게 상기 소정공간(S)이 가열되었으므로, 추가적인 가열 없이도 상기 물 공급단계(S4)에서 스팀은 어느 정도 발생될 수 있다. 따라서, 상기 물공급단계(S4)는 추가적인 가열없이 수행될 수도 있다.
이와 같은 공기유동 공급의 배제 및/또는 가열수행은 다양한 방법에 의해 수행될 수 있으나, 상기 스팀공급 메커니즘, 즉 덕트(100)장치내의 부품들을 제어함으로 용이하게 달성될 수 있다. 예를 들어, 도 17에 도시된 바와 같이, 블로워(140)는 상기 소정공간(S)에 대한 공기유동의 공급을 방지하기 위해 상기 물공급단계(S4)동안 정지될 수 있다. 이와 같은 블로워(140)의 작동 정지는 바람직하게는 상기 물공급단계(S4)의 전체기간 동안 계속적으로 유지될 수 있다. 그러나, 이러한 작동정지를 상기 물 공급단계(S4)의 일부기간 동안 유지하는 것도 가능하다. 또한, 앞서 설명된 바와 같이, 상기 히터(130)는 상기 소정공간(S)의 가열을 위한 주된 부품이다. 따라서, 도 17에 도시된 바와 같이, 상기 소정공간(S)의 최적환경 유지에 요구되는 가열을 위해, 상기 히터(130)는 상기 물공급단계(S4)동안 작동될 수 있다. 이러한 경우, 상기 히터(130)는 적어도 상기 물공급단계(S4)의 일부기간 동안 작동될 수 있으며, 또한 바람직하게는 상기 물공급단계(S4)의 전체기간 동안 작동될 수도 있다. 또한, 앞서 언급된 바와 같이, 추가적인 가열없는 물공급단계(S4)를 위해, 상기 히터(130)는 상기 물공급단계(S4)동안 정지될 수도 있다. 이러한 히터(130)의 작동정지는 상기 물공급단계(S4)의 전체기간 동안 계속적으로 유지될 수 있다. 한편, 바람직하게는 상기 물공급단계(S4)의 전체기간 동안 상기 노즐(140)은 계속적으로 작동될 수 있다. 그러나, 의도된 바와 같이 충분한 량의 스팀이 만들어질 수 있다면 상기 히터(130)는 가열단계(S3)의 일부기간 동안만 작동될 수도 있다.
앞서 논의된 바와 같이, 상기 공기유동공급은 기본적으로 좋은 품질을 갖는 충분한량의 스팀을 생성하는 것이 방해한다. 상기 물 공급단계(S4)에 있어 스팀생성이 가장 중요하므로, 상기 물공급단계(S4)는 적어도 공기유동의 공급 없이 수행되는 것이 중요하다. 또한, 스팀 생성환경을 고려하여, 상기 물공급단계(S4)는 공기유동의 공급 없이 가열과 함께 수행될 수 있다. 그러나, 스팀생성환경의 중요성에도 불구하고, 상기 물공급단계(S4)는 공기유동의 배제에 추가적으로 가열을 배제하면서 수행될 수도 있다. 이러한 이유들로, 상기 물공급단계(S4)는 적어도 상기 블로워(140)를 정지시키는 단계를 포함할 수 있다. 또한, 물공급단계(S4)는 상기 블로워(140)를 정지시키는 반면, 상기 히터(150)를 작동시키는 단계를 포함할 수 있다. 더 나아가, 상기 물공급단계(S4)는 블로워(140) 및 히터(130) 둘 다를 정지시키는 단계로 이루어질 수도 있다.
상기 소정공간(S)의 크기는 제한적이므로, 너무 많은 량의 물을 실질적으로 긴 기간 동안 공급하면 이러한 물은 모두 스팀으로 변환되기 어렵다. 따라서, 도 17에 도시된 바와 같이, 상기 물 공급단계(S4)는 상기 가열단계(S3)보다 짧은 시간인 10초 동안 수행될 수 있다. 이러한 짧은 시간 동안의 물 공급단계(S4)에 의해 적절한 량의 물이 상기 소정공간(S)에 공급되어 모두 스팀으로 변환될 수 있다.
상기 물공급단계(S4)가 완료되면, 생성된 스팀을 이동시키기 위해 상기 소정공간(S)을 향해 공기가 불어질 수 있다(blow)(S5). 즉 생성된 스팀이 상기 터브(30)에 공급되도록 공기유동이 상기 소정공간(S)에 공급될 수 있다(S5). 이러한 공기유동의 공급은 여러장치 중에서 상기 블로워(140)에 의해 수행될 수 있다.
생성된 스팀은 이러한 공기유동에 실려 덕트(100)를 따라 이동하며, 일차적으로 터브(30)에 공급된다. 이후, 상기 스팀은 드럼(40)을 거쳐 최종적으로 세탁물까지 도달할 수 있다. 이러한 스팀은 의도된 기능들을 수행하며, 예를 들어 세탁물을 리프레쉬하거나, 세탁물을 살균하거나 최적의 세탁환경을 조성할 수 있다. 만일 공급된 공기유동이 생성된 스팀의 전부 또는 이의 충분한 량을 상기 터브(30)에 이송할 수 있다면, 이러한 공기공급은 상기 공기공급단계(S5)의 일부기간 동안 수행될 수 있다. 또한, 상기 공기공급은 상기 가열단계(S3)의 전체기간 동안 수행될 수 있다.
만일 상기 공기유동 공급단계(S5)중에 물이 공급되면, 공급된 물은 공기유동에 의해 바로 이송된다. 이러한 공급된 물은 상기 소정영역(S)에 충분한 시간 동안 머물수 없으므로 모두 스팀으로 변환되지 않고 상당량이 액체상태의 물이 그대로 상기 터브(30)에 공급된다. 즉, 스팀의 품질이 저하될 수 있다. 따라서, 상기 공기유동공급단계(S5)는 상기 소정공간(S)에 대한 물 공급없이 수행될 수 있다. 한편, 물 공급이 없는 상태에서 가열이 상기 공기유동 공급단계(S4)에서 수행되는 경우, 즉 상기 히터(130)가 계속 작동되는 경우, 상기 히터(130)는 과열될 수 있다. 따라서, 상기 공기유동 공급단계(S5)는 상기 소정공간(S)에 대한 가열 없이 수행될 수 있다. 상기 물공급 및/또는 가열의 배제는 바람직하게는 상기 공기유동 공급단계(S5)의 전체기간 동안 수행될 수 있다. 그럼에도 불구하고, 이러한 배제는 상기 공기유동공급단계(S5)의 일부기간 동안만 수행되는 것도 가능하다.
이와 같은 물 공급 및/또는 가열의 배제는 다양한 방법에 의해 수행될 수 있으나, 상기 스팀공급 메커니즘, 즉 덕트(100)장치내의 부품들을 제어함으로 용이하게 달성될 수 있다. 예를 들어, 도 17에 도시된 바와 같이, 노즐(150)은 상기 소정공간(S)에 대한 물 공급을 배제하기 위해 상기 공기유동공급단계(S5)동안 정지될 수 있다. 또한, 상기 히터(130)는 과열을 피하기 위해 상기 공기공급단계(S5) 동안 정지될 수 있다. 이와 같은 히터(130) 및 노즐(150)의 작동 정지는 상기 공기유동 공급단계(S5)의 전체기간 동안 계속적으로 유지되는 것이 바람직하다. 그러나, 상기 히터(130) 및 노즐(150)의 작동 정지는 상기 공기유동공급단계(S5)의 일부기간 동안만 유지될 수도 있다. 한편, 상기 공기공급단계(S5)의 전체기간 동안 상기 블로워(140)는 계속적으로 작동될 수 있다. 또한, 상기 블로워(140)는 공기공급단계(S5)의 일부기간 동안 작동될 수도 있다.
앞서 논의된 바와 같이, 상기 물 공급은 최종적으로 좋은 품질의 스팀을 상기 터브(30)까지 이송하는 것을 어렵게 한다. 상기 공기공급단계(S5)에 있어 이러한 좋은 품질의 스팀 이송이 가장 중요하므로, 상기 공기공급단계(S5)는 적어도 물 공급없이 수행되는 것이 중요하다. 또한, 부품고장의 방지 및 안전을 위해, 상기 공기유동 공급단계(S5)는 물 공급 뿐만 아니라 가열 없이 수행될 수 있다. 그러나, 물공급 배제의 중요성에도 불구하고, 상기 공기유동 공급단계(S5)는 물공급의 배제없이 가열만을 배제하면서 수행될 수도 있다. 이러한 이유들로, 상기 공기유동공급단계(S5)는 적어도 상기 노즐(150)을 정지시키는 단계를 포함할 수 있다. 또한, 공기유동공급단계(S5)는 상기 노즐(150) 및 히터(130)를 정지시키는 단계를 포함할 수 있다. 더 나아가, 상기 공기유동공급단계(S5)는 노즐(150)의 작동정지 없이 히터(130)를 정지시키는 단계로 이루어질 수도 있다. 이와 같은 노즐(150) 및/또는 히터(130)의 선택적인 정지중에도 상기 블로워(140)는 상기 공기유동 공급단계(S5)의 전체기간동안 계속적으로 작동될 수 있다. 즉, 도 17에 도시된 바와 같이, 스팀공급 메커니즘의 주요부품인 히터(130), 블로워(150), 노즐(150) 중에서, 상기 블로워(140)만이 상기 공기유동 공급단계(S3)동안 계속적으로 작동될 수 있다. 그럼에도 불구하고, 상기 블로워(140)는 공급된 공기유동이 생성된 스팀의 전부 또는 이의 충분한 량을 상기 터브(30)에 이송할 수 있다면 상기 공급단계(S5)의 일부기간 동안만 작동될 수도 있다.
한편, 상기 공기유동공급단계(S5)에서 공급되는 스팀에 의해 상기 터브(30)내에는 물이 생성될 수 있다. 예를 들어, 상기 터브(30)/드럼(40) 및 그 내부의 공기는 상기 공급되는 스팀에 비해 상대적으로 낮은 온도를 갖는다. 따라서, 공급된 스팀은 상기 터브(30)/드럼(40) 및 그 내부의 공기와 열교환을 하여 물로서 응축될 수 있다. 또한, 상기 덕트(100)내에서도 열교환에 의해 상기 스팀은 공급되는 도중 응축될 수 있으며, 이러한 응축된 물은 다시 공기유동에 의해 상기 터브(30)로 공급될 수 있다. 따라서, 응축된 물은 최종적으로 상기 터브(30)내에 모일 수 있다. 만일 도 2에 도시된 바와 같이, 섬프(33)가 상기 터브(30)에 제공되는 경우, 응축된 물은 상기 섬프(33)에 모일 수 있다. 이와 같은 응축된 물은 상기 세탁물을 다시 적실 수 있으며, 스팀공급에 의해 의도된 기능을 방해한다. 이러한 이유로, 상기 공기공급단계(S5)동안에 상기 스팀공급에 의해 생성된 물은 상기 터브(30)로부터 배출될 수 있다. 이러한 물의 배출을 위해, 도 17에 도시된 바와 같이, 배수펌프(90)가 작동될 수 있다. 상기 배수펌프(90)가 작동되면, 상기 섬프(33)에 있는 물은 상기 배수구(33b) 및 배수관(91)을 거쳐 세탁기 외부로 배출될 수 있다. 이러한 물의 배출은 상기 공기유동 공급단계(S5)의 전체기간 동안 수행될 수 있다. 또한, 만일 물이 신속하게 배출될 수 있다면, 상기 물의 배출은 상기 공기유동 공급단계(S5)의 일부기간 동안만 수행될 수도 있다. 마찬가지로, 상기 배수펌프(90)도 상기 공기유동 공급단계(S5)의 전체기간 동안 작동되거나, 이의 일부기간 동안 작동될 수도 있다.
