KR101737994B1 - Dewatering system for high efficiency of sludge dewatering - Google Patents

Dewatering system for high efficiency of sludge dewatering Download PDF

Info

Publication number
KR101737994B1
KR101737994B1 KR1020160033954A KR20160033954A KR101737994B1 KR 101737994 B1 KR101737994 B1 KR 101737994B1 KR 1020160033954 A KR1020160033954 A KR 1020160033954A KR 20160033954 A KR20160033954 A KR 20160033954A KR 101737994 B1 KR101737994 B1 KR 101737994B1
Authority
KR
South Korea
Prior art keywords
sludge
dewatering
dehydrating
hours
dehydration
Prior art date
Application number
KR1020160033954A
Other languages
Korean (ko)
Inventor
이미란
Original Assignee
주식회사 대성그린테크
이미란
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대성그린테크, 이미란 filed Critical 주식회사 대성그린테크
Priority to KR1020160033954A priority Critical patent/KR101737994B1/en
Application granted granted Critical
Publication of KR101737994B1 publication Critical patent/KR101737994B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/18Treatment of sludge; Devices therefor by thermal conditioning
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Abstract

The present invention relates to a sludge dehydration system, and to a sludge dehydration method using the same, which utilizes oystershell and waste activated carbon, which are waste resources, so as to increase dehydration efficiency of the sludge. Moreover, it is possible to perform efficient dehydration treatment of various sludge, without being greatly affected by various kinds of sludge including water purification plant sludge, waste water disposal plant sludge, and the like, and it is also possible to perform various kinds of sludge separately or to perform mixed integral treatment.

Description

폐자원을 활용하여 슬러지의 탈수 기능을 향상시키는 탈수시스템 및 이를 이용한 슬러지 탈수방법{DEWATERING SYSTEM FOR HIGH EFFICIENCY OF SLUDGE DEWATERING}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dewatering system for improving the dewatering function of a sludge by using waste resources, and a dewatering system for high-

본 발명은 폐자원인 폐굴껍질과 폐활성탄을 활용하여 슬러지의 탈수 효율을 높임으로써, 정수장 슬러지, 폐수처리장 슬러지 등을 포함한 다양한 슬러지의 종류에 크게 영향을 받지 않고 효율적인 탈수처리가 가능하도록 하고, 다양한 종류의 슬러지를 개별적으로 처리하거나 또는 혼합형태의 통합적 처리가 가능하도록 하는 슬러지 탈수시스템 및 이를 이용한 슬러지 탈수방법에 관한 것이다.The present invention improves the dehydration efficiency of the sludge by using waste oyster shells and waste activated carbon which are waste resources, thereby enabling effective dehydration without being greatly influenced by various types of sludge including water purification plant sludge and wastewater treatment plant sludge, To a sludge dewatering system capable of individually treating mixed sludge or in a mixed manner and a sludge dewatering method using the sludge dewatering system.

경제발전 및 생활의 향상은 생활하수, 폐수의 증가를 가져왔고, 이에 따라 하천 및 강의 오염을 방지하기 위한 하수 및 폐수 처리시설도 불가피하게 증가하여 왔다.Economic development and improvement of life have resulted in increase of domestic sewage and wastewater. Therefore, sewage and wastewater treatment facilities to prevent pollution of rivers and rivers have inevitably increased.

폐수를 처리하는 과정에서 침전의 과정을 거친 후에 슬러지가 남게 되는데, 이러한 슬러지는 최종적으로 매립 또는 소각, 해양에 투기하는 방법을 취하고 있다. Sludge is left after the process of precipitation in the process of wastewater treatment. This sludge is finally landfilled or incinerated, and is dumped into the ocean.

현재 하수처리장에서 탈수 후 매립지에 직매립하는 것은 금지되었기 때문에 계속해서 늘어가는 방대한 양의 슬러지 처리에 대한 연구가 요구되고 있다. 전체 하수처리비용의 50%에 달하는 슬러지의 처리비용을 절감하기 위해서는 낮은 함수율의 탈수 슬러지를 생산하는 것이 매우 중요한 관건이라고 할 수 있다.Currently, it is prohibited to land directly in the landfill after dehydration at the sewage treatment plant, and therefore there is a need for research on a large and growing amount of sludge treatment. Producing low-moisture dehydrated sludge is an important issue in order to reduce the disposal cost of the sludge to 50% of the total sewage treatment cost.

낮은 함수율의 탈수 슬러지는 액상 또는 농축 슬러지에 비해 취급이 용이할 뿐만 아니라 부피의 감소에 따른 운반비용의 절감과 소각시 에너지 함량을 증가시킬 수 있다. 또한 퇴비화 전에 개량제의 소모량을 감소시킬 수 있고 냄새나 부패성을 현저히 감소시킬 수 있다. 따라서 슬러지의 탈수효율 향상을 위한 방법이 주목을 받고 있다.Dewatered sludge with low water content is easier to handle than liquid or concentrated sludge, and can reduce the transportation cost due to volume reduction and increase the energy content upon incineration. It can also reduce the consumption of modifiers before composting and can significantly reduce odor and perishability. Therefore, a method for improving the dewatering efficiency of sludge is attracting attention.

슬러지 탈수는 농축된 슬러지를 수분 감소에 의해서 슬러지 부필르 추가로 감소시켜 슬러지의 처리를 용이하게 하고 처분 비용을 감소시키는 것을 목적으로 한다.Sludge dewatering aims at reducing the concentration of sludge by further reducing the amount of sludge, thereby facilitating the treatment of the sludge and reducing the disposal cost.

탈수공법으로는 크게 자연적인 공법과 기계적인 공법으로 구분되는데, 자연공법에는 모래건조상법과 라군법이 있고, 기계적 공법에는 진공흡입력을 이용한 진공여과기, 여과막을 가하는 압력을 이용한 Filter press, 벨트의 압축압력을 이용한 Belt Press, 원심력을 이용한 원심 분리기 등이 있다. 자연적 공법은 슬러지 처리량이 적고, 유효토지의 감소 및 지하수 오염 등과 같은 문제점이 있어, 현재에는 기계적인 공법이 주로 이용되고 있으나, 기계적인 물리력만으로는 슬러지의 수분 함수율을 낮추는데 한계가 있어, 새로운 탈수 공법 개발이 요구되고 있는 실정이다.The dewatering method is divided into natural and mechanical methods. Natural methods include sand drying method and lagoon method. Mechanical method includes vacuum filter using vacuum suction force, filter press using pressure applying filtration membrane, compression of belt Belt Press using pressure, and Centrifuge using centrifugal force. Mechanical methods are mainly used nowadays because natural processes have fewer sludge throughputs, decrease in effective land and groundwater pollution, etc. However, there is a limitation in lowering the moisture content of sludge only by mechanical force, And the like.

