KR101743245B1 - 비디오의 인트라 예측 방법 및 장치 - Google Patents

비디오의 인트라 예측 방법 및 장치 Download PDF

Info

Publication number
KR101743245B1
KR101743245B1 KR1020120120620A KR20120120620A KR101743245B1 KR 101743245 B1 KR101743245 B1 KR 101743245B1 KR 1020120120620 A KR1020120120620 A KR 1020120120620A KR 20120120620 A KR20120120620 A KR 20120120620A KR 101743245 B1 KR101743245 B1 KR 101743245B1
Authority
KR
South Korea
Prior art keywords
unit
pixel
neighboring
encoding
pixels
Prior art date
Application number
KR1020120120620A
Other languages
English (en)
Other versions
KR20130047650A (ko
Inventor
이태미
천지엔러
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20130047650A publication Critical patent/KR20130047650A/ko
Application granted granted Critical
Publication of KR101743245B1 publication Critical patent/KR101743245B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques

Abstract

비디오의 인트라 예측 방법 및 장치가 개시된다. 비디오의 인트라 예측 방법은 현재 블록의 인트라 예측에 이용되는 소정 개수의 주변 픽셀들의 이용가능성을 판단하고, 이용가능하지 않은 제 1 주변 픽셀이 존재하는 경우 제 1 주변 픽셀을 기준으로 미리 정해진 방향으로 소정 개수의 주변 픽셀들을 검색하여 이용가능한 제 2 주변 픽셀을 검색하며, 제 1 주변 픽셀의 픽셀값을 검색된 제 2 주변 픽셀의 픽셀값으로 대체한다. 소정 위치의 제 1 주변 픽셀을 제외하고, 다른 위치의 이용가능하지 않은 제 3 주변 픽셀에 대해서는 소정 방향으로 바로 인접한 주변 픽셀을 이용한 대체 과정이 수행된다.

Description

비디오의 인트라 예측 방법 및 장치{Method and apparatus for intra prediction for video}
본 발명은 비디오의 인트라 예측에 관한 것이다. 보다 구체적으로는 주변 픽셀의 이용을 제한하는 제한 인트라 예측 모드에서 이용가능하지 않은 주변 픽셀을 대체하여 참조 픽셀로서 이용하는 비디오의 인트라 예측 방법 및 장치에 관한 것이다..
MPEG-1, MPEG-2, MPEG-4, H.264/MPEG-4 AVC(Advanced Video Coding)와 같은 영상 압축 방식에서는 영상을 부호화하기 위해서 하나의 픽처를 매크로 블록으로 나눈다. 그리고, 인터 예측 및 인트라 예측에서 이용가능한 모든 부호화 모드에서 각각의 매크로 블록을 부호화한 다음, 매크로 블록의 부호화에 소요되는 비트율과 원 매크로 블록과 복호화된 매크로 블록과의 왜곡 정도에 따라서 부호화 모드를 하나 선택하여 매크로 블록을 부호화한다.
고해상도 또는 고화질 비디오 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐트를 효과적으로 부호화하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 소정 크기의 매크로블록에 기반하여 제한된 예측 모드에 따라 부호화되고 있다.
본 발명이 해결하고자 하는 기술적 과제는 인트라 예측에 이용되는 주변 픽셀이 제한되는 제한 인트라 예측 모드에서 이용가능하지 않은 주변 픽셀을 대체하는 방법을 제공하기 위한 것이다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법은 상기 비디오를 구성하는 픽처를 계층적 구조로 분할한 블록들 중 현재 블록의 인트라 예측에 이용되는 소정 개수의 주변 픽셀들의 이용가능성을 판단하는 단계; 상기 소정 개수의 주변 픽셀들 중 이용가능하지 않은 제 1 주변 픽셀이 존재하는 경우, 상기 제 1 주변 픽셀을 기준으로 미리 정해진 방향으로 상기 소정 개수의 주변 픽셀들을 검색하여 이용가능한 제 2 주변 픽셀을 검색하는 단계; 상기 제 1 주변 픽셀의 픽셀값을 상기 검색된 제 2 주변 픽셀의 픽셀값으로 대체하는 단계; 및 상기 대체된 제 1 주변 픽셀을 포함하는 상기 소정 개수의 주변 픽셀들을 이용하여 상기 현재 블록에 대한 인트라 예측을 수행하는 단계를 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법에서 소정 개수의 주변 픽셀들의 이용가능성을 판단하는 단계는 인터 예측된 주변 블록 또는 상기 현재 블록이 속한 슬라이스와 다른 슬라이스에 속한 주변 블록에 포함된 주변 픽셀들을 이용가능하지 않은 것으로 판단할 수 있다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법에서 제 1 주변 픽셀은 상기 소정 개수의 주변 픽셀들 중 미리 정해진 위치의 픽셀이며, 상기 제 2 주변 픽셀을 검색하는 단계는 상기 제 1 주변 픽셀을 기준으로 미리 정해진 방향으로 상기 소정 개수의 주변 픽셀들을 검색하여 최초로 검색된 이용가능한 주변 픽셀을 상기 제 2 주변 픽셀로 결정할 수 있다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법에서 상기 제 1 주변 픽셀은 상기 현재 블록의 좌상측 코너에 위치한 주변 픽셀이며, 상기 제 2 주변 픽셀을 검색하는 단계는 상기 제 1 주변 픽셀을 기준으로 왼쪽에서 오른쪽 방향으로 상기 현재 블록의 상측 및 우상측 주변 픽셀들을 검색하고, 상기 현재 블록의 상측 및 우상측 주변 픽셀들 중 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우 상기 제 1 주변 픽셀을 기준으로 위쪽에서 아래쪽 방향으로 상기 현재 블록의 좌측 및 좌하측 주변 픽셀들을 검색하여 상기 제 2 주변 픽셀을 검색할 수 있다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법에서 상기 제 1 주변 픽셀은 상기 현재 블록의 좌상측 코너에 위치한 주변 픽셀이며, 상기 제 2 주변 픽셀을 검색하는 단계는 상기 제 1 주변 픽셀을 기준으로 위쪽에서 아래쪽 방향으로 상기 현재 블록의 좌측 및 좌하측 주변 픽셀들을 검색하고, 상기 현재 블록의 좌측 및 좌하측 주변 픽셀들 중 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우 상기 제 1 주변 픽셀을 기준으로 왼쪽에서 오른쪽 방향으로 상기 현재 블록의 상측 및 우상측 주변 픽셀들을 검색하여 상기 제 2 주변 픽셀을 검색할 수 있다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법에서 상기 제 1 주변 픽셀은 상기 현재 블록의 좌상측 코너에 위치한 주변 픽셀이며, 상기 제 2 주변 픽셀을 검색하는 단계는 상기 제 1 주변 픽셀을 기준으로 위쪽에서 아래쪽 방향으로 상기 현재 블록의 좌측 및 좌하측 주변 픽셀들을 검색하여 이용가능한 좌측 주변 픽셀을 결정하고, 상기 제 1 주변 픽셀을 기준으로 왼쪽에서 오른쪽 방향으로 상기 현재 블록의 상측 및 우상측 주변 픽셀들을 검색하여 이용가능한 상측 주변 픽셀을 결정하며, 상기 검색된 이용가능한 좌측 주변 픽셀 및 상측 주변 픽셀의 평균값을 이용하여 상기 제 1 주변 픽셀의 픽셀값을 대체할 수 있다.
본 발명의 다른 실시예에 따른 비디오의 인트라 예측 방법에서 상기 제 1 주변 픽셀은 상기 현재 블록의 좌상측 코너에 위치한 주변 픽셀이며, 상기 제 2 주변 픽셀을 검색하는 단계는 상기 제 1 주변 픽셀을 기준으로 위쪽에서 아래쪽 방향으로 상기 현재 블록의 좌측 및 좌하측 주변 픽셀들을 검색하여 이용가능한 좌측 주변 픽셀을 결정하고, 상기 제 1 주변 픽셀을 기준으로 왼쪽에서 오른쪽 방향으로 상기 현재 블록의 상측 및 우상측 주변 픽셀들을 검색하여 이용가능한 상측 주변 픽셀을 결정하며, 상기 검색된 좌측 주변 픽셀 및 상측 주변 픽셀 중 상기 제 1 주변 픽셀과의 거리가 더 가까운 주변 픽셀을 상기 제 2 주변 픽셀로 결정할 수 있다.
본 발명의 또 다른 실시예에 따른 비디오의 인트라 예측 방법에서 상기 제 1 주변 픽셀은 상기 현재 블록의 좌측 및 좌하측에 위치한 주변 픽셀들 중 최좌하측에 위치한 주변 픽셀이며, 상기 제 2 주변 픽셀을 검색하는 단계는 상기 제 1 주변 픽셀을 기준으로 아래쪽에서 위쪽 방향으로 상기 현재 블록의 좌측 및 좌하측에 위치한 주변 픽셀들을 검색하고, 상기 현재 블록의 좌측 및 좌하측에 위치한 주변 픽셀들 중 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우 상기 현재 블록의 상측 및 우상측의 주변 픽셀들을 왼쪽에서 오른쪽 방향으로 검색하여 상기 제 2 주변 픽셀을 검색할 수 있다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법에서 상기 제 1 주변 픽셀은 상기 현재 블록의 상측 및 우상측에 위치한 주변 픽셀들 중 최우상측에 위치한 주변 픽셀이며, 상기 제 2 주변 픽셀을 검색하는 단계는 상기 제 1 주변 픽셀을 기준으로 오른쪽에서 왼쪽 방향으로 상기 현재 블록의 상측 및 우상측에 위치한 주변 픽셀들을 검색하고, 상기 현재 블록의 상측 및 우상측에 위치한 주변 픽셀들 중 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우 상기 현재 블록의 좌측 및 좌하측의 주변 픽셀들을 위쪽에서 아래쪽 방향으로 검색하여 상기 제 2 주변 픽셀을 검색할 수 있다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법에서 이용가능하지 않은 제 3 주변 픽셀이 존재하는 경우, 상기 미리 정해진 방향에 기초하여 이전에 검색된 인접한 주변 픽셀의 픽셀값을 이용하여 상기 제 3 주변 픽셀의 픽셀값을 대체하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법에서 상기 제 1 주변 픽셀은 상기 현재 블록의 좌상측 코너에 위치한 주변 픽셀이며, 상기 이용가능하지 않은 제 3 주변 픽셀이 상기 현재 블록의 상측에 위치한 경우 상기 제 3 주변 픽셀의 왼쪽에 인접한 주변 픽셀을 이용하여 제 3 주변 픽셀을 대체하며, 상기 이용가능하지 않은 제 3 주변 픽셀이 상기 현재 블록의 좌측에 위치한 경우 상기 제 3 주변 픽셀의 위쪽에 인접한 주변 픽셀을 이용하여 제 3 주변 픽셀을 대체할 수 있다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법에서 상기 제 1 주변 픽셀은 상기 현재 블록의 최좌하측 코너에 위치한 주변 픽셀이며, 상기 이용가능하지 않은 제 3 주변 픽셀이 상기 현재 블록의 좌측에 위치한 경우 상기 제 3 주변 픽셀의 아래쪽에 인접한 주변 픽셀을 이용하여 제 3 주변 픽셀을 대체하며, 상기 이용가능하지 않은 제 3 주변 픽셀이 상기 현재 블록의 상측에 위치한 경우 상기 제 3 주변 픽셀의 왼쪽에 인접한 주변 픽셀을 이용하여 제 3 주변 픽셀을 대체할 수 있다.
본 발명의 다른 실시예에 따른 비디오의 인트라 예측 방법에 있어서, 상기 제 1 주변 픽셀은 상기 현재 블록의 최우상측 코너에 위치한 주변 픽셀이며, 상기 이용가능하지 않은 제 3 주변 픽셀이 상기 현재 블록의 상측에 위치한 경우 상기 제 3 주변 픽셀의 오른쪽에 인접한 주변 픽셀을 이용하여 제 3 주변 픽셀을 대체하며, 상기 이용가능하지 않은 제 3 주변 픽셀이 상기 현재 블록의 좌측에 위치한 경우 상기 제 3 주변 픽셀의 위쪽에 인접한 주변 픽셀을 이용하여 제 3 주변 픽셀을 대체할 수 있다.
본 발명의 또 다른 실시예에 따른 비디오의 인트라 예측 방법에 있어서, 상기 검색된 제 2 주변 픽셀의 픽셀값으로 대체하는 단계는 상기 소정 개수의 주변 픽셀들 중 상기 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우, 상기 제 1 주변 픽셀의 픽셀값을 소정값으로 대체할 수 있다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법에서 소정값은 픽셀의 비트뎁스에 기초하여 결정된 값일 수 있다.
본 발명의 일 실시예에 따른 비디오의 인트라 예측 장치는 상기 비디오를 구성하는 픽처를 계층적 구조로 분할한 블록들 중 현재 블록의 인트라 예측에 이용되는 소정 개수의 주변 픽셀들의 이용가능성을 판단하는 이용가능성 판단부; 상기 소정 개수의 주변 픽셀들 중 이용가능하지 않은 제 1 주변 픽셀이 존재하는 경우, 상기 제 1 주변 픽셀을 기준으로 미리 정해진 방향으로 상기 소정 개수의 주변 픽셀들을 검색하여 이용가능한 제 2 주변 픽셀을 검색하고, 상기 제 1 주변 픽셀의 픽셀값을 상기 검색된 제 2 주변 픽셀의 픽셀값으로 대체하는 대체부; 및 상기 대체된 제 1 주변 픽셀을 포함하는 상기 소정 개수의 주변 픽셀들을 이용하여 상기 현재 블록에 대한 인트라 예측을 수행하는 인트라 예측 수행부를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 이용가능하지 않은 주변 픽셀을 미리 결정된 검색 방향에 기초하여 이용가능한 주변 픽셀을 검색하여 대체 과정에 이용함으로써, 인트라 예측에 이용되는 참조 픽셀을 결정하는 과정의 복잡도를 감소시킬 수 있다.
도 1 은 본 발명의 일 실시예에 따른 비디오 부호화 장치의 블록도를 도시한다.
도 2 는 본 발명의 일 실시예에 따른 비디오 복호화 장치의 블록도를 도시한다.
도 3 은 본 발명의 일 실시예에 따른 부호화 단위의 개념을 도시한다.
도 4 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 5 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 6 는 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
도 7 은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
도 8 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
도 9 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
도 10, 11 및 12는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 주파수 변환 단위의 관계를 도시한다.
도 13 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
도 14는 본 발명의 일 실시예에 따른 예측 단위의 크기에 따른 인트라 예측 모드들의 개수를 도시한다.
도 15는 본 발명의 일 실시예에 따른 다양한 방향성을 갖는 인트라 예측 모드들을 설명하기 위한 참조도이다.
도 16은 본 발명의 일 실시예에 따라서 (dx,dy)의 방향성을 갖는 연장선 상에 위치한 주변 픽셀과 현재 픽셀과의 관계를 설명하기 위한 도면이다.
도 17 및 도 18은 본 발명의 일 실시예에 따라서 인트라 예측 모드 방향을 나타낸 도면이다.
도 19는 본 발명의 일 실시예에 따른 33개의 방향성을 갖는 인트라 예측 모드의 방향을 나타낸 도면이다.
도 20은 본 발명의 일 실시예에 따라서 주변 블록의 유형에 따라서 현재 블록의 인트라 예측시 이용가능하지 않은 주변 픽셀을 나타낸 도면이다.
도 21은 본 발명의 일 실시예에 따라서 이용가능하지 않은 주변 픽셀을 대체하는 과정을 설명하기 위한 도면이다.
도 22는 본 발명의 다른 실시예에 따라서 이용가능하지 않은 주변 픽셀을 대체하는 과정을 설명하기 위한 도면이다.
도 23은 본 발명의 또 다른 실시예에 따라서 이용가능하지 않은 주변 픽셀을 대체하는 과정을 설명하기 위한 도면이다.
도 24는 본 발명의 일 실시예에 따른 인트라 예측 장치의 구성을 나타낸다.
도 25a는 현재 블록 주변의 필터링되는 주변 픽셀을 나타낸 도면이다.
도 25b는 현재 블록의 주변 픽셀의 필터링 과정을 설명하기 위한 참조도이다.
도 26은 본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법을 나타낸 플로우 차트이다.
도 27a은 일 실시예에 따른 프로그램이 저장된 디스크의 물리적 구조를 예시한다.
도 27b는 디스크를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브를 도시한다.
도 28은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)의 전체적 구조를 도시한다.
도 29 및 30은, 일 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰의 외부구조와 내부구조를 도시한다.
도 31은 본 발명에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다.
도 32은 본 발명의 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 구체적으로 설명한다.
도 1 은 본 발명의 일 실시예에 따른 비디오 부호화 장치의 블록도를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)는 최대 부호화 단위 분할부(110), 부호화 단위 결정부(120) 및 출력부(130)를 포함한다.
최대 부호화 단위 분할부(110)는 영상의 현재 픽처를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽처를 구획할 수 있다. 현재 픽처가 최대 부호화 단위보다 크다면, 현재 픽처의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 일 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 8보다 큰 2의 제곱승인 정사각형의 데이터 단위일 수 있다. 영상 데이터는 적어도 하나의 최대 부호화 단위별로 부호화 단위 결정부(120)로 출력될 수 있다.
일 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽처의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 부호화 심도로 결정한다. 결정된 부호화 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 부호화 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 부호화 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 부호화 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 부호화 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 일 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 일 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 부호화 심도로 결정된 심도의 부호화 단위들을 포함한다. 부호화 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 부호화 심도는, 다른 영역에 대한 부호화 심도와 독립적으로 결정될 수 있다.
일 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 일 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 일 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 주파수 변환이 수행될 수 있다. 예측 부호화 및 주파수 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 주파수 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 주파수 변환을 설명하겠다.
일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 주파수 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 일 실시예에 따른 부호화 심도의 부호화 단위, 즉 더 이상한 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 이하, 예측 부호화의 기반이 되는 더 이상한 분할되지 않는 부호화 단위를 '예측 단위'라고 지칭한다. 예측 단위가 분할된 파티션은, 예측 단위 및 예측 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 일 실시예에 따른 파티션 타입은 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 주파수 변환을 수행할 수 있다.
부호화 단위의 주파수 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 데이터 단위를 기반으로 주파수 변환이 수행될 수 있다. 예를 들어, 주파수 변환을 위한 데이터 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 데이터 단위를 포함할 수 있다.
이하, 주파수 변환의 기반이 되는 데이터 단위는 '변환 단위'라고 지칭될 수 있다. 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 레지듀얼 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
일 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
부호화 심도별 부호화 정보는, 부호화 심도 뿐만 아니라 예측 관련 정보 및 주파수 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 부호화 심도 뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 타입, 예측 단위별 예측 모드, 주파수 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 파티션의 결정 방식에 대해서는, 도 3 내지 12을 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 부호화 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 부호화 모드에 관한 정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 레지듀얼 데이터의 부호화 결과일 수 있다.
심도별 부호화 모드에 관한 정보는, 부호화 심도 정보, 예측 단위의 파티션 타입 정보, 예측 모드 정보, 변환 단위의 크기 정보 등을 포함할 수 있다.
부호화 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 부호화 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 부호화 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 부호화 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 부호화 심도의 부호화 단위마다 적어도 하나의 부호화 모드에 관한 정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 부호화 모드에 관한 정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 부호화 심도가 다를 수 있으므로, 데이터에 대해 부호화 심도 및 부호화 모드에 관한 정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 부호화 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
일 실시예에 따른 최소 단위는, 최하위 부호화 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이며, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호화 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다. 또한, 픽처, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더에 삽입될 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 일 실시예에 따른 비디오 부호화 장치(100)는 현재 픽처의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 주파수 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽처당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 일 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 2 는 본 발명의 일 실시예에 따른 비디오 복호화 장치의 블록도를 도시한다.
일 실시예에 따른 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 일 실시예에 따른 비디오 복호화 장치(200)의 각종 프로세싱을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 부호화 모드에 관한 정보 등 각종 용어의 정의는, 도 1 및 비디오 부호화 장치(100)을 참조하여 전술한 바와 동일하다.
수신부(205)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱(parsing)한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽처에 대한 헤더로부터 현재 픽처의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 부호화 심도 및 부호화 모드에 관한 정보를 추출한다. 추출된 부호화 심도 및 부호화 모드에 관한 정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 하나 이상의 부호화 심도 정보에 대해 설정될 수 있으며, 부호화 심도별 부호화 모드에 관한 정보는, 해당 부호화 단위의 파티션 타입 정보, 예측 모드 정보 및 변환 단위의 크기 정보 등을 포함할 수 있다. 또한, 부호화 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 일 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 부호화 심도 및 부호화 모드에 관한 정보이다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
일 실시예에 따른 부호화 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 부호화 심도 및 부호화 모드에 관한 정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 부호화 심도 및 부호화 모드에 관한 정보가 기록되어 있다면, 동일한 부호화 심도 및 부호화 모드에 관한 정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 타입, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 주파수 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 부호화 심도별 부호화 단위의 예측 단위의 파티션 타입 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 주파수 역변환을 위해, 부호화 심도별 부호화 단위의 변환 단위의 크기 정보에 기초하여, 부호화 단위마다 각각의 변환 단위에 따라 주파수 역변환을 수행할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 부호화 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 부호화 심도이다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 타입, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화할 하나의 데이터 단위로 간주될 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽처에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 부호화 모드에 관한 정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
이하 도 3 내지 도 13을 참조하여 본 발명의 일 실시예에 따른 트리 구조에 따른 부호화 단위들, 예측 단위 및 변환 단위의 결정 방식이 상술된다.
도 3 은 계층적 부호화 단위의 개념을 도시한다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 3에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상 뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 4 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부의 블록도를 도시한다.
일 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 부호화 단위 결정부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 포함한다. 즉, 인트라 예측부(410)는 현재 프레임(405) 중 인트라 모드의 부호화 단위에 대해 인트라 예측을 수행하고, 움직임 추정부(420) 및 움직임 보상부(425)는 인터 모드의 현재 프레임(405) 및 참조 프레임(495)를 이용하여 인터 추정 및 움직임 보상을 수행한다.
인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)로부터 출력된 데이터는 주파수 변환부(430) 및 양자화부(440)를 거쳐 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(460), 주파수 역변환부(470)을 통해 공간 영역의 데이터로 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(480) 및 루프 필터링부(490)를 거쳐 후처리되어 참조 프레임(495)으로 출력된다. 양자화된 변환 계수는 엔트로피 부호화부(450)를 거쳐 비트스트림(455)으로 출력될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)에 적용되기 위해서는, 영상 부호화부(400)의 구성 요소들인 인트라 예측부(410), 움직임 추정부(420), 움직임 보상부(425), 주파수 변환부(430), 양자화부(440), 엔트로피 부호화부(450), 역양자화부(460), 주파수 역변환부(470), 디블로킹부(480) 및 루프 필터링부(490)가 모두, 최대 부호화 단위마다 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행하여야 한다.
특히, 인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 및 예측 모드를 결정하며, 주파수 변환부(430)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 변환 단위의 크기를 결정하여야 한다.
도 5 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부의 블록도를 도시한다.
비트스트림(505)이 파싱부(510)를 거쳐 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화에 관한 정보가 파싱된다. 부호화된 영상 데이터는 엔트로피 복호화부(520) 및 역양자화부(530)를 거쳐 역양자화된 데이터로 출력되고, 주파수 역변환부(540)를 거쳐 공간 영역의 영상 데이터가 복원된다.
공간 영역의 영상 데이터에 대해서, 인트라 예측부(550)는 인트라 모드의 부호화 단위에 대해 인트라 예측을 수행하고, 움직임 보상부(560)는 참조 프레임(585)를 함께 이용하여 인터 모드의 부호화 단위에 대해 움직임 보상을 수행한다.
인트라 예측부(550) 및 움직임 보상부(560)를 거친 공간 영역의 데이터는 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 후처리되어 복원 프레임(595)으로 출력될 수 있다. 또한, 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 후처리된 데이터는 참조 프레임(585)으로서 출력될 수 있다.
비디오 복호화 장치(200)의 영상 데이터 복호화부(230)에서 영상 데이터를 복호화하기 위해, 일 실시예에 따른 영상 복호화부(500)의 파싱부(510) 이후의 단계별 작업들이 수행될 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서는, 영상 복호화부(500)의 구성 요소들인 파싱부(510), 엔트로피 복호화부(520), 역양자화부(530), 주파수 역변환부(540), 인트라 예측부(550), 움직임 보상부(560), 디블로킹부(570) 및 루프 필터링부(580)가 모두, 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들에 기반하여 작업을 수행하여야 한다.
특히, 인트라 예측부(550), 움직임 보상부(560)는 트리 구조에 따른 부호화 단위들 각각마다 파티션 및 예측 모드를 결정하며, 주파수 역변환부(540)는 부호화 단위마다 변환 단위의 크기를 결정하여야 한다.
도 6 는 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 4인 경우를 도시하고 있다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640), 크기 4x4인 심도 4의 부호화 단위(650)가 존재한다. 크기 4x4인 심도 4의 부호화 단위(650)는 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
마지막으로, 심도 4의 크기 4x4의 부호화 단위(650)는 최소 부호화 단위이며 최하위 심도의 부호화 단위이고, 해당 예측 단위도 크기 4x4의 파티션(650)으로만 설정될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 부호화 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 부호화 심도 및 파티션 타입으로 선택될 수 있다.
도 7 은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 주파수 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 주파수 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 주파수 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 8 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 부호화 모드에 관한 정보로서, 각각의 부호화 심도의 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 타입에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 타입에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 타입에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 주파수 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인트라 변환 단위 크기(828) 중 하나일 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 9 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 타입(912), 2N_0xN_0 크기의 파티션 타입(914), N_0x2N_0 크기의 파티션 타입(916), N_0xN_0 크기의 파티션 타입(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 타입은 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 타입마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 타입(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 타입(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 타입의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 타입(942), 크기 2N_1xN_1의 파티션 타입(944), 크기 N_1x2N_1의 파티션 타입(946), 크기 N_1xN_1의 파티션 타입(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 타입(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 분할 정보는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 타입(992), 크기 2N_(d-1)xN_(d-1)의 파티션 타입(994), 크기 N_(d-1)x2N_(d-1)의 파티션 타입(996), 크기 N_(d-1)xN_(d-1)의 파티션 타입(998)을 포함할 수 있다.
파티션 타입 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 타입이 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 타입(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 부호화 심도가 심도 d-1로 결정되고, 파티션 타입은 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 일 실시예에 따른 최소 단위는, 최하위 부호화 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 일 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 부호화 심도를 결정하고, 해당 파티션 타입 및 예측 모드가 부호화 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 부호화 심도로 결정될 수 있다. 부호화 심도, 및 예측 단위의 파티션 타입 및 예측 모드는 부호화 모드에 관한 정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 부호화 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 부호화 심도의 분할 정보만이 '0'으로 설정되고, 부호화 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 부호화 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 부호화 심도로 파악하고, 해당 심도에 대한 부호화 모드에 관한 정보를 이용하여 복호화에 이용할 수 있다.
도 10, 11 및 12는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 주파수 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 비디오 부호화 장치(100)가 결정한 부호화 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 부호화 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 부호화 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 타입이며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 타입, 파티션(1032)은 NxN의 파티션 타입이다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 주파수 변환 또는 주파수 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 주파수 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다.부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 타입 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1은, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
분할 정보 0 (현재 심도 d의 크기 2Nx2N의 부호화 단위에 대한 부호화) 분할 정보 1
예측 모드 파티션 타입 변환 단위 크기 하위 심도 d+1의 부호화 단위들마다 반복적 부호화
인트라
인터

