KR101726288B1 - Method for producing Phenylacetyl homoserine lactone derivatives - Google Patents

Method for producing Phenylacetyl homoserine lactone derivatives Download PDF

Info

Publication number
KR101726288B1
KR101726288B1 KR1020150102958A KR20150102958A KR101726288B1 KR 101726288 B1 KR101726288 B1 KR 101726288B1 KR 1020150102958 A KR1020150102958 A KR 1020150102958A KR 20150102958 A KR20150102958 A KR 20150102958A KR 101726288 B1 KR101726288 B1 KR 101726288B1
Authority
KR
South Korea
Prior art keywords
homoserine lactone
pet
phenylacetyl
gene
acid
Prior art date
Application number
KR1020150102958A
Other languages
Korean (ko)
Other versions
KR20160011170A (en
Inventor
홍영수
강선영
이재경
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of KR20160011170A publication Critical patent/KR20160011170A/en
Application granted granted Critical
Publication of KR101726288B1 publication Critical patent/KR101726288B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/04Oxygen as only ring hetero atoms containing a five-membered hetero ring, e.g. griseofulvin, vitamin C
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01068Caffeate O-methyltransferase (2.1.1.68)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01184Acyl-homoserine-lactone synthase (2.3.1.184)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/01023Tyrosine ammonia-lyase (4.3.1.23)

Abstract

본 발명은 페닐아세틸 호모세린 락톤의 대량 생산 방법에 관한 것이다. 본 발명의 페닐아세틸 호모세린 락톤의 생산 방법은 값싼 배지에서 빠르게 고농도로 배양할 수 있는 장점을 가진 대장균 발현 시스템 및 In vitro 효소 반응과 생전환 시스템을 이용하여 페닐아세틸 호모세린 락톤 유도체의 생산량을 크게 증진시켰는바 페닐아세틸 호모세린 락톤 유도체의 대량 생산에 유용하게 사용할 수 있다. The present invention relates to a method for mass production of phenylacetyl homoserine lactone. The production method of phenylacetyl homoserine lactone according to the present invention is characterized in that the yield of phenylacetyl homoserine lactone derivative is increased by using an E. coli expression system and an in vitro enzyme reaction and biotransformation system which have an advantage of being able to rapidly grow at a high concentration in a low- Which is useful for the mass production of phenylacetyl homoserine lactone derivatives.

Description

페닐아세틸 호모세린 락톤 유도체의 생산 방법 {Method for producing Phenylacetyl homoserine lactone derivatives}[0001] The present invention relates to a method for producing phenylacetyl homoserine lactone derivatives,

본 발명은 페닐아세틸 호모세린 락톤의 생합성을 위한 발현 벡터, 형질전환체 및 이를 이용한 페닐아세틸 호모세린 락톤의 생산 방법에 관한 것이다.
The present invention relates to an expression vector for biosynthesis of phenylacetyl homoserine lactone, a transformant and a method for producing phenylacetyl homoserine lactone using the same.

호모세린 락톤은 미생물 간의 신호전달 물질이며 미생물 간의 상호 정족수 인식 (quorum-sensing signals)에 사용되는 물질로써, 미생물 간의 바이오 필름 형성이나 번식 억제 신호 등으로 사용되고 있다. 예를 들어, 대표적인 호모세린 락톤인 아실 호모세린 락톤 (acyl-homoserine lactone, AHL)은 아실 호모세린 락톤 합성 단백질에 의해 신호전달 물질로 합성된다. 합성된 아실 호모세린 락톤은 세균이 성장하는 과정에서 세포막을 통하여 자유롭게 확산되고, 세포 외부의 환경에 축적된다. 세균의 밀도가 높아져 세포 외부에 축적된 신호전달 물질이 일정 농도에 도달하면, 신호전달 물질은 다시 세포 내로 들어와 조절단백질과 결합하여 특정 유전자의 발현을 촉진함으로써 상기와 같은 바이오 필름 형성이나 번식 억제 신호 작용 등을 일으킨다. 또한 호모세린 락톤은 미생물뿐만 아니라 주변의 식물의 뿌리나 동물의 장내 혹은 피부에서 숙주와의 신호 전달에도 사용되고 있음이 보고되고 있다.Homoserine lactone is a signaling substance between microorganisms. It is a substance used for mutual quorum-sensing signals between microorganisms. It is used as a biofilm between microorganisms and as a signal to suppress propagation. For example, a typical homoserine lactone, acyl-homoserine lactone (AHL), is synthesized as a signal transduction material by an acyl homoserine lactone synthase protein. The synthesized acyl homoserine lactone is freely diffused through the cell membrane during the growth of bacteria and accumulated in the environment outside the cell. When the concentration of the signaling substance accumulated in the outside of the cell reaches a certain concentration due to the increase of the density of the bacteria, the signaling substance enters the cell again and binds to the regulatory protein to promote the expression of the specific gene. And the like. It has also been reported that homoserine lactone is used not only in microorganisms but also in the roots of nearby plants, in the intestines of animals or in the skin and in signal transmission to the host.

이러한 호모 세린 락톤은 균주에 따라 각각 일부 치환기 등이 상이한 다른 구조를 가지고 있으며, 일반적으로 다양한 길이 지질산 (fatty acid)과 결합된 락톤환 구조를 가진다. 최근 광합성 세균인 로도슈도모나스 팔루스트리스(Rhodopseudomonas palustris), 질소고정 토양균인 브레디라이조비움 속(Bradyrhizobium sp.) 또는 실리치박터 포메로이 (Silicibacter pomeroyi) 등에서 특정 페놀산과 락톤 고리가 결합된 새로운 형태의 호모세린 락톤이 생산된다고 보고되고 있다. These homoserine lactones have different structures depending on the strains, such as partial substituents, and generally have a lactone ring structure bonded with various long fatty acids. Recently, a new type of photosynthetic bacterium, Rhodopseudomonas palustris, a nitrogen-fixing soil bacterium Bradyrhizobium sp. Or Silicibacter pomeroyi, and a specific phenolic acid and lactone ring are combined. Homoserine lactone is reported to be produced.

그러나, 일반적인 균주에서는 생존에 적합한 생합성 조절에 따라 이들 화합물의 생산량이 매우 극미하여, 이와 관련된 연구 개발에 있어 관련 화합물의 생산 및 그 이용이 부족한 실정이다. 즉, 호모세린 락톤은 미생물-미생물 간의 상호 조절 물질로써 뿐만 아니라 숙주인 식물 및 동물에서 연구 및 활용도가 높은 물질이나, 일반적인 미생물에 있어서는 상업적 수준으로 물질 생산이 어려워 관련 연구 개발에 어려움이 있다.However, in general strains, production of these compounds is extremely low due to the control of biosynthesis suitable for survival, and production and use of related compounds are lacking in the related research and development. That is, homoserine lactone is a substance that is highly studied and utilized not only as a mutual regulator of microorganisms-microorganisms but also in host plants and animals, but it is difficult to produce materials at a commercial level in general microorganisms.

이러한 배경 하에, 비교적 값싼 배지에서 빠르게 고농도로 배양할 수 있는 장점을 가진 대장균을 이용하여 페놀산과 락톤 고리가 결합된 호모세린 락톤 유도체들을 상업적으로 대량 생산할 수 있는 연구 개발이 필요하다.
Under these circumstances, it is necessary to research and develop commercial production of homoserine lactone derivatives conjugated with phenolic acid and lactone rings using E. coli, which has the advantage of rapidly growing at a high concentration in a relatively inexpensive medium.

대한민국 공개특허 제10-2012-0041115호 (2012.04.30. 공개)Korean Patent Laid-Open No. 10-2012-0041115 (disclosed on April 30, 2012)

본 발명자들은 값싼 배지를 이용하여 유용물질인 페닐아세틸 호모세린 락톤 유도체를 대량 생산하는 방법을 연구하던 중, 코엔자임 에이 라이게이즈 효소, 아실 호모세린 락톤 생합성 효소, 4-쿠마린산 3-수산화효소 Sam5, 카페인산 O-메틸전이효소를 이용하여, 인공 생합성 경로를 통해 페닐아세틸 호모세린 락톤 유도체를 대량 생산할 수 있음을 확인하고 본 발명을 완성하였다. The present inventors have studied a method for mass production of a phenylacetyl homoserine lactone derivative, which is a useful substance, by using an inexpensive medium, and have found that coenzyme Alaase enzyme, acyl homoserine lactone biosynthesis enzyme, 4-coumarinic acid 3- , And caffeic acid O-methyl transferase can be used to mass-produce phenylacetyl homoserine lactone derivatives through an artificial biosynthetic pathway. Thus, the present invention has been completed.

따라서 본 발명의 목적은, 상기 효소를 암호화하는 유전자를 이용하여, 페닐 아세틸 호모세린 생산용 발현 벡터, 형질전환체를 제조하고, 이를 이용한 페닐아세틸 호모세린 락톤 유도체를 생산하기 위한 방법을 제공하는 것이다.
Accordingly, an object of the present invention is to provide a method for producing a phenylacetyl homoserine lactone derivative by preparing an expression vector for producing phenylacetyl homoserine and a transformant using the gene encoding the enzyme, and using the same to produce a phenylacetyl homoserine lactone derivative .

상기와 같은 필요성을 해결하기 위하여, 본 발명은 코엔자임 에이 라이게이즈 효소를 암호화하는 유전자(4CL2nt), 아실 호모세린 락톤 생합성 효소를 암호화하는 유전자 (opRpaI) 를 포함하는 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. In order to solve the above-mentioned necessity, the present invention relates to a method for producing phenylacetyl homoserine lactone (hereinafter, referred to as " expression vector ") for producing phenylacetyl homoserine lactone, which comprises a gene (4CL2nt) encoding a coenzyme A ligation enzyme and a gene (opRpaI) encoding an acyl homoserine lactone biosynthesis enzyme Lt; / RTI >

또한 본 발명은 상기 발현 벡터에 티로신 암모니아 리아제를 암호화하는 유전자(opTAL)를 더 포함하는, 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. The present invention also provides an expression vector for producing phenylacetyl homoserine lactone, which further comprises a gene (opTAL) encoding the tyrosine ammonia lyase in the expression vector.

또한 본 발명은 상기 발현 벡터에 4-쿠마린산 3-수산화효소 Sam5 암호화 유전자(sam5)를 더 포함하는, 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. The present invention further provides an expression vector for producing phenylacetyl homoserine lactone, which further comprises a 4-coumarinic acid 3-hydroxylase Sam5 coding gene (sam5) in the above expression vector.

또한 본 발명은 카페인산 O-메틸전이효소 (Caffeic acid O-methyltransferase, COMT)를 암호화하는 com 유전자를 더 포함하는 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. The present invention also provides an expression vector for producing phenylacetyl homoserine lactone further comprising a com gene encoding caffeic acid O-methyltransferase (COMT).

또한 본 발명은 상기 발현 벡터가 도입된 페닐아세틸 호모세린 락톤 생산용 형질 전환체를 제공한다. The present invention also provides a transformant for the production of phenylacetyl homoserine lactone wherein the expression vector is introduced.

또한 본 발명은 상기 형질전환체가 티로신 고생산 변이 균주인 것을 특징으로 하는 형질전환체를 제공한다. The present invention also provides a transformant characterized in that the transformant is a mutant strain of tyrosine production.

또한 본 발명은 1) 상기 형질전환체를 배양 배지에서 배양하는 단계; 및 2) 상기 1) 단계의 배양액으로부터 페닐아세틸 호모세린 락톤을 수득하는 단계; 를 포함하는 페닐아세틸 호모세린 락톤 생산 방법을 제공한다. The present invention also provides a method for producing a transformant, comprising: 1) culturing the transformant in a culture medium; And 2) obtaining phenylacetyl homoserine lactone from the culture broth of step 1); And a method for producing phenylacetyl homoserine lactone.

또한 본 발명은 상기 1) 단계의 배양 배지에 페놀산을 첨가하는 것을 특징으로 하는 페닐아세틸 호모세린 락톤 생산 방법을 제공한다. The present invention also provides a method for producing phenylacetyl homoserine lactone, which comprises adding phenolic acid to the culture medium of step 1).

또한 본 발명은 상기 1) 단계의 배양 배지에 메티오닌 (methionine) 또는 S-아데노실-메티오닌(S-Adenosyl methionine; SAM)을 첨가하는 것을 특징으로 하는, 페닐아세틸 호모세린 락톤 생산 방법을 제공한다. The present invention also provides a method for producing phenylacetyl homoserine lactone, wherein methionine or S-adenosyl methionine (SAM) is added to the culture medium of step 1).

또한 본 발명은 (1) 코엔자임 에이 라이게이즈 효소 및 아실 호모세린 락톤 생합성 효소를 페놀산에 처리하는 단계; (2) 상기 (1) 단계의 처리액을 배양하는 단계; 및 (3) 상기 (2) 단계의 배양액에서 페닐 아세틸 호모세린 락톤 유도체를 수득하는 단계를 포함하는 페닐 아세틸 호모세린 락톤 유도체를 생산하는 방법을 제공한다.
The present invention also relates to a method for producing (1) a process for treating a coenzyme A ligation enzyme and an acyl homoserine lactone biosynthesis enzyme to a phenolic acid; (2) culturing the treatment liquid of step (1); And (3) obtaining a phenylacetyl homoserine lactone derivative in the culture broth of step (2).

본 발명의 페닐아세틸 호모세린 락톤 유도체의 생산 방법은 값싼 배지에서 빠르게 고농도로 배양할 수 있는 장점을 가진 대장균 발현 시스템과 In vitro 효소반응과 생물전환을 이용하여 페닐아세틸 호모세린 락톤 유도체의 생산량을 크게 증진시켰으므로, 페닐아세틸 호모세린 락톤 유도체의 대량 생산에 유용하게 사용할 수 있다.
The production method of the phenylacetyl homoserine lactone derivative of the present invention is advantageous in that the yield of the phenylacetyl homoserine lactone derivative can be increased by using an E. coli expression system having an advantage that it can be rapidly cultured at a high concentration in an inexpensive medium, And thus can be usefully used for the mass production of phenylacetyl homoserine lactone derivatives.