슬러지 탈수와 관련하여, 종래 등록특허 10-0329318(등록일자 2002.03.07)의 '슬러지 탈수 장치 및 이를 사용하는 슬러지 탈수 시스템 ', 등록특허 10-0368682(등록일자 2003.01.07)의 '탈수 건조시스템', 등록특허 10-1146792(등록일자 2012.05.09)의 '하천수에 함유된 슬러지 압착 탈수 시스템', 등록특허 10-1115238(등록일자 2012.02.01)의 '연속식 준설 탈수 처리 시스템', 등록특허 10-1169976(등록일자 2012.07.25)의 '수질정화시스템의 연속식 슬러지 탈수장치', 등록실용 20-0416677(등록일자 2006.05.11)의 '고액분리시스템의 탈수장치'에 대한 기술이 개시된 바 있으나, 폐굴껍질과 폐활성탄을 재활용하여 슬러지의 탈수효율을 높이는 기술에 대해서는 개시된 바 없다. 이에 본 출원인은 폐자원을 효율적으로 재활용함으로써, 자원재활용에 따른 슬러지 처리비용 절감과 환경오염 개선 효과를 가지며, 또한 높은 처리효율을 갖는 슬러지 처리 시스템 및 처리방법을 제공하고자 본 발명의 완성에 이르게 되었다.In connection with dewatering of sludge, the 'sludge dewatering device and sludge dewatering system using the sludge dewatering device' of the registered patent No. 10-0329318 (registered date 2002.03.07), 'dehydration drying system' of Registration No. 10-0368682 'Sludge squeezing and dewatering system contained in river water' of registered patent 10-1146792 (registered date 2012.05.09), 'Continuous dredging dewatering system' of registered patent No. 10-1115238 (registered date 2012.02.01), registered patent 10-1169976 (Registered on Jul. 25, 2012), a continuous sludge dewatering device of a water purification system, and a dewatering device of a solid-liquid separation system of a registration room 20-0416677 (registered date 2006.05.11) However, no technique has been disclosed for improving the dehydration efficiency of the sludge by recycling the waste oyster shell and the waste activated carbon. Accordingly, the applicant of the present invention has accomplished the present invention to provide a sludge treatment system and a treatment method which have a sludge treatment cost reduction effect and an environmental pollution improvement effect due to recycling of resources, and a high treatment efficiency by efficiently recycling waste resources .

대한민국 등록특허 10-0329318(등록일자 2002.03.07)Korean Registered Patent No. 10-0329318 (registered on March 23, 2002) 대한민국 등록특허 10-0368682(등록일자 2003.01.07)Korean Registered Patent No. 10-0368682 (Registration date 2003.01.07) 대한민국 등록특허 10-1146792(등록일자 2012.05.09)Korean Registered Patent No. 10-1146792 (Registration date 2012.05.09) 대한민국 등록특허 10-1115238(등록일자 2012.02.01)Korean Registered Patent No. 10-1115238 (Registration date 2012.01.01) 대한민국 등록특허 10-1169976(등록일자 2012.07.25)Korean Registered Patent No. 10-1169976 (registered on July 25, 2012) 대한민국 등록실용 20-0416677(등록일자 2006.05.11)Korea Registered Office 20-0416677 (Registered on May 5, 2006)

본 발명은 폐굴껍질, 폐활성탄을 활용할 수 있는 슬러지 탈수시스템을 제공하고, 또한 이를 이용한 슬러지 탈수방법을 제공함으로써, The present invention provides a sludge dewatering system capable of utilizing an oyster shell and waste activated carbon, and also provides a sludge dewatering method using the sludge dewatering system,

슬러지의 종류에 따른 탈수효율의 차이가 발생하는 것을 최소화하여, 다양한 종류의 슬러지를 개별적 또는 통합적으로 처리할 수 있어, 효율적인 슬러지 처리, 슬러지 처리에 소요되는 경비절감, 환경오염 개선의 효과를 갖는 폐자원을 활용하여 슬러지의 탈수 기능을 향상시키는 탈수시스템 및 이를 이용한 슬러지 탈수방법을 제공하고자 하는 것을 발명의 목적으로 한다.It is possible to individually and integrally treat various kinds of sludge by minimizing the occurrence of difference in dewatering efficiency depending on the kind of sludge, and thus it is possible to reduce the cost of sludge treatment, sludge treatment, It is an object of the present invention to provide a dewatering system that improves the dewatering function of sludge by utilizing resources and a sludge dewatering method using the same.

상기의 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 슬러지 탈수를 위한 시스템으로서,The present invention relates to a system for sludge dewatering,

슬러지의 탈수성 향상을 위해, 열적·화학적으로 슬러지를 전처리하는 슬러지전처리부;A sludge pretreatment unit for pretreating the sludge thermally and chemically in order to improve the dewaterability of the sludge;

상기 슬러지전처리부를 통해 전처리과정을 마친 슬러지의 탈수성 향상을 위해, 탈수개량제를 주입하는 탈수개량제 주입부;A dewatering modifier injecting unit injecting a dewatering modifier to improve dewaterability of the sludge that has undergone the pretreatment through the sludge pretreatment unit;

탈수개량제가 주입된 슬러지에 응집보조제인 폐활성탄을 주입하는 탈수보조제 주입부;A dehydrating auxiliary agent injecting unit injecting waste activated carbon as a coagulation assistant into the sludge injected with the dewatering improving agent;

폐활성탄이 주입된 슬러지에 포함되어 있는 액체의 일부를 제거하여 슬러지의 고형물질 함량 높이는 슬러지농축부;A sludge concentration unit for removing a portion of the liquid contained in the sludge into which the waste activated carbon is injected to increase the solid matter content of the sludge;

상기 슬러지농축부를 통해 농축된 슬러지를 최종적으로 탈수처리하는 탈수부를 포함하여 이루어지는 폐자원을 활용하여 슬러지의 탈수 기능을 향상시키는 탈수시스템을 제공한다.And a dehydrating unit for ultimately dehydrating the concentrated sludge through the sludge thickening unit to improve the dehydration function of the sludge.

본 발명에 따른 탈수시스템은 슬러지의 종류에 상관없이 탈수효율을 극대화시킬 수 있도록 시스템을 구성함으로써, 슬러지의 탈수성이 매우 높다는 장점을 갖는다.The dewatering system according to the present invention has an advantage that the dewatering property of the sludge is very high by constituting the system so as to maximize the dewatering efficiency irrespective of the type of the sludge.

도 1은 본 발명에 따른 탈수시스템의 전체 구성을 보인 도면.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing the entire structure of a dehydrating system according to the present invention; FIG.

이하, 상기의 기술 구성에 대한 구체적인 내용을 도면과 함께 살펴보도록 한다.Hereinafter, the detailed contents of the above-described technical configuration will be described with reference to the drawings.