스킵 (2Nx2N만)
대칭형 파티션 타입 비대칭형 파티션 타입 변환 단위 분할 정보 0 변환 단위
분할 정보 1
2Nx2N
2NxN
Nx2N
NxN
2NxnU
2NxnD
nLx2N
nRx2N
2Nx2N NxN
(대칭형 파티션 타입)

N/2xN/2
(비대칭형 파티션 타입)
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 일 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 부호화 심도이므로, 부호화 심도에 대해서 파티션 타입 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 타입에서 정의될 수 있으며, 스킵 모드는 파티션 타입 2Nx2N에서만 정의될 수 있다.
파티션 타입 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 타입 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 타입 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 타입 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 타입 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 타입이 대칭형 파티션 타입이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 타입이라면 N/2xN/2로 설정될 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 부호화 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 부호화 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 부호화 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 부호화 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 부호화 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 13 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 부호화 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 부호화 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 타입 정보는, 파티션 타입 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
파티션 타입 정보가 대칭형 파티션 타입 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 타입 정보가 비대칭형 파티션 타입 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
이하, 도 4의 본 발명의 일 실시예에 따른 영상 부호화 장치(100)의 인트라 예측부(410) 및 도 5의 영상 복호화 장치(200)의 인트라 예측부(550)에서 예측 단위에 대하여 수행되는 인트라 예측에 대하여 구체적으로 설명한다.
인트라 예측부(410,550)는 현재 예측 단위의 예측값을 현재 예측 단위의 주변 픽셀을 이용하여 획득하는 인트라 예측을 수행한다. 본 발명의 일 실시예에 따른 인트라 예측부(410,550)는 예측 단위가 16x16 이상의 큰 크기를 갖는 것을 고려하여, 종래 기술에 따른 한정된 방향성을 갖는 인트라 예측 모드 이외에 (dx,dy) 파라메터를 이용한 다양한 방향성을 갖는 인트라 예측 모드를 부가적으로 수행한다. 본 발명의 일 실시예에 따른 다양한 방향성을 갖는 인트라 예측 모드에 대해서는 후술한다.
도 14는 본 발명의 일 실시예에 따른 예측 단위의 크기에 따른 인트라 예측 모드들의 개수를 도시한다.
인트라 예측부(410,550)는 예측 단위의 크기에 따라서 예측 단위에 적용할 인트라 예측 모드들의 개수를 다양하게 설정할 수 있다. 일 예로 도 14를 참조하면 인트라 예측되는 예측 단위의 크기를 NxN이라고 할 때, 2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 128x128 크기의 예측 단위 각각에 대하여 실제 수행되는 인트라 예측 모드의 개수는 각각 5, 9, 9, 17, 33, 5, 5개(Example 2의 경우)로 설정될 수 있다. 이와 같이 예측 단위의 크기에 따라서 실제 수행되는 인트라 예측 모드의 개수를 차별화하는 이유는 예측 단위의 크기에 따라서 예측 모드 정보를 부호화하기 위한 오버헤드가 다르기 때문이다. 즉, 예측 단위의 경우 전체 영상에서 차지하는 부분이 작음에도 불구하고 이러한 작은 예측 단위의 예측 모드 등의 부가 정보를 전송하기 위한 오버헤드가 증가할 수 있다. 따라서, 작은 크기의 예측 단위를 너무 많은 예측 모드로 부호화하는 경우 비트량이 증가하여 압축 효율이 저하될 수 있다. 또한, 큰 크기를 갖는 예측 단위, 예를 들어 64x64 이상의 크기를 갖는 예측 단위는 일반적으로 영상의 평탄한 영역에 대한 예측 단위로서 선택되는 경우가 많기 때문에, 이러한 평탄한 영역을 부호화하는데 많이 선택되는 큰 크기의 예측 단위를 너무 많은 수의 예측 모드로 부호화하는 것 역시 압축 효율 측면에서 비효율적일 수 있다. 따라서, 예측 단위의 크기가 소정 크기보다 너무 크거나 작은 경우에는 상대적으로 작은 개수의 인트라 예측 모드만을 적용하도록 할 수 있다. 이러한 예측 단위의 크기에 따라서 적용되는 인트라 예측 모드의 개수는 도 14에 한정되지 않고 다양하게 설정될 수 있다. 도 14에 도시된 각 예측 단위의 크기에 따라서 적용되는 예측 모드의 개수는 일 실시예에 불과하며, 각 예측 단위의 크기에 따른 예측 모드의 개수는 변경될 수 있다. 또한, 각 예측 단위에 적용되는 인트라 예측 모드의 개수는 예측 단위의 크기에 상관없이 항상 일정하게 설정될 수 있다.
본 발명의 일 실시예에 따른 인트라 예측부(410,550)는 예측 단위에 적용되는 인트라 예측 모드로써 예측 단위 내의 픽셀을 중심으로 소정의 기울기를 갖는 라인을 이용하여 주변 참조 픽셀을 결정하고 결정된 주변 참조 픽셀을 픽셀의 예측자로 이용하는 인트라 예측 모드들이 포함될 수 있다. 이러한 라인의 기울기는 (dx, dy) 파라메터(dx, dy는 정수)를 이용하여 설정될 수 있다. 일 예로, 33개의 예측 모드들을 각각 mode N(N은 0부터 32까지의 정수)이라고 정의할 때, mode 0은 수직 모드, mode 1은 수평 모드, mode 2는 DC 모드, mode 3는 플레인 모드, mode 32는 플래너(planar) 모드로 설정하고, mode 4 ~ mode31 각각은 다음의 표 1에 표기된 바와 같은 (1,-1), (1,1), (1,2), (2,1), (1,-2), (2,1), (1,-2), (2,-1), (2,-11), (5,-7), (10,-7), (11,3), (4,3), (1,11), (1,-1), (12,-3), (1,-11), (1,-7), (3,-10), (5,-6), (7,-6), (7,-4), (11,1), (6,1), (8,3), (5,3), (5,7), (2,7), (5,-7), (4,-3) 중 하나의 값으로 표현되는 (dx, dy)를 이용하여 tan-1(dy/dx)의 방향성을 갖는 라인을 이용하여 주변 참조 픽셀을 결정하고 결정된 주변 참조 픽셀을 예측에 이용하는 인트라 예측 모드로 정의할 수 있다.
mode # dx dy mode # dx dy
mode 4 1 -1 mode 18 1 -11
mode 5 1 1 mode 19 1 -7
mode 6 1 2 mode 20 3 -10
mode 7 2 1 mode 21 5 -6
mode 8 1 -2 mode 22 7 -6
mode 9 2 -1 mode 23 7 -4
mode 10 2 -11 mode 24 11 1
mode 11 5 -7 mode 25 6 1
mode 12 10 -7 mode 26 8 3
mode 13 11 3 mode 27 5 3
mode 14 4 3 mode 28 5 7
mode 15 1 11 mode 29 2 7
mode 16 1 -1 mode 30 5 -7
mode 17 12 -3 mode 31 4 -3
mode 0은 수직 모드, mode 1은 수평 모드, mode 2는 DC 모드, mode 3는 플레인 모드, mode 32는 planar 모드임.
인트라 예측부(410, 550)에서 이용되는 인트라 예측 모드의 개수는 표 2에 한정되지 않고, 현재 예측 단위가 색차 성분인지 휘도 성분인지 여부, 현재 예측 단위의 크기 등의 정보에 기초하여 다양하게 설정될 수 있으며, 또한 각 mode N이 어떠한 인트라 예측 모드를 가리키는지 여부도 다양하게 설정될 수 있다. 일 예로, 전체 인트라 예측 모드의 개수를 36개로 설정하고, mode 0은 후술되는 플래너 (Planar) 모드, mode 1은 DC 모드, mode 2~34은 후술되는 일 예와 같이 33개의 방향성을 갖는 인트라 예측 모드, mode 35는 색차 성분의 예측 단위에 대해서 대응되는 휘도 성분의 예측 단위를 이용한 모드(Intra_FromLuma)로 정의할 수도 있다. Mode 35의 휘도 성분의 예측 단위로부터 대응되는 색차 성분의 예측 단위를 수행하는 인트라 예측 모드(Intra_FromLuma)는 색차 성분의 예측 단위에 대해서만 적용되고, 휘도 성분의 예측 단위의 인트라 예측시에는 이용되지 않는다.
도 15는 본 발명의 일 실시예에 따른 다양한 방향성을 갖는 인트라 예측 모드들을 설명하기 위한 참조도이다.
전술한 바와 같이, 본 발명의 일 실시예에 따른 인트라 예측부(410,550)는 복수 개의 (dx, dy) 파라메터들을 이용하여 결정되는 tan-1(dy/dx)의 기울기를 갖는 라인을 이용하여 주변 참조 픽셀을 결정하고 결정된 주변 참조 픽셀을 이용하여 예측을 수행할 수 있다.
도 15를 참조하면, 현재 예측 단위 내부의 예측하고자 하는 현재 픽셀(P)을 중심으로 표 2에 표기된 모드별 (dx, dy)의 값에 따라 정해지는 tan-1(dy/dx)의 각도를 갖는 연장선(150) 상에 위치한 주변 픽셀(A, B)를 현재 픽셀(P)의 예측자로 이용할 수 있다. 이 때, 예측자로서 이용되는 주변 픽셀은 이전에 부호화되고 복원된, 현재 예측 단위의 상측, 좌측, 우상측 및 좌하측의 이전 예측 단위의 픽셀인 것이 바람직하다. 이와 같이 다양한 방향성을 갖는 인트라 예측 모드들에 따라서 예측 부호화를 수행함으로써 영상의 특성에 따라서 보다 효율적인 압축이 가능하다.
도 15에서, 연장선(150)에 위치하거나 연장선(150)에 가까운 주변 픽셀을 이용하여 현재 픽셀(P)의 예측자를 생성하는 경우, 연장선(150) 은 실제로 tan-1(dy/dx)의 방향성을 갖는데, 이러한 연장선(150)을 이용한 주변 픽셀의 결정을 위해서는 (dy/dx)의 나눗셈 연산이 필요하기 때문에 하드웨어나 소프트웨어로 구현시 소수점 연산을 포함할 수 있어서 연산량을 증가시키는 요인이 될 수 있다. 따라서, 참조 픽셀을 선택하기 위한 예측 방향을 dx, dy 파라메터를 이용하여 설정할 때, 연산량을 감소시킬 수 있도록 dx, dy를 설정할 필요가 있다.
도 16은 본 발명의 일 실시예에 따라서 (dx,dy)의 방향성을 갖는 연장선 상에 위치한 주변 픽셀과 현재 픽셀과의 관계를 설명하기 위한 도면이다.
도 16을 참조하면, (j,i)에 위치한 현재 픽셀을 P(1610), 현재 픽셀 P(1610)를 지나는 tan-1(dy/dx)의 방향성, 즉 기울기를 갖는 연장선 상에 위치한 상측 주변 픽셀을 A(1611), 좌측 주변 픽셀을 B(1612)라고 정의한다. 현재 픽셀 P(1610)이 포함된 예측 단위의 크기가 nSxnS(nS는 양의 정수)이며, 예측 단위의 각 픽셀들의 위치는 (0,0) 부터 (nS-1, nS-1) 중 하나이며, x축 상에 위치한 상측 주변 픽셀의 위치를 (m, -1)(m은 정수), y축 상에 위치한 좌측 주변 픽셀의 위치를 (-1,n)(n은 정수)라고 가정한다. 현재 픽셀 P(1610)을 지나는 연장선과 만나는 상측 주변 픽셀 A(1611)의 위치는 (j+i*dx/dy, -1), 좌측 주변 픽셀 B(1612)의 위치는 (-1, i+j*dy/dx) 이다. 따라서, 현재 픽셀 P(1610)의 예측을 위해 상측 주변 픽셀 A(1611) 또는 좌측 주변 픽셀 B(1612)를 결정하기 위해서는 dx/dy 또는 dy/dx와 같은 나눗셈 연산이 필요하다. 전술한 바와 같이 이러한 나눗셈 연산은 연산 복잡도가 높기 때문에 소프트웨어 또는 하드웨어 구현시 연산 속도의 저하를 초래할 수 있다. 따라서, 주변 픽셀을 결정하기 위한 예측 모드의 방향성을 나타내는 dx 및 dy 중 적어도 하나의 값을 2의 지수승으로 결정할 수 있다. 즉, n,m을 각각 정수라고 할 때, dx 및 dy는 각각 2^n, 2^m 일 수 있다.
현재 픽셀 P(1610)의 예측자로써 좌측 주변 픽셀 B(1612)가 이용되고 dx가 2^n의 값을 갖는 경우, 좌측 주변 픽셀 B(1612)의 위치인 (-1, i+j*dy/dx)를 결정하기 위해 필요한 j*dy/dx 연산은 (i*dy)/(2^n)이며, 이러한 2의 지수승으로 나눗셈을 수행하는 연산은 (i*dy)>>n과 같이 쉬프트 연산을 통해 구현될 수 있으므로 연산량이 감소한다.
유사하게, 현재 픽셀 P(1610)의 예측자로써 상측 주변 픽셀 A(1611)가 이용되고 dy가 2^m의 값을 갖는 경우, 상측 주변 픽셀 A의 위치인 (j+i*dx/dy,-1)를 결정하기 위해 필요한 i*dx/dy 연산은 (i*dx)/(2^m)이며, 이러한 2의 지수승으로 나눗셈을 수행하는 연산은 (i*dx)>>m과 같이 쉬프트 연산을 통해 구현될 수 있다.
도 17 및 도 18은 본 발명의 일 실시예에 따라서 인트라 예측 모드 방향을 나타낸 도면이다.
일반적으로, 영상이나 비디오 신호에서 나타나는 직선 패턴들은 수직이나 수평 방향인 경우가 많다. 따라서, (dx, dy)의 파라메터를 이용하여 다양한 방향성을 갖는 인트라 예측 모드를 정의할 때, 다음과 같이 dx, dy의 값을 정의함으로써 영상의 코딩 효율을 향상시킬 수 있다.
구체적으로, dy가 2^m의 값으로 고정된 값을 갖는 경우, dx의 절대값은 수직 방향에 가까운 예측 방향 사이의 간격은 좁도록 설정되고, 수평 방향에 가까운 예측 방향일수록 예측 모드 사이의 간격이 넓어지도록 설정될 수 있다. 예를 들어, 도 17를 참조하면, dy가 2^5, 즉 32의 값을 갖는 경우, dx의 값을 2,5,9,13,17,21,26,32,-2,-5,-9,-13,-17,-21,-26,-32와 같이 설정함으로써 수직 방향에 가까운 예측 방향 사이의 간격은 상대적으로 좁도록 설정되고, 수평 방향에 가까운 예측 방향일수록 예측 모드 사이의 간격이 상대적으로 넓어지도록 설정될 수 있다.
유사하게 dx가 2^n의 값으로 고정된 값을 갖는 경우, dy의 절대값은 수평 방향에 가까운 예측 방향 사이의 간격은 좁도록 설정되고, 수직 방향에 가까운 예측 방향일수록 예측 모드 사이의 간격이 넓어지도록 설정될 수 있다. 예를 들어, 도 18을 참조하면, dx가 2^5, 즉 32의 값을 갖는 경우, dy의 값을 2,5,9,13,17,21,26,32,-2,-5,-9,-13,-17,-21,-26,-32과 같이 설정함으로써 수평 방향에 가까운 예측 방향 사이의 간격은 좁도록 설정되고, 수직 방향에 가까운 예측 방향일수록 예측 모드 사이의 간격이 넓어지도록 설정될 수 있다.
또한, dx 및 dy 중 어느 하나의 값이 고정되었을 때, 고정되지 않은 나머지 값은 예측 모드 별로 증가되도록 설정될 수 있다. 예를 들어, dy가 고정된 경우 dx 사이의 간격이 소정값만큼 증가되도록 설정될 수 있다. 또한, 이러한 증가폭은 수평 방향과 수직 방향 사이의 각도를 소정 단위로 구분하고, 구분된 각도별로 설정될 수도 있다. 예를 들어, dy가 고정된 경우, dx의 값은 수직축과의 각도가 15도 이내인 구간에서는 a라는 증가폭을 갖고, 15도와 30도 사이에서는 b라는 증가폭을 갖으며, 30도 이상에서는 c라는 증가폭을 갖도록 설정될 수 있다.
일 예로, (dx, dy)를 이용하여 tan-1(dy/dx)의 방향성을 갖는 예측 모드들은 다음의 표 3 내지 표 5에 표기된 (dx,dy) 파라메터를 정의될 수 있다.
dx Dy dx dy dx dy
-32 32 21 32 32 13
-26 32 26 32 32 17
-21 32 32 32 32 21
-17 32 32 -26 32 26
-13 32 32 -21 32 32
-9 32 32 -17    
-5 32 32 -13    
-2 32 32 -9    
0 32 32 -5    
2 32 32 -2    