상기 소정공간(S)의 크기는 제한적이므로, 상기 소정공간(S)내에 생성된 모든 스팀을 상기 터브(30)에 공급하는 데는 많은 시간이 요구되지 않는다. 따라서, 도 17에 도시된 바와 같이, 상기 공기유동공급단계(S5)는 상기 물공급단계(S4)보다 짧은 시간인 5초 동안 수행될 수 있다. 상기 단계들(S3-S5)은 앞서 설명된 바와 같이 각 단계에 의도된 기능만을 각각 효율적으로 수행하므로, 이들의 수행시간들은 도 17에 나타나는 바와 같이 점차적으로 단축될 수 있으며, 이에 따라 에너지의 사용도 최소화된다.
앞서 설명된 바와 같이, 상기 가열단계(S3), 물공급단계(S4) 및 공기유동공급단계(S5)는 스팀공급을 위해 기능적으로 서로 연계된다. 따라서, 도 16 및 도 17에 도시된 바와 같이 이들 단계들(S3-S5)은 이의 기능적 측면에서 하나의 프로세스, 즉 스팀공급 프로세스(P2)를 형성한다. 리프레쉬 효과, 즉 구김, 정전기, 냄새등의 제거는 충분한 량의 스팀의 공급만에 의해서도 달성될 수 있다. 앞서 설명된 바와 같이, 상기 스팀공급프로세스(P2)는 이미 충분한 량의 스팀을 발생할 수 있으므로, 상기 스팀공급 프로세스(P2)는 후술되는 추가적인 단계들 없이도 단독으로 의도된 리프레쉬 기능을 수행할 수 있다. 또한, 상기 단계들(S3-S5)의 세트 즉, 상기 스팀공급 프로세스는 다수회 반복될 수 있으며, 이에 따라 더욱 많은 스팀이 리프레쉬 효과를 극대화하도록 계속적으로 상기 터브(30)에 공급될 수 있다. 도 17에 설명된 바와 같이, 상기 스팀공급 프로세스(P2)는 바람직하게는 18회 반복될 수 있다. 스팀공급프로세스(P2)를 1번 수행하는데 35초가 걸리므로, 이를 18회 수행하는 것은 약 10분 정도 걸린다 (정확하게는 10분 30초).
상기 스팀공급 프로세스(P2)는 스팀공급에 요구되는 기능 및 작동을 상세하게 구별하고 이러한 구별된 기능 및 작동을 해당 단계들(S3-S5)에 부여한다. 이미 앞서 설명된 바와 같이, 상기 가열단계(S3), 물공급단계(S4) 및 공기유동공급단계(S5)는 각각의 의도된 기능들을 효과적으로 수행하기 위해 의도된 기능에 연계된 작동만을 주로 수행하며 이에 따라 연계된 부품만을 주로 작동시킨다. 또한, 같은 이유로, 상기 단계들(S3-S5)은 의도된 기능과 상관없는 작동들을 선택적으로 수행하지 않을 수 있으며, 이에 따라 그와 같은 작동에 연계된 부품을 선택적으로 작동시키지 않을 수 있다. 예를 들어, 상기 가열단계(S3)는 공기유동공급 및/또는 물 공급을 모두 또는 선택적으로 배제할 수 있다. 이러한 경우, 상기 물 공급은 주로 상기 물 공급단계(S4)의 기능에 해당하며, 상기 공기유동공급은 주로 상기 공기유동 공급단계(S5)의 기능에 해당한다. 따라서, 상기 가열단계(S3)에서 상기 공기유동공급 및/또는 물 공급이 배제되는 경우, 상기 물 공급단계(S4) 및/또는 공기유동 공급단계(S5)가 상기 가열단계(S3)동안 수행되지 않는다라고 이해될 수 있다. 또한, 상기 물 공급단계(S4)는 공기유동공급을 선택적으로 배제할 수 있다. 반면, 상기 가열은 상기 물공급단계(S4)동안 수행될 수 있다. 여기서, 상기 가열은 주로 상기 가열단계(S4)의 기능에 해당한다. 따라서, 상기 물 공급단계(S4)에서 공기유동공급이 배제되나 가열은 수행되는 경우, 상기 물 공급단계(S4)동안 상기 공기유동 공급단계(S5)는 수행되지 않으나 상기 가열단계(S3)는 수행되는 것으로 설명될 수 있다. 끝으로, 상기 공기유동 공급단계(S5)는 물 공급 및/또는 가열을 모두 또는 선택적으로 배제할 수 있다. 따라서, 상기 공기유동 공급단계(S5)에서 상기 물 공급 및/또는 가열이 배제되는 경우, 상기 가열단계(S3) 및/또는 상기 물 공급단계(S4)가 상기 공기유동 공급단계(S5) 동안 수행되지 않는다라고 이해될 수 있다. 즉, 상기 공기유동 공급단계(S5)는 상기 가열단계(S3) 및 물공급단계(S4)가 완료될 때까지는 수행되지 않으며, 상기 공기유동 공급단계(S5)는 오직 상기 가열단계(S3) 및 물공급단계(S4)가 완료된 후에만 수행될 수 있다. 앞서 설명된 원래 의도된 선택적 기능 및 작동의 수행에도 불구하고, 상기 스팀공급 프로세스(P2)에서, 상기 가열, 물공급, 공기유동공급은 소정시간 동안 동시에 수행될 수도 있다. 즉, 상기 히터(130), 노즐(150) 및 블로워(140)이 동시에 소정시간 동안 작동될 수 있다. 이러한 경우에도, 스팀은 상기 프로세스(P2)에서 생성 및 공급될 수 있다.
앞서 설명된 바와 같이, 상기 스팀공급 프로세스(P2)는 스팀을 생성하고 공급하는 독립적인 기능을 갖는다. 따라서, 상기 프로세스(P2)는 위에서 상기 리프레쉬 코스의 일부로써 설명되었으나, 기본적인 세탁 코스 또는 다른 개별적인 코스에 그대로 적용될 수 있다.
한편, 만일 스팀공급 메커니즘을 포함하여 세탁기 자체가 미리 스팀공급에 적합하게 준비될 수 있다면, 상기 스팀공급 프로세스(P2;S3-S5)는 보다 효율적으로 수행될 수 있다. 따라서, 이와 같은 준비를 위한 단계들이 다음에서 설명된다. 상기 준비단계들 및 기 설명된 단계들(S3-S5) 뿐만 아니라 이후에 설명되는 모든 단계들에 있어서, 만일 어떤 기능이 수행되거나 배제된다고 설명되는 경우, 이는 기본적으로 그와 같은 기능수행 및 기능배제가 해당 단계의 기설정된 전체기간 동안 유지되는 것을 의미할 수 있으며, 다른 한편 해당 단계의 일부기간 동안 유지되는 것도 포함한다. 마찬가지로, 같은 논리가 그와 같은 기능과 관련된 부품이 작동되거나 정지된다고 설명되는 경우에도 적용된다. 더 나아가, 만일 어떤 기능 및/또는 부품의 작동이 설명되지 않는다면, 이는 해당 단계에서 이러한 기능이 수행되지 않으며, 부품이 작동되지 않는다는 것, 즉 정지된다는 것을 의미할 수 있다.
먼저, 준비단계로써, 상기 가열단계(S3)에 앞서, 상기 덕트(100)가 예비적으로 가열될 수 있다(S2). 이러한 예비가열단계(S2)는 여러가지 방법에 의해 수행될 수 있으나, 상기 덕트(100)와 이에 연결된 터브(30)에서 고온의 공기를 순환시킴으로써 수행될 수 있다. 또한, 이러한 공기의 순환은 상기 스팀공급 메커니즘을 형성하는 덕트(100)내의 부품을 이용하여 용이하게 달성될 수 있다. 예를 들어, 도 17를 참조하면, 고온의 공기를 순환시키기 위해, 상기 블로워(140)와 히터(130)가 작동될 수 있다. 상기 히터(130)가 열을 발산하면, 이러한 열은 상기 블로워(140)에서 제공된 공기유동에 실려 덕트(100)를 따라 이동된다. 이러한 열은 공기유동과 함께 순환하면서, 공기뿐만 인접한 부품들도 가열할 수 있다. 보다 상세하게는, 이러한 순환하는 열과 공기유동은 상기 덕트(100)(스팀공급 메커니즘 포함)뿐만 아니라 터브(30)와 드럼(40) 자체와 이들 내부의 공기들을 전체적으로 가열할 수 있다. 즉, 상기 가열단계(S3)가 상기 소정공간(S)만을 국부적으로 가열하는 반면, 상기 예비가열단계(S2)는 세탁기 시스템 전체를 실질적으로 가열할 수 있다. 또한, 상기 가열단계(S3)가 상기 소정공간(S)을 직접적으로 가열하는 반면, 상기 예비가열단계(S2)는 공기의 순환을 이용하므로, 세탁기 시스템 전체를 간접적으로 가열할 수 있다.
앞서 설명된 바와 같이, 상기 예비가열단계(S2)에 의해 상기 덕트(100) 전체가 일차적으로 가열되므로, 상기 스팀공급 프로세스(P2;S3-S5)에 의해 제공되는 스팀이 상기 터브(30) 및 드럼(40)에 도달하기 이전에 상기 덕트(100)내에서 응축되는 것이 방지될 수 있다. 또한, 상기 예비가열단계(S2)는 터브(30) 및 드럼(40)도 전체적으로 가열하므로, 제공되는 스팀이 상기 터브(30) 및 드럼(40)내에서 응축되는 것을 억제할 수 있다. 따라서, 불필요한 손실 없이 충분한 량의 스팀이 공급되므로 의도된 기능은 효과적으로 수행될 수 있다. 이러한 예비가열단계(S2)는 도 17에 도시된 바와 같이, 예를 들어 30초 동안 수행될 수 있다.