하수처리과정에서 발생하는 하수슬러지의 종류는 하수처리공정의 1차침전지에서 발생하는 생슬러지(Primary sludge;PS), 생물학적 처리공정에서 발생하는 활성슬러지(Waste activated sludge;WAS), 생슬러지와 활성슬러지가 혼합·농축된 농축슬러지(Thickened sludge;TS), 마지막으로 혐기성 소화조에서 유기물의 분해반응을 거친 소화슬러지(Digested sludge;DS), 탈수공정에서 최종적으로 발생되는 탈수케익(Dewatered cake;DC)로 구분된다.The types of sewage sludge generated during the sewage treatment process include primary sludge (PS) generated in the primary settling basin of the sewage treatment process, activated sludge (WAS) generated in the biological treatment process, raw sludge and active The digested sludge (DS), which is decomposed organic matter in the anaerobic digestion tank, and the dewatered cake (DC), which is finally generated in the dehydration process, Respectively.

도 1에 도시된 바와 같이, 본 발명에 따른 탈수시스템(1)은 슬러지의 탈수성 향상을 위해, 열적·화학적으로 슬러지를 전처리하는 슬러지전처리부(10);As shown in FIG. 1, the dewatering system 1 according to the present invention includes a sludge pretreatment unit 10 for pretreating the sludge thermally and chemically in order to improve the dewaterability of the sludge.

상기 슬러지전처리부(10)를 통해 전처리과정을 마친 슬러지의 탈수성 향상을 위해, 탈수개량제를 주입하는 탈수개량제 주입부(20);A dewatering modifier injecting unit 20 for injecting a dewatering modifier to improve dewaterability of the sludge that has undergone the pretreatment process through the sludge pretreatment unit 10;

탈수개량제가 주입된 슬러지에 응집보조제인 폐활성탄을 주입하는 탈수보조제 주입부(30);A dewatering aid injecting unit 30 for injecting waste activated carbon as a coagulation aid into the sludge injected with the dewatering improver;

폐활성탄이 주입된 슬러지에 포함되어 있는 액체의 일부를 제거하여 슬러지의 고형물질 함량 높이는 슬러지농축부(40);A sludge concentration unit 40 for removing a portion of the liquid contained in the sludge into which the waste activated carbon is injected to increase the solid matter content of the sludge;

상기 슬러지농축부(40)를 통해 농축된 슬러지를 최종적으로 탈수처리하는 탈수부(50)를 포함하여 이루어진다.And a dewatering unit (50) for finally dehydrating the concentrated sludge through the sludge thickening unit (40).

슬러지 종류에는 고형물 4~10%이고, 회색의 점착성이 높은 생슬러지; 고형물 0.8~2.5%이고, 갈색의 흙냄새가 나는 잉여슬러지; 고형물 0.5~1.5%인 생슬러지와 잉여슬러지의 혼합, 농축 전 분배조에서 혼합시 생성되는 혼합슬러지; 고형물 2.0~8.0%인 생, 잉여, 혼합슬러지를 소화시키기 전 감량시킨 슬러지인 농축슬러지; 고형물 2.5~7.0%인 혐기성 또는 호기성 소화 처리해서 농축. 분해된 슬러지(대부분 혐기성 소화)로서, 암갈색 내지 흑갈색으로 다량의 가스가 포함되고, 슬러지가 건조되면 가스는 날아가고 양토화되는 소화슬러지; 고형물 20~40%인 슬러지의 수분을 감소, 운반과 소각, 최종처분을 용이하게 하기 위한 탈수슬러지(cake); 등이 있다.Sludge types include 4 to 10% solids, gray sludge with high tackiness; Surplus sludge having a solid soil content of 0.8 to 2.5% and a brown soil smell; Mixed sludge produced by mixing raw sludge and excess sludge with 0.5 ~ 1.5% solids in the pre-concentration tank; A concentrated sludge which is a sludge reduced before digestion of raw, surplus, and mixed sludge of 2.0 to 8.0% of solids; Concentrated by anaerobic or aerobic digestion with 2.5 to 7.0% solids. Decomposed sludge (mostly anaerobic digestion), which contains a large amount of gas from dark brown to black-brown, and when the sludge is dried, the gas is blown and ground; Dehydrated sludge to reduce moisture, transport and incineration of sludge with 20 to 40% solids, and facilitate final disposal; .

하수처리장과 정수처리장에서 처리부산물로 발생하는 슬러지는 처리비용이 많이 들고, 매립처분 비용 또는 소각비용 또한 크기 때문에 슬러지 처리에 있어서 처리비용은 큰 비중을 차지하게 된다. 따라서 슬러지의 처리, 처분 비용을 줄이기 위해서는 함수율을 낮춰 슬러지의 감량화를 도모하는 것이 최선의 방법이다. Sludge generated as a treatment by-product in sewage treatment plant and water treatment plant has a high treatment cost, and since disposal cost or incineration cost is also large, treatment cost in sludge treatment takes a great deal of weight. Therefore, in order to reduce the disposal cost of sludge, it is best to reduce the water content to reduce the sludge.

본 발명은 슬러지의 함수율을 최소화하여 슬러지 감량화의 기능성을 강화시킨 탈수시스템에 관한 것으로서, 본 발명에 따른 탈수시스템을 구성하는 구성요소에 대해 상세하게 살펴보도록 한다.The present invention relates to a dewatering system in which the water content of the sludge is minimized to enhance the functionality of sludge reduction, and the constituent elements of the dewatering system according to the present invention will be described in detail.

슬러지 전처리는 미생물의 세포벽을 물리적, 화학적 또는 생물학적인 방법으로 파괴시켜 세포내 기질을 용출시킴으로써 율속단계를 제거하여 혐기성 미생물의 기질에 대한 이용도를 높임으로써, 전체 혐기성 소화반응의 효율을 개선할 수 있다. 또한 세포나 미세한 floc내에 갇혀있던 수분이 유출되면서 고형물로부터 수분분리를 용이하게 할 수 있다.Sludge pretreatment can improve the efficiency of the total anaerobic digestion reaction by increasing the utilization of the anaerobic microorganism substrate by removing the rate step by eluting the intracellular matrix by destroying the cell wall of the microorganism by physical, chemical or biological methods have. It also facilitates the separation of moisture from solids as the water trapped in the cells or fine floc flows out.

즉 상기 슬러지전처리부(10)는 초음파, 오존 또는 열·알칼리 병합처리에 의해 기계적 탈수 등과 같이 일반적인 탈수방법으로는 탈수효율이 개선되지 않는 슬러지 내의 수분을 효율적으로 제거할 수 있도록 함으로써, 결과적으로 슬러지의 함수율을 떨어뜨리는 기능을 갖는다.That is, the sludge pretreatment unit 10 can efficiently remove moisture in the sludge whose dehydration efficiency is not improved by a general dehydration method such as mechanical dehydration by ultrasonic wave, ozone or thermal / alkali combination treatment, The water content of the water is reduced.