5 32 32 0    
9 32 32 2    
13 32 32 5    
17 32 32 9    
dx Dy dx dy dx dy
-32 32 19 32 32 10
-25 32 25 32 32 14
-19 32 32 32 32 19
-14 32 32 -25 32 25
-10 32 32 -19 32 32
-6 32 32 -14    
-3 32 32 -10    
-1 32 32 -6    
0 32 32 -3    
1 32 32 -1    
3 32 32 0    
6 32 32 1    
10 32 32 3    
14 32 32 6    
dx Dy dx dy dx dy
-32 32 23 32 32 15
-27 32 27 32 32 19
-23 32 32 32 32 23
-19 32 32 -27 32 27
-15 32 32 -23 32 32
-11 32 32 -19    
-7 32 32 -15    
-3 32 32 -11    
0 32 32 -7    
3 32 32 -3    
7 32 32 0    
11 32 32 3    
15 32 32 7    
19 32 32 11    
전술한 바와 같이 (dx, dy) 파라메터들을 이용하는 각 인트라 예측 모드들은 (j,i)에 위치한 픽셀의 예측자로써 좌측의 주변 픽셀 (-1, i+j*dy/dx) 또는 상측의 주변 픽셀 (j+i*dx/dy,-1)을 이용한다. 표 2와 같이 dx 또는 dy의 값 중 적어도 하나가 2의 지수승을 갖는 경우, 좌측의 주변 픽셀 (-1, i+j*dy/dx) 및 상측의 주변 픽셀 (j+i*dx/dy,-1)의 위치는 나눗셈 연산 없이 곱셈 및 쉬프트 연산만으로 획득될 수 있다. 전술한 표 2에 따른 (dx, dy)의 값들 중 dx가 32인 경우와 같이 dx가 2^n의 값을 갖는 경우 dx를 이용한 나눗셈 연산은 우측 쉬프트 연산으로 대체될 수 있으므로, 좌측의 주변 픽셀의 위치는 (i*dy)>>n의 값에 기초하여 나눗셈 연산없이 획득될 수 있다. 유사하게, 표 2에 따른 (dx, dy)의 값들 중 dy가 32인 경우와 같이 dy가 2^m의 값을 갖는 경우 dy를 이용한 나눗셈 연산은 우측 쉬프트 연산으로 대체될 수 있으므로, 상측의 주변 픽셀의 위치는 (i*dx)>>m의 값에 기초하여 나눗셈 연산없이 획득될 수 있다.
도 19는 본 발명의 일 실시예에 따른 33개의 방향성을 갖는 인트라 예측 모드의 방향을 나타낸 도면이다.
도 19를 참조하면, 인트라 예측부(410,550)는 도시된 바와 같은 33개의 방향성을 갖는 인트라 예측 모드들에 따라 현재 픽셀의 예측자로 이용될 주변 픽셀을 결정할 수 있다. 전술한 바와 같이 각 인트라 예측 모드에 따른 방향은 수평 방향이나 수직 방향에 가까울수록 예측 모드 사이의 간격은 좁도록 설정되고, 수직 방향이나 수평 방향과 멀어질수록 예측 모드 사이의 간격이 넓어지도록 설정될 수 있다.
한편, 전술한 도 19에 예시된 바와 같은 다양한 방향성을 갖는 인트라 예측 모드들에 따라서 현재 블록의 참조 픽셀로 이용되는 주변 픽셀들의 이용은 제한될 수 있다. 예를 들어, 인터 예측을 통해 예측된 인터 블록에 포함된 주변 픽셀인 경우 현재 블록의 인트라 예측시 이용이 제한될 수 있다. 이와 같이, 인터 블록에 포함된 주변 픽셀의 이용을 제한하는 이유는 인터 블록에 포함된 에러의 전파(error propagation)를 방지하기 위해서다. 또한, 인트라 예측되는 현재 블록과 다른 슬라이스에 포함되는 주변 블록은 현재 블록의 인트라 예측시 이용이 제한될 수 있다. 다른 슬라이스에 포함된 주변 블록을 인트라 예측시 이용을 제한하는 이유는, 일반적으로 영상 처리에서 슬라이스 단위로 영상 데이터를 캡슐화(encaptulation)하여 독립적으로 처리하기 때문에 다른 슬라이스에 포함된 주변 블록의 데이터는 현재 블록의 참조 데이터로써 이용이 제한될 수 있다. 따라서, 본 발명의 일 실시예에 따른 인트라 예측부(410, 550)는 주변 픽셀이 포함된 주변 블록의 예측 모드 또는 주변 블록이 포함된 슬라이스가 현재 블록이 속한 슬라이스와 동일한 지 여부에 따라서 해당 주변 픽셀을 현재 블록의 인트라 예측에 이용할 것인지 여부를 제한할 수 있다. 영상 부호화 장치(400)의 인트라 예측부(410)는 인터 블록에 포함된 주변 픽셀을 현재 블록의 인트라 예측에 이용할 것인지 여부를 나타내는 플래그(constrained_intra_pred_flag)의 값을 설정한 다음, 부호화된 비트스트림에 플래그(constrained_intra_pred_flag) 정보를 부가함으로써 주변 인터 블록에 포함된 주변 픽셀의 이용 여부의 제한을 시그널링할 수 있다. 예를 들어 constrained_intra_pred_flag의 값이 0인 경우에는 주변 픽셀이 포함된 주변 블록의 예측 모드에 상관없이 현재 블록의 인트라 예측에 이용됨을 나타낼 수 있다. constrained_intra_pred_flag의 값이 1인 경우에는 인터 블록에 포함된 주변 픽셀에 포함된 주변 픽셀은 현재 블록의 인트라 예측시 이용이 제한됨을 나타낼 수 있다. 또한, 인트라 예측부(410,550)는 현재 블록과 다른 슬라이스에 포함된 주변 블록의 픽셀은 항상 현재 블록의 인트라 예측에 이용하지 않는 것으로 제한할 수 있다.
이하 도 20 내지 도 26을 참조하여, constrained_intra_pred_flag의 값이 1인 경우, 즉 인터 블록에 포함된 주변 픽셀은 현재 블록의 인트라 예측시 참조 픽셀로써 이용이 제한되는 경우를 가정하여, 인트라 예측부(410, 550)에서 참조 픽셀로써 이용이 제한된 주변 픽셀을 다른 주변 픽셀로 대체하는 과정에 대하여 구체적으로 설명한다. 또한, 현재 블록이 속한 슬라이스와 다른 슬라이스에 포함된 주변 블록의 픽셀은 항상 현재 블록의 인트라 예측시 이용이 제한되는 것으로 가정한다.
도 24는 본 발명의 일 실시예에 따른 인트라 예측 장치의 구성을 나타낸다. 도 24의 인트라 예측 장치(2400)는 도 4 및 도 5의 인트라 예측부(410, 550)에 대응된다.
도 24를 참조하면, 인트라 예측 장치(2400)는 이용가능성 판단부(2410), 대체부(2420) 및 인트라 예측 수행부(2430)를 포함한다.
이용가능성(availability) 판단부(2410)는 현재 블록의 인트라 예측에 이용되는 소정 개수의 주변 픽셀들의 이용가능성을 판단한다. 여기서, 이용가능성이란 주변 픽셀이 현재 블록의 참조 픽셀로써 인트라 예측에 이용될 수 있는지 여부를 나타낸다. 전술한 바와 같이 constrained_intra_pred_flag의 값이 1인 경우를 가정하므로, 인터 예측된 주변 블록 또는 현재 블록이 속한 슬라이스와 다른 슬라이스에 속한 주변 블록에 포함된 주변 픽셀은 이용가능하지 않은 것으로 판단된다. 따라서, 이용가능성 판단부(2410)는 현재 블록과 인접한 소정 개수의 주변 픽셀들 중 인터 예측된 주변 블록 또는 현재 블록이 속한 슬라이스와 다른 슬라이스에 속한 주변 블록에 포함된 주변 픽셀이 존재하는지 여부를 판단한다. 주변 픽셀들의 개수는 다양한 기준에 따라서 설정될 수 있다. 예를 들어, 현재 블록의 크기가 nTxnT(nT는 정수)인 경우, 현재 블록의 상측 및 우상측에 위치한 2nT개의 상측 주변 픽셀과, 현재 블록의 좌측 및 좌하측에 위치한 2nT개의 좌측 주변 픽셀 및 현재 블록의 좌상측 코너에 위치한 1개의 주변 픽셀을 포함하는 총 4nT+1 개의 주변 픽셀에 대해서 이용가능성 여부가 판단될 수 있다. 이용가능성이 판단되는 주변 픽셀의 개수 및 위치는 이에 한정되지 않고 변경될 수 있다.
만약, 주변 픽셀이 모두 이용가능한 것으로 판단된 경우, 부호화 측의 인트라 예측 수행부(2430)는 주변 픽셀 그대로를 참조 픽셀로 이용하여, 도 19에 예시된 바와 같은 다양한 방향성을 갖는 인트라 예측 모드에 따라서 인트라 예측을 수행하여 현재 블록의 예측 블록을 생성한다. 복호화 측의 인트라 예측 수행부(2430)는 비트스트림으로부터 추출된 현재 블록의 인트라 예측 모드에 기초하여 주변 픽셀 그대로를 이용하여 현재 블록에 대한 인트라 예측을 수행하여 현재 블록의 예측 블록을 생성한다.
만약, 주변 픽셀이 모두 이용가능하지 않은 것으로 판단된 경우, 대체부(2420)는 이용가능하지 않은 주변 픽셀의 픽셀값을 소정값으로 대체할 수 있다. 여기서, 소정값은 픽셀의 비트뎁스(bitdepth)에 기초하여 결정된 값이 이용될 수 있다. 픽셀의 비트뎁스는 하나의 픽셀의 픽셀값을 표현하는데 이용되는 비트수로써, 비트뎁스는 8~14비트일 수 있다. 이와 같이 가변적인 비트 뎁스(BitDepth)는 기본 비트뎁스(BaseBitDepth) 및 가변적인 비트뎁스 증가량(increased_bit_depth)를 통해 다음의 수학식; BitDepth=BaseBitDepth+Increased_bit_depth 을 통해 표현될 수 있다. 전술한 바와 같이 비트뎁스가 8~14비트 범위를 가진다고 하면, 기본 비트뎁스(BaseBitDepth)는 8의 값을 가지며, 비트뎁스 증가량(increased_bit_depth)은 0~6의 값을 갖는다. 대체부(2420)는 주변 픽셀이 모두 이용가능하지 않은 경우, 주변 픽셀들 모두를 (1<<((BitDepth)-1))의 값으로 대체할 수 있다. 예를 들어, 비트뎁스(BitDepth)가 8이라고 할 때, 대체부(2420)는 주변 픽셀이 모두 이용가능하지 않은 경우, 주변 픽셀들 모두를 (1<<(8-1)), 즉 1x2^7인 128의 픽셀값을 갖도록 대체할 수 있다.
이용가능성 판단부(2410)에서 판단한 결과, 소정 개수의 주변 픽셀들 모두가 이용가능하지 않은 경우는 아니지만, 적어도 하나의 이용가능하지 않은 주변 픽셀이 존재하는 경우, 대체부(2420)는 이용가능하지 않은 주변 픽셀을 기준으로 미리 정해진 방향으로 소정 개수의 주변 픽셀들을 검색하여 이용가능한 주변 픽셀을 검색하고, 이용가능하지 않은 주변 픽셀의 픽셀값을 검색된 이용가능한 주변 픽셀의 픽셀값으로 대체한다. 이용가능하지 않은 주변 픽셀을 대체하는 과정에 대해서는 도 20 내지 도 23을 참조하여 후술한다.
인트라 예측 수행부(2430)는 이용가능하지 않은 주변 픽셀이 이용가능한 주변 픽셀로 대체되면, 대체된 주변 픽셀들 및 이용가능한 원 주변 픽셀들을 이용하여 현재 블록에 대한 인트라 예측을 수행하고 현재 블록의 예측 블록을 생성한다.
이하, 도 20 내지 도 23을 참조하여, 현재 블록의 인트라 예측시 이용가능하지 않은 주변 픽셀을 대체하는 과정에 대해서 구체적으로 설명한다.
도 20은 본 발명의 일 실시예에 따라서 주변 블록의 유형에 따라서 현재 블록의 인트라 예측시 이용가능하지 않은 주변 픽셀을 나타낸 도면이다.
도 20을 참조하면, 현재 블록(2000)의 크기를 nTxnT라고 할 때, 이용가능성 판단부(2410)는 현재 블록의 상측 및 우상측에 위치한 2nT개의 상측 주변 픽셀들이 포함된 주변 블록들(A,B,C,D,E)이 인터 블록이거나 현재 블록(2000)이 속한 슬라이스와 다른 슬라이스에 포함된 블록인지를 판단한다. 또한, 이용가능성 판단부(2410)는 현재 블록(2000)의 좌측 및 좌하측에 위치한 2nT개의 좌측 주변 픽셀들이 포함된 주변 블록들(G,H,I,J,K) 및 현재 블록(2000)의 좌상측 코너에 위치한 1개의 주변 픽셀을 포함하는 주변 블록(F)가 인터 블록이거나 현재 블록(2000)이 속한 슬라이스와 다른 슬라이스에 포함된 블록인지를 판단한다.
이용가능성 판단부(2410)는 주변 블록들(A 내지 K) 중 인터 블록이거나 현재 블록(2000)이 속한 슬라이스와 다른 슬라이스에 포함된 블록에 포함된 주변 픽셀을 이용가능하지 않은 주변 픽셀로 판단한다. 도 20에서, 주변 블록(A, B, D, E, F, H, I)가 인터 예측된 인터 블록이므로, 이용가능성 판단부(2410)는 인터 예측된 주변 블록(A, B, D, E, F, H, I)에 포함된 주변 픽셀들(2011, 2012, 2013)을 이용가능하지 않은 주변 픽셀로 판단한다. 전술한 바와 같이 대체부(2420)는 이용가능하지 않은 주변 픽셀을 기준으로 미리 정해진 방향으로 주변 픽셀을 검색하여, 이용가능하지 않은 주변 픽셀의 픽셀값을 이용가능한 주변 픽셀로 대체하는 과정을 수행한다.
구체적으로, 본 발명의 실시예들에 따른 이용가능성 판단부(2410)는 주변 픽셀들 중 미리 정해진 위치의 주변 픽셀(이하, "제 1 주변 픽셀"이라 함)의 이용가능성 여부를 먼저 판단한다. 대체부(2420)는 제 1 주변 픽셀이 이용가능하지 않은 경우 미리 정해진 방향으로 주변 픽셀들을 검색하여 이용가능한 제 2 주변 픽셀을 검색한다. 또한, 대체부(2420)는 검색된 이용가능한 제 2 주변 픽셀을 이용하여 제 1 주변 픽셀을 대체한다.
제 1 주변 픽셀을 제외한 나머지 이용가능하지 않은 주변 픽셀(이하, "제 3 주변 픽셀"이라 함)은 미리 정해진 방향에 기초하여 이전에 처리되어 대체되거나 원래 이용가능한 주변 픽셀을 이용하여 대체된다. 이용가능하지 않은 제 3 주변 픽셀들은 제 2 주변 픽셀의 검색에 이용된 검색 순서에 따라서 순차적으로 대체된다. 제 1 주변 픽셀이 이용가능한 경우 제 1 주변 픽셀의 대체 과정은 스킵되고, 제 3 주변 픽셀의 대체 과정만이 수행된다.
이하의 도 21 내지 도 23에서 현재 블록(2100,2200,2300)의 크기는 nTxnT이며, 현재 블록(2100,2200,2300)의 인트라 예측을 위해 이용가능성 여부가 판단되는 주변 픽셀들은 P(x,y)(x=-1, y=-1,..., 2nT-1 및 x=0,...,2nT-1, y=1)이라고 가정한다.
도 21은 본 발명의 일 실시예에 따라서 이용가능하지 않은 주변 픽셀을 대체하는 과정을 설명하기 위한 도면이다.
도 21을 참조하면, 주변 픽셀들 중 최초로 이용가능성 여부가 판단되는 제 1 주변 픽셀은 현재 블록(2100)의 좌상측 코너에 위치한 주변 픽셀 P(-1,-1)(2110)이라고 가정한다. 이용가능성 판단부(2410)는 주변 픽셀 P(-1,-1)(2110)의 이용가능성 여부를 먼저 판단한다. 대체부(2420)는 주변 픽셀 P(-1,-1)(2110)이 이용가능하지 않은 것으로 판단된 경우, 주변 픽셀 P(-1,-1)(2110)을 기준으로 미리 정해진 방향에 따라서 순차적으로 주변 픽셀들 중 이용가능한 주변 픽셀을 검색하고, 최초로 검색된 이용가능한 주변 픽셀(이하 "제 2 주변 픽셀"이라 함)을 이용하여 제 1 주변 픽셀을 대체한다. 예를 들어, 대체부(2420)는 주변 픽셀 P(-1,-1)(2110)을 기준으로 왼쪽에서 오른쪽 방향의 제 1 검색 방향에 따라서 현재 블록(2100)의 상측 및 우상측 주변 픽셀들을 검색하고, 현재 블록(2100)의 상측 및 우상측 주변 픽셀들 중 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우 제 1 주변 픽셀 P(-1,-1)(2110)을 기준으로 위쪽에서 아래쪽 방향으로 현재 블록(2100)의 좌측 및 좌하측 주변 픽셀들을 검색하여 이용가능한 제 2 주변 픽셀을 검색한다. 대체부(2420)는 이러한 검색 방향 및 순서에 따라서 최초로 검색된 이용가능한 제 2 주변 픽셀을 이용하여 제 1 주변 픽셀인 P(-1,-1)(2110)을 대체한다. 예를 들어, 상측 및 우상측 주변 픽셀들 중 P(nT-2, -1)(2120)이 최초로 검색된 이용가능한 제 2 주변 픽셀이라고 가정하면, 대체부(2420)는 제 1 주변 픽셀 P(-1, -1)(2110)의 픽셀값을 P(nT-2, -1)(2120)의 픽셀값으로 대체한다.
대체부(2420)는 제 1 주변 픽셀 P(-1, -1)(2110)을 제외한 나머지 이용가능하지 않은 제 3 주변 픽셀들을 미리 정해진 검색 방향에 기초하여 이전에 처리되어 대체된 주변 픽셀 또는 원래 이용가능한 주변 픽셀로 대체한다. 예를 들어, 대체부(2420)는 제 1 주변 픽셀 P(-1, -1)(2110)을 이용가능한 주변 픽셀 P(nT-2, -1)(2120)로 대체한 다음, 이용가능하지 않은 다음 주변 픽셀 P(0,-1)의 값은 제 1 주변 픽셀 P(-1,-1)(2110)으로 대체한다. 제 1 주변 픽셀 P(-1,-1)(2110)은 이용가능한 주변 픽셀 P(nT-2, -1)(2120)로 대체되었기 때문에, 주변 픽셀 P(0,-1)의 값 역시 주변 픽셀 P(nT-2, -1)(2120)의 값과 동일한 값을 갖게 된다. 만약, 제 1 주변 픽셀 P(-1, -1)(2110)가 원래 이용가능한 경우에는, 제 1 주변 픽셀 P(-1, -1)(2110)의 대체 과정은 스킵되므로, 대체부(2420)은 원래의 제 1 주변 픽셀 P(-1, -1)(2110)의 픽셀값을 이용하여 주변 픽셀 P(0,-1)의 값을 대체한다. 주변 픽셀 P(1, -1)의 값은 이전에 처리된 주변 픽셀 P(0, -1)의 값을 이용하여 대체된다.