도 1은 pET28a(+) 벡터의 NdeI/XhoI 위치에 opRpaI 유전자를 삽입한 opRpaI 발현 벡터 (pET-opRpaI) 및 pET28a(+) 벡터의 NdeI/XhoI 위치에 4CL2nt 유전자를 삽입한 4CL2nt 발현 벡터 (pET-his4CL2nt)의 모식도를 나타낸다.
도 2는 정제된 His-tagged opRpaI 효소(26.7 kDa) 및 정제된 His-tagged 4CL2nt 효소(61.5 kDa)를 SDS-PAGE를 통해 확인한 결과를 나타낸다.
도 3은 분리된 opRpaI 효소와 코엔자임 에이 라이게이즈 효소(4CL2nt)의 4-쿠마린산 기질과 효소 반응 결과를 HPLC 및 LC/MS로 분석한 결과를 나타낸다.
도 4는 분리된 opRpaI 효소와 코엔자임 에이 라이게이즈 효소(4CL2nt)의 카페인산 기질과 효소 반응 결과를 HPLC 및 LC/MS로 분석한 결과를 나타낸다.
도 5는 분리된 opRpaI 효소와 코엔자임 에이 라이게이즈 효소(4CL2nt)의 페룰린산 기질과 효소 반응 결과를 HPLC 및 LC/MS로 분석한 결과를 나타낸다.
도 6은 분리된 opRpaI 효소와 코엔자임 에이 라이게이즈 효소 (4CL2nt)의 신나믹 산 기질과 효소 반응 결과를 HPLC 및 LC/MS로 분석한 결과를 나타낸다.
도 7은 코엔자임 에이 라이게이즈 효소 (4CL2nt) 및 opRpaI 유전자를 함유하는 페닐아세틸 호모세린 락톤 생산을 위한 생산용 벡터 (pET-4R)의 모식도를 나타낸다.
도 8은 페닐 아세틸 호모세린 락톤 생산을 위한 벡터 (pET-4R)을 포함하는 대장균에서 페놀산을 각각 첨가에 의한 각각의 페닐아세틸 호모세린 락톤 생산 결과를 HPLC로 분석한 결과를 나타낸다.
A) 신나믹 산 표준품 (a) 과 신나믹산 첨가 배양액 (b); B) 4-쿠마린 산 표준품 (a) 과 4-쿠마린 산 첨가 배양액 (b); C) 카페인 산 표준품 (a) 과 카페인 산 첨가 배양액 (b); D) 페룰린 산 표준품 (a) 과 페룰린 산 첨가 배양액 (b);
Peak 1, 신나믹산; peak 2, p-쿠마린산; peak 3, 카페인산; peak 4, 페룰린산; peak 5, 신나모일-호모세린 락톤; peak 6, p-쿠마로일-HSL; peak 7, 카페오일-호모세린락톤; peak 8, 페루로일-호모세린락톤.
도 9은 티로신 암모니아 리아제(opTAL), 코엔자임 에이 라이게이즈 효소 (4CL2nt) 및 opRpaI 유전자를 함유하는 4-쿠마로일-호모세린 락톤 (4-coumaryol-HSL) 생산용 인공대사경로 벡터 (pET-opT4R)의 모식도를 나타낸다.
도 10은 인공대사경로 벡터 (pET-opT4R)을 포함하는 대장균에서 생산한 4-쿠마로일-호모세린 락톤 (4-coumaryol-HSL)의 HPLC 분석 결과를 나타낸다(*: 쿠마로일-호모세린 락톤).
도 11 은 티로신 암모니아 리아제(opTAL), 4-쿠마린산 3-수산화효소 Sam5 암호화 유전자(sam 5), 코엔자임 에이 라이게이즈 효소 (4CL2nt) 및 opRpaI 유전자를 함유하는 인공대사경로 벡터 (pET-opT54R)의 모식도를 나타낸다.
도 12는 벡터 pET-opT54R을 포함하는 대장균에서 카페오일-호모세린 락톤 (caffeoyl?HSL) 생산 결과를 HPLC로 분석한 결과를 나타낸다 (*: 카페오일 호모세린 락톤).
도 13는 티로신 암모니아 리아제(opTAL), 4-쿠마린산 3-수산화효소 Sam5 암호화 유전자(sam 5), 코엔자임 에이 라이게이즈 효소 (4CL2nt), 카페인산 O-메틸전이효소 (Caffeic acid O-methyltransferase, COMT)를 암호화하는 com 유전자 및 opRpaI 유전자를 함유하는 인공대사경로 벡터 (pET-opT54MR)의 모식도를 나타낸다.
도 14은 벡터 pET-opT54MR을 포함하는 대장균에서 페루로일-호모세린 락톤 (Feruloyl?HSL) 생산 결과를 HPLC로 분석한 결과를 나타낸다 (*:페루로일 호모세린 락톤).
도 15는 pET-opT4R, pET-opT54R, pET-opT54MR를 포함하는 대장균의 배양 시간에 따른 페닐 아세틸 호모세린 락톤 유도체들의 생산량을 확인한 결과를 나타낸 도이다.
도 16은 벡터 pET-opT4R을 포함하는 일반 대장균 균주 (pET-opT4R/C41) 또는 티로신 고생산 균주(pET-opT4R/△COS1) 에서의 4-쿠마로일-호모세린락톤의 생산을 HPLC로 분석한 결과를 나타낸 도이다.
도 17은 pET-opT4R을 포함하는 일반 대장균 균주 (pET-opT4R/C41) 또는 티로신 고생산 균주(pET-opT4R/△COS1)를 배양하거나 이의 배양 배지에 Met (메티오닌) (pET-opT4R/△COS1+Met) 또는 SAM(S-아데노실 메티오닌)(pET-opT4R /△COS1+SAM) 을 첨가하여 배양한 후, 쿠마로일-호모세린 락톤(p-coumaryol-HSL)의 생산량을 확인한 결과를 나타낸 도이다.
도 18는 pET-opT54R을 포함하는 일반 대장균 균주 (pET-opT54R/C41) 또는 티로신 고생산 균주(pET-opT54R/△COS1)를 배양하거나 이의 배양 배지에 Met (메티오닌)(pET-opT54R/△COS1+Met) 또는 SAM(S-Adenosyl methionine) (pET-opT54R/△COS1+SAM)를 첨가하여 배양한 후, 카페오일-호모세린 락톤(Caffeoyl -HSL)의 생산량을 확인한 결과를 나타낸 도이다.
도 19는 pET-opT54MR을 포함하는 일반 대장균 균주 (pET-opT54MR/C41) 또는 티로신 고생산 균주(pET-opT54MR/△COS1)를 배양하거나 이의 배양 배지에 Met (메티오닌)(pET-opT54MR/△COS1+Met) 또는 SAM(S-Adenosyl methionine) (pET-opT54MR/△COS1+SAM)를 첨가하여 배양한 후, 페루로일-호모세린 락톤(Feruloy-HSL)의 생산량을 확인한 결과를 나타낸 도이다.
FIG. 1 is a graph showing the effect of the 4R2nt expression vector (pET-opRpaI) inserted with the opRpaI gene at the NdeI / XhoI site of the pET28a (+) vector and the 4CL2nt gene inserted at the NdeI / XhoI site of the pET28a (+ his4CL2nt. < / RTI >
Figure 2 shows the results of SDS-PAGE analysis of purified His-tagged opRpaI enzyme (26.7 kDa) and purified His-tagged 4CL2nt enzyme (61.5 kDa).
FIG. 3 shows the results of HPLC and LC / MS analysis of 4-coumarinic acid substrate and enzyme reaction results of the separated opRpaI enzyme and coenzyme A ligation enzyme (4CL2nt).
FIG. 4 shows the results of analysis of caffeic acid substrate and enzyme reaction results of the separated opRpaI enzyme and coenzyme A ligation enzyme (4CL2nt) by HPLC and LC / MS.
FIG. 5 shows the results of analysis of ferulic acid substrate and enzyme reaction results of the separated opRpaI enzyme and coenzyme A ligation enzyme (4CL2nt) by HPLC and LC / MS.
FIG. 6 shows the results of analysis of the results of the reninamic acid substrate and enzyme reaction of the separated opRpaI enzyme and coenzyme A ligation enzyme (4CL2nt) by HPLC and LC / MS.
7 shows a schematic diagram of a production vector (pET-4R) for producing phenylacetyl homoserine lactone containing the coenzyme A ligation enzyme (4CL2nt) and the opRpaI gene.
FIG. 8 shows the results of HPLC analysis of the production yield of each phenylacetyl homoserine lactone by the addition of phenolic acid in E. coli containing the vector (pET-4R) for the production of phenylacetyl homoserine lactone.
A) Cinnamic acid standard (a) and cinnamic acid-added culture (b); B) 4-coumarinic acid standard product (a) and 4-coumaric acid addition culture solution (b); C) Standard product of caffeic acid (a) and culture solution of caffeic acid (b); D) ferulic acid standard (a) and ferulic acid supplemented culture (b);
Peak 1, cinnamic acid; peak 2, p-coumaric acid; peak 3, caffeic acid; peak 4, ferulic acid; peak 5, cinnamoyl-homoserine lactone; peak 6, p-coumaroyl-HSL; peak 7, caffeine-homoserine lactone; peak 8, peruroyl-homoserine lactone.
9 is a graph showing the results of an artificial metabolic pathway vector (pET-1) for producing 4-coumararyol-HSL containing tyrosine ammonia lyase (opTAL), coenzyme A ligation enzyme (4CL2nt) opT4R).
10 shows the results of HPLC analysis of 4-coumararyol-HSL produced in E. coli containing an artificial metabolic pathway vector (pET-opT4R) (*: coumaroyl-homoserine Lactone).
Fig. 11 shows an artificial metabolic pathway vector (pET-opT54R) containing tyrosine ammonia lyase (opTAL), 4-coumarinic acid 3-hydroxylase Sam5 coding gene (co5), coenzyme A ligation enzyme (4CL2nt) Fig.
12 shows the results of HPLC analysis of caffeoyl-HSL production results in E. coli containing the vector pET-opT54R (*: caffeoyl homoserine lactone).
FIG. 13 is a graph showing the activity of tyrosine ammonia lyase (opTAL), 4-coumarinic acid 3-hydroxylase Sam5 coding gene (co5), coenzyme Alaease enzyme (4CL2nt), caffeic acid O- methyltransferase (PET-opT54MR) containing the com gene and the opRpaI gene which encode the COMT gene.
Fig. 14 shows the results of HPLC analysis of feruloyl-HSL production results in E. coli containing the vector pET-opT54MR (*: peroyl homoserine lactone).
FIG. 15 shows the results of confirming the production yields of phenylacetyl homoserine lactone derivatives according to the incubation time of E. coli including pET-opT4R, pET-opT54R and pET-opT54MR.
Figure 16 shows the production of 4-coumaroyl-homoserine lactone in a general E. coli strain (pET-opT4R / C41) or tyrosine high producing strain (pET-opT4R /? COS1) containing the vector pET- Fig.
FIG. 17 is a graph showing the results of culturing a general Escherichia coli strain (pET-opT4R / C41) or a tyrosine high producing strain (pET-opT4R /? COS1) containing pET-opT4R or Met (methionine) (pET-opT4R /? COS1 (PET-opT4R /? COS1 + SAM) and SAM (S-adenosylmethionine) (pET-opT4R /? COS1 + SAM) were added and the amount of p-coumaryol-HSL .
18 shows the results of culturing a general E. coli strain (pET-opT54R / C41) containing pET-opT54R or tyrosine-producing strain (pET-opT54R /? COS1) or Met (methionine) (pET-opT54R / + Met) or SAM (S-Adenosyl methionine) (pET-opT54R / DELTA COS1 + SAM) and then cultured, and then the yield of caffeoyl-HSL was determined.
Fig. 19 shows the results of culturing a general E. coli strain (pET-opT54MR / C41) or tyrosine-producing strain (pET-opT54MR /? COS1) containing pET-opT54MR or Met (methionine) (pET-opT54MR / -Met) or SAM (S-Adenosyl methionine) (pET-opT54MR /? COS1 + SAM) and then cultured.

본 발명은 코엔자임 에이 라이게이즈(Coenzyme A ligase) 효소를 암호화하는 유전자(4CL2nt), 아실 호모세린 락톤(acyl-homoserine lactone) 생합성 효소를 암호화하는 유전자 (opRpaI) 를 포함하는 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다.
The present invention relates to a method for producing phenylacetyl homoserine lactone comprising a gene (4CL2nt) encoding a Coenzyme A ligase enzyme and a gene (opRpaI) encoding an acyl-homoserine lactone biosynthesis enzyme Lt; / RTI > expression vector.

본 발명의 페닐아세틸 호모세린 락톤 생산용 발현 벡터는 생물 전환 및 유전자 재조합에 따른 인공 대사 경로를 통하여 일련의 대사 과정이 수행되게 함으로써 페닐아세틸 호모세린 락톤을 대량으로 생산할 수 있다. The expression vector for the production of phenylacetyl homoserine lactone of the present invention can produce a large amount of phenylacetyl homoserine lactone by performing a series of metabolic processes through an artificial metabolic pathway by bioconversion and gene recombination.

본 발명의 페닐아세틸 호모세린 락톤은 하기 화학식 1의 화합물을 의미하며, 여기에서 Ra는 수소, 메톡시 또는 하이드록시이며, 및 Rb는 수소, 메톡시 또는 하이드록시이다. The phenylacetyl homoserine lactone of the present invention means a compound of formula 1 wherein Ra is hydrogen, methoxy or hydroxy, and Rb is hydrogen, methoxy or hydroxy.

[화학식 1][Chemical Formula 1]

Figure 112015070645530-pat00001
Figure 112015070645530-pat00001

상기 아실 호모세린 락톤 생합성 효소를 암호화하는 유전자는 로도슈도모나스 팔루스트리스 (Rhodopseudomonas palustris)의 아실호모세린 락톤 생합성 효소 (RpaI)의 아미노산 서열(서열번호 1)을 토대로 대장균에서 아미노산 서열 각각에 대한 tRNA 비율에 따른 최적의 코돈 사용빈도 (codon usage)를 사용하여 제조되는 유전자이다. 본 발명의 일 실시태양에 따르면, 코돈 사용 빈도는 카즈사 데이터 베이스(kazusa database; http://www.kazusa.or.jp)에서 제공하는 코돈 사용빈도를 사용할 수 있다. 상기 유전자는 대장균 발현에 최적화된 염기서열을 가지며, 바람직하게는 서열번호 2로 표시되는 폴리뉴클레오티드, 또는 이와 기능적으로 동등한 성질을 가지며, 서열번호 2의 염기 서열과 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 상동성을 가지는 폴리뉴클레오티드 서열일 수 있다. The gene coding for the acyl homoserine lactone biosynthesis enzyme is a gene encoding the acyl homoserine lactone biosynthetic enzyme expressed by the ratio of tRNA to amino acid sequence in each of the amino acid sequences in E. coli based on the amino acid sequence (SEQ ID NO: 1) of the acyl homoserine lactone biosynthesis enzyme (RpaI) of Rhodopseudomonas palustris (Codon usage). ≪ / RTI > According to one embodiment of the present invention, the codon usage frequency can be the codon usage frequency provided in the kazusa database (http://www.kazusa.or.jp). The gene has a nucleotide sequence optimized for E. coli expression, and preferably has a polynucleotide represented by SEQ ID NO: 2, or a functionally equivalent property, and has a nucleotide sequence of 90%, 91%, 92% 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of the nucleotide sequence.

따라서, 본 발명은 상기 아실 호모세린 락톤 생합성 효소가 서열번호 2로 표시되는 폴리뉴클레오티드에 의해 코딩되는 것인, 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. Accordingly, the present invention provides an expression vector for producing phenylacetyl homoserine lactone, wherein the acyl homoserine lactone biosynthesis enzyme is encoded by the polynucleotide represented by SEQ ID NO: 2.

상기 코엔자임 에이 라이게이즈 효소를 암호화하는 유전자는 담배(Nicotiana tabacum)의 4-쿠마로일 코엔자임 A (4CL2)의 아미노산 서열(서열번호 3)을 토대로 대장균에서 아미노산 서열 각각에 대한 tRNA 비율에 따른 최적의 코돈 사용빈도 (codon usage)를 사용하여 제조될 수 있다. 대장균 발현 시스템에서 유전자 발현 향상을 위해 (주)바이오니아에 의뢰하여 대장균 발현 최적화 시스템을 통해 코돈 사용빈도 (codon usage)는 결정하였다. 본 발명의 일 실시태양에 따르면, 코돈 사용 빈도는 카즈사 데이터 베이스(kazusa database; http://www.kazusa.or.jp)에서 제공하는 코돈 사용빈도를 사용할 수 있다. 상기 유전자는 대장균 발현에 최적화된 염기서열을 가지며, 바람직하게는 서열번호 4로 표시되는 폴리뉴클레오티드, 또는 이와 기능적으로 동등한 성질을 가지며, 서열번호 4의 염기 서열과 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 상동성을 가지는 폴리뉴클레오티드 서열일 수 있다. The gene coding for the coenzyme A ligation enzyme is selected from the amino acid sequence (SEQ ID NO: 3) of 4-coumaroyl coenzyme A (4CL2) of tobacco (Nicotiana tabacum) Lt; RTI ID = 0.0 > codon usage. ≪ / RTI > In order to improve the expression of genes in the E. coli expression system, the codon usage was determined through an optimization system of E. coli expression by Biona Co., According to one embodiment of the present invention, the codon usage frequency can be the codon usage frequency provided in the kazusa database (http://www.kazusa.or.jp). The gene has a nucleotide sequence optimized for E. coli expression, and preferably has a polynucleotide represented by SEQ ID NO: 4 or a functionally equivalent property. The gene has 90%, 91%, 92% 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of the nucleotide sequence.

따라서, 본 발명은 상기 코엔자임 에이 라이게이즈 효소가 서열번호 4로 표시되는 폴리뉴클레오티드에 의해 코딩되는 것인, 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다.
Thus, the present invention provides an expression vector for producing phenylacetyl homoserine lactone, wherein said coenzyme A ligation enzyme is encoded by a polynucleotide represented by SEQ ID NO: 4.

또한 본 발명은 코엔자임 에이 라이게이즈 효소를 암호화하는 유전자(4CL2nt), 아실 호모세린 락톤 생합성 효소를 암호화하는 유전자 (opRpaI) 및 티로신 암모니아 리아제(tyrosine ammonia lyase)를 암호화하는 유전자(opTAL)를 포함하는 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. The present invention also relates to a gene encoding a coenzyme A ligation enzyme (4CL2nt), a gene coding for an acyl homoserine lactone biosynthesis enzyme (opRpaI), and a gene coding for tyrosine ammonia lyase (opTAL) Thereby providing an expression vector for producing phenylacetyl homoserine lactone.

본 발명의 일 구현예에서 상기 발현벡터의 유전자는 opTAL-4CL2nt-opRpaI 순서로 순차적으로 연결되는 것이 바람직하며, 본 발명에서는 이를 pET-opT4R 벡터로 명명하였다. In one embodiment of the present invention, the genes of the expression vector are preferably sequentially linked in the order of opTAL-4CL2nt-opRpaI, and they are referred to as pET-opT4R vectors in the present invention.

상기 티로신 암모니아 리아제를 암호화하는 유전자는 티로신(Tyrosine)을 4-쿠마릭산(4-coumaric acid)으로 변환하는 방선균 Saccharothrix espanaensis (KCTC9392)에서 확인된 티로신 암모니아 리아제(TAL)의 아미노산 서열을 기초로 하여, 대장균에서 각각의 아미노산에 대한 tRNA 비율에 따른 최적의 코돈 사용빈도(codon usage)를 사용하여 제조될 수 있다. 상기 유전자는 대장균 발현에 최적화된 서열을 가지며, 바람직하게는 서열번호 5로 표시되는 폴리뉴클레오티드, 또는 이와 기능적으로 동등한 성질을 가지며, 서열번호 5의 염기 서열과 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 상동성을 가지는 폴리뉴클레오티드 서열일 수 있다. The gene encoding the tyrosine ammonia lyase is based on the amino acid sequence of tyrosine ammonia lyase (TAL) identified in the actinomycetes Saccharothrix espanaensis (KCTC9392) which converts tyrosine into 4-coumaric acid, Can be produced using optimal codon usage according to the ratio of tRNA to each amino acid in E. coli. The gene has a sequence optimized for E. coli expression, and preferably has a polynucleotide of SEQ ID NO: 5, or a functionally equivalent property thereof, and is selected from the group consisting of 90%, 91%, 92%, 93 , 94%, 95%, 96%, 97%, 98%, 99% or more of the nucleotide sequence of the polynucleotide sequence.

따라서, 본 발명은 상기 티로신 암모니아 리아제가 서열번호 5로 표시되는 폴리뉴클레오티드에 의해 코딩되는 것인, 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. Accordingly, the present invention provides an expression vector for producing phenylacetyl homoserine lactone, wherein said tyrosine ammonia ligase is encoded by the polynucleotide of SEQ ID NO: 5.

상기 pET-opT4R 벡터로 명명된 벡터는 인공대사 경로를 통해 페닐아세틸 호모세린 락톤, 바람직하게는 쿠마로일-호모세린 락톤을 효과적으로 생산할 수 있다. The vector named pET-opT4R vector can effectively produce phenylacetyl homoserine lactone, preferably coumaroyl-homoserine lactone, through an artificial metabolic pathway.

또한 본 발명은 코엔자임 에이 라이게이즈 효소를 암호화하는 유전자(4CL2nt), 아실 호모세린 락톤 생합성 효소를 암호화하는 유전자 (opRpaI), 티로신 암모니아 리아제를 암호화하는 유전자(opTAL) 및 4-쿠마린산 3-수산화효소 Sam5(4-coumarate 3-hydroxylase Sam5) 암호화 유전자(sam 5) 를 포함하는 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. The present invention also relates to a gene encoding a coenzyme A ligation enzyme (4CL2nt), a gene coding for an acyl homoserine lactone biosynthesis enzyme (opRpaI), a gene encoding opioids such as tyrosine ammonia lyase (opTAL) And an expression vector for the production of phenylacetyl homoserine lactone comprising the enzyme Sam5 (4-coumarate 3-hydroxylase Sam5) encoding gene (sam 5).

본 발명의 일 구현예에서 상기 발현벡터의 유전자는 opTAL-Sam5-4CL2nt-opRpaI 순서로 순차적으로 연결되는 것이 바람직하며, 본 발명에서는 이를 pET-opT54R 벡터로 명명하였다. In one embodiment of the present invention, the genes of the expression vector are preferably sequentially linked in the order of opTAL-Sam5-4CL2nt-opRpaI, and in the present invention, they are named pET-opT54R vector.

상기 4-쿠마린산 3-수산화효소 Sam5 암호화 유전자는 4-쿠마린산을 카페인산으로 변환하는 사카로트릭스 에스파낸시스(Saccharothrix espanaensis)에서 확인된 4-쿠마린산 3-수산화효소 Sam5 로부터 합성된 유전자일 수 있으며, 바람직하게는 서열번호 15로 표시되는 폴리뉴클레오티드, 또는 이와 기능적으로 동등한 성질을 가지며, 서열번호 15의 염기 서열과 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 상동성을 가지는 폴리뉴클레오티드 서열일 수 있다. The 4-coumarinic acid 3-hydroxylase Sam5 coding gene is a gene that is synthesized from 4-coumarinic acid 3-hydroxylase Sam5 identified in Saccharothrix espanaensis, which converts 4-coumarinic acid into caffeic acid. 15, preferably 90%, 91%, 92%, 93%, 94%, 95%, 96% or more of the polynucleotide of SEQ ID NO: 15 or a functionally equivalent property thereof. , 97%, 98%, 99% or more of the nucleotide sequence of the polynucleotide sequence.

따라서, 본 발명은 상기 4-쿠마린산 3-수산화효소 Sam5 암호화 유전자가 서열번호 15로 표시되는 폴리뉴클레오티드인, 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. Accordingly, the present invention provides an expression vector for producing phenylacetyl homoserine lactone, wherein the 4-coumarinic acid 3-hydroxylase Sam5 coding gene is a polynucleotide represented by SEQ ID NO: 15.

상기 pET-opT54R 벡터로 명명된 벡터는 인공대사 경로를 통해 페닐아세틸 호모세린 락톤, 바람직하게는 카페오일-호모세린 락톤을 효과적으로 생산할 수 있다.
The vector named pET-opT54R vector can effectively produce phenylacetyl homoserine lactone, preferably caffeoyl-homoserine lactone, through an artificial metabolic pathway.