상기 초음파 전처리의 경우, 초음파 발생기의 주파수를 20 kHz, 최대 전력 120~400W로 하여 초음파 전처리가 이루어진다.In the case of the ultrasonic wave preprocessing, ultrasonic wave preprocessing is performed at a frequency of 20 kHz and a maximum power of 120 to 400 W.

상기 오존 전처리의 경우, 오존발생기(OZONIA사 LAB2B LABORATORY OZONE GENERATOR)를 이용하되, 공기공급가스는 순산소를 이용하고, 송기량은 2L/min, 주입 오존 농도는 60mgO3/L O2로 고정하여 오존 전처리가 이루어진다.When the ozone pretreatment, an ozone generator (OZONIA four LAB2B LABORATORY OZONE GENERATOR), but using the air feed gas using pure oxygen, and the transmission amount is 2L / min, injection ozone concentration of ozone is fixed to 60mgO 3 / LO 2 Pretreatment is done.

상기 열·알칼리 병합처리 경우, 슬러지에 0.05mg NaOH/mg SS를 주입하여 pH를 11로 만든 후, 온도를 75~85℃로 하여 2~3시간 동안 열·알칼리 병합 전처리가 이루어진다.In the case of the heat-alkali combination treatment, the pH is adjusted to 11 by injecting 0.05 mg NaOH / mg SS into the sludge, and the thermal and alkali merging pretreatment is performed for 2-3 hours at a temperature of 75-85 ° C.

슬러지 내 수분은 크게 슬러지 입자와 연관되어 있는가를 기준으로 하여 자유수와 결합수로 분류된다. 상기 자유수는 슬러지 내 구조 속에 한정되어 있는가를 기준으로 다시 자유수(free water)와 공극수(interstitial water)로 구분된다. 그리고 상기 결합수는 슬러지 입자와 수분의 결합방식에 따라 다시 표면수(surface water)와 결합수(bound water)로 구분된다.The water content in the sludge is classified into free water and coupled water based on whether it is associated with sludge particles. The free water is divided into free water and interstitial water based on whether the free water is limited within the structure of the sludge. The combined water is divided into surface water and bound water depending on the combination of sludge particles and water.

상기 4가지의 수분들 중 자유수와 공극수는 기계적 탈수에 의해 제거할 수 있으나, 표면수와 결합수의 경우 기계적 탈수에 의한 제거가 불가능한 것으로 알려져 있다. 따라서 상기 표면수와 결합수는 열적, 화학적 전처리를 필요로 한다.Among the four types of water, the free water and the void water can be removed by mechanical dehydration, but it is known that the surface water and the combined water can not be removed by mechanical dehydration. Therefore, the surface number and the bonding water require thermal and chemical pretreatment.

상기 초음파 전처리에 있어, 초음파(ultrasound)는 일반적으로 16,000 Hz 이상의 진동수가 있는 음파를 총칭한다. 초음파는 석영과 같은 압전성(piezoelectric) 물질에 의해 발생하는데 압전성 물질의 판(plate) 양면에 크기가 같고 방향이 반대인 전하를 교대로 걸러주게 되면 그 물질은 팽창과 수축을 반복하게 되며 이와 같은 과정을 통해 압전성 물질은 전기에너지를 기계 에너지로 변환하게 된다. 이때 발생된 기계적 진동이 초음파를 발생시키게 된다.In the ultrasound pre-processing, ultrasound generally refers to sound waves having a frequency of 16,000 Hz or more. Ultrasonic waves are generated by piezoelectric materials such as quartz. When alternating charges of the same size and opposite direction are applied to both sides of the piezoelectric material, the material repeatedly expands and contracts. The piezoelectric material converts electrical energy into mechanical energy. The mechanical vibration generated at this time generates ultrasonic waves.

초음파에 의한 슬러지의 전처리는 활성슬러지의 미생물을 파괴하는 방법으로 초음파 진동자의 표면에서 초음파를 방출시 생기는 음향공동화(acoustic cavitation) 현상을 이용한다.The pretreatment of sludge by ultrasonic waves is a method of destroying the microorganisms of the activated sludge, and utilizes acoustic cavitation phenomenon which occurs when ultrasonic waves are emitted from the surface of the ultrasonic vibrator.

유체에 초음파를 조사하면 기포의 내파(implosion) 현상인 공동화 기포의 생성과 붕괴가 일어나며, 붕괴되는 공동화 기포 내부의 온도와 압력은 약 5,000K와 수백에서 수천 기압까지 상승하게 되는데 이런 극한적인 조건이 공동화 기포 내에 존재하는 화합물의 열적 파괴와 매우 반응성이 강한 OH radical의 생성을 이끌 수 있게 한다. 하수슬러지의 경우 물과 고형물로 이루어져 있기 때문에 초음파 분해에 의해 플록이 해체되고 미생물 등의 세포가 분해되어 세포액이 용출되는 슬러지의 물리, 화학적 파괴가 가능하게 된다. 이러한 초음파 전처리에 의해 용해성 탄수화물과 유기성 기질을 방출하여 일반적으로 세포파괴도는 95% 이상으로 높은 편이다.When the fluid is ultrasonically irradiated, the formation and collapse of the cavitation bubble, which is the implosion phenomenon of the bubble, occurs. The temperature and pressure inside the collapsed bubble rise to about 5,000K and several hundred to several thousand atmospheres. Which can lead to thermal destruction of compounds present in cavitation bubbles and generation of highly reactive OH radicals. Since sewage sludge is composed of water and solid matter, the flocs are disassembled by ultrasonic decomposition, and the cells such as microorganisms are decomposed, and the physical and chemical destruction of the sludge from which the cell liquid is eluted becomes possible. Such ultrasonic wave pretreatment releases soluble carbohydrates and organic substrates, and generally has a cell destruction degree of 95% or more.

상기 오존 전처리의 오존에 의한 유기물의 제거는 오존과 용해성물질과의 직접반응에 의하여 분해되거나 오존이 수중에서 분해될 때 생성되는 OH 라디칼에 의하여 산화된다. 하수슬러지의 경우 유기물로 구성되어 있기 때문에 오존에 의하여 슬러지가 분해되어 용존성 유기물로 전환되고 생성된 OH 라디칼에 의해 슬러지의 세포벽을 산화시킴으로써 미생물의 표면에 손상을 주어 내부에 존재하는 유기물을 용출시키게 된다.The removal of the organic matter by the ozone in the ozone pretreatment is oxidized by the direct reaction between the ozone and the soluble substance or by the OH radical generated when the ozone is decomposed in water. Since the sewage sludge is composed of organic materials, the sludge is decomposed by ozone and converted into dissolved organic matter. By oxidizing the cell walls of the sludge by the produced OH radical, the surface of the microorganism is damaged, do.