이와 같은 대체 과정은 이용가능하지 않은 모든 제 3 주변 픽셀들에 대해서 반복된다. 도 21에서, 상측에 위치한 주변 픽셀들 중 이용가능한 주변 픽셀인 P(nT-2, -1)(2120)은 대체되지 않고 원래의 픽셀값이 유지된다. 이와 같이, 대체부(2420)는 상측의 이용가능하지 않은 주변 픽셀을 미리 정해진 검색 방향에 따라서 이전에 대체되거나 원래 이용가능한 주변 픽셀로 대체한다. 즉, 대체부(2420)는 제 1 주변 픽셀 P(-1,-1)(2110) 및 원래 이용가능한 주변 픽셀을 제외하고, 검색 방향이 왼쪽에서 오른쪽이라고 할 때 이용가능하지 않은 제 3 주변 픽셀들을 바로 좌측의 주변 픽셀의 값으로 대체한다. 이와 같이, 상측에 복수 개의 제 3 주변 픽셀들이 존재하는 경우, 대체부(2420)는 왼쪽에서 오른쪽 방향으로 복수 개의 제 3 주변 픽셀들 각각을 왼쪽의 주변 픽셀을 이용하여 순차적으로 대체한다. 이 때, 제 3 주변 픽셀을 대체하는데 이용되는 왼쪽의 주변 픽셀은 이전에 대체되거나 원래 이용가능한 주변 픽셀일 수 있다.유사하게, 대체부(2420)는 현재 블록(2100)의 좌측 및 좌하측에 위치한 주변 픽셀들 중 이용가능하지 않은 제 3 주변 픽셀을 바로 상측의 주변 픽셀의 값을 이용하여 대체한다. 예를 들어, 대체부(2420)는 이용가능하지 않은 주변 픽셀 P(-1,0)의 값을 제 1 주변 픽셀 P(-1,-1)(2110)로 대체한다. 전술한 바와 같이, 만약, 제 1 주변 픽셀 P(-1, -1)(2110)가 원래 이용가능한 경우에는, 제 1 주변 픽셀 P(-1, -1)(2110)의 대체 과정은 스킵되므로, 대체부(2420)은 원래의 제 1 주변 픽셀 P(-1, -1)(2110)의 픽셀값을 이용하여 주변 픽셀 P(-1,0)의 값을 대체한다. 주변 픽셀 P(-1, 1)의 값은 이전에 처리된 주변 픽셀 P(-1, 0)의 값을 이용하여 대체된다. 전술한 상측의 제 3 주변 픽셀들을 대체하는 과정과 유사하게, 좌측에 복수 개의 제 3 주변 픽셀들이 존재하는 경우, 대체부(2420)는 위쪽에서 아래쪽 방향으로 복수 개의 제 3 주변 픽셀들 각각을 위쪽의 주변 픽셀을 이용하여 순차적으로 대체한다. 이 때, 제 3 주변 픽셀을 대체하는데 이용되는 위쪽의 주변 픽셀은 이전에 대체되거나 원래 이용가능한 주변 픽셀일 수 있다.
이와 같은 대체 과정은 이용가능하지 않은 좌측 및 좌하측의 모든 제 3 주변 픽셀들에 대해서 반복된다. 좌측에 위치한 주변 픽셀들 중 이용가능한 주변 픽셀인 P(-1, nT+1)(2130)은 대체되지 않고 원래의 픽셀값이 유지된다. 이와 같이, 대체부(2420)는 좌측의 이용가능하지 않은 주변 픽셀을 미리 정해진 검색 방향에 따라서 이전에 대체되거나 원래 이용가능한 주변 픽셀로 대체한다. 즉, 검색 방향이 위쪽에서 아래쪽이라고 할 때, 대체부(2420)는 이용가능하지 않은 제 3 주변 픽셀을 바로 상측의 주변 픽셀의 값으로 대체한다. 한편, 대체부(2420)는 현재 블록(2100)의 상측 및 좌측에서 이용가능한 주변 픽셀이 모두 검색된 경우, 검색된 상측 및 좌측에서 이용가능한 주변 픽셀들의 평균값을 이용하여 제 1 주변 픽셀 P(-1,-1)(2110)을 대체할 수 있다. 예를 들어, 도 21에서, 상측 주변 픽셀들 중 최초로 검색된 이용가능한 주변 픽셀 P(nT-2, -1)(2120) 및 좌측 주변 픽셀들 중 최초로 검색된 이용가능한 주변 픽셀 P(-1, nT+1)(2130)의 평균값을 이용하여 제 1 주변 픽셀 P(-1, -1)(2110)을 대체할 수 있다. 즉, 주변 픽셀 P(nT-2, -1)(2120)의 픽셀값을 PRA, 주변 픽셀 P(-1, nT+1)(2130)의 픽셀값을 PLB라고 하면, 다음의 수학식; PT=(PRA + PLB +1)>>1 을 통해 획득된 평균값 PT를 제 1 주변 픽셀 P(-1, -1)(2110)의 픽셀값으로 대체할 수 있다.
또한, 대체부(2420)는 현재 블록(2100)의 상측 및 좌측에서 이용가능한 주변 픽셀이 모두 검색된 경우, 미리 정해진 검색 방향에 따라서 최초로 검색된 주변 픽셀만을 이용하는 것이 아니라, 제 1 주변 픽셀 P(-1,-1)(2110)과의 거리에 기초하여 제 1 주변 픽셀 P(-1,-1)(2110)에 더 가까운 이용가능한 주변 픽셀을 제 2 주변 픽셀로 결정하여 제 1 주변 픽셀 P(-1,-1)(2110)을 대체할 수 있다. 도 21에서, 제 1 주변 픽셀 P(-1,-1)(2110)과 상측의 이용가능한 최초 검색된 주변 픽셀 P(nT-2, -1)(2120) 사이의 거리는 (nT-2)-(-1), 즉 nT-1이고, 제 1 주변 픽셀 P(-1,-1)(2110)과 좌측의 이용가능한 최초 검색된 주변 픽셀 P(-1, nT+1)(2120) 사이의 거리는 (nT+1)-(-1), 즉 nT+2이므로, 대체부(2420)는 더 가까운 상측의 주변 픽셀 P(nT-2, -1)(2120)을 이용하여 제 1 주변 픽셀 P(-1, -1)(2110)을 대체할 수 있다.
한편, 대체부(2420)는 현재 블록(2100)의 제 1 주변 픽셀 P(-1,-1)(2110)을 대체하기 위한 제 2 주변 픽셀을 검색하는 과정의 복잡도를 감소시키기 위하여, 현재 블록의 상측 및 좌측의 모든 픽셀을 검색하는 대신에, 제 1 주변 픽셀 P(-1, -1)(2110)과 바로 인접한 P(-1,0) 및 P(0, -1)만을 검색하고, P(-1,0) 및 P(0, -1) 중 이용가능한 인접 주변 픽셀을 이용하여 제 1 주변 픽셀 P(-1, -1)(2110)을 대체할 수 있다. 예를 들어, 대체부(2420)은 P(-1,0) 및 P(0, -1)의 순서로, 또는 P(0,-1) 및 P(-1, 0)의 순서로 인접 주변 픽셀을 검색하여 먼저 검색된 이용가능한 인접 주변 픽셀의 값으로 제 1 주변 픽셀 P(-1,-1)(2110)을 대체할 수 있다. 만약, 대체부(2420)은 P(-1,0) 및 P(0, -1) 중 이용가능한 주변 픽셀이 검색되지 않은 경우, 전술한 바와 같이 비트 뎁스에 기초한 소정의 값으로 제 1 주변 픽셀 P(-1,-1)(2110)을 대체할 수 있다. 대체부(2420)는 P(-1,0) 및 P(0, -1)가 모두 이용가능한 경우 P(-1,0) 및 P(0, -1)의 평균값을 이용하여 제 1 주변 픽셀 P(-1,-1)(2110)을 대체할 수 있다.
한편, 전술한 대체부(2420)에서 수행되는 상측 주변 픽셀 및 좌측 주변 픽셀의 검색 순서 및 방향은 변경될 수 있다. 즉, 대체부(2420)는 먼저 현재 블록(2100)의 좌측 및 좌하측 주변 픽셀들을 검색하여 이용가능한 주변 픽셀이 존재하지 않는 경우, 다음으로 상측 및 우상측 주변 픽셀들을 검색할 수 있다. 또한, 대체부(2420)는 좌측 및 좌하측 주변 픽셀들을 검색할 때 위쪽에서 아래쪽 방향으로 이용가능한 주변 픽셀을 검색하는 대신에, 아래쪽에서 위쪽 방향으로 이용가능한 주변 픽셀을 검색할 수 있다. 또한, 대체부(2420)는 상측 및 우상측 주변 픽셀들을 검색할 때 왼쪽에서 오른쪽 방향으로 이용가능한 주변 픽셀을 검색하는 대신에, 오른쪽에서 왼쪽 방향으로 이용가능한 주변 픽셀을 검색할 수 있다.
또한, 대체부(2420)는 제 1 주변 픽셀 P(-1,-1)(2110)을 대체하기 위하여, 최초로 검색된 상측 또는 좌측의 이용가능한 주변 픽셀들 중 최초로 검색된 주변 픽셀을 이용하는 대신에, 현재 블록(2100)의 상측 및 우상측, 좌측 및 좌상측의 주변 픽셀들 중 이용가능한 모든 주변 픽셀의 픽셀값들의 평균값을 이용하여 제 1 주변 픽셀 P(-1,-1)(2110)을 대체할 수 있다.
도 22는 본 발명의 다른 실시예에 따라서 이용가능하지 않은 주변 픽셀을 대체하는 과정을 설명하기 위한 도면이다.
도 22를 참조하면, 본 발명의 다른 실시예에 있어서 주변 픽셀들 중 최초로 이용가능성 여부가 판단되는 제 1 주변 픽셀은 현재 블록(2200)의 최좌하측에 위치한 주변 픽셀 P(-1,2nT-1)(2210)이라고 가정한다. 즉, 이용가능성 판단부(2410)는 주변 픽셀 P(-1,2nT-1)(2210)의 이용가능성 여부를 먼저 판단한다. 대체부(2420)는 제 1 주변 픽셀 P(-1,2nT-1)(2210)이 이용가능하지 않은 것으로 판단된 경우, P(-1,2nT-1)(2210)을 기준으로 미리 정해진 방향에 따라서 순차적으로 주변 픽셀들 중 이용가능한 주변 픽셀을 검색하고, 최초로 검색된 이용가능한 제 2 주변 픽셀을 이용하여 제 1 주변 픽셀 P(-1,2nT-1)(2210)을 대체한다. 예를 들어, 대체부(2420)는 제 1 주변 픽셀 P(-1,2nT-1)(2210)을 기준으로 아래쪽에서 위쪽 방향의 제 1 검색 방향에 따라서 현재 블록(2200)의 좌측 및 좌하측 주변 픽셀들을 검색하고, 현재 블록(2200)의 좌측 및 좌하측 주변 픽셀들 중 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우, 왼쪽에서 오른쪽 방향의 제 2 검색 방향에 따라 현재 블록(2200)의 상측 및 우상측 주변 픽셀들을 검색하여 이용가능한 제 2 주변 픽셀을 검색한다. 대체부(2420)는 이러한 검색 방향 및 순서에 따라서 최초로 검색된 이용가능한 제 2 주변 픽셀을 이용하여 제 1 주변 픽셀 P(-1,2nT-1)(2210)을 대체한다. 예를 들어, 검색 순서에 따라서 좌측의 주변 픽셀들 중 P(-1, nT-2)(2220)이 이용가능한 최초 검색된 제 2 주변 픽셀이라고 하면, 대체부(2420)는 제 1 주변 픽셀 P(-1,2nT-1)(2210)의 픽셀값을 P(-1, nT-2)(2220)의 픽셀값으로 대체한다.
전술한 본 발명의 일 실시예와 유사하게, 대체부(2420)는 P(-1,2nT-1)(2210)을 제외한 나머지 이용가능하지 않은 제 3 주변 픽셀들을 미리 정해진 검색 방향에 기초하여 이전에 처리되어 대체되거나 원래 이용가능한 주변 픽셀로 대체한다. 예를 들어, 대체부(2420)는 제 1 주변 픽셀 P(-1,2nT-1)(2210)을 이용가능한 주변 픽셀 P(-1, nT-2)(2220)로 대체한 다음, 이용가능하지 않은 다음 주변 픽셀 P(-1, 2nT-2)의 값은 제 1 주변 픽셀 P(-1,2nT-1)(2210)으로 대체한다. 만약, 제 1 주변 픽셀 P(-1, 2nT-1)(2210)가 원래 이용가능한 경우에는, 제 1 주변 픽셀 P(-1, 2nT-1)(2210)의 대체 과정은 스킵되므로, 대체부(2420)은 원래의 제 1 주변 픽셀 P(-1, 2nT-1)(2210)의 픽셀값을 이용하여 주변 픽셀 P(-1, 2nT-2)의 값을 대체한다.
이와 같은 대체 과정은 이용가능하지 않은 모든 제 3 주변 픽셀들에 대해서 반복된다. 도 22에서, 좌측 및 상측에 위치한 주변 픽셀들 중 이용가능한 주변 픽셀인 P(-1, nT-2)(2220) 및 P(nT+1, -1)(2230)은 대체되지 않고 원래의 픽셀값이 유지된다. 이와 같이, 대체부(2420)는 최좌하측의 제 1 주변 픽셀 P(-1, 2nT-1)(2210)을 기준으로 아래쪽에서 위쪽 방향, 왼쪽에서 오른쪽 방향으로 현재 블록(2200)의 좌측 및 상측의 주변 픽셀들을 검색하고, 이용가능하지 않은 제 3 주변 픽셀을 바로 아래쪽의 주변 픽셀 또는 왼쪽의 주변 픽셀로 대체한다. 즉, 대체부(2420)는 제 1 주변 픽셀 P(-1,2nT-1)(2210) 및 원래 이용가능한 주변 픽셀을 제외하고, 좌측 및 좌하측에 위치한 이용가능하지 않은 제 3 주변 픽셀을 바로 아래의 주변 픽셀로 대체하고, 상측 및 우상측에 위치한 이용가능하지 않은 제 3 주변 픽셀을 바로 왼쪽의 주변 픽셀로 대체한다. 이와 같이, 좌측에 위치한 복수 개의 제 3 주변 픽셀들에 대해서, 대체부(2420)는 아래쪽에서 위쪽 방향으로 복수 개의 제 3 주변 픽셀들 각각을 아래쪽의 주변 픽셀을 이용하여 순차적으로 대체하며, 상측에 위치한 복수 개의 제 3 주변 픽셀들에 대해서 대체부(2420)은 왼쪽에서 오른쪽 방향으로 복수 개의 제 3 주변 픽셀들 각각을 왼쪽의 주변 픽셀을 이용하여 대체한다. 전술한 바와 같이, 대체에 이용되는 아래쪽 또는 왼쪽의 주변 픽셀은 이전에 대체되거나 원래 이용가능한 주변 픽셀일 수 있다.
전술한 바와 같이, 대체부(2420)에서 수행되는 상측 주변 픽셀 및 좌측 주변 픽셀의 검색 순서 및 방향은 변경될 수 있다. 즉, 대체부(2420)는 먼저 현재 블록(2200)의 상측 및 우상측 주변 픽셀들을 오른쪽에서 왼쪽 방향으로 검색하고 이용가능한 주변 픽셀이 존재하지 않는 경우, 좌측 및 좌하측 주변 픽셀들을 위쪽에서 아래쪽 방향으로 검색함으로써 제 1 주변 픽셀 P(-1,2nT-1)(2210)을 대체하기 위한 제 2 주변 픽셀을 검색할 수 있다.
도 23은 본 발명의 또 다른 실시예에 따라서 이용가능하지 않은 주변 픽셀을 대체하는 과정을 설명하기 위한 도면이다.
도 23을 참조하면, 본 발명의 또 다른 실시예에 있어서 주변 픽셀들 중 최초로 이용가능성 여부가 판단되는 제 1 주변 픽셀은 현재 블록(2300)의 최우상측에 위치한 주변 픽셀 P(2nT-1, -1)(2310)이라고 가정한다. 즉, 이용가능성 판단부(2410)는 주변 픽셀 P(2nT-1, -1)(2310)의 이용가능성 여부를 먼저 판단한다. 대체부(2420)는 제 1 주변 픽셀 P(2nT-1, -1)(2310)이 이용가능하지 않은 것으로 판단된 경우, P(2nT-1, -1)(2310)을 기준으로 미리 정해진 방향에 따라서 순차적으로 주변 픽셀들 중 이용가능한 주변 픽셀을 검색하고, 최초로 검색된 이용가능한 제 2 주변 픽셀을 이용하여 제 1 주변 픽셀 P(2nT-1, -1)(2310)을 대체한다. 예를 들어, 대체부(2420)는 제 1 주변 픽셀 P(2nT-1, -1)(2310)을 기준으로 오른쪽에서 왼쪽 방향의 제 1 검색 방향에 따라서 현재 블록(2300)의 상측 및 우상측 주변 픽셀들을 검색하고, 현재 블록(2300)의 상측 및 우상측 주변 픽셀들 중 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우, 위쪽에서 아래쪽 방향으로 현재 블록(2300)의 좌측 및 좌하측 주변 픽셀들을 검색하여 이용가능한 제 2 주변 픽셀을 검색한다. 대체부(2420)는 이러한 검색 방향 및 순서에 따라서 최초로 검색된 이용가능한 제 2 주변 픽셀을 이용하여 제 1 주변 픽셀 P(2nT-1, -1)(2310)을 대체한다. 예를 들어, 검색 순서에 따라서 상측의 주변 픽셀들 중 P(nT+1, -1)(2320)이 이용가능한 최초 검색된 제 2 주변 픽셀이라고 하면, 대체부(2420)는 제 1 주변 픽셀 P(2nT-1, -1)(2310)의 픽셀값을 P(nT+1, -1)(2320)의 픽셀값으로 대체한다.
또한, 대체부(2420)는 제 1 주변 픽셀 P(2nT-1, -1)(2310)을 제외한 나머지 이용가능하지 않은 제 3 주변 픽셀들을 미리 정해진 검색 방향에 기초하여 이전에 처리되어 대체되거나 원래 이용가능한 주변 픽셀로 대체한다. 예를 들어, 대체부(2420)는 제 1 주변 픽셀 P(2nT-1, -1)(2310)을 이용가능한 주변 픽셀 P(nT+1, -1)(2320)로 대체한 다음, 이용가능하지 않은 다음 주변 픽셀 P(2nT-2, -1)의 값은 제 1 주변 픽셀 P(2nT-1, -1)(2310)으로 대체한다.
만약, 제 1 주변 픽셀 P(2nT-1, -1)(2310)가 원래 이용가능한 경우에는, 제 1 주변 픽셀 P(2nT-1, -1)(2310)의 대체 과정은 스킵되므로, 대체부(2420)은 원래의 제 1 주변 픽셀 P(2nT-1, -1)(2310)의 픽셀값을 이용하여 주변 픽셀 P(2nT-2, -1)의 값을 대체한다
이와 같은 대체 과정은 이용가능하지 않은 모든 제 3 주변 픽셀들에 대해서 반복된다. 도 23에서, 좌측 및 상측에 위치한 주변 픽셀들 중 이용가능한 주변 픽셀인 P(nT+1, -1)(2320) 및 P(-1, nT-1)(2330)은 대체되지 않고 원래의 픽셀값이 유지된다. 이와 같이, 대체부(2420)는 최우상측의 제 1 주변 픽셀 P(2nT-1, -1)(2310)을 기준으로 오른쪽에서 왼쪽 방향, 위쪽에서 아래쪽 방향으로 현재 블록(2300)의 상측 및 좌측의 주변 픽셀들을 검색하고, 이용가능하지 않은 제 3 주변 픽셀을 바로 오른쪽의 주변 픽셀 또는 위쪽의 주변 픽셀로 순차적으로 대체한다. 즉, 대체부(2420)는 제 1 주변 픽셀 P(2nT-1, -1)(2310) 및 원래 이용가능한 주변 픽셀을 제외하고, 상측 및 우상측에 위치한 이용가능하지 않은 제 3 주변 픽셀을 바로 왼쪽의 주변 픽셀로 대체하고, 좌측 및 좌하측에 위치한 이용가능하지 않은 제 3 주변 픽셀을 바로 위쪽의 주변 픽셀로 순차적으로 대체한다.
전술한 바와 같이, 대체부(2420)에서 수행되는 상측 주변 픽셀 및 좌측 주변 픽셀의 검색 순서 및 방향은 변경될 수 있다. 즉, 대체부(2420)는 먼저 현재 블록(2300)의 좌측 및 좌하측 주변 픽셀들을 아래쪽에서 위쪽 방향으로 검색하고 이용가능한 주변 픽셀이 존재하지 않는 경우, 상측 및 우상측 주변 픽셀들을 왼쪽에서 오른쪽 방향으로 검색함으로써 제 1 주변 픽셀 P(2nT-1, -1)(2310)을 대체하기 위한 제 2 주변 픽셀을 검색할 수 있다.