또한, 앞서 설명된 바와 같이, 세탁기, 상세하게는 덕트(100), 터브(30) 및 드럼(40)내에 잔류하는 물은 스팀공급에 의해 의도된 기능을 방해할 수 있다. 또한, 잔류하는 물은 공급된 스팀의 빠른 응축을 유도할 수 있으며, 세탁물을 다시 적실 수도 있다. 이러한 이유들로, 상기 예비가열단계(S2)에 앞서, 세탁기내에 잔류하는 물은 세탁기 외부로 배출될 수 있다(S1). 상기 배출단계(S1)의 수행을 위해, 상기 배수펌프(90)가 도 17에 도시된 바와 같이 작동될 수 있다. 상기 배수펌프(90)가 작동되면, 상기 터브(30)내의 물은 상기 배수구(33b) 및 배수관(91)을 거쳐 세탁기 외부로 배출될 수 있다. 또한, 이러한 물 배출을 촉진하기 위해, 가열되지 않은 공기가 순환될 수 있다(S1). 상기 순환단계(S1)에서, 가열되지 않은 공기, 즉 상온의 공기는 덕트(100), 터브(30) 및 드럼(40)에 걸쳐 순환하면서, 이들 내부에 기 존재하는 물을 이동시키고 최종적으로 터브(30), 상세하게는 상기 터브(30)의 바닥부에 모은다. 만일 도 2에 도시된 바와 같이, 섬프(33)가 상기 터브(30) 의 바닥부에 제공되는 경우, 잔류된 물은 모두 상기 섬프(33)에 모일 수 있다. 따라서, 이러한 순환단계(S1)에 의해 잔류된 물은 보다 효과적으로 배출될 수 있다. 또한, 이러한 순환단계(S1)도중 공급되는 공기유동에 의해 상기 히터(130)의 표면은 청소될 수 있다. 세탁기의 반복되는 작동 동안 상기 히터(130)의 표면에는 린트 등과 같은 불순물이 부착될 수 있으며, 이러한 불순물은 히터의 작동을 방해할 수 있다. 그러나, 상기 순환단계(S1)에 의해 이러한 불순물들이 제거되므로, 뒤따르는 단계들, 특히 스팀공급 프로세스(P2)에서 상기 히터(130)의 안정적인 작동이 보장된다. 또한, 상기 순환단계(S1)에서, 공기유동은 상기 히터(130)를 전체적으로 냉각시킬 수 있다. 따라서, 상기 히터(130)표면의 온도는 전체적으로 균일하게 되며, 이에 따라 히터(130)는 뒤따르는 단계들에서 보다 안정적이고 효과적으로 작동할 수 있다. 앞서 설명된 바와 같이, 상기 순환단계(S1)는 순환하는 공기의 가열을 요구하지 않으므로, 상기 순환단계(S1)에서 히터(130)의 작동없이 상기 블로워(130)만이 상온의 공기의 유동을 위해 작동될 수 있다.
이와 같은 배출단계 및 순환단계는 함께 수행되는 것이 바람직하나, 서로 별도로 수행될 수도 있다. 상기 배출 및/또는 순환단계(S1)은 도 17에 도시된 바와 같이, 예를 들어 30초 동안 수행될 수 있다.
앞서 설명된 바와 같이, 상기 배출/순환단계(S1) 및 예열단계(S2)는 뒤따른는 단계들(S3-S5), 즉 스팀공급 프로세스(P2)를 위한 최적의 환경을 조성할 수 있다. 즉, 상기 단계(S1, S2)들은 상기 스팀공급 프로세스(P2)를 위해 준비를 제공하는 기능을 수행한다. 따라서, 도 16 및 도 17에 도시된 바와 같이, 이들 단계들(S1,S2)는 이들의 기능적 측면에서 하나의 프로세스, 즉 준비 프로세스(P2)를 형성하게 된다. 상기 준비 프로세스(P1)는 스팀생성 및 공급을 위한 최적의 환경을 조성함으로써 상기 스팀공급 프로세스(P2)에 실질적으로 보조적이다. 따라서, 만일 상기 프로세스(P2)가 앞서 언급된 바와 같이, 상기 리프레쉬 코스가 아닌 기본적인 세탁코스 또는 다른 개별적인 코스에 스팀을 공급하기 위해 독립적으로 적용되면, 상기 프로세스(P1)도 그와 같은 코스들에 상기 프로세스(P2)와 함께 적용될 수 있다.
한편, 상기 스팀공급 프로세스(P2)에서 공급된 스팀은 의도된 바와 같이 이의 높은 온도 및 수분으로 인해 세탁물의 구김, 냄새, 및 정전기 등을 어느 정도 제거함으로써 세탁물을 리프레쉬할 수 있다. 그럼에도 불구하고, 이러한 리프레쉬 기능을 효과를 최대화하기 위해서는, 소정의 후처리가 추가적으로 요구될 수도 있다. 또한, 상기 공급된 스팀은 상기 세탁물에 수분을 공급하므로, 사용자의 편의를 위해서는 상기 리프레쉬된 세탁물로부터 수분을 제거하기 위한 후처리가 요구될 수 있다.
이러한 후처리로써, 상기 공기공급단계(S5) 이후에, 제 1 건조단계(S6)가 먼저 수행된다. 공지된 바와 같이, 섬유의 구김을 펴기 위해서는 섬유의 조직이 재배열되는 과정이 요구된다. 이러한 섬유조직의 재배열을 위해서는 먼저 소정량의 수분이 제공되고 충분한 시간 동안 섬유내의 수분이 천천히 제거되어야 한다. 즉, 수분이 천천히 제거되어야만 변형된 섬유조직들이 부드럽게 원 상태로 복원될 수 있다. 만일 너무 높은 온도로 섬유를 건조하게 되면, 수분만이 급속하게 섬유부터 제거되며 섬유조직들은 변형된 채로 남게 된다. 이러한 이유로, 수분을 천천히 제거하기 위해 상기 제 1 건조단계(S6)는 상대적으로 낮은 온도로 세탁물을 가열하면서, 세탁물을 건조하도록 구성될 수 있다. 즉, 상기 제 1 건조단계(S6)은 실질적으로 저온건조에 해당할 수 있다.
이러한 제 1 건조단계(S6)는 여러가지 방법에 의해 수행될 수 있으나, 상대적으로 낮은 온도로 가열된 공기를 소정시간 동안 상기 터브(30)에 공급함으로써 수행될 수 있다. 공급된 가열공기는 최종적으로 상기 드럼(40)내의 세탁물에 공급될 수 있다. 이러한 가열된 공기공급은 상기 스팀공급 메커니즘을 형성하는 덕트(100)내의 부품을 이용하여 용이하게 달성될 수 있다. 예를 들어, 도 17을 참조하면, 가열된 공기를 공급하기 위해, 상기 블로워(140)와 히터(130)가 작동될 수 있다. 상기 히터(130)가 열을 발산하면, 이러한 열은 주변의 공기를 가열하게 되며, 가열된 공기는 상기 블로워(140)에서 제공된 공기유동에 실려 덕트(100)를 따라 이동될 수 있다. 이러한 가열된 공기는 공기유동과 함께 터브(30) 및 드럼(40)을 거쳐 세탁물에 도달될 수 있다. 또한, 만일 히터(130)가 지속적으로 작동되면, 공급되는 공기의 온도는 계속적으로 상승되며, 이에 따라 상대적으로 낮은 온도로 유지되기 어렵다. 따라서, 상대적으로 낮은 온도로 가열된 공기를 공급하기 위해, 상기 히터(130)는 단속적으로 작동될 수 있다. 예를 들어, 도 17에 도시된 바와 같이, 상기 히터(130)는 30초 동안 작동되고, 40초 동안 정지될 수 있으며, 이러한 작동 및 정지를 반복할 수 있다. 더 나아가, 상대적으로 낮은 온도로 가열된 공기의 공급을 위해, 상기 공기 또는 히터(130)의 온도가 직접 제어될 수 있다. 예를 들어, 상기 덕트(100)의 공기온도 또는 히터(130)의 온도가 58℃이면, 상기 히터(130)가 작동될 수 있다. 또한, 상기 덕트(100) 공기온도 또는 히터(130)의 온도가 63℃이면, 상기 히터(130)가 정지될 수 있다.
상술된 제 1 건조단계(S6)에 의해 상대적으로 낮은 온도로 가열된 공기가 세탁물에 공급되므로, 세탁물의 섬유조직은 천천히 건조되면서 재배열된다. 따라서, 세탁물은 주름 및 구김을 포함하지 않도록 복원될 수 있다. 이러한 지 1 건조단계(S6)는 세탁물을 충분한 시간 동안 천천히 건조하도록 도 17에 도시된 바와 같이, 예를 들어 9분 동안 수행될 수 있다.
또한, 공급된 스팀으로 인해 세탁물은 젖게 되므로, 세탁물로부터 수분이 제거될 필요가 있다. 따라서, 상기 제 1 건조단계(S6)이후에, 제 2 건조단계(S7)가 수행된다. 상기 수분을 빠른 시간내에 세탁물로부터 제거하기 위해, 상기 제 2 건조단계(S7)는 높은 온도로, 즉 적어도 상기 제 1 건조단계보다 높은 온도로 세탁물을 건조하도록 구성될 수 있다. 즉, 상기 제 2 건조단계(S7)는 상기 제 1 건조단계(S7)와 비교할 때 고온건조에 해당할 수 있다.
이러한 제 2 건조단계(S7)는 여러가지 방법에 의해 수행될 수 있으나, 상당히 높은 온도를 갖는 공기를 소정시간 동안 상기 터브(30)에 공급함으로써 수행될 수 있다. 적어도 상기 제 2 건조단계(S7)는 상기 제 1 건조단계(S6)의 공기온도보다 높은 온도를 갖는 공기를 공급할 수 있다. 예를 들어, 도 17에 도시된 바와 같이, 상기 제 1 가열단계(S6)과 마찬가지로, 높은 온도로 가열된 공기를 공급하기 위해, 상기 블로워(140)와 히터(130)가 작동될 수 있다. 상기 제 1 건조단계(S6)의 단속적 작동과는 다르게, 히터(130)는 높은 온도의 공기의 계속적 공급을 위해 계속적으로 작동될 수 있다. 그러나, 상기 히터(130)가 지속적으로 작동되는 동안, 상기 히터(130)가 과열될 수도 있다. 따라서, 이러한 히터(130)의 과열을 방지하기 위해, 상기 공기 또는 히터(130)의 온도가 직접 제어될 수 있다. 예를 들어, 상기 덕트(100) 공기온도 또는 히터(130)의 온도가 95℃에 도달하면, 상기 히터(130)가 정지될 수 있다. 한편, 상기 덕트(100) 공기온도 또는 히터(130)의 온도가 90℃에 도달하면, 상기 히터(130)는 다시 작동될 수 있다.
상술된 제 2 건조단계(S7)에 의해 고온으로 가열된 공기가 세탁물에 공급되므로, 세탁물은 빠른 시간내에 완전하게 건조될 수 있다. 이러한 제 2 건조단계(S7)는 도 17에 도시된 바와 같이, 예를 들어 상기 제 1 건조단계(S6)보다 짧은 1분 동안 수행될 수 있다. 즉, 상기 제 1 건조단계(S6)의 기간은 상기 제 2 건조단계(S7)보다 길다.
앞서 설명된 바와 같이, 상기 제 1 및 제 2 건조단계들(S6, S7)은 일종의 후처리로써의 건조기능을 제공하기 위해 서로 연계된다. 따라서, 도 16 및 도 17에 도시된 바와 같이, 이들 단계들(S6, S7)는 이들의 기능적 측면에서 하나의 프로세스, 즉 건조 프로세스(P3)를 형성하게 된다.