또한 본 발명은 코엔자임 에이 라이게이즈 효소를 암호화하는 유전자(4CL2nt), 아실 호모세린 락톤 생합성 효소를 암호화하는 유전자 (opRpaI), 티로신 암모니아 리아제를 암호화하는 유전자(opTAL), 4-쿠마린산 3-수산화효소 Sam5 암호화 유전자(sam 5) 및 카페인산 O-메틸전이효소 (Caffeic acid O-methyltransferase, COMT)를 암호화하는 com 유전자를 포함하는 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. The present invention also relates to a gene encoding a coenzyme A ligation enzyme (4CL2nt), a gene encoding an acyl homoserine lactone biosynthetic enzyme (opRpaI), a gene encoding a tyrosine ammonia lyase (opTAL) There is provided an expression vector for producing phenylacetyl homoserine lactone comprising a com gene encoding the enzyme Sam5 coding gene (sam 5) and caffeic acid O-methyltransferase (COMT).

본 발명의 일 구현예에서 상기 발현벡터의 유전자는 opTAL-Sam5-4CL2nt-com-opRpaI 순서로 순차적으로 연결되는 것이 바람직하며, 본 발명에서는 이를 pET-opT54MR 벡터로 명명하였다. In one embodiment of the present invention, the genes of the expression vector are preferably sequentially connected in the order of opTAL-Sam5-4CL2nt-com-opRpaI, and in the present invention, they are named pET-opT54MR vector.

상기 카페인산 O-메틸전이효소 (Caffeic acid O-methyltransferase, COMT)를 암호화하는 com 는 카페인산을 페룰린산 (ferulic acid)으로 변환하는 아라비돕시스 탈리아나(Arabidopsis thaliana)에서 확인된 카페인산 O-메틸전이효소 (Caffeic acid O-methyltransferase, COMT)로부터 합성된 유전자일 수 있으며, 바람직하게는 서열번호 17로 표시되는 폴리뉴클레오티드, 또는 이와 기능적으로 동등한 성질을 가지며, 서열번호 17의 염기 서열과 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 상동성을 가지는 폴리뉴클레오티드 서열일 수 있다. Com, which encodes the caffeic acid O-methyltransferase (COMT), is an O-methyltransferase of caffeic acid identified in Arabidopsis thaliana, which converts caffeic acid to ferulic acid 17, and preferably has a polynucleotide represented by SEQ ID NO: 17, or a polynucleotide having a functionally equivalent property thereto, and has 90% or 91% sequence identity with the nucleotide sequence of SEQ ID NO: 17, , 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence homology.

따라서, 본 발명은 상기 카페인산 O-메틸전이효소 (Caffeic acid O-methyltransferase, COMT)를 암호화하는 com 유전자가 서열번호 17로 표시되는 폴리뉴클레오티드인, 페닐아세틸 호모세린 락톤 생산용 발현 벡터를 제공한다. Accordingly, the present invention provides an expression vector for producing phenylacetyl homoserine lactone, wherein the com gene encoding the caffeic acid O-methyltransferase (COMT) is a polynucleotide represented by SEQ ID NO: 17 .

상기 pET-opT54MR 벡터로 명명된 벡터는 인공대사 경로를 통해 페닐아세틸 호모세린 락톤, 바람직하게는 페루로일-호모세린 락톤을 효과적으로 생산할 수 있다.
The vector named pET-opT54MR vector can effectively produce phenylacetyl homoserine lactone, preferably perroyl-homoserine lactone, through an artificial metabolic pathway.

본 발명에 있어서, 페닐아세틸 호모세린 락톤은 이의 유사체를 제한없이 포함할 수 있으며, 바람직하게는 하기 화학식 2 내지 화학식 5의 화합물 중 어느 하나로 표시되는 쿠마로일 호모세린 락톤, 카페오일-호모세린 락톤, 페루로일-호모세린 락톤 및 신나모일 호모세린 락톤으로 이루어진 군에서 선택된 1종 이상일 수 있다: In the present invention, the phenylacetyl homoserine lactone may include any of its analogs without limitation, and preferably is selected from the group consisting of coumaro homoserine lactone represented by any of the following Chemical Formulas 2 to 5, caffeoyl-homoserine lactone , Perroyl-homoserine lactone, and cinnamoyl homoserine lactone.

[화학식 2](2)

Figure 112015070645530-pat00002

Figure 112015070645530-pat00002

[화학식 3](3)

Figure 112015070645530-pat00003
Figure 112015070645530-pat00003

[화학식 4][Chemical Formula 4]

Figure 112015070645530-pat00004
Figure 112015070645530-pat00004

[화학식 5][Chemical Formula 5]

Figure 112015070645530-pat00005
Figure 112015070645530-pat00005

상기 화학식 2는 4-쿠마로일-호모세린 락톤이며, 상기 화학식 3은 카페오일-호모세린 락톤이며, 상기 화학식 4는 페루로일-호모세린 락톤이며, 상기 화학식 5는 신나모일-호모세린 락톤이다.
(3) is caffeoyl-homoserine lactone, (4) is peryloyl-homoserine lactone, and (5) is cinnamoyl-homoserine lactone to be.

본 발명의 발현 벡터는 당업계에 알려진 벡터 재조합 방법에 따라 제조될 수 있다. 본 발명에서 사용될 수 있는 발현 벡터는 바람직하게 원핵세포 또는 진핵세포에서 외래단백질을 발현시키기 위해 사용되는 것이라면 어떤 것이라도 사용 가능하다. 원핵세포용 재조합 벡터가 바람직하고, 진핵세포용 재조합 벡터의 경우, 효모용 곤충용 또는 포유 동물 세포용 재조합 벡터의 사용이 가능하나 효모용 재조합 벡터를 사용하는 것이 바람직하다. 상업적으로 이용 가능한 원핵세포용 벡터로는 pET 벡터(Novagen, Inc., USA), pQE 벡터(Qiagen, USA) 및 pGEX(Pharmacia Biotech Inc., USA) 등이 존재하나 이에 제한되는 것은 아니고, 상업적으로 이용가능한 진핵세포용 발현벡터로는 pCI Neo(Promega, USA), pMAMneo(Clontech, USA), pcDNA3(InVitrogen, USA), pMClneo(Stratagene, USA), pXT1(Stratagene, USA), pSG5(Stratagene, USA), EBO-pSV2-neo(ATCC 37593), pBPV-1(8-2)(ATCC 37110), pdBPV-MMTneo (342-12)(ATCC 37224), pRSVgpt(ATCC 37199), pRSVneo(ATCC 37198), pSV2-dhfr(ATCC 37146), pUCTag(ATCC 37460) 및 lZD35(ATCC 37565) 등 일 수 있으며, 독립적으로 발현 조절을 받을 수 있도록 프로모터 및 터미네이터를 포함할 수 있다.
The expression vector of the present invention can be produced according to a vector recombinant method known in the art. Any expression vector that can be used in the present invention can be used as long as it is preferably used for expressing an exogenous protein in a prokaryotic or eukaryotic cell. Recombinant vectors for prokaryotic cells are preferred, and recombinant vectors for eukaryotic cells can be used for recombinant vectors for yeast insects or mammalian cells, but it is preferable to use recombinant vectors for yeast. Commercially available vectors for prokaryotic cells include but are not limited to pET vectors (Novagen, Inc., USA), pQE vectors (Qiagen, USA) and pGEX (Pharmacia Biotech Inc., USA) PCT1 (Stratagene, USA), pSG5 (Stratagene, USA), pCMNeo (Clontech, USA), pcDNA3 (InVitrogen, USA) ), PBPV-1 (8-2) (ATCC 37110), pdBPV-MMTneo (342-12) (ATCC 37224), pRSVgpt (ATCC 37199), pRSVneo (ATCC 37198), EBO-pSV2- pSV2-dhfr (ATCC 37146), pUCTag (ATCC 37460), and lZD35 (ATCC 37565), and may include promoters and terminators so that they can undergo independent expression control.

또한 본 발명은 상기 페닐아세틸 호모세린 락톤 생산용 발현 벡터가 도입된 페닐아세틸 호모세린 락톤 생산용 형질전환체를 제공한다. The present invention also provides a transformant for producing phenylacetyl homoserine lactone, wherein the expression vector for producing phenylacetyl homoserine lactone is introduced.

본 발명의 형질 전환체는 페닐아세틸 호모세린 락톤 유도체 생산용 발현 벡터를 발현시킬 수 있는 시스템이라면 어느 것이라도 무방하며, 바람직하게는 대장균 발현 시스템을 사용한다. 본 발명에 있어서 발현 벡터를 이용한 형질전환은 당업계에 알려진 어떠한 방법이라도 사용하여도 무방하며, 바람직하게는 대장균에 화학적 처리를 하여 만든 활성화 세포에 열충격을 가하는 방법을 이용하여 발현 벡터를 대장균에 삽입함에 따라 제조한다.
The transformant of the present invention may be any system capable of expressing an expression vector for producing a phenylacetyl homoserine lactone derivative, and preferably an E. coli expression system is used. In the present invention, any method known in the art may be used for transformation using an expression vector. Preferably, an expression vector is inserted into E. coli using a method of applying heat shock to an activated cell prepared by chemically treating E. coli. .

본 발명의 실시양태에 따르면, 본 발명의 형질 전환체는 대장균 C41(DE3)이며, 도입된 발현 벡터에 의하여 페닐아세틸 호모세린 락톤의 인공적 생합성 경로가 구축될 수 있고, 이로부터 페닐 아세틸 호모세린 락톤을 대량으로 생산할 수 있다. According to the embodiment of the present invention, the transformant of the present invention is Escherichia coli C41 (DE3), and an artificial biosynthetic pathway of phenylacetyl homoserine lactone can be established by the introduced expression vector, and phenylacetyl homoserine lactone Can be produced in large quantities.

또한 본 발명의 일 실시양태에 따르면, 본 발명의 형질 전환체는 티로신 고생산 변이 균주(△COS1)일 수 있다. In addition, according to one embodiment of the present invention, the transformant of the present invention may be a tyrosine-producing mutant strain (? COS1).

상기 티로신 고생산 변이 균주는 서열번호 27 로 표시되는 염기서열로 이루어진 tyrAfbr[코리스믹산 뮤타제/프리페닉산 탈수소효소 유전자(chorismate mutase/prephenate dehydrogenase gene, tyrA)의 피드백-저해-저항성(feedback-inhibition-resistant, fbr) 유전자]; 및 서열번호 28 로 표시되는 염기서열로 이루어진 aroGfbr[3-디옥시-D-아라비노-햅튤로소내이트-7-인산염합성효소 유전자(3-deoxy-D-arabino-heptulosonate-7-phosphate(DAHP) synthase, aroG)의 피드백-저해-저항성(feedbackinhibition-resistant, fbr) 유전자]가 tyrR(Tyrosine DNA-binding transcriptional repressor) 조절유전자 부위에 삽입된 것일 수 있다. The above tyrosine high production mutant strains are characterized in that the tyrAfbr of the nucleotide sequence of SEQ ID NO: 27 (feedback-inhibition of the chorismate mutase / prephenate dehydrogenase gene, tyrA) -resistant, fbr) gene; And aroGfbr [3-deoxy-D-arabino-haptenulosonate-7-phosphate (DAHP-3-deoxy-D- arabinose-heptulosonate-7-phosphate synthase gene consisting of the nucleotide sequence shown in SEQ ID NO: ), a feedback-inhibition-resistant (fbr) gene of a promoter, a trypticase, a synthase, aroG) is inserted into the tyrosine DNA-binding transcriptional repressor regulatory gene region.

이와 같이 제조되는 티로신 고생산 변이 균주는 바람직하게는 pET-opT4R, pET-opT54R, pET-opT54MR가 도입된 pET-opT4R/△COS1, pET-opT54R/△COS1, pET-opT54MR/△COS1일 수 있다. The tyrosine high production mutant strain thus produced may preferably be pET-opT4R /? COS1, pET-opT54R /? COS1, pET-opT54MR /? COS1 to which pET-opT4R, pET-opT54R or pET- .

상기 티로신 고생산 변이 균주를 이용하면, 일반 대장균에 페닐아세틸 호모세린 락톤 발현용 벡터를 도입한 생산능과 비교하여 더 많은 양의 페닐아세틸 호모세린 락톤을 생산할 수 있어 산업적으로 유용하게 이용할 수 있다.
When the mutant strains of high tyrosine production are used, a larger amount of phenylacetyl homoserine lactone can be produced as compared with the production ability of introducing a vector for expression of phenylacetyl homoserine lactone into general E. coli, which is industrially useful.

또한 본 발명은 1) 페닐아세틸 호모세린 락톤 생산용 형질전환체를 배양 배지에서 배양하는 단계; 및 2) 상기 1) 단계의 배양액으로부터 페닐아세틸 호모세린 락톤을 수득하는 단계; 를 포함하는 페닐아세틸 호모세린 락톤 생산 방법을 제공한다. The present invention also provides a method for producing phenylacetyl homoserine lactone comprising the steps of: 1) culturing a transformant for producing phenylacetyl homoserine lactone in a culture medium; And 2) obtaining phenylacetyl homoserine lactone from the culture broth of step 1); And a method for producing phenylacetyl homoserine lactone.

상기 호모세린 페닐아세틸 호모세린 락톤 생산 방법은 이용되는 형질전환체의 종류에 따라, 페놀산을 기질로 첨가하고 이를 생전환하여 페닐아세틸 호모세린 락톤을 생산하는 방법 및 페날산 추가 없이 구축된 인공대사 경로를 통해 페닐아세틸 호모세린 락톤을 생산하는 방법을 모두 포함할 수 있다. The method for producing homoserine phenylacetyl homoserine lactone is a method for producing phenylacetyl homoserine lactone by adding phenolic acid as a substrate and biotransformation thereof according to the type of transformant to be used and a method for producing artificial metabolism And a method for producing phenylacetyl homoserine lactone through a route.

따라서 본 발명은 상기 1) 단계의 배양 배지에 페놀산을 첨가하는 것을 특징으로 하는, 페닐아세틸 호모세린 락톤 생산방법을 제공한다. Accordingly, the present invention provides a method for producing phenylacetyl homoserine lactone, which comprises adding phenolic acid to the culture medium of step 1).

본 발명에 있어서, 페놀산은 페닐아세틸 호모세린 락톤 유도체 생산의 기질로 사용될 수 있으며, 바람직하게 4-쿠마린산, 카페인산, 페룰린산, 신나믹산, 신나픽산이 사용될 수 있으며, 보다 바람직하게 4-쿠마린산, 카페인산, 페룰린산 및 신나믹산으로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다.In the present invention, the phenolic acid can be used as a substrate for producing a phenylacetyl homoserine lactone derivative, and preferably 4-coumarinic acid, caffeic acid, ferulic acid, cinnamic acid and cinnamic acid can be used, At least one selected from the group consisting of acetic acid, caffeic acid, ferulic acid and cinnamic acid can be used.

본 발명의 일 구현예에서, 상기 생산방법이 생전환을 통해 페닐아세틸 호모세린 락톤을 생산하는 방법의 경우, 상기 1) 단계의 형질전환체는 pET-4R 벡터가 도입된 형질전환체인 것이 바람직하다. In an embodiment of the present invention, in the case where the production method is a method for producing phenylacetyl homoserine lactone through biotransformation, the transformant of step 1) is preferably a transformant into which a pET-4R vector has been introduced .

또한 본 발명의 일 구현예에서, 상기 생산방법이 인공대사 경로 구축을 통해 페닐아세틸 호모세린 락톤을 생산하는 방법인 경우, 상기 1) 단계의 형질전환체는 pET-opT4R, pET-opT54R, pET-opT54MR이 각각 도입된 형질전환체인 것이 바람직하다. Also, in one embodiment of the present invention, when the production method is a method of producing phenylacetyl homoserine lactone through artificial metabolic pathway construction, the transformant of step 1) is selected from pET-opT4R, pET-opT54R, pET- RTI ID = 0.0 > opT54MR < / RTI >

상기 1) 단계에서 형질전환체의 배양은 형질전환체의 생장을 위한 배지 조건이 바람직하다. 예를 들어, LB, YT, M9 배지 등에서 배양한다. The culture medium for the transformation of the transformant in the step 1) is preferably a medium for growth of the transformant. For example, in LB, YT, M9 medium or the like.

상기 1) 단계에서 배양된 형질 전환체의 단백질 발현은 IPTG 처리 등의 발현벡터 종류에 따른 각각의 단백질 유도방법으로 유도할 수 있으며, 단백질 발현이 유도된 후에, 추가로 배양을 수행함으로써 페닐아세틸 호모세린 락톤의 발현을 유도한다. 추가 배양은 예컨대 3 g/L KH2PO4 , 7.3 g/L K2HPO4, 8.4 g/L MOPS, 2 g/L NH4Cl, 0.5 g/L NaCl, 0.1 ml/L Trace elements, 5 g/L (NH4)2SO4, 5 g/L MgSO4, 15 g/L 글루코오스를 포함하는 SM (modified synthetic medium) 배지 조건 하에 배양하는 것이 바람직하다. The protein expression of the transformant cultured in step 1) can be induced by each protein induction method according to the type of the expression vector such as IPTG treatment. After the expression of the protein is induced, further cultivation is performed to obtain phenylacetyl homolog Induces the expression of serine lactone. Additional cultures may be carried out in the presence of, for example, 3 g / L KH 2 PO 4 , 7.3 g / LK 2 HPO 4 , 8.4 g / L MOPS, 2 g / L NH 4 Cl, 0.5 g / L NaCl, 0.1 ml / / L (NH 4 ) 2 SO 4 , 5 g / L MgSO 4 and 15 g / L glucose.

상기 2) 단계에서 페닐 아세틸 호모세린 락톤의 수득은 HPLC 등을 통해 화합물을 분리하거나 당업계에 알려진 통상의 방법에 의해 화합물을 분리하여 수득할 수 있다. The phenylacetyl homoserine lactone can be obtained by separating the compound by HPLC or the like or by isolating the compound by a conventional method known in the art in the step 2).

상기 1) 단계의 형질전환체는 바람직하게는 대장균 C41(DE3)일 수 있으며, 더욱 바람직하게는 티로신 고생산 변이 균주(△COS1) 일 수 있다.
The transformant of step 1) may preferably be E. coli C41 (DE3), more preferably a tyrosine-producing mutant strain (DELTA COS1).

또한 본 발명은 상기 1) 단계의 배양 배지에 메티오닌 (methionine) 또는 S-아데노실 메티오닌(S-Adenosyl methionine; SAM)을 첨가하는 것을 특징으로 하는, 페닐아세틸 호모세린 락톤 생산 방법을 제공한다. Also, the present invention provides a method for producing phenylacetyl homoserine lactone, wherein methionine or S-adenosyl methionine (SAM) is added to the culture medium of step 1).

상기 메티오닌 또는 S-아데노실 메티오닌이 배지에 첨가됨으로써, 형질전환체는 일반 대장균 및 티로신 고생산 변이 균주에서 생산되는 것보다 현저하게 증가된 양의 페닐아세틸 호모세린 락톤을 생산할 수 있다. 따라서 단순한 첨가물의 추가를 통해 현저한 생산 효율의 개선을 가져 올 수 있다.By adding the methionine or S-adenosylmethionine to the medium, the transformant can produce a significantly increased amount of phenylacetyl homoserine lactone than that produced in the general E. coli and tyrosine production mutant strains. Therefore, the addition of a simple additive can bring about a remarkable improvement in the production efficiency.