한편, 주변 픽셀들 중 이용가능하지 않은 주변 픽셀들을 대체하는 과정이 완료되면, 다음으로 주변 픽셀들에 대한 필터링 과정이 수행될 수 있다. 필터링된 주변 픽셀을 이용할 것인지 여부는 현재 블록의 크기에 기초하여 결정될 수 있다. 예를 들어, 필터링된 주변 픽셀은 현재 블록의 크기가 16x16 이상인 경우에만 이용될 수 있다.
도 25a는 현재 블록 주변의 필터링되는 주변 픽셀을 나타낸 도면이다.
도 25a를 참조하면, 현재 블록(2500)의 상측의 X개의 주변 픽셀(2510) 및 좌측의 Y개의 주변 픽셀(2520)에 대하여 적어도 1회 이상의 필터링이 수행되고, 필터링된 주변 픽셀이 현재 블록(2500)의 인트라 예측에 이용될 수 있다. 여기서, 현재 블록(2500)의 크기를 nTxnT 라고 하면, X=2nT, Y=2nT인 것이 바람직하다.
nTxnT 크기의 현재 블록(2500)의 상측과 좌측에 인접한 X+Y개의 원 주변 픽셀들을 ContextOrg[n](n은 0부터 X+Y-1까지의 정수)이며, 좌측의 주변 픽셀들 중 제일 하단의 주변 픽셀이 n=0인 경우, 즉 ContextOrg[0]이며 상측의 주변 픽셀들 중 제일 우측의 주변 픽셀이 n=X+Y-1, 즉 ContextOrg[X+Y-1]라고 가정한다.
도 25b는 현재 블록의 주변 픽셀의 필터링 과정을 설명하기 위한 참조도이다.
도 25b를 참조하면, 현재 블록의 상측과 좌측에 인접한 주변 픽셀들을 ContextOrg[n](n은 0부터 4nT-1까지의 정수)라고 하면, 주변 픽셀들 사이의 가중 평균값을 통해 주변 픽셀들이 필터링될 수 있다. 제 1회 필터링된 주변 픽셀을 ContextFiltered1[n]라고 하면, 다음의 수학식; ContextFiltered1[n]=(ContextOrg[n-1]+2*ContextOrg[n]+ContextOrg[n+1])/4 과 같이 주변 픽셀들(ContextOrg[n])에 3-탭 필터를 적용하여 필터링된 주변 픽셀이 획득될 수 있다. 유사하게 제 1회 필터링된 주변 픽셀들(ContextFiltered1[n]) 사이의 가중 평균값을 다시 계산하여 제 2회 필터링된 주변 픽셀(ContextFiltered2[n])이 생성될 수도 있다. 예를 들어, 다음의 수학식; ContextFiltered2[n]=(ContextFiltered1[n-1]+2*ContextFiltered1[n]+ContextFiltered1[n+1])/4 과 같이 필터링된 주변 픽셀들(ContextFiltered1[n])에 3-탭 필터를 적용하여 2회 필터링된 주변 픽셀이 생성될 수도 있다. 필터링에 이용되는 필터 및 필터링 횟수는 변경될 수 있다.
도 26은 본 발명의 일 실시예에 따른 비디오의 인트라 예측 방법을 나타낸 플로우 차트이다.
단계 2610에서, 이용가능성 판단부(2410)는 비디오를 구성하는 픽처를 계층적 구조로 분할한 블록들 중 현재 블록의 인트라 예측에 이용되는 소정 개수의 주변 픽셀들의 이용가능성을 판단한다. 전술한 바와 같이, 이용가능성 판단부(2410)는 현재 블록의 소정 개수의 주변 픽셀들 중 인터 예측된 주변 블록 또는 현재 블록이 속한 슬라이스와 다른 슬라이스에 속한 주변 블록에 포함된 주변 픽셀이 존재하는 경우 해당 주변 픽셀을 이용가능하지 않은 주변 픽셀로 판단한다.
단계 2620에서, 대체부(2420)은 소정 개수의 주변 픽셀들 중 이용가능하지 않은 제 1 주변 픽셀이 존재하는 경우, 제 1 주변 픽셀을 기준으로 미리 정해진 방향으로 소정 개수의 주변 픽셀들을 검색하여 이용가능한 제 2 주변 픽셀을 검색한다. 단계 2630에서, 대체부(2420)은 제 1 주변 픽셀의 픽셀값을 검색된 제 2 주변 픽셀의 픽셀값으로 대체한다. 만약, 소정 위치의 제 1 주변 픽셀이 이용가능한 경우라면, 원래의 제 1 주변 픽셀이 현재 블록의 인트라 예측을 위한 참조 픽셀로 이용되며 대체 과정은 스킵된다. 이와 같이, 제 1 주변 픽셀이 이용가능하지 않아서 제 2 주변 픽셀로 대체되거나 원래의 제 1 주변 픽셀이 이용가능하여 대체 과정이 스킵된 경우, 주변 픽셀들 중 이용가능하지 않은 제 3 주변 픽셀에 대한 대체 과정이 수행된다.
전술한 바와 같이, 본 발명의 일 실시예에 따른 대체부(2420)은 현재 블록의 최좌상측 코너에 위치한 제 1 주변 픽셀의 이용가능성 여부를 판단하고, 제 1 주변 픽셀이 이용가능하지 않은 경우, 상측 및 우상측 주변 픽셀을 제 1 주변 픽셀을 기준으로 왼쪽에서 오른쪽 방향으로 검색하여 이용가능한 제 2 주변 픽셀을 검색하며, 상측 및 우상측 주변 픽셀들 중 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우에는, 좌측 및 좌하측 주변 픽셀들을 제 1 주변 픽셀을 기준으로 위쪽에서 아래쪽 방향으로 검색하여 이용가능한 제 2 주변 픽셀을 검색한다. 본 발명의 일 실시예에 따른 대체부(2420)는 이러한 검색 방향 및 순서에 따라서 최초 검색된 이용가능한 주변 픽셀을 제 2 주변 픽셀로 결정한다. 또한, 대체부(2420)은 제 1 주변 픽셀의 픽셀값을 제 2 주변 픽셀의 픽셀값으로 대체한다. 또한, 대체부(2420)는 제 1 주변 픽셀 및 원래 이용가능한 주변 픽셀을 제외하고, 좌측 및 좌하측에 위치한 이용가능하지 않은 제 3 주변 픽셀을 바로 위쪽의 주변 픽셀로 대체하고, 상측 및 우상측에 위치한 이용가능하지 않은 제 3 주변 픽셀을 바로 왼쪽의 주변 픽셀로 대체한다. 즉, 대체부(2420)은 소정 위치의 제 1 주변 픽셀을 제외하고, 다른 위치의 이용가능하지 않은 제 3 주변 픽셀에 대해서는 소정 방향으로 바로 인접한 주변 픽셀을 이용한 대체 과정을 수행한다.
본 발명의 다른 실시예에 따른 대체부(2420)은 현재 블록의 최좌하측에 위치한 제 1 주변 픽셀의 이용가능성 여부를 판단하고, 제 1 주변 픽셀이 이용가능하지 않은 경우, 제 1 주변 픽셀을 기준으로 좌측 및 좌하측 주변 픽셀을 아래쪽에서 위쪽 방향으로 검색하여 최초 검색된 이용가능한 주변 픽셀을 제 2 주변 픽셀로 결정한다. 좌측 및 좌하측 주변 픽셀들 중 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우, 대체부(2420)은 왼쪽에서 오른쪽 방향으로 상측 및 우상측 주변 픽셀들을 검색하여 최초 검색된 이용가능한 주변 픽셀을 제 2 주변 픽셀로 결정한다. 또한, 대체부(2420)은 제 1 주변 픽셀의 픽셀값을 제 2 주변 픽셀의 픽셀값으로 대체한다. 또한, 대체부(2420)는 제 1 주변 픽셀 및 원래 이용가능한 주변 픽셀을 제외하고, 좌측 및 좌하측에 위치한 이용가능하지 않은 제 3 주변 픽셀을 바로 아래의 주변 픽셀로 순차적으로 대체하고, 상측 및 우상측에 위치한 이용가능하지 않은 제 3 주변 픽셀을 바로 왼쪽의 주변 픽셀로 순차적으로 대체한다. 즉, 대체부(2420)은 소정 위치의 제 1 주변 픽셀을 제외하고, 다른 위치의 이용가능하지 않은 제 3 주변 픽셀에 대해서는 소정 방향으로 바로 인접한 주변 픽셀을 이용한 대체 과정을 수행한다.
본 발명의 또 다른 실시예에 따른 대체부(2420)은 현재 블록의 최우상측에 위치한 제 1 주변 픽셀의 이용가능성 여부를 판단하고, 제 1 주변 픽셀이 이용가능하지 않은 경우, 제 1 주변 픽셀을 기준으로 오른쪽에서 왼쪽 방향으로 상측 및 우상측 주변 픽셀을 검색하여 최초 검색된 이용가능한 주변 픽셀을 제 2 주변 픽셀로 결정한다. 상측 및 우상측 주변 픽셀들 중 이용가능한 제 2 주변 픽셀이 존재하지 않는 경우, 대체부(2420)은 좌측 및 좌하측 주변 픽셀들을 위쪽에서 아래쪽 방향으로 검색하여 최초 검색된 이용가능한 주변 픽셀을 제 2 주변 픽셀로 결정한다. 또한, 대체부(2420)은 제 1 주변 픽셀의 픽셀값을 제 2 주변 픽셀의 픽셀값으로 대체한다. 또한, 대체부(2420)는 제 1 주변 픽셀 및 원래 이용가능한 주변 픽셀을 제외하고, 상측 및 우상측에 위치한 이용가능하지 않은 제 3 주변 픽셀을 바로 오른쪽의 주변 픽셀로 대체하고, 좌측 및 좌하측에 위치한 이용가능하지 않은 제 3 주변 픽셀을 바로 위쪽의 주변 픽셀로 대체한다. 즉, 대체부(2420)은 소정 위치의 제 1 주변 픽셀을 제외하고, 다른 위치의 이용가능하지 않은 제 3 주변 픽셀에 대해서는 소정 방향으로 바로 인접한 주변 픽셀을 이용한 대체 과정을 수행한다.단계 2640에서, 인트라 예측 수행부(2430)은 이용가능성 여부에 따라서 대체된 주변 픽셀 및 원 주변 픽셀을 이용하여 현재 블록에 대한 인트라 예측을 수행한다.
전술한 본 발명에 따르면, 이용가능하지 않은 주변 픽셀을 미리 결정된 검색 방향에 기초하여 이용가능한 주변 픽셀을 검색하여 대체 과정에 이용함으로써, 인트라 예측에 이용되는 참조 픽셀을 결정하는 과정의 복잡도를 감소시킬 수 있다.
도 1 내지 26을 참조하여 전술된 인트라 예측 방법을 구현하기 위한 프로그램이 컴퓨터로 판독 가능한 저장매체에 저장함에 따라, 독립적인 컴퓨터 시스템이 상기 저장매체에 저장된 실시예에 따른 동작들을 용이하게 구현할 수 있다.
일 실시예에 따른 프로그램이 저장되는 컴퓨터로 판독 가능한 저장매체가 디스크(26000)인 실시예를 이하 상술한다.
도 27a은 일 실시예에 따른 프로그램이 저장된 디스크(26000)의 물리적 구조를 예시한다. 저장매체로서 전술된 디스크(26000)는, 하드드라이브, 시디롬(CD-ROM) 디스크, 블루레이(Blu-ray) 디스크, DVD 디스크일 수 있다. 디스크(26000)는 다수의 동심원의 트랙(tr)들로 구성되고, 트랙들은 둘레 방향에 따라 소정 개수의 섹터(Se)들로 분할된다. 상기 전술된 일 실시예에 따른 프로그램을 저장하는 디스크(26000) 중 특정 영역에, 전술된 인트라 예측 방법을 구현하기 위한 프로그램이 할당되어 저장될 수 있다.
전술된 인트라 예측 방법을 구현하기 위한 프로그램을 저장하는 저장매체를 이용하여 달성된 컴퓨터 시스템이 도 27b를 참조하여 후술된다.
도 27b는 디스크(26000)를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브(26300)를 도시한다. 컴퓨터 시스템(26500)은 디스크드라이브(26300)를 이용하여 본 발명의 인트라 예측 방법을 구현하기 위한 프로그램을 디스크(26000)에 저장할 수 있다. 디스크(26000)에 저장된 프로그램을 컴퓨터 시스템(26500)상에서 실행하기 위해, 디스크 드라이브(26300)에 의해 디스크(26000)로부터 프로그램이 판독되고, 프로그램이 컴퓨터 시스템(26500)에게로 전송될 수 있다.
도 27a 및 27b에서 예시된 디스크(26000) 뿐만 아니라, 메모리 카드, 롬 카세트, SSD(Solid State Drive)에도 본 발명의 인트라 예측 방법을 구현하기 위한 프로그램이 저장될 수 있다.
전술된 실시예에 따른 인트라 예측 방법이 적용된 시스템이 후술된다.
도 28은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)(11000)의 전체적 구조를 도시한다. 통신시스템의 서비스 영역은 소정 크기의 셀들로 분할되고, 각 셀에 베이스 스테이션이 되는 무선 기지국(11700, 11800, 11900, 12000)이 설치된다.
컨텐트 공급 시스템(11000)은 다수의 독립 디바이스들을 포함한다. 예를 들어, 컴퓨터(12100), PDA(Personal Digital Assistant)(12200), 카메라(12300) 및 휴대폰(12500)과 같은 독립디바이스들이, 인터넷 서비스 공급자(11200), 통신망(11400), 및 무선 기지국(11700, 11800, 11900, 12000)을 거쳐 인터넷(11100)에 연결된다.
그러나, 컨텐트 공급 시스템(11000)은 도 28에 도시된 구조에만 한정되는 것이 아니며, 디바이스들이 선택적으로 연결될 수 있다. 독립 디바이스들은 무선 기지국(11700, 11800, 11900, 12000)을 거치지 않고 통신망(11400)에 직접 연결될 수도 있다.
비디오 카메라(12300)는 디지털 비디오 카메라와 같이 비디오 영상을 촬영할 수 있는 촬상 디바이스이다. 휴대폰(12500)은 PDC(Personal Digital Communications), CDMA(code division multiple access), W-CDMA(wideband code division multiple access), GSM(Global System for Mobile Communications), 및 PHS(Personal Handyphone System)방식과 같은 다양한 프로토콜들 중 적어도 하나의 통신방식을 채택할 수 있다.
비디오 카메라(12300)는 무선기지국(11900) 및 통신망(11400)을 거쳐 스트리밍 서버(11300)에 연결될 수 있다. 스트리밍 서버(11300)는 사용자가 비디오 카메라(12300)를 사용하여 전송한 컨텐트를 실시간 방송으로 스트리밍 전송할 수 있다. 비디오 카메라(12300)로부터 수신된 컨텐트는 비디오 카메라(12300) 또는 스트리밍 서버(11300)에 의해 부호화될 수 있다. 비디오 카메라(12300)로 촬영된 비디오 데이터는 컴퓨터(12100)을 거쳐 스트리밍 서버(11300)로 전송될 수도 있다.
카메라(12600)로 촬영된 비디오 데이터도 컴퓨터(12100)를 거쳐 스트리밍 서버(11300)로 전송될 수도 있다. 카메라(12600)는 디지털 카메라와 같이 정지영상과 비디오 영상을 모두 촬영할 수 있는 촬상 장치이다. 카메라(12600)로부터 수신된 비디오 데이터는 카메라(12600) 또는 컴퓨터(12100)에 의해 부호화될 수 있다. 비디오 부호화 및 복호화를 위한 소프트웨어는 컴퓨터(12100)가 억세스할 수 있는 시디롬 디스크, 플로피디스크, 하드디스크 드라이브, SSD , 메모리 카드와 같은 컴퓨터로 판독 가능한 기록 매체에 저장될 수 있다.
또한 휴대폰(12500)에 탑재된 카메라에 의해 비디오가 촬영된 경우, 비디오 데이터가 휴대폰(12500)으로부터 수신될 수 있다.
비디오 데이터는, 비디오 카메라(12300), 휴대폰(12500) 또는 카메라(12600)에 탑재된 LSI(Large scale integrated circuit) 시스템에 의해 부호화될 수 있다.
일 실시예에 따른 컨텐트 공급 시스템(11000)에서, 예를 들어 콘서트의 현장녹화 컨텐트와 같이, 사용자가 비디오 카메라(12300), 카메라(12600), 휴대폰(12500) 또는 다른 촬상 디바이스를 이용하여 녹화된 컨텐트가 부호화되고, 스트리밍 서버(11300)로 전송된다. 스트리밍 서버(11300)는 컨텐트 데이터를 요청한 다른 클라이언트들에게 컨텐트 데이터를 스트리밍 전송할 수 있다.
클라이언트들은 부호화된 컨텐트 데이터를 복호화할 수 있는 디바이스이며, 예를 들어 컴퓨터(12100), PDA(12200), 비디오 카메라(12300) 또는 휴대폰(12500)일 수 있다. 따라서, 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 재생할 수 있도록 한다. 또한 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 실시간으로 복호화하고 재생할 수 있도록 하여, 개인방송(personal broadcasting)이 가능하게 한다.
컨텐트 공급 시스템(11000)에 포함된 독립 디바이스들의 부호화 동작 및 복호화 동작에 본 발명의 인트라 예측 방법이 적용될 수 있다.
도 29 및 27을 참조하여 컨텐트 공급 시스템(11000) 중 휴대폰(12500)의 일 실시예가 상세히 후술된다.
도 29은, 일 실시예에 따른 본 발명의 인트라 예측 방법이 적용되는 휴대폰(12500)의 외부 구조를 도시한다. 휴대폰(12500)은 기능이 제한되어 있지 않고 응용 프로그램을 통해 상당 부분의 기능을 변경하거나 확장할 수 있는 스마트폰일 수 있다.
휴대폰(12500)은, 무선기지국(12000)과 RF신호를 교환하기 위한 내장 안테나(12510)을 포함하고, 카메라(12530)에 의해 촬영된 영상들 또는 안테나(12510)에 의해 수신되어 복호화된 영상들을 디스플레이하기 위한 LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes)화면 같은 디스플레이화면(12520)를 포함한다. 스마트폰(12510)은 제어버튼, 터치패널을 포함하는 동작 패널(12540)를 포함한다. 디스플레이화면(12520)이 터치스크린인 경우, 동작 패널(12540)은 디스플레이화면(12520)의 터치감지패널을 더 포함한다. 스마트폰(12510)은 음성, 음향을 출력하기 위한 스피커(12580) 또는 다른 형태의 음향출력부와, 음성, 음향이 입력되는 마이크로폰(12550) 또는 다른 형태의 음향입력부를 포함한다. 스마트폰(12510)은 비디오 및 정지영상을 촬영하기 위한 CCD 카메라와 같은 카메라(12530)를 더 포함한다. 또한, 스마트폰(12510)은 카메라(12530)에 의해 촬영되거나 이메일(E-mail)로 수신되거나 다른 형태로 획득된 비디오나 정지영상들과 같이, 부호화되거나 복호화된 데이터를 저장하기 위한 저장매체(12570); 그리고 저장매체(12570)를 휴대폰(12500)에 장착하기 위한 슬롯(12560)을 포함할 수 있다. 저장매체(12570)는 SD카드 또는 플라스틱 케이스에 내장된 EEPROM(electrically erasable and programmable read only memory)와 같은 다른 형태의 플래쉬 메모리일 수 있다.