건조단계들(S6, S7)을 거친 세탁물은 가열된 공기에 의해 가열에 의해 높은 온도를 갖는다. 따라서, 사용자는 상기 세탁물에 의해 화상을 입을 수도 있으며, 수분이 제거되었음에도 불구하고 건조된 세탁물을 바로 입을 수 없다. 이러한 이유로, 상기 제 2 건조단계(S7)이후에, 상기 세탁물은 냉각될 수 있다(S8). 보다 상세하게는, 상기 냉각단계(S8)는 상기 세탁물에 가열되지 않은 공기를 공급할 수 있다. 예를 들어, 가열되지 않은 공기를 공급하도록 상기 냉각단계(S8)에서 히터(130)의 작동 없이 상기 블로워(130)만이 상온의 공기의 유동을 위해 작동될 수 있다. 가열되지 않은 공기, 즉 상온의 공기는 덕트(100), 터브(30) 및 드럼(40)에 걸쳐 이동하면서, 최종적으로 상기 세탁물에 공급될 수 있다. 공급된 상온의 공기는 세탁물과 열 교환에 의해 세탁물을 냉각시킬 수 있다. 따라서, 사용자는 리프레쉬된 세탁물을 바로 입을 수 있으므로, 사용자의 편의성이 증가된다. 또한, 공급되는 상온의 공기는 상기 덕트(100), 터브(30) 및 드럼(40)뿐만 아니라 세탁기의 전체 부품들을 어느 정도 냉각시킬 수 있다. 따라서, 사용자가 화상을 입는 것도 실질적으로 방지될 수 있다. 상기 냉각단계(S8)는 예를 들어 도 17에 도시된 바와 같이, 4분동안 수행될 수 있다. 이러한 냉각단계(S8)는 독립적인 기능을 수행하므로, 앞서 정의된 다른 프로세스들과 마찬가지로, 하나의 냉각 프로세스(P4)로 간주될 수 있다. 만일 필요한 경우, 도 17에 도시된 바와 같이, 상기 냉각단계(S8)이후에, 상기 세탁물 및 세탁기는 소정시간 동안 추가적으로 상온의 공기하에서 자연 냉각될 수도 있다.
앞서 설명된 단계들(S1-S8) 중 적어도 어느 하나의 단계들에서 세탁물은 뒤섞일 수 있다. 이러한 뒤섞임을 위해, 도 17에 도시된 바와 같이, 상기 드럼(40)은 회전될 수 있다. 예를 들어, 상기 드럼(40)은 한방향으로 계속 회전될 수 있으며, 세탁물은 상기 드럼(40)내에 제공된 리프터에 의해 소정 높이까지 들어 올려진 후 낙하를 반복한다. 즉, 상기 세탁물은 텀블된다(tumble). 상기 드럼(40) 및 내부의 세탁물은 상당한 중량을 가지므로, 이들에게 관성도 크게 작용한다. 따라서, 상기 드럼(40)은 회전하도록 모터에 의해 계속적으로 동력을 공급받을 필요가 없다. 상기 모터가 정지되더라도 상기 드럼(40)과 세탁물은 관성에 의해 소정시간 회전가능하다. 따라서, 상기 드럼(40)의 회전 동안 상기 모터는 단속적으로 작동될 수 있다. 예를 들어, 도 17에 도시된 바와 같이, 상기 모터는 에너지를 절약하기 위해 16초 동안 작동되고 4초 동안 정지될 수 있다. 이러한 드럼(40)의 회전에 의해 세탁물은 잘 뒤섞이게 되고 각 단계(S1-S7)에서 의도된 기능들이 효과적으로 수행되는 것을 도울 수 있다. 따라서, 상기 세탁물의 뒤섞음, 즉 드럼(40)의 회전은 상기 모든 단계들(S1-S7) 동안 계속적으로 수행될 수 있다. 또한, 상기 세탁물을 잘 뒤섞을 수 있다면, 다른 드럼(40)의 모션도 적용될 수 있다.
도 16 및 17에 도시된 리프레쉬 코스는 상기 코스들(S1-S8)을 연속적으로 수행함으로써 완료될 수 있다. 기능적 측면을 고려할 때, 상기 스팀공급 프로세스(P2)는 스팀 공급 메커니즘을 최적으로 제어함으로써 효율적으로 충분한 양질의 스팀을 생성하며, 이에 따라 리프레쉬 코스의 의도된 기능을 주로 수행할 수 있다. 상기 스팀공급 프로세스(P2)를 보조하여, 상기 준비 프로세스(P1)는 스팀생성에 최적의 환경을 형성하고, 상기 건조 및 냉각 프로세스(P3,P4)는 건조 및 냉각과 같은 후처리(post treatment or additinal treatment)를 수행한다. 이들 프로세스들의 적절한 연계에 의해 상기 리프레쉬 코스는 주름, 냄새, 정전기 제거와 같은 의도된 기능을 효과적으로 수행할 수 있다.
한편, 만일 상기 노즐(150)이 비정상적으로 작동하거나 고장나는 경우, 상기 스팀공급프로세스(P2)의 물공급단계(S4)에서 상기 소정공간(S)으로의 공급되는 물의 량이 기 설정된 것보다 적어지거나, 물의 공급이 중단될 수 있다. 다른 부품들과는 달리, 이러한 노즐(150)의 비정상적 작동 또는 고장은 즉각적으로 히터(150)의 과열을 가져오며, 더 나아가 세탁기의 파손을 가져올 수도 있다. 앞서 언급된 바와 같이, 노즐(150)의 비정상적 작동 또는 고장은 소정공간(S)에 공급되는 물의 량(이하, '급수량')에 직접적인 영향을 주므로, 비정상적 작동 또는 고장은 상기 급수량을 판단함으로써 함께 판단될 수 있다. 이러한 이유로, 도 18에 도시된 바와 같이, 상기 리프레쉬 코스는 상기 물공급단계(S3)에서의 급수량을 판단하는 단계(S9)를 더 포함할 수 있다. 이러한 급수량 판단단계(S9)를 포함하는 리프레쉬 코스가 도 18-도 20을 참조하여 다음에서 설명된다. 도 18의 변형된 리프레쉬 코스에 있어서, 대부분의 단계들은 앞서 도 16 및 도 17을 참조하여 설명된 단계들과 동일하며, 이에 따라 상기 급수량 판단단계(S9)와 이에 관련된 단계들만이 주로 설명된다.
상기 급수량 판단단계(S9)는 정확한 판단을 위해 공급된 물의 실제량을 직접 측정할 수 있다. 그러나, 이러한 직접적 방법은 상대적으로 비싼 장치를 요구하므로, 세탁기의 생산비용을 증가시킬 수 있다. 따라서, 상기 급수량 판단단계(S9)는 상기 물공급단계(S4)에서 충분한 량의 물이 공급되었는지 여부만을 판단함으로써 수행될 수 있다. 즉, 상기 판단단계(S9)는 급수량의 판단에 있어서 간접적 방식을 채택할 수 있다. 상기 물 공급단계(S4)에서 공급된 물은 스팀으로 변화되면서, 덕트(100)내의 공기 온도를 증가시키게 된다. 보다 상세하게는, 예를 들어, 물이 기 설정된량으로 공급되었다면, 충분한 량의 스팀이 발생되고 덕트(100)내의 공기온도도 일정 수준까지 증가될 수 있다. 반면, 급수량이 줄어들거나 물 공급이 중단되면, 상대적으로 적은 량의 스팀이 발생되고 이에 따라 공기온도도 상대적으로 낮은 수준까지 증가될 것이다. 이러한 결과를 고려할 때, 급수량은 덕트(100)내의 공기의 온도 상승량과 상관관계를 갖는다. 즉, 큰 급수량은 큰 온도 증가량을 가져오며, 상대적으로 적은 급수량은 마찬가지로 상대적으로 작은 온도 증가량을 가져온다. 따라서, 이러한 간접적인 판단에 있어서, 상기 판단단계(S9)는 소정기간 동안 덕트(100)내의 온도 상승량에 기초하여 상기 물 공급단계(S4)에서의 급수량을 판단할 수 있다.
또한, 상기 소정공간(S)내의 공기는 상기 스팀뿐만 아니라 히터(130)에 의해서도 가열되므로, 스팀만에 의한 공기의 온도 증가량이 상기 소정공간(S)에서 정확하게 측정되기 어려울 수 있다. 반면, 상기 소정공간(S)을 벗어난 덕트(100)내의 공간은 스팀만의 온도증가를 정확하게 반영할 수 있다. 앞서 설명된 바와 같이, 생성된 스팀은 공기유동공급단계(S5)에서 제공되는 공기유동과 함께 상기 소정공간(S)으로부터 토출되며 소정공간(S)이 아닌 덕트(100)내 공간을 가열하게 된다. 따라서, 정확한 온도증가량의 측정을 위해 상기 판단단계(S9)는 상기 소정기간 동안 상기 소정공간(S)으로부터 배출된 공기의 온도증가량을 측정할 수 있다. 즉, 상기 판단단계(S9)는 상기 소정공간(S)의 밖에 위치되고, 배출된 스팀과 혼합되며, 이에 의해 가열된 공기의 온도 증가량이 측정된다. 이와 같이 배출된 공기 및 스팀은 바로 덕트의 배출부(110a)로 진입하므로, 상기 판단단계(S9)는 상기 덕트의 배출구(110a)에서의 공기 온도증가량을 측정할 수 있다. 실제적으로, 세탁물의 건조제어를 위해, 상기 배출부(110a)에는 순환하는 뜨거운 공기의 온도를 측정하는 센서가 장착될 수 있다. 이러한 경우, 상기 센서는 건조단계(S6, S7) (통상적인 세탁물 건조단계 포함) 뿐만 아니라 판단단계(S9)에서도 공통적으로 사용될 수 있다. 따라서, 상술된 판단단계(S9)는 세탁기의 생산비용 절감에 매우 유리하다. 더 나아가, 상기 판단단계(S9)는 상기 물공급 및 공기공급단계(S4, S5)의 완료후에 수행될 수 있다. 그러나, 노즐의 비정상적 작동을 빨리 판단하기 위해, 상기 판단단계(S9)는 상기 물공급 및 공기공급단계(S4, S5)에 걸쳐, 즉 이러한 단계들 도중에 수행될 수 있다. 즉, 상기 판단단계(S9)가 수행되는 소정기간은 상기 물공급단계(S4) 및 공기공급단계(S5)에서의 소정기간으로 이루어질 수 있다. 예를 들어, 상기 물공급단계(S4) 중에도 생성된 스팀은 크게 팽창하면서 상기 소정공간(S)으로부터 자연스럽게 토출된다. 따라서, 물 공급단계(S4) 중에도 토출된 스팀에 의한 공기온도 증가가 측정될 수도 있다. 물론, 상기 공기유동 공급단계(S5)는 기본적으로 소정공간(S)으로부터 스팀 토출을 유도하므로 당연히 공기온도 증가가 측정될 수 있다. 따라서, 바람직하게는, 상기 소정기간은 상기 물공급단계(S4)에서 시작되어 상기 공기공급단계(S5)에서 종료될 수 있다.
보다 상세하게는, 상기 판단단계(S9)에서, 도 19에 도시된 바와 같이, 먼저 제 1 온도가 측정될 수 있다(S9a). 상기 제 1 온도는 상기 소정공간(S)으로부터 배출된 공기의 온도에 해당한다. 다시 말하면, 상기 제 1 온도는 상기 소정공간(S)에 밖에 위치되며, 배출된 스팀과 혼합되면서 가열되는 공기의 온도에 해당한다. 또한, 앞서 설명된 바와 같이, 상기 제 1 온도는 상기 덕트의 배출구(110a)에서의 공기 온도에 해당될 수 있다. 더 나아가, 스팀은 물 공급단계(S4)가 시작되면 상기 소정공간(S)으로부터 자연스럽게 토출될 수 있으므로, 상기 측정단계(S9a)는 상기 물공급단계(S4)가 시작된 후에 언제라도 수행될 수 있다.