또한 본 발명은 1) 코엔자임 에이 라이게이즈 효소 및 아실 호모세린 락톤 생합성 효소를 페놀산에 처리하는 단계; 2) 상기 1) 단계의 처리액을 배양하는 단계; 및 3) 상기 2) 단계의 배양액에서 페닐 아세틸 호모세린 락톤을 수득하는 단계를 포함하는 페닐 아세틸 호모세린 락톤을 생산하는 방법을 제공한다. The present invention also provides a method for producing a coenzyme A ligation enzyme comprising the steps of: 1) treating a coenzyme A ligation enzyme and an acyl homoserine lactone biosynthesis enzyme to a phenolic acid; 2) culturing the treatment liquid of step 1); And 3) obtaining phenylacetyl homoserine lactone in the culture broth of step 2).

상기 1) 단계에서 코엔자임 에이 라이게이즈 효소는 담배(Nicotiana tabacum) 등에서 확인될 수 있는 효소이며 페놀산을 페닐 코엔자임 A로 전환한다. 본 발명의 실시양태에 따르면 상기 효소는 4-Coumarate CoA Ligase 2 from Nicotiana tabacum(4CL2nt)이다. In step 1), Coenzyme Alaase enzyme is an enzyme that can be identified in tobacco (Nicotiana tabacum) and converts phenolic acid into phenyl coenzyme A. According to an embodiment of the present invention, the enzyme is 4-Coumarate CoA Ligase 2 from Nicotiana tabacum (4CL2nt).

본 발명의 실시양태에 따르면 아실 호모세린 락톤 생합성 효소는 로도슈도모나스 팔루스트리스 (Rhodopseudomonas palustris)에서 분리된 것 (RpaI)을 사용할 수 있다. According to an embodiment of the present invention, the acyl homoserine lactone biosynthesis enzyme may be one isolated from Rhodopseudomonas palustris (RpaI).

상기 2) 단계에서 반응은 CoA, ATP 및 SAM (S-adenosyl methionine)을 포함하는 용액에서 30℃ 온도로 반응하는 것이 바람직하다. In the step 2), the reaction is preferably carried out at a temperature of 30 ° C in a solution containing CoA, ATP and SAM (S-adenosyl methionine).

상기 3) 단계에서 페닐 아세틸 호모세린 락톤의 수득은 HPLC 등을 통해 화합물을 분리하거나 당업계에 알려진 통상의 방법에 의해 화합물을 분리하여 수득할 수 있다. 분리되는 페닐 아세틸 호모세린 락톤 유도체는 바람직하게 페놀산과 락톤 고리가 결합된 호모세린 락톤 유도체일 수 있다. 본 발명의 실시양태에 따르면, 페닐아세틸 호모세린 락톤 유도체 생산을 위한 기질로 4-쿠마린산을 사용하여 4-쿠마로일-호모세린 락톤 (화학식 2), 카페인산을 사용하여 카페오일-호모세린 락톤(화학식 3), 페룰린산을 사용하여 페루로일-호모세린 락톤(화학식 4), 신나믹 산을 사용하여 신나모일-호모세린 락톤(화학식 5)을 생산할 수 있다. The phenylacetyl homoserine lactone can be obtained by separating the compound by HPLC or the like or by isolating the compound by a conventional method known in the art in the step 3). The isolated phenylacetyl homoserine lactone derivative may preferably be a homoserine lactone derivative bonded with a phenolic acid and a lactone ring. According to an embodiment of the present invention, 4-coumaroyl-homoserine lactone (formula 2) is prepared by using 4-coumarinic acid as a substrate for producing a phenylacetyl homoserine lactone derivative, caffeoyl-homoserine The cinnamoyl-homoserine lactone (Formula 5) can be produced using perroyl-homoserine lactone (Formula 4) and cinnamic acid using lactone (Formula 3) and ferulic acid.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.

[[ 실시예Example 1] in vitro에서  1] in vitro opRpaIopRpaI 유전자의 호모세린 락톤 합성 활성 확인 Identification of the homoserine lactone synthesis activity of the gene

실시예Example 1-1.  1-1. 아실호모세린Acyl homoserine 락톤 생합성 효소를 암호화하는 유전자( A gene encoding the lactone biosynthesis enzyme ( opRpaIopRpaI 유전자) 및 코엔자임 A  Gene) and coenzyme A 라이게이즈Liege 효소(4 Enzyme (4 CL2ntCL2nt 유전자)의 염기 서열 결정 Gene)

대장균에 대하여 밝혀진 코돈 사용 빈도를 기초로 대장균 발현 시스템에서 유전자 발현 향상을 위해 로도슈도모나스 팔루스트리스 (Rhodopseudomonas palustris)의 아실호모세린 락톤 생합성 효소 (opRpaI)의 아미노산 서열(서열번호 1)을 토대로 대장균에서 아미노산 서열 각각에 대한 tRNA 비율에 따른 최적의 코돈 사용빈도 (codon usage)를 사용한 (주) 바이오니아의 최적화 프로그램을 이용하여 신규 유전자(서열번호 2)를 결정하였고, 담배(Nicotiana tabacum)의 4-쿠마로일 코엔자임 A (4CL2nt)의 아미노산 서열 (서열번호 3) 을 토대로 미국 DNA2.0 사의 대장균에서 아미노산 서열 각각에 대한 tRNA 비율에 따른 최적의 코돈 사용빈도 (codon usage)를 사용하여 단백질 최적 발현 신규 유전자(서열번호 4)를 결정하였다.
Based on the amino acid sequence (SEQ ID NO: 1) of the acyl homoserine lactone biosynthesis enzyme (opRpaI) of Rhodopseudomonas palustris for improving the gene expression in the E. coli expression system based on the frequency of codon usage revealed for E. coli, A new gene (SEQ ID NO: 2) was determined using an optimized program of bioneer using optimal codon usage according to the ratio of tRNA to each of the sequences, and the 4-coumarin of Nicotiana tabacum Based on the amino acid sequence (SEQ ID NO: 3) of 1 coenzyme A (4CL2nt), the optimum gene for the optimal protein expression was determined using the optimal codon usage according to the tRNA ratio to each amino acid sequence in E. coli of the US DNA2.0 SEQ ID NO: 4) was determined.

실시예Example 1-2. 4 1-2. 4 CL2ntCL2nt  And opRpaIopRpaI 유전자를 포함하는 재조합 벡터 제작 Generation of recombinant vectors containing genes

실시예 1-1에서 결정한 염기서열(서열번호 2)을 기초로 상기 염기 서열 앞 쪽에 제한효소 NdeI 위치와 뒤쪽에 XhoI 위치를 가지도록 opRpaI 유전자 합성을 (주)바이오니아에 의뢰하여 제작하였다. 제조된 염기 서열은 서열번호 6에 나타내었다. On the basis of the nucleotide sequence (SEQ ID NO: 2) determined in Example 1-1, opRpaI gene synthesis was performed by Bioneer Co., Ltd. so as to have a restriction enzyme NdeI position and a backward XhoI position in front of the nucleotide sequence. The nucleotide sequence thus prepared is shown in SEQ ID NO: 6.

실시예 1-1에서 DNA2.0에 의뢰하여 결정한 염기서열(서열번호 4)을 기초로 상기 염기 서열 앞 쪽에 제한효소 NcoI 위치와 뒤쪽에 HindIII 위치를 가지도록 4CL2nt 유전자을 합성하여 제작하였다. 제조된 염기 서열은 서열번호 7에 나타내었다. Based on the nucleotide sequence (SEQ ID NO: 4) determined in Example 1-1 with reference to DNA2.0, the 4CL2nt gene was synthesized so as to have a restriction enzyme NcoI site in front of the nucleotide sequence and a HindIII site in the back thereof. The nucleotide sequence thus prepared is shown in SEQ ID NO: 7.

(주) 바이오니아에 의뢰하여 제조된 염기 서열 앞 쪽에 제한효소 NdeI 위치와 뒤쪽에 XhoI 위치를 가지는 opRpaI 유전자를 제한효소 NdeI 및 XhoI를 이용하여 절단하였고, 대장균 발현 벡터인 pET-28a(+) 벡터를 제한효소 NdeI 및 XhoI로 절단하여 opRpaI 의 NdeI 및 XhoI 자리와 pET-28a(+) 벡터의 NdeI 및 XhoI 자리를 연결함으로써 재조합 벡터 pET-opRpaI을 제작하였으며, 이의 모식도는 도 1의 (a)에 나타내었다. The opRpaI gene having a restriction enzyme NdeI position and an XhoI position at the back of the nucleotide sequence was digested with restriction enzymes NdeI and XhoI, and pET-28a (+) vector, an E. coli expression vector, The recombinant vector pET-opRpaI was prepared by linking the NdeI and XhoI sites of opRpaI with the NdeI and XhoI sites of the pET-28a (+) vector by digesting with restriction enzymes NdeI and XhoI, and the schematic diagram thereof is shown in FIG. .

또한, DNA2.0에 의뢰하여 제조된 염기 서열 앞 쪽에 제한효소 NcoI 위치와 뒤쪽에 HindIII 자리를 가지는 4CL2nt 유전자를 포함하는 pET-4CL2-Nt 벡터를 주형 DNA로 이용하여 4CL2nt-F 및 4CL2nt-R 프라이머 쌍으로 PCR 반응을 수행하여 PCR 산물을 확보하였고, 솔젠트 회사에서 제공하는 T-Blunt PCR Cloning 방법을 이용하여 T-blunt vector에 상기 PCR 산물을 삽입하여 His4CL2nt TA 벡터를 제작하였다. 상기 제작된 His4CL2nt TA 벡터의 제한효소 NdeI 및 XhoI 을 이용하여 절단하였고, 대장균 발현 벡터인 pET-28a(+) 벡터를 제한효소 NdeI 및 XhoI 로 절단하여 4CL2nt 의 NdeI 및 XhoI 자리와 pET-28a(+) 벡터의 NdeI 및 XhoI 자리를 연결함으로써 재조합 벡터 pET-his4CL2nt을 제작하였으며, 이의 모식도는 도 1의 (b)에 나타내었다. In addition, 4TL2nt-F and 4CL2nt-R primers were prepared by using pET-4CL2-Nt vector containing a 4CL2nt gene having a restriction enzyme NcoI site and a HindIII site at the back of the base sequence prepared according to DNA2.0 as a template DNA PCR product was obtained by pairing PCR product. The PCR product was inserted into T-blunt vector using T-Blunt PCR Cloning method provided by Solgent Corporation to construct His4CL2nt TA vector. The pET-28a (+) vector, an Escherichia coli expression vector, was digested with restriction enzymes NdeI and XhoI to obtain NdeI and XhoI digests of 4CL2nt and pET-28a (+) digestion sites of 4CL2nt. ) Vector, the recombinant vector pET-his4CL2nt was constructed, and the schematic diagram thereof is shown in FIG. 1 (b).

상기 제조된 벡터를 이용해서 아실호모세린 락톤 생합성 유전자 및 4-쿠마로일 코엔자임 A 라이게이즈 유전자의 발현을 확인하여 분리하였으며, SDS-PAGE를 도 2에 나타내었다. Using the prepared vector, the expression of the acyl homoserine lactone biosynthesis gene and the 4-coumaroyl coenzyme A ligation gene was confirmed and separated, and SDS-PAGE was shown in FIG.

도 2의 (a)는 pET-opRpaI 벡터를 이용한 것으로, M은 size marker를 나타내며, 1은 Ni-NTA resins 통과 용액을 나타내며, 2는 워싱버퍼(washing buffer) 통과 용액을 나타내며, 3 및 4는 각각 용출 버퍼 (elution buffer) 용액의 SDS-PAGE 결과를 나타낸다. FIG. 2 (a) shows the size of the pET-opRpaI vector, M denotes the size marker, 1 denotes the solution passing through the Ni-NTA resins, 2 denotes the solution passing through the washing buffer, SDS-PAGE results of each elution buffer solution are shown.

또한 도 2의 (b)는 pET-his4CL2nt 벡터를 이용한 것으로, M은 size marker를 나타내며, 4는 Ni-NTA resins에서 용출 버퍼 (elution buffer) 통과 용액의 SDS-PAGE 결과를 나타낸다.
Fig. 2 (b) shows the result of SDS-PAGE of the elution buffer solution in Ni-NTA resins. Fig. 2 (b) shows the size marker using pET-his4CL2nt vector.

실시예Example 1-3. In vitro에서  1-3. In vitro opRpaIopRpaI 효소의  Enzymatic 페닐아세틸Phenylacetyl 호모세린 락톤 화합물 합성 확인 Synthesis of homoserine lactone compound

페놀산을 아실 코엔자임 에이로 변환시키기 위해 실시예 1-2에서 N-terminal His-tag된 soluble protein 상태로 발현하여 정제한 코엔자임 에이 라이게이즈 효소인 4CL2nt를 사용하였고, 아실 코엔자임 에이에서 호모세린 락톤 화합물로 변환시키기 위해 마찬가지로 실시예 1-2에서 N-terminal His-tag된 soluble protein 상태로 발현하여 정제한 아실 호모세린 락톤 신세이즈 효소인 opRpaI를 사용하였다.In order to convert phenolic acid into acyl coenzyme A, 4CL2nt, which was expressed and purified in the state of N-terminal His-tagged soluble protein in Example 1-2, was used, and in acyl coenzyme A, homoserine lactone In the same manner as in Example 1-2, opRpaI, an acyl homoserine lactone synthase enzyme which was expressed and purified by N-terminal His-tagged soluble protein was used.

Sigma(USA)에서 구입한 4-쿠마린산, 카페인산, 페룰린산 및 신나믹산 각각의 표준품을 기질로 사용하여, 4CL2nt 및 opRpaI 두 효소를 함께 표 1의 기재한 반응조건으로 30℃에서 1시간 동안 반응하였다.
Using 4-coumarinic acid, caffeic acid, ferulic acid, and cinnamic acid purchased from Sigma (USA) as reference substrates, the 4CL2nt and opRpaI enzymes were reacted together at 30 ° C for 1 hour Respectively.

[표 1][Table 1]

Figure 112015070645530-pat00006
Figure 112015070645530-pat00006

이 반응액과 동일한 양의 에틸아세테이트를 넣어서 추출하고 12000 rpm에서 2분간 원심분리를 수행하여 상등액 에틸아세테이트 층을 농축하였다. 상기 농축한 추출물을 메탄올에 녹인 후 용액 20ul를 하기의 조건 하에 HPLC를 이용하여 분석하였다. 모든 반응 추출물은 YMC J'sphere ODS-H80, 150x4.6 ㎜ I.D. 컬럼을 이용하여 CH3CN-H2O(0.05%TFA) 이동상을 1 ㎖/min의 속도로 10%에서 100%까지 25분동안 HPLC 분석을 수행하였다. The same amount of ethyl acetate as that of the reaction solution was added to extract, centrifuged at 12000 rpm for 2 minutes, and the supernatant ethyl acetate layer was concentrated. After the concentrated extract was dissolved in methanol, 20ul of the solution was analyzed by HPLC under the following conditions. All reaction extracts were YMC J'sphere ODS-H80, 150x4.6 mm I.D. The column was used to carry out HPLC analysis of CH3CN-H2O (0.05% TFA) mobile phase at a rate of 1 ml / min from 10% to 100% for 25 minutes.

4-쿠마린산, 카페인산, 페룰린산 및 신나믹산 각각의 표준품을 기질로 사용하여 분석한 결과는 도 3 내지 도 6에 나타내었다. 도 3은 4-쿠마린산을 기질로 사용한 결과이며, 도 4는 카페인산을 기질로 사용한 결과이며, 도 5는 페룰린산을 기질로 사용한 결과이며, 도 6은 신나믹산를 기질로 한 결과이다. 도 3 내지 6에서 *는 새로 형성된 페닐 아세틸 호모세린 락톤을 의미한다. 4-coumarinic acid, caffeic acid, ferulic acid and cinnamic acid were used as substrates and the results are shown in Figs. 3 to 6. Fig. FIG. 3 shows the result of using 4-coumarinic acid as a substrate, FIG. 4 shows the results of using caffeic acid as a substrate, FIG. 5 shows results using ferulic acid as a substrate, and FIG. 6 shows results using cinnamic acid as a substrate. In Figures 3 to 6, * means newly formed phenylacetyl homoserine lactone.

도 3에 나타낸 바와 같이 4-쿠마린산을 기질로 사용한 각각의 반응액에서 4-쿠마린산보다 빠른 시간대(Rt, 8.0분)에 동일한 UV 스펙트럼을 가진 피크를 확인하였으며, LC/MS 분석 결과 화학식 2와 동일한 분자량 (m/z 248.14 [M+H]+)을 확인하였으며, 분석 결과를 통해 opRpaI 효소가 하기 화학식 2로 표시되는 4-쿠마로일-호모세린 락톤 화합물을 생산하는 것을 확인하였다.
As shown in FIG. 3, peaks having the same UV spectrum at the time (Rt, 8.0 minutes) faster than 4-coumarinic acid were identified in each of the reaction solutions using 4-coumarinic acid as a substrate. LC / (M / z 248.14 [M + H] +). The analysis confirmed that the opRpaI enzyme produced the 4-coumaroyl-homoserine lactone compound represented by the following formula (2).

[화학식 2](2)

Figure 112015070645530-pat00007
Figure 112015070645530-pat00007

또한 도 4에 나타낸 바와 같이, 카페인산을 기질로 사용한 반응액에서는 카페인산보다 빠른 시간대(Rt, 7.0분)에 동일한 UV 스펙트럼을 가진 피크를 확인하였고, LC/MS 분석 결과 화학식 2와 동일한 분자량 (m/z 264.00 [M+H]+)을 확인하였으며, 분석 결과를 통해 opRpaI 효소가 하기 화학식 3으로 표시되는 카페오일-호모세린 락톤 화합물을 생산하는 것을 확인하였다.
4, a peak having the same UV spectrum at a time (Rt, 7.0 minutes) earlier than that of caffeic acid was identified in the reaction solution using caffeic acid as a substrate. LC / MS analysis showed that the peak of the same molecular weight m / z 264.00 [M + H] +). From the analysis results, it was confirmed that the opRpaI enzyme produced the caffeoyl-homoserine lactone compound represented by the following formula (3).

[화학식 3](3)

Figure 112015070645530-pat00008
Figure 112015070645530-pat00008

또한 도 5에 나타낸 바와 같이, 페룰린산을 기질로 사용한 반응액에서는 페룰린산보다 빠른 시간대(Rt, 8.2분)에 동일한 UV 스펙트럼을 가진 피크를 확인하였고, LC/MS 분석 결과 화학식 3과 동일한 분자량 (m/z 278.19 [M+H]+)을 확인하였으며, 분석 결과를 통해 opRpaI 효소가 하기 화학식 4로 표시되는 페루로일-호모세린 락톤 화합물을 생산하는 것을 확인하였다.As shown in Fig. 5, peaks having the same UV spectrum at the time (Rt, 8.2 minutes) earlier than that of ferulic acid were confirmed in the reaction solution using ferulic acid as a substrate. LC / MS analysis showed that the peaks having the same molecular weight m / z 278.19 [M + H] +). From the analysis results, it was confirmed that the opRpaI enzyme produced the peruroyl-homoserine lactone compound represented by the following formula (4).