오존 전처리에 있어 오존주입량이 낮은 경우에는 오존처리에 의한 미세입자의 증가로 인해 오존처리액의 탁도가 증가하게 되므로 일정량의 오존을 주입함으로써 슬러지의 평균입경을 증가시켜 오존처리액의 여과성을 회복시키는 것이 바람직하다. When the ozone injection amount is low in the ozone pretreatment, the turbidity of the ozone treatment solution increases due to the increase of the fine particles due to the ozone treatment. Therefore, the average particle size of the sludge is increased by injecting a certain amount of ozone, .

상기 열·알칼리 병합처리는 알칼리를 슬러지에 첨가하여 셀을 가수분해하는 방법으로 높은 온도를 사용하여야 하는 열처리에 비해 상대적으로 매우 낮은 온도에서도 같은 슬러지 가용화율을 얻을 수 있다.The heat and alkali combination treatment is a method of hydrolyzing the cells by adding alkali to the sludge. As a result, the same sludge solubilization ratio can be obtained even at a relatively low temperature as compared with a heat treatment requiring a high temperature.

슬러지 열처리만을 하는 경우에는 슬러지의 가수분해율이 미미하나, NaOH를 첨가하여 pH를 증가시킬 경우 가수분해는 급격히 증가하게 되며, 결과적으로 탈수성을 높일 수 있게 된다.When the sludge is heat-treated only, the hydrolysis rate of the sludge is small, but when the pH is increased by adding NaOH, the hydrolysis rapidly increases, and as a result, the dewaterability can be increased.

상기 슬러지전처리부(10)에서 전처리과정을 거친 슬러지는 탈수개량제 주입부(20)로 이송되어, 슬러지 내로 탈수개량제를 주입하게 된다.The sludge that has undergone the pretreatment in the sludge pretreatment unit 10 is transferred to the dewatering improver injecting unit 20 to inject the dewatering agent into the sludge.

슬러지의 탈수성 증진을 위하여 적절한 약품주입에 의한 개량과 동결-용해 방법 등이 있으나 탈수성 증진을 위해서는 슬러지 성상, 탈수성 변수와 기계적인 탈수기 선정 등을 만족시켜야 하며 개량화가 결국 이런 변수들의 최적화를 위한 방법이라고 할 수 있다.In order to improve the dewaterability of the sludge, it is necessary to improve the dewaterability of the sludge and to improve the dewaterability. However, the sludge property, dewaterability parameter and mechanical dehydrator should be satisfied. It can be said that

슬러지의 성질 개량은 슬러지의 입자의 크기를 증대시켜 고액분리를 촉진하여 농축이나 탈수가 잘 되도록 하기 위한 것으로서, 이때 슬러지의 개량에 중요한 영향을 미치는 인자로는 큰 표면적과 화학적으로 많은 영향을 차지하는 미세한 슬러지 입자들이다.The improvement of the properties of the sludge is intended to enhance the size of the sludge particles so as to promote the solid-liquid separation, thereby facilitating the concentration and dehydration. In this case, the factors that have an important influence on the improvement of the sludge include a large surface area and a fine Sludge particles.

상기 탈수개량제는 자연건조된 폐굴껍질을 850~950℃의 전기로에 넣고 1.5~2.5시간 동안 소성반응시킨 후, 소성된 폐굴껍질(CWOS)을 방냉시키고, 다음으로 볼밀(ballmill)로 분쇄하여 200mesh인 체로 선별하는 과정과,The dewatering improver is obtained by subjecting naturally dried oyster shells to an electric furnace at 850 to 950 ° C for sintering for 1.5 to 2.5 hours, cooling the calcined oyster shell (CWOS), then pulverizing the powdered oyster shell with a ball mill, Sieve selection process,

상기 소성시킨 폐굴껍질 분말과 증류수를 1:4 중량비율로 혼합한 후, 5~8시간 동안 가열하여 Ca(OH)2의 형태로 전환하는 폐굴껍질의 수화반응 과정과,A hydration reaction process of the waste oyster shell in which the calcined oyster shell powder and distilled water are mixed at a weight ratio of 1: 4 and then heated to Ca (OH) 2 by heating for 5 to 8 hours,

상기 수화반응시킨 폐굴껍질 분말과 황토 분말을 6:4~9:1로 혼합하는 과정을 거쳐 제조한다.The hydration-reacted waste oyster shell powder and ocher powder are mixed in a ratio of 6: 4 to 9: 1.

상기 탈수개량제와 슬러지의 배합비율은 슬러지 100 중량부를 기준으로 하여, 탈수개량제를 1~3중량부로 사용한다.The mixing ratio of the dewatering agent and the sludge is 1 to 3 parts by weight based on 100 parts by weight of the sludge.

상기 탈수개량제는 SiO2 8.13wt%; Al2O3 12.56wt%; Fe2O3 1.53wt%; MnO 0.06wt%; MgO 0.63wt%; CaO 53.17wt%; Na2O 0.76wt%; K2O 0.43wt%; TiO2 0.18wt%; P2O5 0.21wt%의 성분 조성을 갖는 것으로서, 알칼리 금속 성분이 고르게 다량 함유되어 있고, 표면이 다공성이라 응집제로서의 기능성이 뛰어나 탈수효율을 높일 수 있도록 한다.The dehydrating agent was 8.13 wt% SiO 2 ; Al 2 O 3 12.56 wt%; 1.53 wt% Fe 2 O 3 ; MnO 0.06 wt%; 0.63 wt% MgO; CaO 53.17 wt%; Na 2 O 0.76 wt%; K 2 O 0.43 wt%; TiO 2 0.18 wt%; P 2 O 5 and 0.21 wt%, and the alkali metal component is uniformly contained in a large amount, and the surface is porous, so that the function as the flocculant is excellent and the dehydration efficiency can be increased.