도 30은 휴대폰(12500)의 내부 구조를 도시한다. 디스플레이화면(12520) 및 동작 패널(12540)로 구성된 휴대폰(12500)의 각 파트를 조직적으로 제어하기 위해, 전력공급회로(12700), 동작입력제어부(12640), 영상부호화부(12720), 카메라 인터페이스(12630), LCD제어부(12620), 영상복호화부(12690), 멀티플렉서/디멀티플렉서(multiplexer/demultiplexer)(12680), 기록/판독부(12670), 변조/복조(modulation/demodulation)부(12660) 및 음향처리부(12650)가, 동기화 버스(12730)를 통해 중앙제어부(12710)에 연결된다.
사용자가 전원 버튼을 동작하여 '전원꺼짐' 상태에서 '전원켜짐' 상태로 설정하면, 전력공급회로(12700)는 배터리팩으로부터 휴대폰(12500)의 각 파트에 전력을 공급함으로써, 휴대폰(12500)가 동작 모드로 셋팅될 수 있다.
중앙제어부(12710)는 CPU, ROM(Read Only Memory) 및 RAM(Random Access Memory)을 포함한다.
휴대폰(12500)이 외부로 통신데이터를 송신하는 과정에서는, 중앙제어부(12710)의 제어에 따라 휴대폰(12500)에서 디지털 신호가 생성된다, 예를 들어, 음향처리부(12650)에서는 디지털 음향신호가 생성되고, 영상 부호화부(12720)에서는 디지털 영상신호가 생성되며, 동작 패널(12540) 및 동작 입력제어부(12640)를 통해 메시지의 텍스트 데이터가 생성될 수 있다. 중앙제어부(12710)의 제어에 따라 디지털 신호가 변조/복조부(12660)에게 전달되면, 변조/복조부(12660)는 디지털 신호의 주파수대역을 변조하고, 통신회로(12610)는 대역변조된 디지털 음향신호에 대해 D/A변환(Digital-Analog conversion) 및 주파수변환(frequency conversion) 처리를 수행한다. 통신회로(12610)로부터 출력된 송신신호는 안테나(12510)를 통해 음성통신기지국 또는 무선기지국(12000)으로 송출될 수 있다.
예를 들어, 휴대폰(12500)이 통화 모드일 때 마이크로폰(12550)에 의해 획득된 음향신호는, 중앙제어부(12710)의 제어에 따라 음향처리부(12650)에서 디지털 음향신호로 변환된다. 생성된 디지털 음향신호는 변조/복조부(12660) 및 통신회로(12610)를 거쳐 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
데이터통신 모드에서 이메일과 같은 텍스트 메시지가 전송되는 경우, 동작 패널(12540)을 이용하여 메시지의 텍스트 데이터가 입력되고, 텍스트 데이터가 동작 입력제어부(12640)를 통해 중앙제어부(12610)로 전송된다. 중앙제어부(12610)의 제어에 따라, 텍스트 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 무선기지국(12000)에게로 송출된다.
데이터통신 모드에서 영상 데이터를 전송하기 위해, 카메라(12530)에 의해 촬영된 영상 데이터가 카메라 인터페이스(12630)를 통해 영상부호화부(12720)로 제공된다. 카메라(12530)에 의해 촬영된 영상 데이터는 카메라 인터페이스(12630) 및 LCD제어부(12620)를 통해 디스플레이화면(12520)에 곧바로 디스플레이될 수 있다.
영상부호화부(12720)의 구조는, 전술된 본 발명의 비디오 부호화 장치의 구조와 상응할 수 있다. 영상부호화부(12720)는, 카메라(12530)로부터 제공된 영상 데이터를, 전술된 비디오 부호화 장치(100) 또는 영상 부호화부(400)의 비디오 부호화 방식에 따라 부호화하여, 압축 부호화된 영상 데이터로 변환하고, 부호화된 영상 데이터를 다중화/역다중화부(12680)로 출력할 수 있다. 카메라(12530)의 녹화 중에 휴대폰(12500)의 마이크로폰(12550)에 의해 획득된 음향신호도 음향처리부(12650)를 거쳐 디지털 음향데이터로 변환되고, 디지털 음향데이터는 다중화/역다중화부(12680)로 전달될 수 있다.
다중화/역다중화부(12680)는 음향처리부(12650)로부터 제공된 음향데이터와 함께 영상부호화부(12720)로부터 제공된 부호화된 영상 데이터를 다중화한다. 다중화된 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
휴대폰(12500)이 외부로부터 통신데이터를 수신하는 과정에서는, 안테나(12510)를 통해 수신된 신호를 주파수복원(frequency recovery) 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 신호를 변환한다. 변조/복조부(12660)는 디지털 신호의 주파수대역을 복조한다. 대역복조된 디지털 신호는 종류에 따라 비디오 복호화부(12690), 음향처리부(12650) 또는 LCD제어부(12620)로 전달된다.
휴대폰(12500)은 통화 모드일 때, 안테나(12510)를 통해 수신된 신호를 증폭하고 주파수변환 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 음향 신호를 생성한다. 수신된 디지털 음향 신호는, 중앙제어부(12710)의 제어에 따라 변조/복조부(12660) 및 음향처리부(12650)를 거쳐 아날로그 음향 신호로 변환되고, 아날로그 음향 신호가 스피커(12580)를 통해 출력된다.
데이터통신 모드에서 인터넷의 웹사이트로부터 억세스된 비디오 파일의 데이터가 수신되는 경우, 안테나(12510)를 통해 무선기지국(12000)으로부터 수신된 신호는 변조/복조부(12660)의 처리결과 다중화된 데이터를 출력하고, 다중화된 데이터는 다중화/역다중화부(12680)로 전달된다.
안테나(12510)를 통해 수신한 다중화된 데이터를 복호화하기 위해, 다중화/역다중화부(12680)는 다중화된 데이터를 역다중화하여 부호화된 비디오 데이터스트림과 부호화된 오디오 데이터스트림을 분리한다. 동기화 버스(12730)에 의해, 부호화된 비디오 데이터스트림은 비디오 복호화부(12690)로 제공되고, 부호화된 오디오 데이터스트림은 음향처리부(12650)로 제공된다.
영상복호화부(12690)의 구조는, 전술된 본 발명의 비디오 복호화 장치의 구조와 상응할 수 있다. 영상복호화부(12690)는 전술된 비디오 복호화 장치(200) 또는 영상 복호화부(500)의 비디오 복호화 방식을 이용하여, 부호화된 비디오 데이터를 복호화하여 복원된 비디오 데이터를 생성하고, 복원된 비디오 데이터를 LCD제어부(12620)를 거쳐 디스플레이화면(12520)에게 복원된 비디오 데이터를 제공할 수 있다.
이에 따라 인터넷의 웹사이트로부터 억세스된 비디오 파일의 비디오 데이터가 디스플레이화면(12520)에서 디스플레이될 수 있다. 이와 동시에 음향처리부(12650)도 오디오 데이터를 아날로그 음향 신호로 변환하고, 아날로그 음향 신호를 스피커(12580)로 제공할 수 있다. 이에 따라, 인터넷의 웹사이트로부터 억세스된 비디오 파일에 포함된 오디오 데이터도 스피커(12580)에서 재생될 수 있다.
휴대폰(12500) 또는 다른 형태의 통신단말기는 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함하는 송수신 단말기이거나, 전술된 본 발명의 비디오 부호화 장치만을 포함하는 송신단말기이거나, 본 발명의 비디오 복호화 장치만을 포함하는 수신단말기일 수 있다.
본 발명의 통신시스템은 도 28를 참조하여 전술한 구조에 한정되지 않는다. 예를 들어, 도 31은 본 발명에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다. 도 31의 일 실시예에 따른 디지털 방송 시스템은, 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 이용하여, 위성 또는 지상파 네트워크를 통해 전송되는 디지털 방송을 수신할 수 있다.
구체적으로 보면, 방송국(12890)은 전파를 통해 비디오 데이터스트림을 통신위성 또는 방송위성(12900)으로 전송한다. 방송위성(12900)은 방송신호를 전송하고, 방송신호는 가정에 있는 안테나(12860)에 의해 위성방송수신기로 수신된다. 각 가정에서, 부호화된 비디오스트림은 TV수신기(12810), 셋탑박스(set-top box)(12870) 또는 다른 디바이스에 의해 복호화되어 재생될 수 있다.
재생장치(12830)에서 본 발명의 비디오 복호화 장치가 구현됨으로써, 재생장치(12830)가 디스크 및 메모리 카드와 같은 저장매체(12820)에 기록된 부호화된 비디오스트림을 판독하여 복호화할 수 있다. 이에 따라 복원된 비디오 신호는 예를 들어 모니터(12840)에서 재생될 수 있다.
위성/지상파 방송을 위한 안테나(12860) 또는 케이블TV 수신을 위한 케이블 안테나(12850)에 연결된 셋탑박스(12870)에도, 본 발명의 비디오 복호화 장치가 탑재될 수 있다. 셋탑박스(12870)의 출력데이터도 TV모니터(12880)에서 재생될 수 있다.
다른 예로, 셋탑박스(12870) 대신에 TV수신기(12810) 자체에 본 발명의 비디오 복호화 장치가 탑재될 수도 있다.
적절한 안테나(12910)를 구비한 자동차(12920)가 위성(12800) 또는 무선기지국(11700)으로부터 송출되는 신호를 수신할 수도 있다. 자동차(12920)에 탑재된 자동차 네비게이션 시스템(12930)의 디스플레이 화면에 복호화된 비디오가 재생될 수 있다.
비디오 신호는, 본 발명의 비디오 부호화 장치에 의해 부호화되어 저장매체에 기록되어 저장될 수 있다. 구체적으로 보면, DVD 레코더에 의해 영상 신호가 DVD디스크(12960)에 저장되거나, 하드디스크 레코더(12950)에 의해 하드디스크에 영상 신호가 저장될 수 있다. 다른 예로, 비디오 신호는 SD카드(12970)에 저장될 수도 있다. 하드디스크 레코더(12950)가 일 실시예에 따른 본 발명의 비디오 복호화 장치를 구비하면, DVD디스크(12960), SD카드(12970) 또는 다른 형태의 저장매체에 기록된 비디오 신호가 모니터(12880)에서 재생될 수 있다.
자동차 네비게이션 시스템(12930)은 도 30의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다. 예를 들어, 컴퓨터(12100) 및 TV수신기(12810)도, 도 30의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다.
도 32은 본 발명의 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
본 발명의 클라우드 컴퓨팅 시스템은 클라우드 컴퓨팅 서버(14100), 사용자 DB(14100), 컴퓨팅 자원(14200) 및 사용자 단말기를 포함하여 이루어질 수 있다.
클라우드 컴퓨팅 시스템은, 사용자 단말기의 요청에 따라 인터넷과 같은 정보 통신망을 통해 컴퓨팅 자원의 온 디맨드 아웃소싱 서비스를 제공한다. 클라우드 컴퓨팅 환경에서, 서비스 제공자는 서로 다른 물리적인 위치에 존재하는 데이터 센터의 컴퓨팅 자원를 가상화 기술로 통합하여 사용자들에게 필요로 하는 서비스를 제공한다. 서비스 사용자는 어플리케이션(Application), 스토리지(Storage), 운영체제(OS), 보안(Security) 등의 컴퓨팅 자원을 각 사용자 소유의 단말에 설치하여 사용하는 것이 아니라, 가상화 기술을 통해 생성된 가상 공간상의 서비스를 원하는 시점에 원하는 만큼 골라서 사용할 수 있다.
특정 서비스 사용자의 사용자 단말기는 인터넷 및 이동통신망을 포함하는 정보통신망을 통해 클라우드 컴퓨팅 서버(14100)에 접속한다. 사용자 단말기들은 클라우드 컴퓨팅 서버(14100)로부터 클라우드 컴퓨팅 서비스 특히, 동영상 재생 서비스를 제공받을 수 있다. 사용자 단말기는 데스트탑 PC(14300), 스마트TV(14400), 스마트폰(14500), 노트북(14600), PMP(Portable Multimedia Player)(14700), 태블릿 PC(14800) 등, 인터넷 접속이 가능한 모든 전자 기기가 될 수 있다.
클라우드 컴퓨팅 서버(14100)는 클라우드 망에 분산되어 있는 다수의 컴퓨팅 자원(14200)을 통합하여 사용자 단말기에게 제공할 수 있다. 다수의 컴퓨팅 자원(14200)은 여러가지 데이터 서비스를 포함하며, 사용자 단말기로부터 업로드된 데이터를 포함할 수 있다. 이런 식으로 클라우드 컴퓨팅 서버(14100)는 여러 곳에 분산되어 있는 동영상 데이터베이스를 가상화 기술로 통합하여 사용자 단말기가 요구하는 서비스를 제공한다.
사용자 DB(14100)에는 클라우드 컴퓨팅 서비스에 가입되어 있는 사용자 정보가 저장된다. 여기서, 사용자 정보는 로그인 정보와, 주소, 이름 등 개인 신용 정보를 포함할 수 있다. 또한, 사용자 정보는 동영상의 인덱스(Index)를 포함할 수 있다. 여기서, 인덱스는 재생을 완료한 동영상 목록과, 재생 중인 동영상 목록과, 재생 중인 동영상의 정지 시점 등을 포함할 수 있다.
사용자 DB(14100)에 저장된 동영상에 대한 정보는, 사용자 디바이스들 간에 공유될 수 있다. 따라서 예를 들어 노트북(14600)으로부터 재생 요청되어 노트북(14600)에게 소정 동영상 서비스를 제공한 경우, 사용자 DB(14100)에 소정 동영상 서비스의 재생 히스토리가 저장된다. 스마트폰(14500)으로부터 동일한 동영상 서비스의 재생 요청이 수신되는 경우, 클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)을 참조하여 소정 동영상 서비스를 찾아서 재생한다. 스마트폰(14500)이 클라우드 컴퓨팅 서버(14100)를 통해 동영상 데이터스트림을 수신하는 경우, 동영상 데이터스트림을 복호화하여 비디오를 재생하는 동작은, 앞서 도 30을 참조하여 전술한 휴대폰(12500)의 동작과 유사하다.
클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)에 저장된 소정 동영상 서비스의 재생 히스토리를 참조할 수도 있다. 예를 들어, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로부터 사용자 DB(14100)에 저장된 동영상에 대한 재생 요청을 수신한다. 동영상이 그 전에 재생 중이었던 것이면, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로의 선택에 따라 처음부터 재생하거나, 이전 정지 시점부터 재생하느냐에 따라 스트리밍 방법이 달라진다. 예를 들어, 사용자 단말기가 처음부터 재생하도록 요청한 경우에는 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 첫 프레임부터 스트리밍 전송한다. 반면, 사용자 단말기가 이전 정지시점부터 이어서 재생하도록 요청한 경우에는, 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 정지시점의 프레임부터 스트리밍 전송한다.
이 때 사용자 단말기는, 전술한 본 발명의 비디오 복호화 장치를 포함할 수 있다. 다른 예로, 사용자 단말기는, 본 발명의 비디오 부호화 장치를 포함할 수 있다. 또한, 사용자 단말기는, 전술한 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함할 수도 있다.
전술된 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법, 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 활용되는 다양한 실시예들이 도 27a 내지 도 32에서 전술되었다. 하지만, 도 1 내지 26을 참조하여 전술된 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 저장매체에 저장되거나 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 디바이스에서 구현되는 다양한 실시예들은, 도 27a 내지 도 32의 실시예들에 한정되지 않는다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (30)