[화학식 4][Chemical Formula 4]

Figure 112015070645530-pat00009

Figure 112015070645530-pat00009

또한 도 6에 나타내는 바와 같이, 신나믹산를 기질로 사용한 반응액에서는 신나믹산보다 빠른 시간대(Rt, 11.0분)에 동일한 UV 스펙트럼을 가진 피크를 확인하였고, LC/MS 분석 결과 화학식 5와 동일한 분자량 (m/z 232.06 [M+H]+)을 확인하였으며, 상기 결과를 통해 opRpaI 효소가 하기 화학식 5로 표시되는 신나모일-호모세린 락톤 화합물을 생산하는 것을 확인하였다.6, peaks having the same UV spectrum at a time (Rt, 11.0 minutes) earlier than that of cinnamic acid were confirmed in a reaction solution using cinnamic acid as a substrate. LC / MS analysis showed that the peaks having the same molecular weight m / z 232.06 [M + H] +). From the results, it was confirmed that the opRpaI enzyme produced the cinnamoyl-homoserine lactone compound represented by the following formula (5).

[화학식 5][Chemical Formula 5]

Figure 112015070645530-pat00010
Figure 112015070645530-pat00010

상기 분석 결과를 통해서, In vitro에서 opRpaI 효소가 각각의 첨가된 기질 신나믹산, 4-쿠마린산, 카페인산, 페룰린산으로부터, 4-쿠마로일 호모세린락톤, 카페오일 호모세린 락톤, 페루로일 호모세린 락톤과 같은 페닐아세틸 호모세린 락톤 화합물을 생성할 수 있음을 확인하였다.
From the above analysis results, it can be seen that in vitro, the opRpaI enzyme is selectively degraded from each added substrate cininamic acid, 4-coumarinic acid, caffeic acid, and ferulic acid by 4-coumaroyl homoserine lactone, caffeoyl homoserine lactone, It was confirmed that a phenylacetyl homoserine lactone compound such as homoserine lactone could be produced.

[[ 실시예Example 2]  2] pETpET -4R 형질전환 미생물의 카페오일-호모세린 락톤 및 페루로일-호모세린 락톤 생산 -4R Production of caffeoyl-homoserine lactone and perroyl-homoserine lactone of transformed microorganisms

실시예Example 2-1. 4 2-1. 4 CL2ntCL2nt -- opRpaIopRpaI 유전자를 포함하는 재조합 벡터 ( A recombinant vector containing the gene ( pETpET -4R) 제작-4R) production

실시예 1-2의 pET-his4CL2nt TA PCR 산물을 제한효소 NdeI 및 SpeI으로 절단하였고, pET-opRpaI TA 산물은 제한효소 SpeI 및 XhoI로 절단하였다. 또한 pET-28a(+) 벡터를 제한효소 NdeI 및 XhoI로 절단한 후, 준비된 상기 두 유전자의 산물을 벡터와 연결하여 대장균에 형질전환하였다. The pET-his4CL2nt TA PCR product of Example 1-2 was digested with restriction enzymes NdeI and SpeI, and the pET-opRpaI TA product was digested with restriction enzymes SpeI and XhoI. In addition, the pET-28a (+) vector was digested with restriction enzymes NdeI and XhoI, and the product of the prepared two genes was ligated to a vector and transformed into E. coli.

이때, 절단된 pET-28a(+) 벡터의 NdeI 자리에 pET-his4CL2nt TA PCR 산물의 NdeI 자리를 연결하였으며, pET-his4CL2nt TA PCR 산물의 SpeI 자리와 pET-opRpaI TA 산물의 SpeI 자리를 연결하였다. 그리고 pET-opRpaI TA 산물의 XhoI자리와 pET-28a(+) 벡터의 XhoI 자리를 연결함으로써 합성한 두 유전자를 하나의 발현 벡터 pET-28a(+)에 삽입하였다.At this time, the NdeI site of the pET-his4CL2nt TA PCR product was ligated to the NdeI site of the cleaved pET-28a (+) vector, and the SpeI site of the pET-his4CL2nt TA PCR product was ligated to the SpeI site of the pET-opRpaI TA product. Two genes were synthesized by linking the XhoI site of the pET-opRpaI TA product to the XhoI site of the pET-28a (+) vector and inserted into one expression vector pET-28a (+).

이렇게 제작된 pET-4R의 4CL2nt 및 opRpaI 유전자는 각각의 T7 프로모터와 T7 터미네이터를 가져 독립적으로 발현 조절을 받도록 제작하였으며, 이를 pET-4R로 명명하였다. 제조된 벡터의 모식도를 도 7에 나타내었다.
The 4CL2nt and opRpaI genes of pET-4R thus constructed were constructed so as to independently regulate their expression with the respective T7 promoter and T7 terminator, which was named pET-4R. A schematic diagram of the prepared vector is shown in Fig.

실시예Example 2-2.  2-2. pETpET -4R 형질전환 미생물의 호모세린 락톤 화합물 합성 Synthesis of Homoserine Lactone Compound of -4R Transforming Microorganism

실시예 2-1에서 제조된 pET-4R을 대장균에 형질전환하여 pET-4R/C41을 제조하고, 상기 대장균을 함유하는 배지에 신나믹산, 4-쿠마린산, 카페인산, 및 페룰린산 각각의 표준품을 각각 30mg/L 처리하여 배양하였다. PET-4R / C41 was prepared by transforming E. coli prepared in Example 2-1 into Escherichia coli. To the medium containing the Escherichia coli was added a standard product of cinnamic acid, 4-coumarinic acid, caffeic acid, and ferulic acid Were each treated with 30 mg / L and cultured.

상기 배양액의 일부를 여과 (Sartorius Minisart RC 4, 0.2um)하여 그 용액 20ul를 HPLC 분석하였다. 보다 구체적으로 YMC J'sphere ODS-H80, 150x4.6 ㎜ I.D.,(YMC, 일본) 컬럼을 이용하여 HPLC 분석을 수행하였으며, CH3CN-H2O(J.T.Baker,USA) (0.05%TFA;Sigma-Aldrich,USA) 이동상을 1 ㎖/min의 속도로 10%에서 100%까지, 25분간 수행하였다. 신나믹산, 4-쿠마린산, 카페인산, 및 페룰린산 각각의 표준품은 Sigma(USA)에서 구입해서 분석하였고, 분석 결과를 도 8에 나타내었다. A portion of the culture was filtered (Sartorius Minisart RC 4, 0.2 um) and 20 ul of the solution was subjected to HPLC analysis. More specifically, HPLC analysis was carried out using a YMC Jsphere ODS-H80, 150 x 4.6 mm ID, (YMC, Japan) column and CH3CN-H2O (JTBaker, USA) (0.05% TFA; Sigma-Aldrich, USA) mobile phase was performed at a rate of 1 ml / min from 10% to 100% for 25 minutes. Cinnamic acid, 4-coumarinic acid, caffeic acid, and ferulic acid were purchased from Sigma (USA) and analyzed, and the results of the analysis are shown in FIG.

도 8에 나타낸 바와 같이, pET-4R로 형질전환된 대장균주 pET-4R/C41의 배양액에서 첨가한 페놀릭산보다 빠른 시간대에 동일한 UV 스펙트럼을 가진 피크들을 확인하였다. LC/MS 분석 결과, 신나믹산을 첨가한 경우 화학식 5과 동일한 분자량 (m/z 232 [M+H]+)을 확인하였으며, 이를 통해서 상기 형질전환된 균주가 화학식 5으로 표시되는 신나모일-호모세린 락톤 화합물을 생산하는 것을 확인하였다 (도 8A). 4-쿠마린산을 첨가한 경우 화학식 2과 동일한 분자량 (m/z 248 [M+H]+)을 확인하였으며, 이를 통해서 상기 형질전환된 균주가 화학식 2으로 표시되는 쿠마로일-호모세린 락톤 화합물을 생산하는 것을 확인하였다 (도 8B). 카페인산을 첨가한 경우 화학식 3과 동일한 분자량 (m/z 264 [M+H]+)을 확인하였으며, 이를 통해서 상기 형질전환된 균주가 화학식 3으로 표시되는 카페오일-호모세린 락톤 화합물을 생산하는 것을 확인하였다 (도 8C). 페룰린산을 첨가한 경우 화학식 4과 동일한 분자량 (m/z 278 [M+H]+)을 확인하였으며, 이를 통해서 상기 형질전환된 균주가 화학식 4으로 표시되는 페루로일-호모세린 락톤 화합물을 생산하는 것을 확인하였다 (도 8D).As shown in Fig. 8, peaks having the same UV spectrum at a time point earlier than the phenolic acid added in the culture medium of pET-4R-transformed Escherichia coli pET-4R / C41 were identified. As a result of LC / MS analysis, when the cinnamic acid was added, the same molecular weight (m / z 232 [M + H] +) as in Chemical Formula 5 was confirmed, and the transformed strain was found to have a cinnamoyl- Serine lactone compound (Fig. 8A). (M / z 248 [M + H] < + >) was confirmed by adding 4-coumarinic acid to the compound of Formula 2, whereby the transformed strain was found to contain the coumaroyl-homoserine lactone compound (Fig. 8B). When caffeic acid was added, the same molecular weight (m / z 264 [M + H] +) as in Chemical Formula 3 was confirmed, and the transformed strain produced the caffeoyl-homoserine lactone compound represented by Chemical Formula 3 (Fig. 8C). When ferulic acid was added, the same molecular weight (m / z 278 [M + H] +) as in Chemical Formula 4 was confirmed, whereby the transformed strain produced the peruroyl-homoserine lactone compound represented by Chemical Formula 4 (Fig. 8D).

또한 상기 형질전환된 균주에서 30mg/L 의 신나믹산, 4-쿠마린산, 카페인산, 및 페룰린산 각각을 기질로서 첨가하여 36시간 배양 후 HPLC를 실시하여 pET-4R/C41에 의한 전환율을 평가하였다. 이와 같은 결과를 통해, pET-4R/C41이 기질을 각각 신나모일-호모세린 락톤, 쿠마로일-호모세린 락톤, 카페오일-호모세린 락톤, 페루로일-호모세린 락톤인 호모세린 락톤 화합물으로 생전환을 통해 각각 34, 47, 72, 46%의 전환율로 전환할 수 있음을 확인하였다.
In addition, 30 mg / L of cinnamic acid, 4-coumarinic acid, caffeic acid, and ferulic acid were added as a substrate in the transformed strain and cultured for 36 hours. HPLC was performed to evaluate the conversion by pET-4R / C41 . These results indicate that pET-4R / C41 can be used as a homoserine lactone compound, which is a homocellin lactone compound, which is a homocellin lactone, a catechol-homoserine lactone, a catechol-homoserine lactone, a cinnamoyl-homoserine lactone, And the conversion rate was 34, 47, 72, and 46%, respectively.

[[ 실시예Example 3] 4- 3] 4- 쿠마로일Kumaroto 호모세린 락톤 생합성 인공대사경로 제작 Production of homoserine lactone biosynthesis artificial metabolic pathway

실시예Example 3-1.  3-1. opTALoptal -4-4 CL2ntCL2nt -- opRpaIopRpaI 유전자를 포함하는 재조합 벡터 ( A recombinant vector containing the gene ( pETpET -opT4R) 제작 -opT4R) production

티로신(Tyrosine)을 4-쿠마릭산(4-coumaric acid)으로 변환하는 효소는 방선균 Saccharothrix espanaensis (KCTC9392)에서 확인된 티로신 암모니아 리아제(TAL)의 아미노산 서열을 기초로 하여, 대장균에서 각각의 아미노산에 대한 tRNA 비율에 따른 최적의 코돈 사용빈도(codon usage)을 사용하여 염기서열(opTAL, 서열번호 5)을 합성하였다. 또한 4-쿠마릭산을 4-쿠마로일 코엔자임 A(4-coumaroyl Coenzyme A)로 변환하는 효소는 담배(Nicotiana tabacum) 확인된 코엔자임 에이 라이게이즈 효소 (cinnamate/4-coumarate: CoA ligase)의 염기서열(4CL2nt, 서열번호 4)을 합성하였다. 또한 4-쿠마로일 코엔자임 A에서 4-쿠마로일 호모세린 락톤 화합물로 변환하는 효소인 RpaI 상기한 염기서열(opRpaI, 서열번호 2)을 합성하여 사용하였다.The enzyme that converts tyrosine into 4-coumaric acid is based on the amino acid sequence of tyrosine ammonia lyase (TAL) identified in the actinomycetes Saccharothrix espanaensis (KCTC9392) The nucleotide sequence (opTAL, SEQ ID NO: 5) was synthesized using the optimal codon usage according to the tRNA ratio. The enzyme that converts 4-coumaric acid into 4-coumaroyl Coenzyme A is a base of nicotiana tabacum cinnamate / 4-coumarate (CoA ligase) (4CL2nt, SEQ ID NO: 4) was synthesized. Also, the above-described nucleotide sequence (opRpaI, SEQ ID NO: 2), which is an enzyme for converting 4-coumaroyl coenzyme A into a 4-coumaroyl homoserine lactone compound, was synthesized and used.

4-쿠마로일 호모세린 락톤 생산을 위한 모듈화된 인공경로 구축을 위해 opTAL, 4CL2nt 및 RpaI의 세 유전자를 순차적으로 연결한 벡터를 제조하였으며 이를 pET-opT4R로 명명하고 이의 모식도를 도 9에 나타내었다. In order to construct a modular artificial pathway for production of 4-coumaroyl homoserine lactone, a vector was constructed by sequentially connecting three genes, opTAL, 4CL2nt and RpaI, which was named pET-opT4R and its schematic diagram is shown in FIG. .

구체적으로, opTAL-F 및 pET-CPac 프라이머 쌍으로 pET-opTAL 벡터를 주형 DNA로 이용하여 PCR 반응을 수행하였다. PCR은 nPfu-special DNA polymerase로 Annealing 60℃에서 30 초, Extention 72℃에서 2 분 30초로 28 사이클을 수행하여 pET-opTAL TA PCR 산물을 확보하였다. Specifically, a PCR reaction was performed using a pET-optal vector as a template DNA as a pair of opTAL-F and pET-CPac primers. PCR was performed with nPfu-special DNA polymerase for 28 cycles of annealing at 60 ° C for 30 seconds and extension at 72 ° C for 2 minutes and 30 seconds to obtain pET-opTAL TA PCR product.

또한 pET-NPac 및 pET-CSpe 프라이머 쌍으로 실시예 1-2에서 제작한 pET-his4CL2nt 벡터를 주형 DNA로 이용하여 상기와 같이 PCR 반응을 수행하여 pET-his4CL2nt TA PCR 산물을 얻었다.Also, the pET-his4CL2nt TA PCR product was obtained by performing PCR as described above using the pET-his4CL2nt vector prepared in Example 1-2 as a pair of pET-NPac and pET-CSpe primers as a template DNA.

또한 pET28a(+) 벡터를 기반으로 NdeI 자리보다 400bp 정도 앞에 SpeI 자리를 가지도록 PCR을 통해 제작하였고, 제작된 벡터는 SpeI 와 NdeI 자리 사이에 T7 프로모터와 RBS를 갖고, NdeI 뒤에 XhoI 자리를 가지며, XhoI 자리 뒤에 T7 터미네이터를 가지고 있다. 상기 벡터는 NdeI 및 XhoI 으로 절단하였고, 합성한 pGEM-opRpaI을 제한효소 NdeI 및 XhoI으로 절단한 후, 상기 절단된 벡터의 NdeI 및 XhoI 자리와 상기 절단된 유전자의 NdeI 및 XhoI 자리를 연결하였다. 상기 절단된 유전자를 벡터와 연결하였다.Based on the pET28a (+) vector, PCR was performed to have a SpeI site in the vicinity of NdeI site by about 400 bp. The prepared vector had T7 promoter and RBS between SpeI and NdeI sites, XhoI site after NdeI, XhoI has a T7 terminator behind the spot. The vector was digested with NdeI and XhoI, and the synthesized pGEM-opRpaI was digested with restriction enzymes NdeI and XhoI, and the NdeI and XhoI digests of the digested vector were ligated to the NdeI and XhoI digests of the digested gene. The truncated gene was ligated with a vector.

pET-opTAL TA PCR 산물은 제한효소 NdeI 및 PacI으로 절단하였고, pET-his4CL2nt TA PCR 산물은 제한효소 PacI 및 SpeI으로 절단하였으며, pET-opRpaI TA 산물은 제한효소 SpeI 및 XhoI로 절단하였다. 또한 pET-28a(+) 벡터를 제한효소 NdeI 및 XhoI로 절단한 후, 준비된 상기 세 유전자의 PCR 산물을 벡터와 연결하였다.The pET-opTAL TA PCR product was digested with restriction enzymes NdeI and PacI, and the pET-his4CL2nt TA PCR product was digested with restriction enzymes PacI and SpeI. The pET-opRpaI TA product was digested with restriction enzymes SpeI and XhoI. The pET-28a (+) vector was digested with restriction enzymes NdeI and XhoI, and the PCR products of the prepared three genes were ligated to the vector.

이때, 절단된 pET-28a(+) 벡터의 NdeI 자리에 pET-opTAL TA PCR 산물의 NdeI 자리를 연결하였고 pET-opTAL TA PCR 산물의 PacI 자리와 pET-his4CL2nt TA PCR 산물의 PacI 자리를 연결하였으며, pET-his4CL2nt TA PCR 산물의 SpeI 자리와 pET-opRpaI TA 산물의 SpeI 자리를 연결하였다. 그리고 pET-opRpaI TA 산물의 XhoI자리와 pET-28a(+) 벡터의 XhoI 자리를 연결함으로써 합성한 세 유전자를 하나의 발현 벡터 pET-28a(+)에 삽입하여 pET-opT4R을 제작하여 형질전환하였다. 구체적으로 C41(DE3) cell에 CaCl2 처리를 하여 세포막 구조에 불안정을 야기하여 DNA가 잘 들어갈 수 있도록 제작하였고, 이렇게 만들어진 C41(DE3) 대장균에 pET-opT4R 유전자를 첨가하여 세포에 순간적으로 열을 가하는 열충격 방법을 이용하여 pET-opT4R 을 대장균에 형질전환하였다. The NdeI site of the pET-opTAL TA PCR product was ligated to the NdeI site of the cleaved pET-28a (+) vector. The PacI site of the pET-opTAL TA PCR product and the PacI site of the pET-his4CL2nt TA PCR product were ligated, The SpeI site of the pET-his4CL2nt TA PCR product was ligated to the SpeI site of the pET-opRpaI TA product. PET-opT4R was constructed by inserting three genes synthesized by linking the XhoI site of the pET-opRpaI TA product to the XhoI site of the pET-28a (+) vector into one expression vector pET-28a (+) . Specifically, the C41 (DE3) cell was treated with CaCl2 to induce instability in the cell membrane structure to allow the DNA to enter well. A pET-opT4R gene was added to C41 (DE3) Escherichia coli and heat shocked PET-opT4R was transformed into E. coli.

이렇게 제작된 pET-opT4R의 opTAL, 4CL2nt 및 opRpaI 유전자는 각각 T7 프로모터와 T7 터미네이터를 가져 독립적으로 발현 조절을 받도록 제작되었으며, 모식도는 도 9와 같고, 상기에서 사용한 프라이머의 염기서열은 표 2에 나타내었다. The prepared optal, 4CL2nt and opRpaI genes of pET-opT4R were constructed so as to independently regulate expression with T7 promoter and T7 terminator, respectively. The schematic diagram is shown in FIG. 9, and the nucleotide sequences of the primers used above are shown in Table 2 .