상기 측정단계(S9a)가 완료되면, 소정기간 후에 상기 공기의 온도인 제 2 온도가 측정된다(S9b). 상기 측정단계(S9b)의 공기는 상기 측정단계(S9b)에서 설명된 공기와 동일하다. 또한, 앞서 설명된 바와 같이, 상기 소정기간은 상기 물공급단계(S4) 및 공기공급단계(S5) 동안의 소정기간으로 이루어질 수 있다. 바람직하게는, 상기 소정기간은 상기 물공급단계(S4)에서 시작되어 상기 공기공급단계(S5)에서 종료될 수 있다.
상기 측정단계(S9b)가 완료되면, 상기 측정된 제 1 및 제 2 온도로부터 온도 상승량이 계산될 수 있다(S9c). 상기 상승량은 일반적으로 상기 제 2 온도로부터 제 1 온도를 빼서 얻어질 수 있다.
이 후, 계산된 온도 상승량은 소정의 기준값과 비교될 수 있다(S9d). 만일 상기 비교단계(S9d)에서, 계산된 온도 증가량이 소정의 기준값보다 미만인 경우, 이는 온도 증가가 충분하게 이루어지지 않았다는 것을 의미한다. 더 나아가, 이러한 결과는 충분한 물이 공급되지 않았거나 물의 공급이 중단되어 이에 따라 충분한 스팀이 발생되지 않았음을 의미한다. 따라서, 상기 계산된 온도 증가량이 소정의 기준값 미만인 경우, 적어도 충분한 물이 공급되지 않았다고 판단될 수 있다 (S9e). 다른 한편, 만일 상기 비교단계(S9d)에서, 계산된 온도 증가량이 소정의 기준값 이상인 경우, 이는 온도 증가가 충분하게 이루어졌다는 것을 의미한다. 더 나아가, 이러한 결과는 충분한 물이 공급되어 충분한 스팀이 발생되지 않았음을 의미한다. 따라서, 상기 계산된 온도 증가량이 소정의 기준값 이상인 경우, 적어도 충분한 물이 공급되었다고 판단될 수 있다(S9f). 이와 같은 비교 및 판단단계(S9d-S9f)에서, 상기 소정의 기준값은 실험이나 해석을 통해 얻어질 수 있으며, 예를 들어 11℃가 될 수 있다.
만일 상기 판단단계(S9f)에서와 같이 충분한 물이 공급된 것으로 판단되면, 이는 상기 노즐(150)이 어떠한 고장 없이 정상적으로 작동하고 있는 것으로 판단될 수 있다. 따라서, 도 19에 도시된 바와 같이, 계속해서 상기 제 1 건조단계(S6)가 수행될 수 있다. 또한, 필요한 경우, 상기 제 1 건조단계(S6)이전에, 상기 단계들(S3-S5)의 세트 즉, 상기 스팀공급 프로세스는 기 설정된 횟수로 반복될 수 있다.
만일 상기 판단단계(S9e)에서 충분한 물이 공급되지 않았다고 판단되면, 이는 또한 상기 노즐(150)이 비정상적으로 작동하거나 고장난 것으로 판단될 수 있다. 이러한 노즐(150)의 비정상적 작동은 여러가지 이유에 의해 발생될 수 있으며, 예를 들어 상기 노즐(150)에 공급되는 수압이 비정상적으로 낮은 경우를 포함한다. 이러한 노즐(150)의 비정상적 작동 또는 고장은 앞서 언급된 바와 같이 히터(150)의 과열 및 고장, 더 나아가 세탁기의 파손을 가져올 수 있다. 따라서, 상기 판단단계(S9e)와 같이 충분한 물이 공급되지 않은 것으로 판단되면, 안전상의 이유로 상기 세탁기의 작동이 중지될 수 있다. 그럼에도 불구하고, 비정상적 상태하에서도 리프레쉬 코스는 이의 의도된 기능을 수행하도록 구성될 수 있다. 특히, 상기 노즐(150)이 비록 적은 량이지만 물을 공급할 능력을 여전히 가지고 있다면 의도된 기능을 수행하도록 상기 리프레쉬 코스는 변형될 수 있다. 이러한 목적으로 도 20은 대안적인(alternative) 단계들을 도시한다.
도 20에 도시된 바와 같이, 충분한 물이 공급되지 않았다고 판단되면(S9e), 상기 스팀공급 프로세스(P2)는 더이상 진행되거나 반복되지 않는다. 즉, 스팀의 추가적인 생성 및 공급은 중단된다. 대신에, 제 3 건조단계(S10)가 수행된다. 리프레쉬 코스에 있어서, 주름의 제거가 가장 중요한 기능이 될 수 있으므로, 상기 제 3 건조단계(S10)는 적어도 이러한 주름제거를 위해 구성될 수 있다. 앞서 설명된 바와 같이, 수분이 천천히 제거되어야만 변형된 섬유조직들이 부드럽게 원 상태로 복원될 수 있다. 또한, 만일 너무 높은 온도로 섬유를 건조하게 되면, 주름은 제거되지 않은 채 수분만이 급속하게 섬유부터 제거될 수 있다. 따라서, 세탁물로부터 수분을 천천히 제거하기 위해 상기 제 3 건조단계(S10)는 상대적으로 낮은 온도로 세탁물을 가열하면서, 세탁물을 건조하도록 구성될 수 있다. 즉, 상기 제 3 건조단계(S10)도 상기 제 1 건조와 유사하게 저온건조에 해당할 수 있다.
이러한 제 3 건조단계(S10)는 상대적으로 낮은 온도로 가열된 공기를 소정시간 동안 상기 터브(30)에 공급함으로써 수행될 수 있다. 가열된 공기를 공급하기 위해, 상기 블로워(140)와 히터(130)가 작동될 수 있다. 또한, 상대적으로 낮은 온도로 가열된 공기를 공급하기 위해, 상기 히터(130)는 단속적으로 작동될 수 있다(S10a). 예를 들어, 상기 히터(130)는 40초 동안 작동되고, 30초 동안 정지될 수 있으며, 이러한 작동 및 정지를 반복할 수 있다. 상기 제 3 건조단계(S10)는 고온의 스팀이 공급되지 않은 상태에서 수행되므로, 상기 제 3 건조단계(S10)에서의 세탁물 및 이의 주변 온도는 상기 제 1 건조단계(S6)보다 낮다. 따라서, 동일한 히터의 단속적 작동을 수행함에도 불구하고, 상기 제 1 건조단계(S6)에서 히터 작동시간(30초)보다 상기 제 3 건조단계(S10)에서의 히터작동시간(40초)이 더 길게 설정된다.
마찬가지로, 상기 스팀공급 프로세스(P2)의 중지로 인해 상기 제 3 건조단계(S10)의 세탁물에는 충분한 수분이 제공되어 있지 않을 수 있다. 그러나, 앞서 제 1 건조단계(S6)에서도 설명된 바와 같이, 효과적인 주름제거를 위해서는 소정량의 수분을 공급하고 이후 공급된 수분을 제거하는 것이 유리하다. 이러한 이유로, 상기 제 3 건조단계(S10)에서 상기 세탁물에 수분이 공급될 수 있다(S10b). 이러한 수분은 세탁물에 여러가지 형태로 공급될 수 있으며, 예를 들어, 기체상태의 물 또는 액체상태의 물이 세탁물에 공급될 수 있다. 그러나, 앞서 언급된 바와 같이, 기체상태의 물인 스팀은 상기 제 3 건조단계(S10)에서 공급되기 어렵다. 반면, 미스트는 액체상태임에도 불구하고 작은 입자로 이루어져 있으므로, 세탁물에 수분을 제공하는 데 있어 충분히 효과적이다. 따라서, 상기 수분공급단계(S10b)는 미스트를 상기 세탁물에 공급할 수 있다. 즉, 상기 미스트는 적어도 상기 세탁물에 공급되도록 상기 터브(30)에 공급될 수 있다. 또한, 이러한 미스트 공급도 어려가지 방법에 의해 이루어질 수 있다. 예를 들어, 만일 상기 노즐(150)이 비정상적인 상태이지만 여전히 작동가능하다면 즉 소량의 물을 여전히 공급할 수 있다면, 상기 노즐(150)이 미스트를 분사할 수 있다. 상기 제 3 건조단계(S10) 동안 가열된 공기를 세탁물에 공급하기 위해 공기유동은 계속적으로 생성될 수 있다. 즉, 상기 블로워(140)는 상기 제 3 건조단계(S10) 동안 계속적으로 작동될 수 있다. 따라서, 상기 노즐(150)에서 분사된 미스트는 상기 블로워(140)로부터의 공기유동에 의해 운반되어 덕트(100), 터브(30) 및 드럼(40)을 거쳐 세탁물에 도달할 수 있다. 또한, 분사된 미스트의 많은 부분은 상기 히터(130)를 통과하면서 스팀으로 변화될 수 있으며, 이에 따라 효과적으로 리프레쉬 코스에서 의도된 기능들을 수행할 수도 있다. 다른 한편, 만일 상기 노즐이 완전히 고장난 경우를 대비하여, 상기 세탁물에 직접 수분을 공급, 보다 상세하게는 미스트를 분사할 수 있도록 별도의 장치가 세탁기에 제공될 수도 있다. 이러한 별도장치는 상기 노즐(150)과 함께 작동하거나 이에 독립적으로 작동할 수도 있다. 상기 별도장치에서 공급된 미스트도 상기 터브(30)내의 고온의 환경에 의해 적어도 부분적으로 스팀을 변환될 수 있다. 더 나아가, 상기 노즐(150) 및 별도장치는 세탁물에 수분을 공급하기 위해 미스트 대신에 액체상태의 물을 그대로 공급할 수도 있다.
상기 수분공급단계(S10b)는 상기 제 3 건조단계(S10) 도중 어느 때라도 시작될 수 있다. 그러나, 고온의 환경에서 수분을 공급하는 것이 공급된 수분을 뒤이어 제거하는데 기본적으로 유리하다. 또한, 공급되는 미스트를 부분적으로 스팀으로 변환시키기 위해서는 상기 미스트가 가능한 한 고온의 환경에 분사되는 것이 바람직하다. 따라서, 상기 수분공급단계(S10b)는 세탁물에 공급되는 공기가 가열되는 동안 수행될 수 있다. 즉, 상기 수분공급단계(S10b)는 상기 히터의 단속적인 작동에 있어서 상기 히터(150)가 작동되는 동안 공급될 수 있다. 더 나아가, 보다 확실한 결과를 위해 상기 수분공급단계(S10b)는 오직 세탁물에 공급되는 공기가 가열되는 동안에만 수행될 수 있다. 즉, 상기 수분공급단계(S10b)는 상기 히터의 단속적인 작동에 있어서 오직 상기 히터(150)가 작동되는 동안에만 공급될 수 있다. 보다 상세하게는, 상기 수분공급단계(S10)은 상기 히터(150)가 작동되는 40초동안에 수행되는 것이 바람직하다. 또한, 가장 고온의 환경이 형성될 수 있는 상기 히터(150)의 작동중 마지막 10초 동안 수행되는 것이 더욱 바람직하다. 또한, 너무 많은 량의 수분이 공급되면, 세탁물의 주름은 제거되지 않고 오히려 세탁물은 젖게 된다. 따라서, 상기 수분공급단계(S10b)는 상기 제 3 건조단계(S10)의 일부 동안만 수행된다. 더 나아가, 같은 이유로 상기 수분공급단계(S10b)는 상기 제 3 건조단계(S10)의 전반부 동안만 수행되는 것이 바람직하다. 한편, 상기 제 3 건조단계(S10)는 고온의 스팀이 공급되지 않은 상태에서 수행되므로, 주름 제거에 충분한 시간을 갖도록 예를 들어 20분 동안 수행될 수 있다. 이러한 제 3 건조단계(S10)의 기간은 유사한 제 1 건조단계(S6)보다 길게 설정된다. 또한, 상기 수분공급단계(S10b)도 이러한 20분의 제 3 건조단계(S10)의 전반부 동안, 즉 제 3 건조단계(S10)가 시작된 후 11분까지 수행될 수 있다.