상기 폐굴껍질의 주성분은 탈수개량제로서 적용가능한 알카리성 금속이온인 Ca(37.8%)로 구성되어 있으며, 이와 같은 폐굴껍질을 가공 처리한 생석회나 소석회는 하·폐수처리장의 응집제, 산성폐수의 중화제, 중금속 흡착제 등으로 이용되고 있다. 본 발명에서 사용하는 폐굴껍질의 화학적 조성을 살펴보면, Al2O3 2.37wt%; Fe2O3 0.38wt%; MnO 0.02wt%; MgO 0.48wt%; CaO 55.43wt%; Na2O 1.35wt%; K2O 0.42wt%; TiO2 0.04wt%; P2O5 0.39wt%;로 조성된다The main component of the waste oyster shell is composed of Ca (37.8%), which is an alkaline metal ion applicable as a dehydration improving agent. The calcium oxide and calcium hydroxide treated with such an oyster shell can be used as a coagulant in a wastewater treatment plant, Adsorbents and the like. The chemical composition of the waste oyster shell used in the present invention is as follows: Al 2 O 3 2.37 wt%; 0.38 wt% Fe 2 O 3 ; 0.02 wt% MnO; 0.48 wt% MgO; CaO 55.43 wt%; Na 2 O 1.35 wt%; K 2 O 0.42 wt%; TiO 2 0.04 wt%; And 0.39 wt% P 2 O 5 ;

상기 황토는 벌집형구조(honeycombed)를 가지며 탄산칼슘에 의해 느슨하게 고결되어 있어서, 공극율이 50~55%에 이른다. 그 크기는 0.02~0.05mm이고 조립질과 중립질의 먼지를 포함하며 점토크기 이하의 입자의 함유정도는 보통 5~10%이다. 황토는 크게 5가지로 분류하며 사질황토일수록 공극율이 증가하고(60%), 점토지로항토로 갈수록 Kaolinte, illite, Montmorillonite와 같은 점토광물들이 우세하게 포함된다.The loess has a honeycombed structure and is loosely cemented by calcium carbonate, resulting in a porosity of 50 to 55%. Its size is 0.02 ~ 0.05mm and it contains coarse and neutral dust. The content of particles below clay size is usually 5 ~ 10%. The loess is classified into 5 types. The porosity increases (60%) with sandy loess, and clay minerals such as Kaolinte, illite, Montmorillonite are predominantly contained in clay soil.

상기 황토는 볼밀(Ball mill)로 분쇄하여 입경 200mesh인 체로 선별하여 건조오븐(Dry oven)에서 100~110℃로 20~25시간 동안 증발, 건조시킨 후 수분이 흡습하지 않도록 데시케이터에 보관하면서 사용한다. 본 발명에서 사용되는 황토의 성분 조성은 SiO2 45.3wt%; Al2O3 22.1wt%; Fe2O3 12.8wt%; MnO 0.4wt%; MgO 1.3wt%; CaO 2.wt%7; Na2O 0.7wt%; K2O 1.1wt%; TiO2 1.3wt%; P2O5 0.1wt%이다.The loess was ground with a ball mill and screened with a sieve having a particle size of 200 mesh. The ocher was evaporated and dried in a drying oven at 100 to 110 ° C for 20 to 25 hours and stored in a desiccator use. The composition of the yellow loess used in the present invention is 45.3 wt% of SiO 2 ; 22.1 wt% Al 2 O 3 ; 12.8 wt% Fe 2 O 3 ; MnO 0.4 wt%; 1.3 wt% MgO; CaO 2.wt% 7; Na 2 O 0.7 wt%; K 2 O 1.1 wt%; TiO 2 1.3 wt%; P 2 O 5 0.1 wt%.

상기 탈수개량제 주입부(20)를 거친 슬러지는 탈수보조제 주입부(30)로 이송되어 폐활성탄을 주입하게 된다.The sludge that has passed through the dewatering improver injecting unit 20 is transferred to the dewatering auxiliary injecting unit 30 to inject waste activated carbon.

이때 폐활성탄의 주입량은 탈수개량제를 포함하는 슬러지의 전체 중량 100중량부에 대해 1~1.5중량부의 비율로 첨가한다.At this time, the amount of the activated carbon to be injected is 1 to 1.5 parts by weight based on 100 parts by weight of the total weight of the sludge containing the dehydrating agent.

상기 폐활성탄은 증류수로 수회 세척하여 불순물을 제거한 후 24시간 자연건조하고, 자연건조된 폐활성탄을 먼저 Ball Mill로 분쇄한 후, 파쇄한 폐활성탄을 200mesh sieve(75㎛)로 선별하여 통과시킨다.The waste activated carbon is washed with distilled water several times to remove impurities and air-dried for 24 hours. The naturally dried waste activated carbon is first pulverized with a ball mill, and the pulverized activated carbon is passed through a 200 mesh sieve (75 μm).

그리고 상기 Sieve로 선별된 폐활성탄은 Dry oven에서 105℃를 유지하면서 24기간 증발건조한 것을 사용한다.The waste activated carbon selected by the sieve is evaporated and dried for 24 hours while maintaining 105 ° C in a dry oven.

상기 탈수보조제 주입부(30)를 거친 슬러지는 슬러지농축부(40)로 이송된다.The sludge having passed through the dehydrating auxiliary injection unit 30 is transferred to the sludge thickening unit 40.

상기 슬러지농축부(40)는 중력농축, 부상농축, 원심분리농축, 중력 벨트 농축, 회전 드럼(Rotary Drum) 농축 중 선택되는 어느 1종 이상의 농축장치가 설치되어 이루어진다. 구체적인 예로서 다중원판형(Disk Type) 농축기를 사용할 수 있다.The sludge thickening part 40 is provided with at least one thickening device selected from gravity concentration, float concentration, centrifugal concentration, gravity belt concentration, and rotary drum concentration. As a specific example, a multi-disc type concentrator may be used.

슬러지의 최종적인 처리목적은 슬러지를 고액분리하여, 배출되는 슬러지의 고형물 농도를 높이고, 슬러지의 함수율을 낮춰 제거하는 것이다. 이때 사용하는 것이 농축장치로서 최종적인 슬러지 탈수공정 전단계에서 슬러지로부터 액체의 일부를 제거하여 슬러지의 고형물질 함유량을 높이기 위해 사용한다.The ultimate goal of the treatment of sludge is to separate the sludge by solid-liquid separation, to increase the solid concentration of the discharged sludge, and to lower the moisture content of the sludge. At this time, it is used as a concentration device to remove a part of liquid from the sludge in the pre-stage of the final sludge dewatering process to increase the solid matter content of the sludge.

구체적인 예를 들자면, 폐활성슬러지는 대개 2차 침전지에서 배출되는데 고형물질 함유량이 0.8%정도이다. 이를 고형물질의 함유량을 4%까지 농축하여 슬러지 부피를 1/5로 줄인다.As a specific example, waste activated sludge is usually discharged from a secondary settler with a solids content of about 0.8%. This is concentrated to 4% solids content to reduce the sludge volume to 1/5.

상기 슬러지농축부(40)에서 슬러지 농축과정을 거친 슬러지는 최종적으로 탈수부(50)로 이송되어 탈수과정을 거치게 된다.The sludge having been subjected to the sludge concentration process in the sludge thickening section (40) is finally transferred to the dehydration section (50) and subjected to a dehydration process.

슬러지 탈수는 탈수장치에 따라 다소 차이는 있지만, 응집제의 선정, 주입량 그리고 교반 강도 등의 화학적 조건 및 수리학적조건에 의해 영향을 받는다. Sludge dewatering is affected by chemical conditions such as selection of coagulant, amount of injection and agitation strength, and hydraulic conditions, though there is some difference depending on the dewatering device.