[표 2] [Table 2]

Figure 112015070645530-pat00011

Figure 112015070645530-pat00011

실시예Example 3-2.  3-2. pETpET -- opT4RopT4R 형질전환 미생물의 4- The 4- 쿠마로일Kumaroto 호모세린 락톤 화합물 합성 Homoserine lactone compound synthesis

상기 실시예 3-1의 제조된 pET-opT4R/C41 대장균을 LB 배지(50㎍/l kanamycin) 50 ml에 접종하여 37℃에서 DO6000.6까지 배양하였고, 10분 간 저온 충격(cold shock) 이후 1 mM IPTG로 단백질 발현을 유도하였다. 그 후, 26 ℃에서 6시간 동안 추가로 배양하고, 세포를 수득하여 30 ml SM (modified synthetic medium; added glucose 15 g/ℓ; 50 ㎍/ℓ Kan, 1 mM IPTG) 배지에 옮기고 26℃에서 25시간 동안 배양하였다. The pET-opT4R / C41 Escherichia coli prepared in Example 3-1 was inoculated in 50 ml of LB medium (50 μg / l kanamycin) and cultured at 37 ° C. to a DO 600 of 0.6. After 10 min of cold shock Protein expression was induced with 1 mM IPTG. Then, the cells were further cultured at 26 DEG C for 6 hours, and cells were transferred to 30 ml of SM medium (modified synthetic medium; 15 g / l; 50 g / l Kan, 1 mM IPTG) Lt; / RTI >

상기 배양액의 일부를 filtering (Sartorius Minisart RC 4, 0.2um)하여 그 용액 20ul를 SunFire™ C18 column (250 × 4.6 mm, 5 μm; Waters, USA) 컬럼을 이용하여 CH3CN-H2O(J.T.Baker, USA) (0.05%TFA; Sigma-Aldrich, USA)이동상을 1 ㎖/min의 속도로 10%에서 60%까지 25분간 HPLC 분석을 수행하였다. 4-쿠마린산 표준품은 Sigma(USA)에서 구입하여 분석하고, 분석 결과를 도 10에 나타내었다. A portion of the culture liquid filtering (Sartorius Minisart RC 4, 0.2um ) to the solution 20ul SunFire ™ C18 column (250 × 4.6 mm, 5 μm; Waters, USA) using a column CH 3 CN-H 2 O ( JTBaker , USA) (0.05% TFA; Sigma-Aldrich, USA). The mobile phase was subjected to HPLC analysis at a rate of 1 ml / min from 10% to 60% for 25 minutes. The 4-coumaric acid standard product was purchased and analyzed by Sigma (USA), and the analysis results are shown in FIG.

도 10에 나타낸 바와 같이, pET-opT4R로 형질전환된 대장균주 pET-opT4R/C41의 배양액에서는 4-쿠마린산보다 빠른 시간대 (Rt, 12.2분)에 동일한 UV 스펙트럼을 가진 피크가 나타났다. LC/MS 분석 결과 이는 화학식 2와 동일한 분자량 (m/z 248.11 [M+H]+)을 가진 물질임을 확인하였으며, 이를 통해서 상기 형질전환된 균주가 4-쿠마린산으로부터 상기 화학식 2로 표시되는 4-쿠마로일-호모세린 락톤 화합물을 생산하는 것을 확인하였다.As shown in Fig. 10, in the culture solution of E. coli strain pET-opT4R / C41 transformed with pET-opT4R, a peak with the same UV spectrum appeared at a time (Rt, 12.2 minutes) faster than 4-coumarinic acid. As a result of LC / MS analysis, it was confirmed that this was a substance having the same molecular weight (m / z 248.11 [M + H] +) as that of the formula 2, whereby the transformed strain was transformed from 4-coumarinic acid - coumaroyl - homoserine lactone compound.

pET-opT4R로 형질전환된 대장균주 pET-opT4R/C41가 4-쿠마로일-호모세린 락톤 화합물을 과량 생산할 수 있는지 여부를 추가적으로 확인하였다. pET-opT4R/C41을 상기와 동일한 배양 조건으로 3회 배양하였다. 이 후 배양 시간 (1, 4, 15, 25, 40시간)에 따라 생산되는 양을 HPLC로 측정하였으며, 그 결과를 도 15에 나타내었다. It was additionally confirmed whether the E. coli strain pET-opT4R / C41 transformed with pET-opT4R could overproduce a 4-coumaroyl-homoserine lactone compound. pET-opT4R / C41 was cultured three times under the same culture conditions as above. The amount of the product produced after the incubation time (1, 4, 15, 25, 40 hours) was measured by HPLC, and the result is shown in FIG.

도 15에 나타낸 바와 같이 pET-opT4R/C41는 40시간 배양액에서 최대 16 mg/L 의 높은 수준으로 4-쿠마로일 호모세린 락톤 화합물을 생산하는 것을 확인하였다.
As shown in Fig. 15, it was confirmed that pET-opT4R / C41 produced a 4-coumaroyl homoserine lactone compound at a high level of up to 16 mg / L in a culture medium for 40 hours.

[[ 실시예Example 4] 생합성 인공대사경로를 통한 카페오일-호모세린 락톤의 생산 4] Production of caffeine-homoserine lactone through biosynthetic artificial metabolism pathway

실시예Example 4-1. 카페오일-호모세린 락톤 생산을 위한  4-1. Cafe oil - for homoserine lactone production opTALoptal -- Sam5Sam5 -4-4 CL2ntCL2nt -- RpaIRpaI 유전자를 포함하는 재조합 벡터 ( A recombinant vector containing the gene ( pETpET -- opT54RopT54R ) 제작 Production

카페오일-호모세린 락톤을 생합성 인공대사 경로를 통해 생산하기 위하여, 모듈화된 인공경로를 구축하였다. 보다 구체적으로 4-쿠마린산을 카페인산으로 변환하는 사카로트릭스 에스파낸시스(Saccharothrix espanaensis)에서 확인된 4-쿠마린산 3-수산화효소 Sam5 (4-coumarate 3-hydroxylase Sam5)를 암호화하는 유전자(서열번호 15)를 앞서 제작한 벡터 pET-opT4R에 추가적으로 도입하였다. 제한효소 서열을 포함하는 합성 Sam5 염기서열을 서열번호 16에 나타내었다. 최종적으로 opTAL, Sam5, 4CL2nt, opRpaI의 4가지 유전자가 순차적으로 연결한 벡터를 구축하였다. To produce caffeine oil - homoserine lactone through a biosynthetic artificial metabolic pathway, a modular artificial pathway was constructed. More specifically, a gene encoding 4-coumarate 3-hydroxylase Sam5 (4-coumarate 3-hydroxylase) identified in Saccharothrix espanaensis, which converts 4-coumarinic acid into caffeic acid No. 15) was additionally introduced into the previously prepared vector pET-opT4R. The synthetic Sam5 nucleotide sequence containing the restriction enzyme sequence is shown in SEQ ID NO: 16. Finally, a vector was constructed by sequentially connecting the four genes, opTAL, Sam5, 4CL2nt, and opRpaI.

구체적으로, pET-Sam5 벡터를 주형 DNA로 이용하였으며, pET-NPac 및 pET-CPac 프라이머 쌍으로 PCR 증폭하여 pET-Sam5 TA PCR 산물을 얻었다. 또한 pET28a(+) 벡터를 기반으로 NdeI 자리보다 약 800bp 정도 앞에 PacI 자리를 가지도록 PCR을 통해 제작하였고, 제작된 벡터는 PacI 와 NdeI 자리 사이에 T7 프로모터와 RBS를 갖고, NdeI 뒤에 HindⅢ 자리를 가지며, HindⅢ 자리 뒤에 T7 터미네이터를 가지고 있다. 상기 벡터를 PacI으로 절단하였고, 실시예 3-1의 pET-opT4R 벡터를 제한효소 PacI으로 절단한 후, 상기 절단된 유전자를 벡터와 연결하였다. 이렇게 제조된 벡터를 pET-opT54R로 명명하였다. pET-opT54R 벡터는 opTAL, Sam5, 4CL2nt 및 opRpaI 유전자를 구성으로 하며, 각각의 T7 프로모터와 T7 터미네이터를 가져 독립적으로 발현 조절을 받도록 제작하였다. 제작된 벡터를 pET-opT54R로 명명하고 이의 모식도를 도 11 에 나타내었다.
Specifically, the pET-Sam5 vector was used as a template DNA, and PCR amplification was performed with a pair of pET-NPac and pET-CPac primers to obtain pET-Sam5 TA PCR product. Based on the pET28a (+) vector, it was designed to have a PacI site about 800 bp before the NdeI site. The constructed vector had the T7 promoter and RBS between the sites of PacI and NdeI and the HindIII site after NdeI , And a T7 terminator behind the HindIII digits. The vector was digested with PacI, the pET-opT4R vector of Example 3-1 was digested with restriction enzyme PacI, and the digested gene was ligated with the vector. The vector thus prepared was named pET-opT54R. The pET-opT54R vector consists of opTAL, Sam5, 4CL2nt, and opRpaI genes, each of which has a T7 promoter and a T7 terminator to be independently regulated in expression. The constructed vector is named pET-opT54R and the schematic diagram thereof is shown in Fig.

실시예Example 4-2.  4-2. pETpET -- opT54RopT54R 형질전환 미생물의 카페오일 호모세린 락톤 화합물 합성 확인 Synthesis of caffeic oil homoserine lactone compound of transformed microorganism

실시예 4-1에서 제조된 pET-opT54R 이 4-쿠마린산으로부터 카페오일 호모세린 락톤 화합물을 인공대사 경로를 통해 효과적으로 생산하는지 확인하기 위하여, 상기 pET-opT54R 벡터로 대장균을 형질전환하고 생성 물질을 확인하였다. In order to confirm that pET-opT54R produced in Example 4-1 efficiently produced caffeine homoserine lactone compound from 4-coumarinic acid through the artificial metabolic pathway, Escherichia coli was transformed with the pET-opT54R vector, Respectively.

pET-opT54R을 대장균에 형질전환하여 pET-opT54R/C41을 제조하고, 제조된 상기 대장균을 실시예 3-2에서와 같은 방법으로 배양하였다. 상기 배양액의 일부를 여과 (Sartorius Minisart RC 4, 0.2um)하여 그 용액 20ul를 HPLC 분석하였다. HPLC 분석은 SunFire™ C18 column (250 × 4.6 mm, 5 μm; Waters, USA) 컬럼을 이용하여 수행하였으며, CH3CN-H2O(J.T.Baker, USA) (0.05%TFA; Sigma-Aldrich, USA) 이동상을 1 ㎖/min의 속도로 10%에서 60%까지 25분간 수행하였다. 카페인산 표준품은 Sigma(USA)에서 구입하여 분석하였으며, 그 결과를 도 12에 나타내었다. pET-opT54R was transformed into E. coli to produce pET-opT54R / C41. The E. coli prepared was cultured in the same manner as in Example 3-2. A portion of the culture was filtered (Sartorius Minisart RC 4, 0.2 um) and 20 ul of the solution was subjected to HPLC analysis. HPLC analysis was performed using a column of SunFire ™ C18 column (250 × 4.6 mm, 5 μm; Waters, USA) and CH 3 CN-H 2 O (JTBaker, USA) (0.05% TFA; Sigma-Aldrich, USA) The mobile phase was run from 10% to 60% at a rate of 1 ml / min for 25 minutes. The caffeic acid standard product was purchased from Sigma (USA) and analyzed. The results are shown in FIG.

도 12에 나타낸 바와 같이, pET-opT54R로 형질전환된 대장균주 pET-opT54R/C41의 배양액에서 카페인산 보다 빠른 시간대(Rt, 9.9분)에 동일한 UV 스펙트럼을 가진 피크를 확인하였다. 이를 LC/MS로 분석한 결과 화학식 3과 동일한 분자량(m/z 264.34 [M+H]+)을 확인하였다. 즉 이를 통해 상기 형질전환된 균주가 화학식 3로 표시되는 카페오일-호모세린 락톤 화합물을 인공 대사 경로를 통해 효과적으로 생산할 수 있음을 확인하였다. As shown in Fig. 12, peaks having the same UV spectrum at a time (Rt, 9.9 min) earlier than that of caffeic acid were identified in the culture of E. coli strain pET-opT54R / C41 transformed with pET-opT54R. This was analyzed by LC / MS and the same molecular weight (m / z 264.34 [M + H] +) as in Chemical Formula 3 was confirmed. Namely, it was confirmed that the transformed strain can effectively produce the caffeoyl-homoserine lactone compound represented by the formula (3) through the artificial metabolic pathway.

형질전환 균주에 의한 카페오일 호모세린 락톤 생성량을 확인하기 위하여, pET-opT54R/C41을 상기 배양조건과 동일하게 세번 배양하였다. 배양 시간 (1, 4, 15, 25, 40시간)에 따른 생산양을 HPLC을 통해 측정하였으며 그 결과를 도 15에 나타내었다. In order to confirm the amount of caffeine homoserine lactone produced by the transformant strain, pET-opT54R / C41 was cultured three times in the same manner as the above culture conditions. The amount of production according to the culture time (1, 4, 15, 25, 40 hours) was measured by HPLC and the results are shown in Fig.

도 15에 나타낸 바와 같이, 15시간 배양액에서 최대 5mg/L 수준으로 카페오일 호모세린 락톤 화합물이 효과적으로 생산되는 것을 확인하였다.
As shown in FIG. 15, it was confirmed that the caffeine homoserine lactone compound was effectively produced at a level of 5 mg / L at the maximum for 15 hours.

[[ 실시예Example 5] 생합성 인공대사경로를 통한 페루로일 호모세린 락톤의 생산 5] Production of Peruroyl Homoserine Lactone via Biosynthetic Artificial Metabolism Pathway

실시예Example 5-1. 페루로일 호모세린 락톤 생산을 재조합 벡터 ( 5-1. Production of peroxylated homoserine lactone was performed using a recombinant vector ( pETpET -- opT54MRopT54MR ) 제작Production

페루로일 호모세린 락톤을 생합성 인공대사 경로를 통해 생산하기 위하여, 모듈화된 인공경로를 구축하였다. 보다 구체적으로, 페루로일-호모세린 락톤 생산을 위한 모듈화된 인공경로 구축을 위해 카페인산을 페룰린산 (ferulic acid)으로 변환하는 아라비돕시스 탈리아나(Arabidopsis thaliana)에서 확인된 카페인산 O-메틸전이효소 (Caffeic acid O-methyltransferase, COMT)를 암호화하는 com 유전자(서열번호 17)를 사용하였다. 제한효소 자리를 포함하는 com 염기서열을 서열번호 18에 나타내었다. 최종적으로 opTAL, Sam5, 4CL2nt, com, RpaI로 구성된 다섯개의 유전자를 순차적으로 연결한 벡터를 제조하였다. A modular artificial pathway was constructed to produce peroxylated homoserine lactone through a biosynthetic artificial metabolic pathway. More specifically, it has been found that caffeic acid O-methyltransferase (TKA), which has been identified in Arabidopsis thaliana, which converts caffeic acid to ferulic acid for the construction of a modular artificial pathway for the production of peroylo-homoserine lactone (SEQ ID NO: 17) coding for Caffeic acid O-methyltransferase (COMT) was used. The com base sequence containing the restriction enzyme site is shown in SEQ ID NO: 18. Finally, five genes consisting of opTAL, Sam5, 4CL2nt, com and RpaI were sequentially linked to construct a vector.

보다 구체적으로, pET-NSpe 및 pET-CSpe 프라이머 쌍으로 하고, pET-COM 벡터를 주형 DNA로 이용하여 PCR 증폭하였으며, 이를 통해 pET-COM TA PCR 산물을 얻었다. 또한 pET28a(+) 벡터를 기반으로 NdeI 자리보다 400bp 정도 앞에 SpeI 자리를 가지도록 PCR을 통해 제작하였고, 제작된 벡터는 SpeI 와 NdeI 자리 사이에 T7 프로모터와 RBS를 갖고, NdeI 뒤에 HindIII 자리를 가지며, HindIII 자리 뒤에 T7 터미네이터를 가지고 있다. 상기 벡터를 SpeI으로 절단하였고, 실시예 4-1의 pET-opT54R 벡터를 제한효소 SpeI으로 절단한 후, 상기 절단된 유전자를 벡터와 연결하였다. 이렇게 제작된 벡터를 pET-opT54MR로 명명하였으며, 이는 opTAL, Sam5, 4CL2nt, com 및 opRpaI 유전자를 구성으로 하고, 각각의 T7 프로모터와 T7 터미네이터를 통해 독립적으로 발현 조절을 받도록 하였다. 제조된 벡터를 pET-opT54MR 벡터로 명명하였으며, 이의 모식도를 도 13에 나타내었다.
More specifically, a pET-COM TA PCR product was obtained by PCR amplification using pET-NSpe and pET-CSpe primer pairs and pET-COM vector as template DNA. The vector was constructed with a T7 promoter and RBS between SpeI and NdeI sites, HindIII site after NdeI, and a HindIII site after NdeI. It has a T7 terminator behind the HindIII site. The vector was digested with SpeI, the pET-opT54R vector of Example 4-1 was digested with restriction enzyme SpeI, and the digested gene was ligated with the vector. The vector thus constructed was designated as pET-opT54MR, which was constituted by opTAL, Sam5, 4CL2nt, com and opRpaI genes, and was independently regulated through T7 promoter and T7 terminator. The prepared vector was named pET-opT54MR vector, and the schematic diagram thereof is shown in Fig.

실시예Example 5-2.  5-2. pETpET -- opT54MRopT54MR 형질전환 미생물의 페루로일 호모세린 락톤 화합물 합성 확인 Synthesis of Peruroyl Homoserine Lactone Compound in Transgenic Microorganism

실시예 5-1에서 제조된 pET-opT54MR을 대장균에 형질전환하여 pET-opT54MR/C41을 제조하고, 제조된 상기 대장균을 실시예 3-2에서와 같은 방법으로 배양하고 생산 산물의 분석을 수행하였다. 페룰린산 표준품은 Sigma(USA)에서 구입하여 분석하였으며, 분석 결과를 도 14에 나타내었다. The pET-opT54MR prepared in Example 5-1 was transformed into E. coli to produce pET-opT54MR / C41, and the E. coli thus prepared was cultured in the same manner as in Example 3-2, and the product was analyzed . Ferulic acid standard was purchased from Sigma (USA) and analyzed, and the results of the analysis are shown in Fig.

도 14에 나타낸 바와 같이, pET-opT54MR로 형질전환된 대장균주 pET-opT54MR/C41의 배양액에서 페룰린산보다 빠른 시간대(Rt, 12.7분)에 동일한 UV 스펙트럼을 가진 피크를 확인하였다. 이를 LC/MS 로 분석한 결과 화학식 4와 동일한 분자량 (m/z 278.47 [M+H]+)을 확인하였다. 즉, 이를 통해서 상기 형질전환된 균주가 상기 화학식 4로 표시되는 페루로일-호모세린 락톤 화합물을 생산하는 것을 확인하였다.As shown in Fig. 14, peaks having the same UV spectrum at a time (Rt, 12.7 minutes) earlier than ferulic acid in a culture medium of E. coli strain pET-opT54MR / C41 transformed with pET-opT54MR were confirmed. This was analyzed by LC / MS to confirm the same molecular weight (m / z 278.47 [M + H] +) as in Chemical formula 4. That is, it was confirmed that the transformed strain produced the feruloyl-homoserine lactone compound represented by the formula (4).