또한, 공급된 수분으로 인해 세탁물은 젖게 되므로, 세탁물로부터 수분이 제거될 필요가 있다. 따라서, 상기 제 3 건조단계(S10)이후에, 제 4 건조단계(S11)가 수행된다. 이러한 제 4 건조단계(S11)은 앞서 설명된 제 2 건조단계(S7)와 이의 기능 및 구체적인 작동에 있어서, 실질적으로 동일할 수 있다. 따라서, 앞서 상기 제 2 건조단계(S7)에 관련하여 논의된 모든 특징들은 그대로 상기 제 4 건조단계(S11)에 적용될 수 있으며, 이에 따라 추가적인 설명은 다음에서 생략된다.
상술된 제 3 및 제 4 건조단계들(S10, S11)은 스팀공급이 불가능한 경우 리프레쉬기능을 수행하며 동시에 건조기능을 제공하기 위해 서로 연계된다. 따라서, 도 20에 도시된 바와 같이, 이들 단계들(S6, S7)는 이들의 기능적 측면에서 하나의 프로세스, 즉 건조 및 리프레쉬 프로세스(P5)를 형성하게 된다.
상술된 건조단계들을 거친 세탁물은 가열된 공기에 의해 높은 온도를 가지므로, 상기 제 4 건조단계(S11)이후에, 상기 세탁물은 냉각될 수 있다(S12). 이러한 냉각단계(S12)는 앞서 설명된 냉각단계(S8)와 이의 기능 및 구체적인 작동에 있어서, 실질적으로 동일할 수 있다. 따라서, 상기 냉각단계(S8)에 관련하여 논의된 모든 특징들은 그대로 상기 냉각단계(S12)에 적용될 수 있으며, 이에 따라 추가적인 설명은 다음에서 생략된다. 이러한 냉각단계(S12)도 독립적인 기능을 수행하므로, 앞서 정의된 다른 프로세스들과 마찬가지로, 하나의 냉각 프로세스(P6)로 간주될 수 있다. 만일 필요한 경우, 도 17에 도시된 바와 같이, 상기 냉각단계(S12)이후에, 상기 세탁물 및 세탁기는 소정시간 동안 추가적으로 상온의 공기하에서 자연 냉각될 수도 있다.
도 18-도 20에 도시된 리프레쉬 코스는 스팀의 충분한 공급 또는 공급자체가 불가능한 경우에도 의도된 기능을 수행하기 위해 변형된 단계들(S10-S12)를 포함한다. 이러한 변형된 리프레쉬 코스는 필요한 수분을 공급하기 위해 상기 스팀 대신에 미스트를 세탁물에 제공할 수 있다. 또한, 상기 변형된 리프레쉬 코스에서는 부분적으로 스팀을 공급하는 것도 가능하다. 더 나아가, 관련 부품들을 적절하게 작동시킴으로써 주름뿐만 아니라 정전기도 제거될 수 있다. 따라서, 상기 변형된 리프레쉬코스는 스팀의 공급이 중단됨에도 불구하고 세탁기 기존 부품들을 최적으로 제어함으로써 의도된 리프레쉬 기능을 구현할 수 있다.
한편, 상기 스팀공급 프로세스(P2: S3-S5)는 이의 독립적인 스팀생성 및 공급기능으로 인해, 앞서 이미 논의된 바와 같이, 상기 리프레쉬 코스뿐만 아니라 기본적인 세탁 코스 또는 다른 개별적인 코스에 그대로 적용될 수 있다. 도 21은 상기 스팀공급 프로세스가 적용된 기본적인 세탁코스를 도시한다. 이러한 도 21을 참조하여 기본적인 세탁코스에서의 스팀공급 프로세스의 기능을 구체적인 예를 들어 설명하면 다음과 같다.
일반적으로 세탁코스는 세탁수 공급단계(S100), 세탁 단계(S200), 헹굼단계(S300), 탈수단계(S400)로 이루질 수 있다. 또한, 세탁기가 도 2에 도시된 바와 같이 건조를 위한 구조를 갖는 경우, 상기 탈수단계(S400)이후에 건조단계(S500)를 더 포함할 수 있다.
만일 스팀공급 프로세스가 상기 공급단계(S100)이전 및/또는 상기 공급단계(S100) 동안에 수행되는 경우 (P2a, P2b), 공급된 스팀에 의해 세탁물이 미리 적셔질 수 있으며, 공급된 세탁수는 가열될 수 있다. 만일 스팀공급 프로세스가 상기 세탁단계(S200)이전 및/또는 상기 세탁단계(S200) 동안 수행되는 경우(P2c, P2d), 공급된 스팀은 터브(30) 및 드럼(40)내의 공기 및 세탁수를 가열함으로써 세탁에 유리한 고온의 환경을 형성할 수 있다. 스팀공급 프로세스가 상기 헹굼단계(S300)이전 및/또는 상기 헹굼단계(S300) 동안 수행되는 경우(P2e, P2f), 공급된 스팀은 마찬가지로 헹굼에 유리하도록 내부 공기 및 헹굼수를 가열할 수 있다. 스팀공급 프로세스가 상기 탈수단계(S400)이전 및/또는 상기 탈수단계(S400) 동안 수행되는 경우(P2g, P2h), 공급된 스팀은 주로 세탁물을 살균하는 역할을 수행한다. 스팀공급 프로세스가 상기 건조단계(S500)이전 및/또는 상기 건조단계(S500) 동안 수행되는 경우(P2i, P2j), 공급된 스팀은 터브(30) 및 드럼(40)의 내부온도를 크게 상승시켜 세탁물로부터 수분이 쉽게 증발되게 유도한다. 만일 필요한 경우, 세탁물을 최종적으로 살균하기 위해, 상기 건조단계(S500)이후에 스팀공급 프로세스(P2k)가 수행될 수 있다. 또한, 앞서 설명된 모든 스팀공급 프로세스(P2a-P2j)는 스팀을 이용하여 세탁물을 살균하는 기능을 기본적으로 수행한다. 더 나아가, 상기 스팀공급프로세스를 보조하기 위해 상기 준비 프로세스(P1)이 함께 수행될 수 있다.
이와 같이, 본 발명에 따른 스팀공급 프로세스(P2)는 충분한 량의 스팀을 공공급함으로써 세탁에 유리한 분위기를 형성하며, 이에 따라 세탁성능을 크게 향상시킬 수 있다. 또한, 상기 스팀공급 프로세스(P2)는 세탁물을 살균할 수 있으며, 이에 따라 예를 들어, 사용자의 알레르기(allergy)가 방지될 수도 있다.
상술된 스팀공급 메커니즘뿐만 아니라 리프레쉬 코스 및 기본 세탁코스를 고려할 때, 본 발명에 따른 세탁기는 고온공기 공급을 위한 메커니즘, 즉 건조용 메커니즘을 스팀생성 및 공급을 위해 사용하며, 오직 최소한의 변형만을 적용한다. 또한, 본 발명에 따른 제어방법, 특히 스팀공급 프로세스(P2)는 기존의 건조 메커니즘 즉, 변형된 스팀공급 메커니즘을 최적으로 제어한다. 따라서, 본 발명은 충분한 양질의 스팀을 효율적으로 생성 및 공급하기 위한 최소한의 변형 및 최적의 제어를 구현한다. 이러한 이유로, 본 발명은 생산비용은 최소한으로 증가시키면서도 리프레쉬, 세탁성능 향상 및 살균뿐만 아니라 다른 여러가지 기능들을 효과적으로 수행할 수 있다.
본 발명의 일 실시 예에 따른 후막 형성용 발열 페이스트 조성물(이하, 발열 페이스트 조성물)은 탄소나노튜브 입자, 탄소나노입자, 혼합 바인더, 유기 용매 및 분산제를 포함한다.
구체적으로 발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30 중량부, 혼합 바인더 10 내지 30 중량부, 유기 용매 29 내지 83 중량부, 분산제 0.5 내지 5 중량부를 포함한다.
상기 탄소나노튜브 입자는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 또는 이들의 혼합물로부터 선택될 수 있다. 예컨대 상기 탄소나노튜브 입자는 다중벽 탄소나노튜브(multi wall carbon nanotube)일 수 있다. 상기 탄소나노튜브 입자가 다중벽 탄소나노튜브일 때, 직경은 5nm 내지 30nm 일 수 있고, 길이는 3㎛ 내지 40㎛일 수 있다.
상기 탄소나노입자는 예컨대 그라파이트 나노입자일 수 있으며, 직경은 1㎛ 내지 25㎛일 수 있다.
혼합 바인더는 발열 페이스트 조성물이 300℃ 가량의 온도 범위에서도 내열성을 가질 수 있도록 하는 기능을 하는 것으로, 에폭시 아크릴레이트(Epocy acrylate) 또는 헥사메틸렌 디이소시아네이트(Hexamethylene diisocyanate), 폴리비닐 아세탈(Polyvinyl acetal) 및 페놀계 수지(Phenol resin)가 혼합된 형태를 갖는다. 예컨대 상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합된 형태일 수 있고, 또는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합된 형태일 수도 있다. 본 발명에서는 혼합 바인더의 내열성을 높임으로써, 300℃ 가량의 고온으로 발열시키는 경우에도 물질의 저항 변화나 도막의 파손이 없다는 장점을 갖는다.
여기에서 페놀계 수지는 폐놀 및 페놀 유도체를 포함하는 페놀계 화합물을 의미한다. 예컨대 상기 페놀 유도체는 p-크레졸(p-Cresol), o-구아야콜(o-Guaiacol), 크레오졸(Creosol), 카테콜(Catechol), 3-메톡시-1,2-벤젠디올(3-methoxy-1,2-Benzenediol), 호모카테콜(Homocatechol), 비닐구아야콜(vinylguaiacol), 시링콜(Syringol), 이소-유제놀(Iso-eugenol), 메톡시 유제놀(Methoxyeugenol), o-크레졸(o-Cresol), 3-메틸-1,2-벤젠디올(3-methoxy-1,2-Benzenediol), (z)-2-메톡시-4-(1-프로페닐)-페놀((z)-2-methoxy-4-(1-propenyl)-Phenol), 2,.6-디에톡시-4-(2-프로페닐)-페놀(2,6-dimethoxy-4-(2-propenyl)-Phenol), 3,4-디메톡시-페놀(3,4-dimethoxy-Phenol), 4-에틸-1,3-벤젠디올(4ethyl-1,3-Benzenediol), 레졸 페놀(Resole phenol), 4-메틸-1,2-벤젠디올(4-methyl-1,2-Benzenediol), 1,2,4-벤젠트리올(1,2,4-Benzenetriol), 2-메톡시-6-메틸페놀(2-Methoxy-6-methylphenol), 2-메톡시-4-비닐페놀(2-Methoxy-4-vinylphenol) 또는4-에틸-2-메톡시-페놀(4-ethyl-2-methoxy-Phenol) 등이 있으며, 이에 한정되는 것은 아니다.