슬러지 탈수를 위한 탈수공법은 크게 자연적인 공법과 기계적인 공법으로 구분되는데, 자연적 공법에는 모래건조상법과 라군법이 있고, 기계적인 공법에는 진공흡인력을 이용한 진공여과기(Vacuum Filter), 여과막에 압력을 가한 가압탈수기(Pressure Filter Press), 원심력을 이용한 원심분리기(Centrifuges), Belt의 압착압력을 이용한 벨트프레스 탈수기(Belt Press Filter) 등이 있다.The dewatering process for sludge dewatering can be divided into natural and mechanical methods. Natural methods include sand drying method and lagoon method. Mechanical methods include vacuum filtration using vacuum suction, Pressure Filter Press, Centrifuges using centrifugal force, Belt Press Filter using Belt pressing pressure, and so on.

본 발명에서는 슬러지 전처리과정을 통해 일반적인 탈수공법을 적용하더라도 효과적으로 탈수가 이루어질 수 있으며, 또한 슬러지 개량제의 투입, 농축과정을 거쳐 탈수율을 극대화시킬 수 있도록 탈수 시스템을 이루고 있으므로, 최종적인 탈수공법에 있어서는 현장 여건에 맞게 자연적인 공법 또는 기계적인 공법을 선정하여 탈수공정을 진행할 수 있다.In the present invention, dehydration can be effected effectively even when a general dewatering method is applied through a sludge pretreatment process, and a dewatering system is provided to maximize a dewatering rate through a process of charging and concentrating a sludge modifying agent. The dehydration process can be carried out by selecting a natural or mechanical method according to the site conditions.

상기 농축기에 맞춘 탈수장치의 구성 예로는, 다중원판형농축기 + BELT PRESS 탈수기로 구성할 수 있다. 즉, BELT PRESS 탈수기 전단에 다중원판형(Disk Type) 농축기를 설치하여, 농축과정을 거쳐 최종적인 탈수를 이룸으로써, 농축기를 사용하기 전과 비교하여 볼 때 유입슬러지의 유량의 증대효과를 가져온다.The constitution of the dewatering device according to the concentrator may be composed of a multi-disk type concentrator + BELT PRESS dehydrator. In other words, a multi-disk type concentrator is installed at the front of the BELT PRESS dehydrator, and the final dehydration is performed through the concentration process, thereby increasing the flow rate of the inflow sludge as compared with before the concentrator is used.

기존 Screw-Press Type의 탈수장치는 중력과 Screw의 압입압력을 이용해서 농축·탈수하는 장치로 응집처리된 슬러지를 Screw 날개의 이송작용에 의하여 배압판쪽으로 이송되어 여러 개의 타공(직경: 0.5~2mm)이 있는 원통의 Screen과 Screw 사이의 단면적이 탈수케익 배출구에 가까울수록 작아져 슬러지는 서서히 보다 큰 압력을 받아 압착되고 출구부 배압판에서 다시 고압으로 압착된 후 배출된다.Conventional Screw-Press type dewatering device is a device that concentrates and dewaterizes by using gravity and press-in pressure of screw, and sludge which is coagulated is conveyed to the back pressure plate by conveying action of Screw wing, The sludge is squeezed with a larger pressure and the sludge is squeezed from the outlet backing plate to the high pressure and then discharged.

탈수 여액은 Screen을 통과해 유출되지만 슬러지 입자가 구멍에 Brige를 형성하기 때문에 Screen 간격보다 작은 입자라도 쉽게 유출되지 않고, 슬러지의 성상·탈수 속도에 따라서 Screw의 회전속도를 0.1~2rpm 정도로 조절할 수 있기 때문에 무리가 없는 탈수가 된다.Since the dehydrated filtrate flows out through the screen but the sludge particles form a brige in the hole, even the particles smaller than the screen interval can not easily flow out, and the speed of the screw can be adjusted to about 0.1 to 2 rpm according to the characteristics and dehydration speed of the sludge Therefore, it becomes dehydration without impossibility.

본 발명에 따른 탈수시스템은 최종적인 탈수단계에서 탈수효율을 극대화시킬 수 있도록 탈수 시스템을 구축함으로써, 기존 방식에 비해 함수율을 최소화하여 슬러지 감량화에 뛰어난 기능성이 있어 산업상 이용가능성이 크다.The dewatering system according to the present invention is industrially applicable because the dewatering system is constructed so as to maximize dewatering efficiency in the final dewatering step, minimizing the water content and minimizing the sludge weight.

1 : 탈수시스템
10: 슬러지전처리부
20: 탈수개량제 주입부
30: 탈수보조제 주입부
40: 슬러지농축부
50: 탈수부
1: Dehydration system
10: sludge pretreatment section
20: Dewatering improving agent injection part
30: dehydrating assistant injection unit
40: sludge thickener
50: dehydration part

Claims (5)

삭제delete 삭제delete 삭제delete 삭제delete 슬러지 전처리단계; 전처리과정을 마친 슬러지에 탈수개량제를 주입하는 단계; 탈수개량제를 주입한 슬러지에 탈수보조제를 주입하는 단계; 슬러지 농축단계; 농축된 슬러지를 탈수하는 단계를 거쳐 이루어지는 슬러지 탈수방법에 있어서,

상기 슬러지 탈수방법은 슬러지에 0.05mg NaOH/mg SS를 주입하여 pH를 11로 만든 후, 온도를 75~85℃로 하여 2~3시간 동안 열·알칼리 병합으로 슬러지를 전처리하는 단계와,
전처리 과정을 마친 슬러지 100중량부에 대하여,
자연건조된 폐굴껍질을 850~950℃의 전기로에 넣고 1.5~2.5시간 동안 소성반응시킨 후, 소성된 폐굴껍질(CWOS)을 방냉시키고, 다음으로 볼밀(ballmill)로 분쇄하여 200mesh인 체로 선별한 다음, 상기 소성시킨 폐굴껍질 분말과 증류수를 1:4 중량비율로 혼합한 후, 5~8시간 동안 가열하여 Ca(OH)2의 형태로 전환하는 폐굴껍질의 수화반응 과정을 거친 후, 상기 수화반응시킨 폐굴껍질 분말과 황토 분말을 6:4~9:1로 혼합하여 제조된 탈수개량제 1~3중량부를 주입하는 단계와,
상기 탈수개량제를 주입한 슬러지 100중량부에 대하여,
증류수로 수회 세척하여 불순물을 제거한 후 24시간 자연건조하고, 자연건조된 폐활성탄을 먼저 Ball Mill로 분쇄한 후, 파쇄한 폐활성탄을 200mesh sieve(75㎛)로 선별하여 통과시키고,
상기 Sieve로 선별된 폐활성탄을 Dry oven 에서 105℃를 유지하면서 24시간 증발건조한 폐활성탄인 탈수보조제 1~1.5중량부를 주입하는 단계와,
농축기를 통해 상기 탈수보조제를 주입한 슬러지에 포함되어 있는 액체의 일부를 제거하고, 고형물질 함유량을 높이는 슬러지 농축단계와,
상기 농축기 후단에 탈수기를 설치하여, 상기 농축된 슬러지를 최종적으로 탈수하는 단계를 거쳐 이루어지는 것임을 특징으로 하는 폐자원을 활용하여 슬러지의 탈수 기능을 향상시키는 탈수방법.
Sludge pretreatment step; Injecting a dewatering agent into the sludge after the pretreatment; Injecting a dehydrating auxiliary agent into the sludge injected with the dehydrating improver; Sludge thickening step; A sludge dewatering method comprising the steps of dewatering concentrated sludge,