또한, pET-opT54MR/C41 에 의한 페루로일 호모세린 락톤 생산량을 확인하기 위해 pET-opT54MR/C41을 상기 배양조건과 동일하게 세 번 배양하였다. 배양 시간 (1, 4, 15, 25, 40시간)에 따라 생산되는 양을 측정하였으며, 이를 HPLC로 분석하고 그 결과를 도 15 에 나타내었다. Further, pET-opT54MR / C41 was cultured three times in the same manner as the above culture conditions to confirm the yield of peroyl homoserine lactone by pET-opT54MR / C41. The amount of the product produced in accordance with the culture time (1, 4, 15, 25, 40 hours) was measured and analyzed by HPLC. The result is shown in FIG.

도 15 나타낸 바와 같이, pET-opT54MR/C41 은 25시간 배양액에서 최대 5.6 mg/L 수준으로 페루로일 호모세린 락톤 화합물을 생산하는 것을 확인하였다.
As shown in FIG. 15, it was confirmed that pET-opT54MR / C41 produced a feruloyl homoserine lactone compound at a maximum level of 5.6 mg / L in a culture medium for 25 hours.

[[ 실시예Example 6] 티로신 고생산 균주에 의한  6] tyrosine-producing strain 페닐Phenyl 아세틸 호모세린 락톤 생산성 증가 Increased productivity of acetylated homoserine lactone

실시예Example 6-1. 티로신 고생산 균주의 제작 6-1. Production of Tyrosine High Production Strain

티로신을 고생산 균주를 제조하기 위하여, tyrR 유전자 부위에 aroG(3-deoxy-D-arabino-heptulosonate-7-phosphate(DAHP) synthase) 및 tyrA(chorismate mutase/prephenate dehydrogenase gene) 피드백-억제 저항성(feedback-inhibition resistance, fbr) 유전자를 직접 도입시켰다. (3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase) and tyrA (chorismate mutase / prephenate dehydrogenase gene) feedback-suppression resistance -inhibition resistance, fbr).

aroGfbr 및 tyrAfbr의 유전자 디자인은 Lutke-Eversloh(Appl Environ Microbiol 2005, 71:7224-7228) 및 Stephanopoulos (Appl Microbiol Biotechnol 2007, 75:103-110)에 기술된 방법에 따랐고, 이전에 만든 구조를 이용하였다(Kang SY et al., Microb Cell Fact 2012, 11:153). pET-AG(Kang SY et al., Microb Cell Fact 2012, 11:153) 및 FRT-neo-FRT 단편(Gene Bridges)을 생산하기 위해 tyrAfbr, aroGfbr 및 FRT-neo-FRT 단편을 주형으로 이용하였다. The gene design of aroGfbr and tyrAfbr was followed according to the method described in Lutke-Eversloh (Appl Environ Microbiol 2005, 71: 7224-7228) and Stephanopoulos (Appl Microbiol Biotechnol 2007, 75: 103-110) (Kang SY et al., Microb Cell Fact 2012, 11: 153). AroGfbr and FRT-neo-FRT fragments were used as templates to produce pET-AG (Kang SY et al., Microb Cell Fact 2012, 11: 153) and FRT-neo-FRT fragments (Gene Bridges).

RBS 및 T7 프로모터가 각 유전자의 앞에 위치한 tyrAfbr 및 aroGfbr 유전자 카세트를 모두 포함하는 단편을 제작하였다: IF-N1 프라이머(서열번호 19) 및 IF-C1 프라이머(서열번호 20). FRT-neo-FRT을 포함하는 다른 단편은 IF-FRT1 프라이머(서열번호 21) 및 IF-FRT2 프라이머(서열번호 22)를 이용하여 증폭하였다. 상기 두 단편을 In-fusion kit (Clontech Laboratories, Inc., USA)을 이용하여 pUC19의 SpeI 부위 사이에 연결하여, pUC-AGFRT를 제작하였다. pUC-AGFRT를 주형으로 이용하여 5.9-kb 삽입 PCR 산물을 생성하였으며, tyrRr 프라이머 (서열번호 23) 및 Inf-tyrRfAG 프라이머(서열번호 24)를 사용하였다. 상기 유전자 카세트를 유전자 삽입 불활성화(gene insertional inactivation)를 위하여 tyrR 유전자 사이에 삽입하였으며, Quick & Easy E. coli Gene deletion kit (Gene Bridges)를 포함하는 RED/ET 재조합을 이용하여 종래 방법으로 수행하였다. (SEQ ID NO: 19) and IF-C1 primer (SEQ ID NO: 20), both of which contain both the tyrAfbr and aroGfbr gene cassettes in which the RBS and T7 promoters precede each gene. Other fragments containing FRT-neo-FRT were amplified using the IF-FRT1 primer (SEQ ID NO: 21) and the IF-FRT2 primer (SEQ ID NO: 22). The two fragments were ligated between the SpeI sites of pUC19 using an In-fusion kit (Clontech Laboratories, Inc., USA) to construct pUC-AGFRT. A 5.9-kb insertion PCR product was generated using pUC-AGFRT as a template, and a tyrRr primer (SEQ ID NO: 23) and an Inf-tyrRfAG primer (SEQ ID NO: 24) were used. The gene cassette was inserted between tyrR genes for gene insertional inactivation and was performed by conventional methods using RED / ET recombination including Quick & Easy E. coli Gene deletion kit (Gene Bridges) .

유전자 삽입 불활성화가 제대로 수행되었는지 확인하기 위하여, FLP 재조합 효소 발현 플라스미드인 707-FLPe (Gene Bridges)와 함께 세포를 변형하여 카나마이신 선택 마커를 염색체에서 제거하였다. 상기와 같은 공정을 통해 구축된 삽입 불활성화 티로신 고생산 돌연변이 균주(이하, “△COS1”)는 tyrA-F 프라이머(서열번호 25) 및 aroG-R 프라이머 (서열번호 26)로 확인하였다. In order to confirm that gene insertion was inactivated properly, the cells were transformed with the FLP recombinant expression plasmid 707-FLPe (Gene Bridges) to remove the kanamycin selection marker from the chromosome. The insert-inactivated tyrosine high production mutant strain (hereinafter referred to as "ΔCOS1") constructed through the above process was identified as tyrA-F primer (SEQ ID NO: 25) and aroG-R primer (SEQ ID NO: 26).

티로신 고생산 균주에 사용된 프라이머의 서열을 하기 표 3에 정리하여 나타내었다. The sequences of the primers used in the tyrosine-producing strain are summarized in Table 3 below.

[표 3][Table 3]

Figure 112015070645530-pat00012

Figure 112015070645530-pat00012

실시예Example 6-2. 티로신 고생산 균주를 이용한 호모세린 락톤의 생산 증가  6-2. Production of homoserine lactone by using high tyrosine production strain

실시예 6-1에서 제조된 티로신 고생산 대장균 △COS1에 앞서 실시예에서 제조된 pET-opT4R, pET-opT54R, pET-opT54MR을 도입하여 pET-opT4R/△COS1, pET-opT54R/△COS1, pET-opT54MR/△COS1를 제작하였다. 상기 벡터들은 각각 4-쿠마로일 호모세린 락톤, 카페오일 호모세린 락톤, 페루로일 호모세린 락톤을 생산할 수 있는 벡터이므로, 이들이 도입된 △COS1 에서 이들의 생산량이 증가되는지 여부를 확인하였다. PET-opTT4R /? COS1, pET-opT54R /? COS1, pET-opT54R, pET-opT54R and pET-opT54MR prepared in Example were introduced into the tyrosine-producing E. coli DELTA COS1 prepared in Example 6-1, -OPT54MR /? COS1. These vectors are vectors capable of producing 4-coumaroyl homoserine lactone, caffeine homoserine lactone, and peryloyl homoserine lactone, respectively, and thus it was confirmed whether or not their yields were increased in? COS1 into which they were introduced.

제조된 상기 대장균들을 실시예 3-2에서와 같은 방법으로 배양하고 분석하였으며, 각 호모세린 락톤 화합물 피크의 면적값을 HPLC의 300nm 파장에서 4-쿠마로일 호모세린 락톤 표준품의 면적 값에 대비하여 생산량을 측정하였다.
The E. coli thus prepared were cultured and analyzed in the same manner as in Example 3-2, and the area value of each homoserine lactone compound peak was compared with the area value of 4-coumaroyl homoserine lactone standard at a wavelength of 300 nm by HPLC Production was measured.

4-쿠마로일 호모세린 락톤 생산Production of 4-coumaroyl homoserine lactone

도 16에 나타낸 바와 같이, pET-opT4R/△COS1의 배양액에서 실시예 3-2의 pET-opT4R/C41의 배양에서 생산된 4-쿠마로일 호모세린 락톤 피크와 동일한 시간대 (Rt, 12.2분)에 동일한 UV 스펙트럼을 가진 피크를 확인하였다. 이를 통해서 pET-opT4R/△COS1가 4-쿠마로일 호모세린 락톤 화합물을 생산하는 것을 확인하였다. 이와 같이 생산된 4-쿠마로일 호모세린 락톤 화합물의 생산량을 pET-opT4R/C41 대장균에서의 생산량과 비교하였으며, 그 결과를 도 17에 나타내었다. As shown in Fig. 16, in the same time zone (Rt, 12.2 min) as the 4-coumaroyl homoserine lactone peak produced in the culture of pET-opT4R / C41 of Example 3-2 in the culture solution of pET-opT4R / Lt; RTI ID = 0.0 > UV < / RTI > Thus, it was confirmed that pET-opT4R /? COS1 produces a 4-coumaroyl homoserine lactone compound. The yield of the 4-coumaroyl homoserine lactone compound thus produced was compared with the yield of pET-opT4R / C41 E. coli. The results are shown in FIG.

도 17에 나타낸 바와 같이, pET-opT4R/△COS1 의 배양액에서는 61 mg/L 수준으로 4-쿠마로일 호모세린 락톤 화합물을 생산하였으며, 이는 pET-opT4R/C41 보다 3배 이상의 높은 생산량이다. 따라서 티로신 고생산 균주에서 4-쿠마로일 호모세린 락톤 화합물을 다량 생산할 수 있음을 확인하였다.
As shown in Fig. 17, in the culture solution of pET-opT4R /? COS1, 4-coumaroyl homoserine lactone compound was produced at a level of 61 mg / L, which is three times higher than that of pET-opT4R / C41. Therefore, it was confirmed that the 4-coumaroyl homoserine lactone compound can be produced in a large amount in the strain producing high tyrosine.

카페오일 호모세린 락톤 생산Production of caffeine oil homoserine lactone

유사하게 pET-opT54R/△COS1의 배양액에서는 실시예 4-2의 pET-opT54R/C41의 배양에서 생산된 카페오일 호모세린 락톤 피크와 동일한 시간대 (Rt, 9.9분)에 동일한 UV 스펙트럼을 가진 피크를 확인하였다. 이를 통해서 pET-opT54R/△COS1가 카페오일 호모세린 락톤 화합물을 생산하는 것을 확인하였다. 이와 같이 생산된 카페오일 호모세린 락톤 화합물의 생산량을 pET-opT54R/C41 대장균에서의 생산량과 비교하였으며, 그 결과를 도 18에 나타내었다. Similarly, in the culture solution of pET-opT54R /? COS1, a peak having the same UV spectrum in the same time zone (Rt, 9.9 minutes) as the caffeine homoserine lactone peak produced in the culture of pET-opT54R / C41 of Example 4-2 Respectively. It was confirmed that pET-opT54R / COS1 produced caffeine homoserine lactone compound. The yield of the caffeine homoserine lactone compound thus produced was compared with the yield of pET-opT54R / C41 E. coli. The results are shown in FIG.

도 18에 나타낸 바와 같이, pET-opT54R/△COS1의 배양액에서는 30 mg/L 수준으로 카페오일 호모세린 락톤 화합물을 생산하였으며, 이는 pET-opT54R/C41보다 약 6배 이상의 높은 생산량이다. 따라서 티로신 고생산 균주에서 카페오일 호모세린 락톤 화합물을 다량 생산할 수 있음을 확인하였다.
As shown in FIG. 18, in the culture solution of pET-opT54R /? COS1, caffeine homoserine lactone compound was produced at a level of 30 mg / L, which is about 6 times higher than that of pET-opT54R / C41. Therefore, it was confirmed that caffeine homoserine lactone compound can be produced in a large amount in the strain producing high tyrosine.

페루로일 호모세린 락톤 생산Peroxylated homoserine lactone production

또한 pET-opT54MR/△COS1의 배양액에서 실시예 5-2의 pET-opT54MR/C41의 배양에서 생산된 페루로일 호모세린 락톤 피크와 동일한 시간대 (Rt, 12.7분)에 동일한 UV 스펙트럼을 가진 피크를 확인하였다. 이를 통해서 pET-opT54MR/△COS1가 페루로일 호모세린 락톤 화합물을 생산하는 것을 확인하였다. 하지만, 도 19에 나타낸 바와 같이, pET-opT54MR/△COS1의 배양액에서 특이하게도 극미량의 페루로일 호모세린 락톤 화합물을 생산하는 것을 확인하였다. 하지만 대사경로 중간체인 쿠마로익 산의 생산량은 현저히 증가되어 있어 대사흐름의 문제로 최종산물인 페루로일 호모세린 락톤 화합물생산이 pET-opT54MR/C41 보다 줄어든 것으로 판단된다.
In addition, a peak having the same UV spectrum in the same time zone (Rt, 12.7 minutes) as the peruroyl homoserine lactone peak produced in the culture of pET-opT54MR / C41 of Example 5-2 in the culture solution of pET-opT54MR / Respectively. From this, it was confirmed that pET-opT54MR /? COS1 produces a peruroyl homoserine lactone compound. However, as shown in Fig. 19, it was confirmed that, in the culture solution of pET-opT54MR / DELTA COS1, the feruloyl homoserine lactone compound in a very small amount was specifically produced. However, the production of cumaric acid, which is a metabolic pathway intermediate, is remarkably increased, and it is considered that the production of peroyl homoserine lactone, which is the final product, is less than that of pET-opT54MR / C41 due to the metabolic flow problem.

실시예Example 7. 메티오닌 ( 7. Methionine ( methionine메티오 로 ) 및 SAM(S-) And SAM (S- AdenosylAdenosyl methionine메티오 로 )의 )of 첨가 에In addition 의한 호모세린 락톤 생산성 증가  Increased homoserine lactone productivity

실시예 6-2에서 제조된 pET-opT4R/△COS1, pET-opT54R/△COS1, pET-opT54MR/△COS1의 배양 배지에 S-아데노실 메티오닌(SAM) 또는 메티오닌을 첨가하고 생성되는 페닐아세틸 호모세린 락톤의 생산성을 비교하였다.(SAM) or methionine was added to the culture medium of pET-opT4R /? COS1, pET-opT54R /? COS1, pET-opT54MR /? COS1 prepared in Example 6-2, The productivity of serine lactone was compared.

실시예 6-2에서 제조된 pET-opT4R/△COS1, pET-opT54R/△COS1, pET-opT54MR/△COS1을 상기 배양조건과 동일하게 세 번 배양을 실시하였고, 이 때 배지에 SAM 또는 메티오닌을 1 mM 최종농도로 처리하고 각각 25시간 동안 배양하였다. 상기 각 배양액의 일부를 filtering (Sartorius Minisart RC 4, 0.2um)하여 그 용액 20ul를 SunFire™ C18 column (250 × 4.6 mm, 5 μm; Waters, USA) 컬럼을 이용한 HPLC 분석에 이용하였으며, CH3CN-H2O(J.T.Baker,USA) (0.05%TFA;Sigma-Aldrich, USA) 이동상을 1 ㎖/min의 속도로 10%에서 60%까지 25분간 분석하였다. 4-쿠마로일 호모세린 락톤, 카페오일 호모세린 락톤, 페루로일 호모세린 락톤의 생산량을 비교하기 위해 상기 배양액의 300nm의 파장에서 보여지는 4-쿠마로일 호모세린 락톤 화합물 피크의 면적값을 4-쿠마로일 호모세린 락톤 표준품의 면적 값에 대비하여 정량하였다.
The pET-opT4R /? COS1, pET-opT54R /? COS1, and pET-opT54MR /? COS1 prepared in Example 6-2 were cultured three times in the same manner as in the above cultivation conditions, and SAM or methionine 1 mM final concentration and incubated for 25 hours each. A portion of each culture was filtered (Sartorius Minisart RC 4, 0.2 μm) and 20 μl of the solution was used for HPLC analysis on a SunFire ™ C18 column (250 × 4.6 mm, 5 μm; Waters, USA) (JTBaker, USA) (0.05% TFA; Sigma-Aldrich, USA) The mobile phase was analyzed from 10% to 60% for 25 minutes at a rate of 1 ml / min. To compare the yield of 4-coumaroyl homoserine lactone, caffeine homoserine lactone, and peryloyl homoserine lactone, the area value of the peak of the 4-coumaroyl homoserine lactone compound shown at a wavelength of 300 nm of the culture solution was Mu] m < / RTI > homoserine lactone.

4-쿠마로일 호모세린 락톤 생산성 증가 4-coumaroyl homoserine lactone productivity increase

도 17에 나타낸 바와 같이, SAM 을 첨가한 배양액에서는 93 mg/L의 4-쿠마로일 호모세린 락톤이 생산되었다. 이는 SAM을 첨가하지 않은 pET-opT4R/C41의 배양액에 비해 약 6.2배 증가한 것이다. 또한 이는 SAM 을 첨가하지 않은 pET-opT4R/△COS1의 배양액에 비해서도 약 2.3배 증가한 생산량이다. 메티오닌(Met)을 첨가한 배양액에서는 143 mg/L의 4-쿠마로일 호모세린 락톤이 생산된 것을 확인하였다. 이는 SAM을 첨가한 배양액보다 생산량이 1.5배 더 증가한 것으로 가장 높은 4-쿠마로일 호모세린 락톤 생산을 나타내었다.
As shown in Fig. 17, in the culture solution to which SAM was added, 93 mg / L of 4-coumaroyl homoserine lactone was produced. This is about 6.2 times higher than that of pET-opT4R / C41 without SAM. It is also about 2.3 times higher than the culture of pET-opT4R / △ COS1 without SAM. In the culture medium containing methionine (Met), it was confirmed that 143 mg / L of 4-coumaroyl homoserine lactone was produced. This was the highest production of 4 - coumaroyl homoserine lactone, which was 1.5 times higher than that of SAM - supplemented culture.

카페오일 호모세린 락톤 생산성 증가Increase productivity of caffeine homoserine lactone

도 18에 나타낸 바와 같이, SAM을 첨가한 배양에서는 51mg/L의 카페오일 호모세린 락톤이 생산됨을 확인하였다. 이는 SAM 또는 메티오닌을 첨가하지 않은 pET-opT54R/C41의 배양액에 비해 약 12.8배 증가한 양이며, pET-opT54R/△COS1 배양액에 비해 약 1.7배 증가한 양이다. 메티오닌(Met)을 첨가한 배양액에서는 50 mg/L의 카페오일 호모세린 락톤이 생산되어 SAM을 첨가한 배양액과 비슷한 생산량의 증가를 나타내었다.
As shown in Fig. 18, it was confirmed that caffeoyl homoserine lactone of 51 mg / L was produced in the culture supplemented with SAM. This amount is about 12.8 times higher than that of pET-opT54R / C41 without SAM or methionine, which is about 1.7 times higher than that of pET-opT54R / ΔCOS1 culture. Methionine (Met) supplemented with 50 mg / L of caffeoyl homoserine lactone produced similar increase in SAM production.