상기 혼합 바인더의 혼합 비율은 에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈수지 10 내지 150 중량부, 페놀계 수지 100 내지 500 중량부의 비율일 수 있다. 페놀계 수지의 함량이 100 중량부 이하인 경우 발열 페이스트 조성물의 내열 특성이 저하되며, 500 중량부를 초과하는 경우에는 유연성이 저하되는 문제가 있다(취성 증가).
유기 용매는 상기 전도성 입자 및 혼합 바인더를 분산시키기 위한 것으로, 카비톨 아세테이트(Carbitol acetate), 부틸 카비톨아세테이트(Butyl carbotol acetate), DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올(Butanol) 및 옥탄올(Octanol) 중에서 선택되는 2 이상의 혼합 용매일 수 있다.
한편, 분산을 위한 공정은 통상적으로 사용되는 다양한 방법들이 적용될 수 있으며, 예를 들면 초음파처리(Ultra-sonication), 롤밀(Roll mill), 비드밀(Bead mill) 또는 볼밀(Ball mill) 과정을 통해 이루어질 수 있다.
분산제는 상기 분산을 보다 원활하게 하기 위한 것으로, BYK류와 같이 당업계에서 이용되는 통상의 분산제, Triton X-100과 같은 양쪽성 계면활성제, SDS등과 가은 이온성 계면활성제를 이용할 수 있다.
본 발명의 일 실시 예에 따른 발열 페이스트 조성물은 발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함할 수 있다.
실란커플링제는 발열 페이스트 조성물의 배합시에 수지들간에 접착력을 증진시키는 접착증진제 기능을 한다. 실란 커플링제는 에폭시 함유 실란 또는 머켑토 함유 실란일 수 있다. 이러한 실란 커플링제의 예로는 에폭시가 함유된 것으로 2-(3,4 에폭시 사이클로헥실)-에틸트리메톡시실란, 3-글리시독시트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필트리에톡시실란이 있고, 아민기가 함유된 것으로 N-2(아미노에틸)3-아미토프로필메틸디메톡시실란, N-2(아미노에틸)3-아미노프로필트리메톡시실란, N-2(아미노에틸)3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 3-아미노프로필트리에톡시실, 3-트리에톡시실리-N-(1,2-디메틸뷰틸리덴)프로필아민, N-페닐-3-아미노프로필트리메톡시실란이 있으며, 머켑토가 함유된 것으로 3-머켑토프로필메틸디메톡시실란, 3-머켑토프로필트리에톡시실란, 이소시아네이트가 함유된 3-이소시아네이트프로필트리에톡시실란 등이 있으며, 상기 나열한 것으로 한정되지 않는다.
본 발명은 상술한 본 발명의 실시 예들에 따른 발열 페이스트 조성물을 기판 상에 스크린 인쇄, 그라비아 인쇄(내지 롤투롤 그라비아 인쇄) 또는 콤마코팅(내지 롤투롤 콤마코팅)하여 형성되는 면상 발열체를 추가적으로 제공한다.
여기에서 상기 기판은 폴리카보네이트, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 플리이미드, 셀룰로스 에스텔, 나일론, 폴리프로필렌, 폴리아크릴로린트릴, 폴리술폰, 폴리에스테르술폰, 폴리비닐리덴플롤라이드, 유리, 유리섬유(매트), 세라믹, SUS, 구리 또는 알루미늄 기판 등이 사용될 수 있으며, 상기 나열된 것들로 한정되는 것은 아니다. 상기 기판은 발열체의 응용 분야나 사용온도에 따라 적절히 선택될 수 있다.
면상 발열체는 상기 기판 상에 본 발명의 실시 예들에 따른 발열 페이스트 조성물을 스크린 인쇄 또는 그라비아 인쇄를 통해 원하는 패턴으로 인쇄하고, 건조 및 경화한 후에, 상부에 은 페이스트 또는 도전성 페이스트를 인쇄 및 건조/경화 시킴으로써 전극을 형성함으로써 형성될 수 있다. 또는 은 페이스트 또는 도전성 페이스트를 인쇄 및 건조/경화한 후에 상부에 본 발명의 실시 예들에 따른 발열 페이스트 조성물을 스크린 인쇄 또는 그라비아 인쇄함으로써 형성하는 것도 가능하다.
한편, 상기 면상 발열체는 상부면에 코팅되는 보호층을 더 포함할 수 있다. 상기 보호층은 실리카(SiO₂)로 형성될 수 있다. 보호층이 실리카로 형성되는 경우에는 발열면에 코팅되더라도 발열체가 유연성을 유지할 수 있는 장점을 갖는다.
이하, 본 발명에 따른 발열 페이스트 조성물 및 이를 이용한 면상 발열체를 시험예를 통하여 상세히 설명한다. 하기 시험예는 본 발명을 설명하기 위한 예시일 뿐, 본 발명이 하기 시험예에 의해 한정되는 것은 아니다.
시험예
(1) 실시 예 및 비교 예의 준비
하기 [표 1]과 같이 실시 예(3종류) 및 비교 예(3종류)를 준비하였다. [표 1]에 표기된 조성비는 중량%로 기재된 것임을 밝혀둔다.
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3
CNT 입자 4 5 6 4 5 6
CNP 입자 8 9 15 - - -
혼합 바인더 20 15 22 - - -
에틸셀룰로오스 - - - 10 12 14
유기용매 63 67 52 82 79 76
분산제(BYK) 5 4 5 4 4 4
실시 예들의 경우 CNT 입자와, CNP 입자(실시 예 1 내지 3)를 [표 1]의 조성에 따라 카비톨아세테이트 용매에 첨가하고 BYK 분산제를 첨가한 후, 60분간 초음파 처리를 통해 분산액 A를 제조하였다. 이후, 혼합 바인더를 카비톨아세테이트 용매에 첨가한 후 기계적 교반을 통해 마스터 배치를 제조하였다. 다음으로 상기 분산액 A 및 마스터배치를 기계적 교반을 통해 1차 혼련한 후에 3-롤-밀 과정을 거쳐 2차 혼련함으로써 발열 페이스트 조성물을 제조하였다.
비교 예들의 경우 CNT 입자를 [표 1]의 조성에 따라 카비톨아세테이트 용매에 첨가하고 BYK 분산제를 첨가한 후, 60분간 초음파 처리를 통해 분산액을 제조하였다. 이후, 에틸셀룰로오스를 카비톨아세테이트 용매에 첨가한 후 기계적 교반을 통해 마스터 배치를 제조하였다. 다음으로 상기 분산액 B 및 마스터배치를 기계적 교반을 통해 1차 혼련한 후에 3-롤-밀 과정을 거쳐 2차 혼련함으로써 발열페이스트 조성물을 제조하였다.
(2) 면상발열체 특성 평가
실시 예 및 비교 예에 따른 발열 페이스트 조성물을 10×10cm 크기로 폴리이미드 기판 위에 스크린 인쇄하고 경화한 후에, 상부 양단에는 은 페이스트 전극을 인쇄하고 경화하여 면상 발열체 샘플을 제조하였다.
관련하여 도 22는 본 발명에 따른 발열 페이스트 조성물을 이용하여 제작한 면상 발열체 시편의 이미지이다. 도 22a는 폴리이미드 기판 위에 발열 페이스트 조성물이 스크린 인쇄되어 형성된 면상 발열체이다. 도 22b는 유리섬유 매트 위에 발열 페이스트 조성물이 스크린 인쇄되어 형성된 면상 발열체이다. 도 22c 및 도 22d는 도 22a의 면상 발열체 상부에 보호층을 코팅한 경우의 이미지이다(도 22c는 검은색 보호층 코팅, 도 22d는 녹색 보호층 코팅).
도 22a에 나타난 것과 같은 면상 발열체 샘플(실시 예) 및 상기 비교 예에 따라 제조된 면상 발열체 샘플들의 비저항을 측정하였다(인가되는 전압/전류는 [표 2]에 표기됨). 또한, 인가되는 전압/전류에 따른 승온 효과를 확인하기 위해 상기 실시 예 및 비교 예에 해당하는 면상 발열체를 각각 40℃, 100℃ 및 200℃까지 승온시키고, 상기 온도에 도달하였을 때의 DC 전압 및 전류를 측정하였다.
또한, 각 샘플들에 대하여 200℃에서의 발열안정성을 테스트하였다. 관련하여, 도 23에서는 실시 예 및 비교 예에 따라 제조된 면상 발열체 샘플들의 발열안정성 시험 모습의 이미지를 나타내었으며, 시험결과는 하기 [표 2]에 정리하였다.
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3
비저항(×10ˇ²Ωcm 1.9 2.55 2.96 9.73 8.52 6.23
40℃ 도달 DC 구동 전압/전류 5V/0.2A 6V/0.2A 7V/0.2A 20V/0.3A 16V/0.2A 12V/0.2A
100℃ 도달 DC 구동 전압/전류 9V/0.5A 12V/0.4A 14V/0.5A 48V/0.7A 40V/0.7A 26V/0.6A
200℃ 도달 DC 구동 전압/전류 20V/0.6A 24V/0.7A 24V/1.0A - - -
발열안정성(day) 20일 이상 20일 이상 20일 이상 불량 불량 불량
상기 [표 2]를 참조하며, 비저항은 실시 예들에 해당하는 면상 발열체가 비교 예들에 해당하는 면상 발열체보다 작게 측정되었으며, 이에 따라 각 온도에 도달하기 위해 필요한 구동 전압/전류 역시 실시 예들에 해당하는 면상 발열체가 비교 예들에 해당하는 면상 발열체보다 작게 측정되었다. 즉 실시 예들에 해당하는 면상 발열체가 비교 예보다 저전압 및 저전력으로 구동 가능함을 확인할 수 있었다.
또한, 실시 예 1 내지 3에 따른 면상 발열체에서는 200℃의 발열 구동하에서도 20일간 안정성이 유지되는 것으로 나타나는 반면에(별도의 보호층없음), 비교 예 1 내지 3에서는 200℃의 발열 구동시 2시간 이내에 발열부 표면이 부풀어 오르는 불량 현상이 관찰되었다. 즉 실시 예들에 해당하는 면상 발열체가 비교 예보다 200℃이상의 고온에서도 안정적으로 구동 가능함을 확인할 수 있었다.
본 발명은 상술한 면상 발열체와, 상기 면상 발열체에 전력을 공급하는 전력공급부를 포함하는 휴대용 발열히터를 추가적으로 제공한다.