  1. 비디오의 인트라 예측 방법에 있어서,
    상기 비디오를 구성하는 픽처를 계층적 구조로 분할한 블록들 중 현재 블록의 인트라 예측에 이용되는 소정 개수의 주변 픽셀들의 이용가능성을 판단하는 단계;
    상기 소정 개수의 주변 픽셀들 중 소정 위치의 제 1 주변 픽셀이 이용가능하지 않은 경우, 상기 제 1 주변 픽셀을 기준으로 상기 제 1 주변 픽셀보다 상측에 위치하며 상기 현재 블록의 좌측에 인접한 주변 픽셀들을 아래쪽에서 위쪽의 한 쪽 방향으로, 상기 현재 블록의 상측에 인접한 주변 픽셀들을 왼쪽에서 오른쪽의 한 쪽 방향으로 최초로 이용가능한 제 2 주변 픽셀을 검색하는 단계;
    상기 제 1 주변 픽셀의 픽셀값을 상기 검색된 제 2 주변 픽셀의 픽셀값으로 대체하는 단계;
    상기 제 1 주변 픽셀의 상측에 위치한 이용가능하지 않은 픽셀인 제 3 주변 픽셀의 픽셀값을 상기 대체된 제 1 주변 픽셀의 픽셀값 또는 상기 제 2 주변 픽셀의 픽셀값으로 대체하는 단계;
    상기 현재 블록의 상측에 위치한 주변 픽셀들 중 이용가능하지 않은 제 4 주변 픽셀의 픽셀값을 상기 제 4 주변 픽셀의 바로 왼쪽에 인접하며 이용가능한 주변 픽셀의 픽셀값으로 대체하는 단계; 및
    상기 대체된 픽셀값을 갖는 주변 픽셀을 포함하는 상기 소정 개수의 주변 픽셀들을 이용하여 상기 현재 블록에 대한 인트라 예측을 수행하는 단계를 포함하며,
    상기 소정 개수의 주변 픽셀들의 이용가능성을 판단하는 단계는
    인터 예측된 주변 블록 또는 상기 현재 블록이 속한 슬라이스와 다른 슬라이스에 속한 주변 블록에 포함된 주변 픽셀들을 이용가능하지 않은 것으로 판단하는 것을 특징으로 하는 비디오의 인트라 예측 방법.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 비디오의 인트라 예측 장치에 있어서,
    상기 비디오를 구성하는 픽처를 계층적 구조로 분할한 블록들 중 현재 블록의 인트라 예측에 이용되는 소정 개수의 주변 픽셀들의 이용가능성을 판단하는 이용가능성 판단부;
    상기 소정 개수의 주변 픽셀들 중 소정 위치의 제 1 주변 픽셀이 존재하는 경우, 상기 제 1 주변 픽셀을 기준으로 상기 제 1 주변 픽셀보다 상측에 위치하며 상기 현재 블록의 좌측에 인접한 주변 픽셀들을 아래쪽에서 위쪽의 한 쪽 방향으로, 상기 현재 블록의 상측에 인접한 주변 픽셀을 왼쪽에서 오른쪽의 한 쪽 방향으로 최초로 이용가능한 제 2 주변 픽셀을 검색하고, 상기 제 1 주변 픽셀의 픽셀값을 상기 검색된 제 2 주변 픽셀의 픽셀값으로 대체하며, 상기 제 1 주변 픽셀의 상측에 위치한 이용가능하지 않은 픽셀인 제 3 주변 픽셀의 픽셀값을 상기 대체된 제 1 주변 픽셀의 픽셀값 또는 상기 제 2 주변 픽셀의 픽셀값으로 대체하며, 상기 현재 블록의 상측에 위치한 주변 픽셀들 중 이용가능하지 않은 제 4 주변 픽셀의 픽셀값을 상기 제 4 주변 픽셀의 바로 왼쪽에 인접하며 이용가능한 주변 픽셀의 픽셀값으로 대체하는 대체부; 및
    상기 대체된 픽셀값을 갖는 주변 픽셀을 포함하는 상기 소정 개수의 주변 픽셀들을 이용하여 상기 현재 블록에 대한 인트라 예측을 수행하는 인트라 예측 수행부를 포함하며,
    상기 이용가능성 판단부는
    인터 예측된 주변 블록 또는 상기 현재 블록이 속한 슬라이스와 다른 슬라이스에 속한 주변 블록에 포함된 주변 픽셀들을 이용가능하지 않은 것으로 판단하는 것을 특징으로 하는 비디오의 인트라 예측 장치.
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
KR1020120120620A 2011-10-28 2012-10-29 비디오의 인트라 예측 방법 및 장치 KR101743245B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161552692P 2011-10-28 2011-10-28
US61/552,692 2011-10-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020140148752A Division KR101743246B1 (ko) 2011-10-28 2014-10-29 비디오의 인트라 예측 방법 및 장치
KR1020170066394A Division KR101844517B1 (ko) 2011-10-28 2017-05-29 비디오 복호화 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20130047650A KR20130047650A (ko) 2013-05-08
KR101743245B1 true KR101743245B1 (ko) 2017-06-02