The sludge dewatering method comprises the steps of pre-treating the sludge by heat and alkali combination for 2 to 3 hours at a temperature of 75 to 85 ° C by introducing 0.05 mg NaOH / mg SS into the sludge,
With respect to 100 parts by weight of the pretreated sludge,
The naturally dried oyster shells were placed in an electric furnace at 850 to 950 ° C and subjected to a sintering reaction for 1.5 to 2.5 hours. The calcined oyster shells (CWOS) were allowed to cool, followed by ball milling and screening with a 200 mesh sieve , The calcined oyster shell powder and distilled water are mixed at a weight ratio of 1: 4 and then heated for 5 to 8 hours to convert into a form of Ca (OH) 2 , followed by a hydration reaction of the oyster shell, 1 to 3 parts by weight of a dewatering improver prepared by mixing an oyster shell powder and a loess powder in a ratio of 6: 4 to 9: 1;
With respect to 100 parts by weight of the sludge into which the dehydrating and improving agent is injected,
After removing the impurities and drying naturally for 24 hours, the naturally dried waste activated carbon was first pulverized with a ball mill. The pulverized activated carbon was passed through a 200 mesh sieve (75 μm)
Injecting 1 to 1.5 parts by weight of dehydrating assistant, which is waste activated carbon which is evaporated and dried for 24 hours while maintaining 105 ° C in a dry oven;
A sludge concentration step of removing a part of the liquid contained in the sludge injected with the dehydrating auxiliary agent through the concentrator and increasing the solid matter content,
And a dehydrator is installed at a downstream end of the concentrator to finally dehydrate the concentrated sludge, thereby improving the dewatering function of the sludge.
KR1020160033954A 2016-03-22 2016-03-22 Dewatering system for high efficiency of sludge dewatering KR101737994B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160033954A KR101737994B1 (en) 2016-03-22 2016-03-22 Dewatering system for high efficiency of sludge dewatering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160033954A KR101737994B1 (en) 2016-03-22 2016-03-22 Dewatering system for high efficiency of sludge dewatering

Publications (1)

Publication Number Publication Date
KR101737994B1 true KR101737994B1 (en) 2017-05-19

Family

ID=59049340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160033954A KR101737994B1 (en) 2016-03-22 2016-03-22 Dewatering system for high efficiency of sludge dewatering

Country Status (1)

Country Link
KR (1) KR101737994B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107720948A (en) * 2017-10-31 2018-02-23 沧源南华勐省糖业有限公司 A kind of sugar production wastewater CASS activated sludge treatment methods
CN109824243A (en) * 2019-03-26 2019-05-31 盛守祥 A kind of tandem ball milling sludge dehydration device
CN115179413A (en) * 2022-09-09 2022-10-14 山东省聚祥固废应用研究院 System for making bricks by using municipal sludge and production method
CN116813181A (en) * 2023-06-29 2023-09-29 上海申耀环保工程有限公司 Conditioner for high-pressure belt type sludge deep dehydration treatment and preparation process thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
한국상하수도협회. 하수도시설기준. 2011. pp.657, 759-768*

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107720948A (en) * 2017-10-31 2018-02-23 沧源南华勐省糖业有限公司 A kind of sugar production wastewater CASS activated sludge treatment methods
CN109824243A (en) * 2019-03-26 2019-05-31 盛守祥 A kind of tandem ball milling sludge dehydration device
CN115179413A (en) * 2022-09-09 2022-10-14 山东省聚祥固废应用研究院 System for making bricks by using municipal sludge and production method
CN116813181A (en) * 2023-06-29 2023-09-29 上海申耀环保工程有限公司 Conditioner for high-pressure belt type sludge deep dehydration treatment and preparation process thereof

Similar Documents

Publication Publication Date Title
Zhang et al. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective: A review
CN101234841B (en) Sludge concentration dehydration method
KR101737994B1 (en) Dewatering system for high efficiency of sludge dewatering
CN106746200B (en) Advanced treatment system for urban sewage
CN104193127B (en) The treatment process of excess sludge after a kind of biological wastewater treatment
CN101786787A (en) Sludge dewatering integrated process
KR20060059919A (en) The process and operation of using enzymatic pre- treatment of the suspended solids for the anaerobic bioreactor of food wastes using hammer milling and centrifuge
CN102229464A (en) Preparation and method for drying sludge through deep dehydrating
CN104724898B (en) A kind of sludge pretreatment technique
CN102827661A (en) Sludge fuelization treatment process of urban sewage treatment plant
CN104891774A (en) Method for treating sludge by use of polyaluminum chloride and ultrasonic combining technology
CN104743756A (en) Method for recycling sludge with low energy consumption
CN107032567B (en) Method for deodorizing and reducing municipal sludge
KR200425442Y1 (en) The facilities of pre-treatment of food wastes using hammer milling, centrifuge, and enzymatic process
Wacławek et al. Impact of peroxydisulphate on disintegration and sedimentation properties of municipal wastewater activated sludge
CN108751581B (en) Treatment process of biochemical effluent of landfill leachate
CN107032568B (en) Municipal sludge deodorization decrement processing system
CN110002704A (en) A method of beneficiation reagent is prepared using Ball-stirring mill and alkali coupling
JPH11197636A (en) Method for treatment of organic waste
KR101352064B1 (en) Wastewater sludge treating method and apparatus for natural resources reuse
CN104973747A (en) Electro-osmosis sludge dewatering system
CN206428098U (en) A kind of desulfurization sludge deep dehydration and heavy metals immobilization cooperate with processing unit
Zhou et al. Improving primary sludge dewaterability by oxidative conditioning process with ferrous ion-activated peroxymonosulfate
WO2020036542A1 (en) A method for processing of biodegradable wastes and/or mixed wastes with content of biodegradable matter, especially industrial and municipal biodegradable wastes and mixed municipal wastes
CN106517265A (en) Recycling utilization method of biochemical sludge

Legal Events

Date Code Title Description
A201 Request for examination