여기에서 전력공급부란 면상 발열체의 좌우측에 도포 형성되는 리드 전극과, 상기 리드 전극에 부착 형성되는 전원접속용 전극을 포함할 수 있다. 경우에 따라서는 상기 전원접속용 전극이 면상 발열체에 직접 연결될 수 있다. 상기 리드 전극 또는 전원접속용 전극은 은 페이스트, 구리 페이스트, 구리 테이프 등을 이용하여 형성할 수 있다.
본 발명에 따른 휴대용 발열 히터는 상기 면상 발열체가 몸체 내부 또는 외면에 부착, 매립 또는 장착되고, 상기 면상 발열체의 구동을 위한 전력공급부를 구비하는 형태를 갖는다. 이러한 휴대용 발열 히터는 유모차용 이너 시트, 발열 양말, 발열 신발, 발열 모자, 휴대용 발열 매트, 휴대용 조리 기구, 차량용 발열 시트 등에 이용될 수 있다.
특히 본 발명에 따른 휴대용 발열 히터에 채용되는 면상 발열체는 상기에서 설명한 바와 같이 저전압 및 저전력으로 구동이 가능하므로 리튬이온 배터리, 리튬 폴리머 배터리 등의 충방전이 가능한 2차 전지로 구동할 수 있는 바, 휴대성이 증진되고 사용시간을 크게 늘릴 수 있다는 장점이 있다.
결국, 본 발명에 따른 세탁기용 스팀발생장치 및 세탁기는 스팀발생장치의 효율을 높임과 동시에 컴팩트한 설계가 가능하게 하고, 효율적으로 스팀을 생성할 수 있으며, 고내열성을 가져 온도에 따른 저항 변화가 작고, 비저항이 낮아 저전압 및 저전력으로 구동 가능한 발열 페이스트 조성물을 포함할 수 있다.
따라서, 이상의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
100: 덕트 110: 건조덕트
120: 응축덕트 130: 히터
140: 블로워 150: 노즐
160: 급수장치

Claims (22)

  1. 발열 페이스트 조성물을 통해서 형성되는 면상 발열체를 적어도 하나 이상 구비하고, 세탁수를 저장하는 터브와 연통하도록 구성되는 덕트내에 설치되어 상기 덕트내의 소정의 공간만을 가열하는 히터;
    상기 가열된 소정의 공간에 물을 공급하는 노즐; 및
    상기 히터를 통해서 생성된 스팀을 상기 터브에 공급하도록 상기 소정의 공간을 향해 공기를 불어내는 블로워를 포함하고,
    상기 발열 페이스트 조성물 100 중량부는 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부, 분산제 0.5 내지 5중량부를 포함하고,
    상기 혼합 바인더는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되고, 상기 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 페놀계수지 100 내지 500 중량부가 혼합되는 것을 특징으로 하는 세탁기용 스팀발생장치.
  2. 제 1 항에 있어서,
    상기 혼합 바인더는,
    헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈 수지 10 내지 150 중량부가 더 혼합되는 것을 특징으로 하는 세탁기용 스팀발생장치.
  3. 제 1 항에 있어서,
    발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함하는 것을 특징으로 하는 세탁기용 스팀발생장치.
  4. 제 1 항에 있어서,
    상기 탄소나노튜브 입자는 다중벽 탄소나노튜브 입자인 것을 특징으로 하는 세탁기용 스팀발생장치.
  5. 제 1 항에 있어서,
    상기 유기 용매는,
    카비톨 아세테이트, 부틸 카비톨 아세테이트, DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올 및 옥탄올 중에서 선택되는 2 이상의 혼합 용매인 것을 특징으로 하는 세탁기용 스팀발생장치.
  6. 제 1 항에 있어서,
    상기 면상 발열체는,
    상기 발열 페이스트 조성물이 기판 상에 스크린 인쇄, 그라비아 인쇄 또는 콤마코팅되어 형성되는 것을 특징으로 하는 세탁기용 스팀발생장치.
  7. 제 6 항에 있어서,
    상기 기판은 폴리이미드 기판, 유리섬유 매트 또는 세라믹 유리인 것을 특징으로 하는 세탁기용 스팀발생장치.
  8. 제 6 항에 있어서,
    상기 면상 발열체는,
    상기 면상 발열체 상부면에 코팅되는 것으로, 실리카 또는 카본블랙과 같은 흑색 안료를 구비하는 유기물로 형성되는 보호층을 더 포함하는 것을 특징으로 하는 세탁기용 스팀발생장치.
  9. 제 1 항에 있어서,
    상기 면상 발열체에 전력을 공급하는 전력 공급부를 더 포함하는 것을 특징으로 하는 세탁기용 스팀발생장치.
  10. 세탁수를 저장하는 터브;
    상기 터브내에 회전가능하게 제공되며 세탁물을 수용하는 드럼;
    상기 터브와 연통하도록 구성되는 덕트;
    발열 페이스트 조성물을 통해서 형성되는 면상 발열체를 적어도 하나 이상 구비하고, 상기 덕트내에 설치되며 상기 덕트내의 소정공간만을 가열하도록 구성되는 히터;
    상기 덕트에 설치되며 스팀을 생성하도록 상기 가열된 소정공간에 물을 직접적으로 공급하는 노즐; 및
    상기 덕트에 설치되며, 상기 생성된 스팀을 상기 터브에 공급하도록 상기 소정 공간을 향해 공기를 불어내는 블로워를 포함하고,
    상기 발열 페이스트 조성물 100 중량부는 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부, 분산제 0.5 내지 5중량부를 포함하고,
    상기 혼합 바인더는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되고, 상기 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 페놀계수지 100 내지 500 중량부가 혼합되는 것을 특징으로 하는 세탁기.
  11. 제 10 항에 있어서, 상기 노즐은 미스트를 상기 가열된 소정 공간에 직접적으로 분사하는 것을 특징으로 하는 세탁기.
  12. 제 10 항에 있어서, 상기 노즐은 상기 덕트내의 공기유동 방향과 동일방향으로 상기 소정공간을 향해 물을 분사하는 것을 특징으로 하는 세탁기.
  13. 제 10 항에 있어서, 상기 노즐은 상기 소정공간을 향해 배향되는 것을 특징으로 하는 세탁기.
  14. 제 10 항에 있어서, 상기 노즐은 상기 히터와 상기 블로워 사이에 배치되는 것을 특징으로 하는 세탁기.
  15. 제 14 항에 있어서, 상기 노즐은 상기 블로워에 가까워지게 상기 히터로부터 소정간격으로 이격되는 것을 특징으로 하는 세탁기.
  16. 제 14 항에 있어서, 상기 노즐은 상기 블로워의 배출부에 인접하게 설치되는 것을 특징으로 하는 세탁기.
  17. 제 10 항에 있어서, 상기 히터가 상기 소정공간을 가열하는 동안, 상기 블로워 및 노즐은 정지되는 것을 특징으로 하는 세탁기.
  18. 제 10 항에 있어서, 상기 노즐이 물을 상기 소정공간에 직접 공급하는 동안, 상기 블로워는 정지되는 것을 특징으로 하는 세탁기.
  19. 제 10 항에 있어서, 상기 블로워는 상기 히터 또는 노즐이 작동되는 동안에는 정지되는 것을 특징으로 하는 세탁기.
  20. 제 10 항에 있어서, 상기 블로워가 공기를 불어내는 동안, 상기 히터 및 노즐은 정지하는 것을 특징으로 하는 세탁기.
  21. 제 10 항에 있어서, 상기 노즐은 상기 블로워를 감싸는 하우징에 설치되는 것을 특징으로 하는 세탁기.
  22. 제 10 항에 있어서, 상기 노즐은 그 내부에 나선형으로 연장되는 유로를 포함하는 것을 특징으로 하는 세탁기.
KR1020150069500A 2015-05-19 2015-05-19 세탁기용 스팀발생장치 및 세탁기 KR101745440B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150069500A KR101745440B1 (ko) 2015-05-19 2015-05-19 세탁기용 스팀발생장치 및 세탁기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150069500A KR101745440B1 (ko) 2015-05-19 2015-05-19 세탁기용 스팀발생장치 및 세탁기

Publications (2)

Publication Number Publication Date
KR20160135961A KR20160135961A (ko) 2016-11-29
KR101745440B1 true KR101745440B1 (ko) 2017-06-12

Family

ID=57706209

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150069500A KR101745440B1 (ko) 2015-05-19 2015-05-19 세탁기용 스팀발생장치 및 세탁기

Country Status (1)

Country Link
KR (1) KR101745440B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11696370B2 (en) 2020-04-22 2023-07-04 Whirlpool Corporation Household appliance with immersible heater

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528240A (zh) * 2018-05-24 2019-12-03 青岛海尔滚筒洗衣机有限公司 一种衣物处理装置及其控制方法
KR102273440B1 (ko) * 2020-12-24 2021-07-06 한라대학교 산학협력단 스팀제초기
KR20240009666A (ko) * 2022-07-14 2024-01-23 주식회사 디에스더블유 식기 세척기 및 의류 관리기용 가열 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128033B1 (ko) 2011-12-06 2012-04-02 엔디티엔지니어링(주) 전면도포 방식의 플라스틱필름 탄소발열체 제조 방법
JP2013100454A (ja) * 2011-10-14 2013-05-23 Jnc Corp 放熱塗料組成物とそれを用いた放熱部材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100454A (ja) * 2011-10-14 2013-05-23 Jnc Corp 放熱塗料組成物とそれを用いた放熱部材
KR101128033B1 (ko) 2011-12-06 2012-04-02 엔디티엔지니어링(주) 전면도포 방식의 플라스틱필름 탄소발열체 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11696370B2 (en) 2020-04-22 2023-07-04 Whirlpool Corporation Household appliance with immersible heater

Also Published As

Publication number Publication date
KR20160135961A (ko) 2016-11-29

Similar Documents

Publication Publication Date Title
KR101745440B1 (ko) 세탁기용 스팀발생장치 및 세탁기
KR101215449B1 (ko) 세탁기
US9328449B2 (en) Control method of laundry machine
US9194076B2 (en) Method for controlling laundry machine
US7992322B2 (en) Dryer having intake duct with heater integrated therein
US20070266587A1 (en) Method and apparatus for treating, preferably washing, spinning and/or drying, laundry
CN101205680B (zh) 洗衣机
US20080115381A1 (en) Laundry dryer
KR100867122B1 (ko) 세탁기 및 그 제어방법
US20090133281A1 (en) Steam laundry dryer
US20140075683A1 (en) Laundry treatment method and apparatus
CN215016836U (zh) 基站设备的基座及基站设备
KR20150015754A (ko) 건조장치를 구비한 세탁기
EP1990467B1 (en) Laundry machine
US20040103556A1 (en) Dryer
CN214965116U (zh) 一种底座及清洁系统
KR20160136110A (ko) 건조 장치
CN101666022B (zh) 洗衣干燥机
CN110332787A (zh) 一种棉布加工用烘干机
KR101461976B1 (ko) 세탁기
KR101461975B1 (ko) 세탁기
KR20130090531A (ko) 세탁기의 제어방법
KR101461983B1 (ko) 세탁기
KR101895945B1 (ko) 세탁기의 제어방법
CN114983284B (zh) 基站设备的基座、基站设备以及热处理控制方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
GRNT Written decision to grant