Family

ID=48168118

Family Applications (5)

Application Number Title Priority Date Filing Date
KR1020120120620A KR101743245B1 (ko) 2011-10-28 2012-10-29 비디오의 인트라 예측 방법 및 장치
KR1020140148752A KR101743246B1 (ko) 2011-10-28 2014-10-29 비디오의 인트라 예측 방법 및 장치
KR1020170066394A KR101844517B1 (ko) 2011-10-28 2017-05-29 비디오 복호화 방법 및 장치
KR1020180035366A KR101962829B1 (ko) 2011-10-28 2018-03-27 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치, 및 비트스트림을 포함하는 기록매체
KR1020190032544A KR102082303B1 (ko) 2011-10-28 2019-03-21 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치, 및 비트스트림을 포함하는 기록매체

Family Applications After (4)

Application Number Title Priority Date Filing Date
KR1020140148752A KR101743246B1 (ko) 2011-10-28 2014-10-29 비디오의 인트라 예측 방법 및 장치
KR1020170066394A KR101844517B1 (ko) 2011-10-28 2017-05-29 비디오 복호화 방법 및 장치
KR1020180035366A KR101962829B1 (ko) 2011-10-28 2018-03-27 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치, 및 비트스트림을 포함하는 기록매체
KR1020190032544A KR102082303B1 (ko) 2011-10-28 2019-03-21 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치, 및 비트스트림을 포함하는 기록매체

Country Status (19)

Country Link
US (5) US9621918B2 (ko)
EP (5) EP3322183B1 (ko)
JP (3) JP2014531177A (ko)
KR (5) KR101743245B1 (ko)
CN (5) CN107222744B (ko)
AU (1) AU2012329676B2 (ko)
BR (1) BR112014010189B1 (ko)
DK (1) DK3322183T3 (ko)
ES (3) ES2842027T3 (ko)
HU (3) HUE048628T2 (ko)
IN (1) IN2014MN00940A (ko)
MX (2) MX2014005114A (ko)
MY (3) MY170951A (ko)
PH (4) PH12016502376A1 (ko)
PL (3) PL3588949T3 (ko)
RU (4) RU2619267C1 (ko)
TW (3) TWI650000B (ko)
WO (1) WO2013062389A1 (ko)
ZA (1) ZA201403876B (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110113561A (ko) * 2010-04-09 2011-10-17 한국전자통신연구원 적응적인 필터를 이용한 인트라 예측 부호화/복호화 방법 및 그 장치
US10313682B2 (en) * 2013-08-26 2019-06-04 Qualcomm Incorporated Determining regions when performing intra block copying
US10009629B2 (en) 2013-10-11 2018-06-26 Sony Corporation Video coding system with search range and method of operation thereof
US10003818B2 (en) * 2013-10-11 2018-06-19 Sony Corporation Video coding system with intra prediction mechanism and method of operation thereof
WO2015056945A1 (ko) * 2013-10-14 2015-04-23 삼성전자 주식회사 깊이 인트라 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
US10091519B2 (en) 2013-10-14 2018-10-02 Electronics And Telecommunications Research Institute Multilayer-based image encoding/decoding method and apparatus
WO2015056941A1 (ko) * 2013-10-14 2015-04-23 한국전자통신연구원 다계층 기반의 영상 부호화/복호화 방법 및 장치
US10368098B2 (en) 2014-06-20 2019-07-30 Samsung Electronics Co., Ltd. Method and device for transmitting prediction mode of depth image for interlayer video encoding and decoding
KR20180008471A (ko) * 2015-05-12 2018-01-24 삼성전자주식회사 영상의 부호화, 복호화 방법 및 장치
WO2017014412A1 (ko) * 2015-07-20 2017-01-26 엘지전자 주식회사 비디오 코딩 시스템에서 인트라 예측 방법 및 장치
KR20180075660A (ko) * 2015-11-24 2018-07-04 삼성전자주식회사 비디오 복호화 방법 및 그 장치 및 비디오 부호화 방법 및 그 장치
US20200162756A1 (en) * 2017-05-24 2020-05-21 Sony Semiconductor Solutions Corporation Image processing device and method, and program
CN116170590A (zh) * 2017-08-10 2023-05-26 夏普株式会社 图像滤波装置、图像解码装置以及图像编码装置
CN108171663B (zh) * 2017-12-22 2021-05-25 哈尔滨工业大学 基于特征图最近邻替换的卷积神经网络的图像填充系统
CN110650337B (zh) * 2018-06-26 2022-04-01 中兴通讯股份有限公司 一种图像编码方法、解码方法、编码器、解码器及存储介质
US11159789B2 (en) 2018-10-24 2021-10-26 City University Of Hong Kong Generative adversarial network based intra prediction for video coding
WO2020256483A1 (ko) * 2019-06-21 2020-12-24 삼성전자 주식회사 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR102602007B1 (ko) 2020-12-07 2023-11-15 건국대학교 글로컬산학협력단 연료전지 전해질용 폴리(이사틴-페닐렌)계 고분자, 이를 포함하는 연료전지용 고분자 전해질 및 연료전지
WO2023055220A1 (ko) * 2021-10-01 2023-04-06 주식회사 윌러스표준기술연구소 참조 픽쳐를 기초로 인트라 예측 모드를 결정하는 비디오 신호 처리 방법 및 이를 위한 장치

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3539415A1 (de) * 1985-11-07 1987-05-14 Bosch Gmbh Robert Verfahren und schaltungsanordnung zum erkennen und verdecken von fehlern in einem digitalen videosignal
DE10158658A1 (de) 2001-11-30 2003-06-12 Bosch Gmbh Robert Verfahren zur gerichteten Prädiktion eines Bildblockes
JP4724351B2 (ja) * 2002-07-15 2011-07-13 三菱電機株式会社 画像符号化装置、画像符号化方法、画像復号装置、画像復号方法、および通信装置
EP1411714B1 (en) * 2002-10-17 2008-11-05 Noritsu Koki Co., Ltd. Conversion correcting method of color image data and photographic processing apparatus implementing the method
KR100679031B1 (ko) 2004-12-03 2007-02-05 삼성전자주식회사 다 계층 기반의 비디오 인코딩 방법, 디코딩 방법 및 상기방법을 이용한 장치
US20060153295A1 (en) * 2005-01-12 2006-07-13 Nokia Corporation Method and system for inter-layer prediction mode coding in scalable video coding
US9154808B2 (en) * 2005-01-14 2015-10-06 Thomson Licensing Method and apparatus for INTRA prediction for RRU
CN101133650B (zh) 2005-04-01 2010-05-19 松下电器产业株式会社 图像解码装置以及图像解码方法
EP1985124B1 (en) * 2006-02-17 2010-09-01 Thomson Licensing Process for coding images using intra prediction mode
US20070195888A1 (en) * 2006-02-17 2007-08-23 Via Technologies, Inc. Intra-Frame Prediction Processing
KR101311403B1 (ko) * 2006-07-04 2013-09-25 삼성전자주식회사 영상의 부호화 방법 및 장치, 복호화 방법 및 장치
EP2073557B1 (en) * 2006-10-10 2017-03-29 Nippon Telegraph and Telephone Corporation Intra prediction encoding control method and device, its program, and storage medium containing program
EP2087737A2 (en) * 2006-10-24 2009-08-12 Thomson Licensing Picture management for multi-view video coding
US8233537B2 (en) * 2007-03-19 2012-07-31 Texas Instruments Incorporated Efficient implementation of H.264 4 by 4 intra prediction on a VLIW processor
US7953284B2 (en) * 2007-03-29 2011-05-31 James Au Selective information handling for video processing
EP2571272B1 (en) * 2007-04-09 2016-05-18 NTT DoCoMo, Inc. Image coding using template matching
US8782379B2 (en) * 2007-09-27 2014-07-15 Qualcomm Incorporated H.264 video decoder CABAC core optimization techniques
US8467451B2 (en) 2007-11-07 2013-06-18 Industrial Technology Research Institute Methods for selecting a prediction mode
EP2081386A1 (en) * 2008-01-18 2009-07-22 Panasonic Corporation High precision edge prediction for intracoding
KR20090095316A (ko) 2008-03-05 2009-09-09 삼성전자주식회사 영상 인트라 예측 방법 및 장치
US9338475B2 (en) * 2008-04-16 2016-05-10 Intel Corporation Tone mapping for bit-depth scalable video codec
US20090274211A1 (en) 2008-04-30 2009-11-05 Omnivision Technologies, Inc. Apparatus and method for high quality intra mode prediction in a video coder
KR101361005B1 (ko) * 2008-06-24 2014-02-13 에스케이 텔레콤주식회사 인트라 예측 방법 및 장치와 그를 이용한 영상부호화/복호화 방법 및 장치
CN101365136B (zh) * 2008-09-09 2011-01-26 深圳市同洲电子股份有限公司 帧内预测的方法及装置
TWI386068B (zh) 2008-10-22 2013-02-11 Nippon Telegraph & Telephone 解塊處理方法、解塊處理裝置、解塊處理程式及記錄該程式之可由電腦讀取之記錄媒體
KR101601840B1 (ko) * 2009-02-23 2016-03-22 에스케이 텔레콤주식회사 채널 상관 관계를 이용한 영상 부호화/복호화 장치 및 방법과 그를 위한 컴퓨터로 읽을 수 있는 기록매체
CN101854540B (zh) 2009-04-01 2014-07-02 辉达公司 用于应用h.264视频编码标准的帧内预测方法及装置
JP5158003B2 (ja) * 2009-04-14 2013-03-06 ソニー株式会社 画像符号化装置と画像符号化方法およびコンピュータ・プログラム
JP5597968B2 (ja) * 2009-07-01 2014-10-01 ソニー株式会社 画像処理装置および方法、プログラム、並びに記録媒体
KR101510108B1 (ko) * 2009-08-17 2015-04-10 삼성전자주식회사 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
KR101452860B1 (ko) 2009-08-17 2014-10-23 삼성전자주식회사 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR101700358B1 (ko) 2009-12-09 2017-01-26 삼성전자주식회사 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
CN102118613B (zh) * 2009-12-31 2012-11-21 华为技术有限公司 视频解码和编码方法及装置
US9071849B2 (en) * 2010-04-09 2015-06-30 Samsung Electronics Co., Ltd. Method and apparatus for generating video packets, method and apparatus for restoring video
US8837577B2 (en) * 2010-07-15 2014-09-16 Sharp Laboratories Of America, Inc. Method of parallel video coding based upon prediction type
US20120163457A1 (en) 2010-12-28 2012-06-28 Viktor Wahadaniah Moving picture decoding method, moving picture coding method, moving picture decoding apparatus, moving picture coding apparatus, and moving picture coding and decoding apparatus
WO2012115420A2 (ko) * 2011-02-23 2012-08-30 엘지전자 주식회사 필터링을 이용한 화면 내 예측 방법 및 이러한 방법을 사용하는 장치
WO2012134046A2 (ko) 2011-04-01 2012-10-04 주식회사 아이벡스피티홀딩스 동영상의 부호화 방법
US20120314767A1 (en) * 2011-06-13 2012-12-13 Qualcomm Incorporated Border pixel padding for intra prediction in video coding
CN102186086B (zh) * 2011-06-22 2013-06-19 武汉大学 一种基于avs的帧内预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CE4 Subset2: Report of Intra Coding Improvements for Slice Boundary Blocks, Joint collaborative team on viedo coding of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-E283호(2011.03.11.)*
Constrained intra prediction scheme for flexible-sized prediction units in HEVC, Joint collaborative team on viedo coding of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-E203호(2011.03.11.)*

Also Published As

Publication number Publication date
WO2013062389A1 (ko) 2013-05-02
PH12016502376B1 (en) 2017-01-23
MX354500B (es) 2018-03-08
CN107222744B (zh) 2020-10-27
AU2012329676B2 (en) 2015-02-12
EP2773116A4 (en) 2015-08-12
JP7103961B2 (ja) 2022-07-20
EP2773116A1 (en) 2014-09-03
US20180139454A1 (en) 2018-05-17
CN107404649A (zh) 2017-11-28
ES2961199T3 (es) 2024-03-08
CN107197250A (zh) 2017-09-22
MY170951A (en) 2019-09-20
BR112014010189A2 (pt) 2017-04-18
EP3322183A1 (en) 2018-05-16
PH12016502374B1 (en) 2017-01-23
US9883191B2 (en) 2018-01-30
PL3780601T3 (pl) 2023-10-02
RU2619267C1 (ru) 2017-05-15
CN104025588B (zh) 2017-08-15
EP3780601C0 (en) 2023-08-16
ES2842027T3 (es) 2021-07-12
TW201740729A (zh) 2017-11-16
IN2014MN00940A (ko) 2015-04-24
RU2014121400A (ru) 2015-12-10
PL3588949T3 (pl) 2021-03-08
KR20130047650A (ko) 2013-05-08
AU2012329676A1 (en) 2014-06-12
CN104025588A (zh) 2014-09-03
KR102082303B1 (ko) 2020-02-27
TWI572194B (zh) 2017-02-21
CN107404649B (zh) 2020-04-10
MX2014005114A (es) 2014-08-27
EP4231639A2 (en) 2023-08-23
KR101962829B1 (ko) 2019-03-27
US20190222850A1 (en) 2019-07-18
EP4231639A3 (en) 2023-08-30
JP2017055434A (ja) 2017-03-16
RU2654503C1 (ru) 2018-05-21
CN107222744A (zh) 2017-09-29
RU2588990C2 (ru) 2016-07-10
EP3780601B1 (en) 2023-08-16
CN107197250B (zh) 2019-09-03
MY198281A (en) 2023-08-21
TW201332368A (zh) 2013-08-01
DK3322183T3 (da) 2019-09-23
US20170070736A1 (en) 2017-03-09
PH12016502374A1 (en) 2017-01-23
EP3322183B1 (en) 2019-09-11
RU2681956C1 (ru) 2019-03-14
US9621918B2 (en) 2017-04-11
ZA201403876B (en) 2021-05-26
HUE063723T2 (hu) 2024-01-28
PH12016502377A1 (en) 2017-01-23
PH12016502376A1 (en) 2017-01-23
TW201711476A (zh) 2017-03-16
PH12016502375B1 (en) 2017-01-23
JP2014531177A (ja) 2014-11-20
US20140334542A1 (en) 2014-11-13
KR20170063494A (ko) 2017-06-08
PH12016502375A1 (en) 2017-01-23
KR101844517B1 (ko) 2018-04-02
US10291919B2 (en) 2019-05-14
KR20190034172A (ko) 2019-04-01
HUE052957T2 (hu) 2021-05-28
EP3780601A1 (en) 2021-02-17
EP3588949B1 (en) 2020-12-02
KR20150009498A (ko) 2015-01-26
US10506239B2 (en) 2019-12-10
US20200084456A1 (en) 2020-03-12
KR20180036667A (ko) 2018-04-09
EP3588949A1 (en) 2020-01-01
MY198290A (en) 2023-08-21
PL3322183T3 (pl) 2019-12-31
CN107147908A (zh) 2017-09-08
JP2019057954A (ja) 2019-04-11
CN107147908B (zh) 2020-02-07
TWI650000B (zh) 2019-02-01
US10893277B2 (en) 2021-01-12
KR101743246B1 (ko) 2017-06-02
BR112014010189B1 (pt) 2022-09-20
TWI601414B (zh) 2017-10-01
ES2748604T3 (es) 2020-03-17
PH12016502377B1 (en) 2017-01-23
HUE048628T2 (hu) 2020-08-28

Similar Documents

Publication Publication Date Title
KR101962829B1 (ko) 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치, 및 비트스트림을 포함하는 기록매체
KR101925555B1 (ko) 비디오 부호화, 복호화 방법 및 장치
KR101838112B1 (ko) 인터 예측 방법 및 그 장치, 움직임 보상 방법 및 그 장치
KR101663668B1 (ko) 영상 패딩영역의 비디오 복호화 및 부호화 장치 및 방법
KR101843156B1 (ko) 블록크기에 따라 인터 예측의 참조픽처리스트를 결정하는 비디오 부호화 방법과 그 장치, 비디오 복호화 방법과 그 장치
KR20150043221A (ko) 인트라 블록 복사 예측을 이용한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20170025994A (ko) 스캔 순서를 고려한 영상의 변환 방법 및 그 장치, 및 역변환 방법 및 그 장치
KR101770300B1 (ko) 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20170078681A (ko) 영상 특성을 반영한 보간 필터를 이용하는 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
KR20170019373A (ko) 다 시점 영상 부호화/복호화 방법 및 장치
KR20170082528A (ko) 블록과 관련하여 결정된 적어도 하나의 샘플값 및 적어도 하나의 패턴에 기초한 인트라 예측을 수행하는 영상 부호화 방법 및 장치또는 영상 복호화 방법 및 장치
KR20190018938A (ko) 비정형적 분할을 이용한 영상 부호화 방법 및 그 장치, 영상 복호화 방법 및 그 장치
AU2018200540B2 (en) Method and apparatus for intra prediction of video
AU2015202343B2 (en) Method and apparatus for intra prediction of video
KR20140106450A (ko) 메모리 대역폭 및 연산량을 고려한 스케일러블 비디오 부호화 장치 및 방법, 스케일러블 비디오 복호화 장치 및 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
A302 Request for accelerated examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
A107 Divisional application of patent
GRNT Written decision to grant