페루로일 호모세린 락톤 생산성 증가Increase productivity of homoserine lactone perroyl

실시예 6에서 확인한 바와 같이, 티로신 고생산 균주인 pET-opT54MR/△COS1에서는 오히려 페루로일 호모세린 락톤의 최종 생산량이 pET-opT54MR/C41보다 낮게 나타났다. 그러나 도 19에 나타낸 바와 같이, SAM 또는 메티오닌(Met)을 첨가한 배지에서는 pET-opT54MR/△COS1에 의한 페루로일 호모세린 락톤의 생산량이 현저히 증가하였다. 특히 메티오닌을 첨가한 배양액에서는 약 10 mg/L의 페루로일 호모세린 락톤이 생산되어 pET-opT54MR/C41의 배양액에 비해 약 1.7배 가량 페루로일 호모세린 락톤의 생산량이 증가하였다.
As shown in Example 6, the final yield of peryloyl homoserine lactone was lower in pET-opT54MR /? COS1, a tyrosine-producing strain, than pET-opT54MR / C41. However, as shown in Fig. 19, in the medium supplemented with SAM or methionine (Met), the yield of peroyl homoserine lactone by pET-opT54MR /? COS1 markedly increased. In particular, about 10 mg / L of feruloyl homoserine lactone was produced in the culture medium supplemented with methionine, and the yield of peroyl homoserine lactone was increased to about 1.7 times as compared with the culture solution of pET-opT54MR / C41.

상기와 같은 결과를 통해, 4CL2nt 및 opRpaI 유전자, 선택적으로 opTAL, sam5, com를 포함하는 벡터를 이용하여 페닐아세틸 호모세린 락톤을 효과적으로 생산할 수 있음을 확인하였다. 또한 상기 벡터를 티로신 고생산 균주 △COS1 로 도입하거나 이의 배양 배지에 S-아데노실 메티오닌 또는 메티오닌을 단순 첨가함으로써 페닐아세틸 호모세린 락톤의 생산을 현저하게 증가시킬 수 있음을 확인하였다. From the above results, it was confirmed that phenylacetyl homoserine lactone can be efficiently produced using a vector including 4CL2nt and opRpaI genes, and optionally opTAL, sam5, and com. It was also confirmed that the production of phenylacetyl homoserine lactone can be significantly increased by introducing the vector into the tyrosine-producing strain? COS1 or by simply adding S-adenosylmethionine or methionine to the culture medium thereof.

<110> Korea Research Institute of Bioscience and Biotechnology <120> Method for producing Phenylacetyl homoserine lactone derivatives <130> 1-16p-1 <150> KR 10-2014-0091762 <151> 2014-07-21 <160> 26 <170> KopatentIn 2.0 <210> 1 <211> 218 <212> PRT <213> Artificial Sequence <220> <223> RPA1 amino acid <400> 1 Met Gln Val His Val Ile Arg Arg Glu Asn Arg Ala Leu Tyr Ala Gly 1 5 10 15 Leu Leu Glu Lys Tyr Phe Arg Ile Arg His Gln Ile Tyr Val Val Glu 20 25 30 Arg Gly Trp Lys Glu Leu Asp Arg Pro Asp Gly Arg Glu Ile Asp Gln 35 40 45 Phe Asp Thr Glu Asp Ala Val Tyr Leu Leu Gly Val Asp Asn Asp Asp 50 55 60 Ile Val Ala Gly Met Arg Met Val Pro Thr Thr Ser Pro Thr Leu Leu 65 70 75 80 Ser Asp Val Phe Pro Gln Leu Ala Leu Ala Gly Pro Val Arg Arg Pro 85 90 95 Asp Ala Tyr Glu Leu Ser Arg Ile Phe Val Val Pro Arg Lys Arg Gly 100 105 110 Glu His Gly Gly Pro Arg Ala Glu Ala Val Ile Gln Ala Ala Ala Met 115 120 125 Glu Tyr Gly Leu Ser Ile Gly Leu Ser Ala Phe Thr Ile Val Leu Glu 130 135 140 Thr Trp Trp Leu Pro Arg Leu Val Asp Gln Gly Trp Lys Ala Lys Pro 145 150 155 160 Leu Gly Leu Pro Gln Asp Ile Asn Gly Phe Ser Thr Thr Ala Val Ile 165 170 175 Val Asp Val Asp Asp Asp Ala Trp Val Gly Ile Cys Asn Arg Arg Ser 180 185 190 Val Pro Gly Pro Thr Leu Glu Trp Arg Gly Leu Glu Ala Ile Arg Arg 195 200 205 His Ser Leu Pro Glu Phe Gln Val Ile Ser 210 215 <210> 2 <211> 657 <212> DNA <213> Artificial Sequence <220> <223> novel op RPA1 gene <400> 2 atgcaagttc atgttattcg tcgcgagaac cgcgcgctct atgccggttt gctagaaaaa 60 tatttccgta ttcgtcacca aatctacgtc gtagaacgcg gctggaaaga attggatcgg 120 ccggatggac gagaaattga tcagttcgat accgaagacg cggtgtatct tttaggtgtc 180 gacaatgatg atattgtagc tggcatgcgt atggtgccga ccacgtctcc gacacttctg 240 agcgatgttt ttccacaact cgcgctggct ggtccagtaa gaaggcctga tgcctatgag 300 ttatctcgga tatttgtggt tcctcgtaag cgcggagagc atgggggccc acgtgctgag 360 gcagtgatac aggcggccgc aatggaatac ggtttatcga ttggcctgtc agcctttact 420 atcgtactgg aaacttggtg gctgccgcga ctggttgacc agggctggaa agcaaaacct 480 ttaggtctgc ctcaggatat caatggattt tccaccacag cagtcatcgt tgatgttgac 540 gatgatgctt gggtcggtat ttgtaataga cgcagtgttc ccggacccac gttagaatgg 600 agagggttag aagcaatacg gcgtcatagt cttccggaat ttcaggtgat ttcataa 657 <210> 3 <211> 542 <212> PRT <213> Artificial Sequence <220> <223> 4CL2nt amino acid <400> 3 Met Glu Lys Asp Thr Lys Gln Val Asp Ile Ile Phe Arg Ser Lys Leu 1 5 10 15 Pro Asp Ile Tyr Ile Pro Asn His Leu Pro Leu His Ser Tyr Cys Phe 20 25 30 Glu Asn Ile Ser Glu Phe Ser Ser Arg Pro Cys Leu Ile Asn Gly Ala 35 40 45 Asn Lys Gln Ile Tyr Thr Tyr Ala Asp Val Glu Leu Asn Ser Arg Lys 50 55 60 Val Ala Ala Gly Leu His Lys Gln Gly Ile Gln Pro Lys Asp Thr Ile 65 70 75 80 Met Ile Leu Leu Pro Asn Ser Pro Glu Phe Val Phe Ala Phe Ile Gly 85 90 95 Ala Ser Tyr Leu Gly Ala Ile Ser Thr Met Ala Asn Pro Leu Phe Thr 100 105 110 Pro Ala Glu Val Val Lys Gln Ala Lys Ala Ser Ser Ala Lys Ile Ile 115 120 125 Val Thr Gln Ala Cys His Val Asn Lys Val Lys Asp Tyr Ala Phe Glu 130 135 140 Asn Asp Val Lys Ile Ile Cys Ile Asp Ser Ala Pro Glu Gly Cys Leu 145 150 155 160 His Phe Ser Val Leu Thr Gln Ala Asn Glu His Asp Ile Pro Glu Val 165 170 175 Glu Ile Gln Pro Asp Asp Val Val Ala Leu Pro Tyr Ser Ser Gly Thr 180 185 190 Thr Gly Leu Pro Lys Gly Val Met Leu Thr His Lys Gly Leu Val Thr 195 200 205 Ser Val Ala Gln Gln Val Asp Gly Glu Asn Pro Asn Leu Tyr Ile His 210 215 220 Ser Glu Asp Val Met Leu Cys Val Leu Pro Leu Phe His Ile Tyr Ser 225 230 235 240 Leu Asn Ser Val Leu Leu Cys Gly Leu Arg Val Gly Ala Ala Ile Leu 245 250 255 Ile Met Gln Lys Phe Asp Ile Val Ser Phe Leu Glu Leu Ile Gln Arg 260 265 270 Tyr Lys Val Thr Ile Gly Pro Phe Val Pro Pro Ile Val Leu Ala Ile 275 280 285 Ala Lys Ser Pro Met Val Asp Asp Tyr Asp Leu Ser Ser Val Arg Thr 290 295 300 Val Met Ser Gly Ala Ala Pro Leu Gly Lys Glu Leu Glu Asp Thr Val 305 310 315 320 Arg Ala Lys Phe Pro Asn Ala Lys Leu Gly Gln Gly Tyr Gly Met Thr 325 330 335 Glu Ala Gly Pro Val Leu Ala Met Cys Leu Ala Phe Ala Lys Glu Pro 340 345 350 Phe Glu Ile Lys Ser Gly Ala Cys Gly Thr Val Val Arg Asn Ala Glu 355 360 365 Met Lys Ile Val Asp Pro Lys Thr Gly Asn Ser Leu Pro Arg Asn Gln 370 375 380 Ser Gly Glu Ile Cys Ile Arg Gly Asp Gln Ile Met Lys Gly Tyr Leu 385 390 395 400 Asn Asp Pro Glu Ala Thr Ala Arg Thr Ile Asp Lys Glu Gly Trp Leu 405 410 415 Tyr Thr Gly Asp Ile Gly Tyr Ile Asp Asp Asp Asp Glu Leu Phe Ile 420 425 430 Val Asp Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Phe Gln Val Ala 435 440 445 Pro Ala Glu Leu Glu Ala Leu Leu Leu Asn His Pro Asn Ile Ser Asp 450 455 460 Ala Ala Val Val Pro Met Lys Asp Glu Gln Ala Gly Glu Val Pro Val 465 470 475 480 Ala Phe Val Val Arg Ser Asn Gly Ser Thr Ile Thr Glu Asp Glu Val 485 490 495 Lys Asp Phe Ile Ser Lys Gln Val Ile Phe Tyr Lys Arg Ile Lys Arg 500 505 510 Val Phe Phe Val Asp Ala Ile Pro Lys Ser Pro Ser Gly Lys Ile Leu 515 520 525 Arg Lys Asp Leu Arg Ala Lys Leu Ala Ala Gly Leu Pro Asn 530 535 540 <210> 4 <211> 1632 <212> DNA <213> Artificial Sequence <220> <223> novel 4CL2nt gene <400> 4 atggagaaag acacgaagca agttgacatc atttttcgct cgaaactgcc ggacatttac 60 attccgaatc atctgccgct gcatagctac tgcttcgaga acatttctga attttctagc 120 cgtccgtgtc tgattaacgg tgccaataaa cagatctata cgtacgcgga cgtcgagttg 180 aacagccgta aggtcgcagc gggtctgcac aagcaaggca tccagcctaa agataccatc 240 atgattctgt tgccaaattc tccggagttt gtgtttgcgt ttatcggcgc aagctacctg 300 ggtgcgatta gcacgatggc aaatccgctg tttaccccgg ctgaggttgt taaacaagca 360 aaagccagca gcgcgaagat catcgtgacc caagcatgcc acgtcaacaa agttaaggac 420 tatgccttcg aaaatgacgt caagatcatt tgcatcgata gcgcgcctga aggttgtctg 480 catttcagcg ttctgacgca ggctaacgaa cacgatattc cggaagttga gattcagccg 540 gacgatgtgg tggccctgcc gtactccagc ggtaccaccg gcctgccgaa aggcgttatg 600 ctgacccaca agggcctggt gacgagcgtc gcccagcagg tcgatggtga aaacccgaac 660 ctgtacatcc acagcgaaga tgttatgctg tgtgttctgc cactgttcca catctattcc 720 ctgaacagcg tcctgctgtg cggcctgcgt gtgggcgctg ccattttgat tatgcagaag 780 tttgacattg tcagcttctt ggaactgatc caacgctaca aggtgacgat cggtccgttc 840 gtcccgccga ttgttttggc cattgcaaaa agcccaatgg tggatgacta tgacctgtcg 900 agcgtgcgta ccgtgatgtc cggtgcagcg ccgctgggca aagagctgga ggataccgtt 960 cgtgcgaagt ttccgaatgc gaaactgggt caaggctacg gtatgactga agcaggtccg 1020 gtgctggcga tgtgcttggc gttcgcgaaa gagccgttcg aaatcaaaag cggtgcgtgc 1080 ggtaccgtgg tgcgtaatgc tgaaatgaaa attgtggatc cgaaaaccgg caacagcctg 1140 ccgcgcaacc agagcggtga gatttgtatt cgcggtgacc agattatgaa gggctacctg 1200 aatgacccgg aggccactgc gcgtacgatc gacaaagagg gttggctgta taccggcgac 1260 atcggttata tcgatgacga cgacgagctg ttcatcgttg atcgcctgaa agagttgatt 1320 aagtacaagg gtttccaagt tgcgcctgcg gaactggagg ctctgctgtt gaatcatccg 1380 aacattagcg atgcagcagt cgttccgatg aaggatgagc aggcgggtga agttccggtc 1440 gcgtttgttg tgcgtagcaa cggcagcacg atcaccgagg atgaggtaaa ggatttcatt 1500 tccaaacaag tcatcttcta taagcgtatc aagcgtgtgt ttttcgtcga tgcaatcccg 1560 aaaagcccgt ccggtaagat cctgcgcaaa gacttgcgtg cgaagctggc ggcaggtctg 1620 ccgaattagt aa 1632 <210> 5 <211> 1533 <212> DNA <213> Artificial Sequence <220> <223> opTAL gene <400> 5 atgacccagg tggttgaacg ccaggccgat cgcctgagta gtcgtgaata cttagctcgc 60 gtcgttcgta gtgccggctg ggatgcgggc ctaacctctt gtacagatga agaaattgtt 120 cgcatgggcg cgtcagcccg caccatcgag gaatatttaa aaagtgataa accgatttat 180 ggtttaaccc aaggcttcgg cccgctggta ctgtttgatg cggatagcga attagaacag 240 ggtggtagcc tgattagcca tctgggcacc ggtcagggcg cgccgctggc gccggaagtg 300 agtcgtttaa ttctgtggct gcgtattcaa aacatgcgca aaggttatag cgccgttagc 360 ccggttttct ggcaaaaact ggcagaccta tggaataaag gctttacccc ggcaattccg 420 cgtcatggta ccgtttccgc ctcgggtgat ctgcaaccgc tggcgcatgc cgcgctggca 480 ttcaccggcg tgggtgaagc gtggacccgc gatgcagatg gccgctggag caccgttccg 540 gctgttgatg ccctggcagc gctgggtgcc gaaccgtttg attggcctgt ccgcgaagca 600 ctggcgtttg ttaatggcac cggagccagc ctggcggttg ctgttttaaa tcatcgttct 660 gccctgcgcc tggttcgcgc gtgtgcggta ctgagcgcac gcctggcgac cctgctgggc 720 gcaaatccgg aacattatga cgttggtcat ggcgttgccc gcggtcaggt tggccagctg 780 accgcggcgg aatggattcg tcagggcctg ccacgtggta tggtgcgcga tggaagccgt 840 ccgttgcagg aaccttatag ccttcgctgc gctccgcagg ttctaggcgc tgttctggat 900 cagctggacg gtgcgggtga cgtgctggcc cgcgaagttg atggttgcca ggataaccct 960 attacctacg aaggtgaatt gctgcatggc ggtaacttcc atgccatgcc ggttggtttt 1020 gcaagtgatc agattggtct ggcgatgcac atggcggcct acctggctga acgccagctg 1080 ggcctgctgg ttagcccggt aaccaatggt gatttaccac cgatgctgac cccgcgtgcc 1140 ggccgtggtg cgggtcttgc tggcgtccag atttctgcca ccagcttcgt ttctcgtatt 1200 cgccaactgg ttttcccggc gtctctgacc accctgccga ccaacggttg gaatcaagac 1260 catgtaccga tggcactgaa tggcgctaat agcgttttcg aagcactgga actgggttgg 1320 ttaaccgttg gaagcctggc ggtgggcgtt gcacagctgg cggcgatgac cggtcatgcg 1380 gctgaagggg tttgggcaga actggcaggc atttgcccgc cgttagatgc cgaccgtccg 1440 ctgggtgcgg aagttcgcgc agcccgtgat ctgctgagcg cgcacgctga tcagctgttg 1500 gtggacgaag ccgatggtaa agactttggc taa 1533 <210> 6 <211> 666 <212> DNA <213> Artificial Sequence <220> <223> op RPA1 gene comprising restriction enzyme <400> 6 catatgcaag ttcatgttat tcgtcgcgag aaccgcgcgc tctatgccgg tttgctagaa 60 aaatatttcc gtattcgtca ccaaatctac gtcgtagaac gcggctggaa agaattggat 120 cggccggatg gacgagaaat tgatcagttc gataccgaag acgcggtgta tcttttaggt 180 gtcgacaatg atgatattgt agctggcatg cgtatggtgc cgaccacgtc tccgacactt 240 ctgagcgatg tttttccaca actcgcgctg gctggtccag taagaaggcc tgatgcctat 300 gagttatctc ggatatttgt ggttcctcgt aagcgcggag agcatggggg cccacgtgct 360 gaggcagtga tacaggcggc cgcaatggaa tacggtttat cgattggcct gtcagccttt 420 actatcgtac tggaaacttg gtggctgccg cgactggttg accagggctg gaaagcaaaa 480 cctttaggtc tgcctcagga tatcaatgga ttttccacca cagcagtcat cgttgatgtt 540 gacgatgatg cttgggtcgg tatttgtaat agacgcagtg ttcccggacc cacgttagaa 600 tggagagggt tagaagcaat acggcgtcat agtcttccgg aatttcaggt gatttcataa 660 ctcgag 666 <210> 7 <211> 1638 <212> DNA <213> Artificial Sequence <220> <223> 4CL2nt gene comprising restriction enzyme <400> 7 ccatggagaa agacacgaag caagttgaca tcatttttcg ctcgaaactg ccggacattt 60 acattccgaa tcatctgccg ctgcatagct actgcttcga gaacatttct gaattttcta 120 gccgtccgtg tctgattaac ggtgccaata aacagatcta tacgtacgcg gacgtcgagt 180 tgaacagccg taaggtcgca gcgggtctgc acaagcaagg catccagcct aaagatacca 240 tcatgattct gttgccaaat tctccggagt ttgtgtttgc gtttatcggc gcaagctacc 300 tgggtgcgat tagcacgatg gcaaatccgc tgtttacccc ggctgaggtt gttaaacaag 360 caaaagccag cagcgcgaag atcatcgtga cccaagcatg ccacgtcaac aaagttaagg 420 actatgcctt cgaaaatgac gtcaagatca tttgcatcga tagcgcgcct gaaggttgtc 480 tgcatttcag cgttctgacg caggctaacg aacacgatat tccggaagtt gagattcagc 540 cggacgatgt ggtggccctg ccgtactcca gcggtaccac cggcctgccg aaaggcgtta 600 tgctgaccca caagggcctg gtgacgagcg tcgcccagca ggtcgatggt gaaaacccga 660 acctgtacat ccacagcgaa gatgttatgc tgtgtgttct gccactgttc cacatctatt 720 ccctgaacag cgtcctgctg tgcggcctgc gtgtgggcgc tgccattttg attatgcaga 780 agtttgacat tgtcagcttc ttggaactga tccaacgcta caaggtgacg atcggtccgt 840 tcgtcccgcc gattgttttg gccattgcaa aaagcccaat ggtggatgac tatgacctgt 900 cgagcgtgcg taccgtgatg tccggtgcag cgccgctggg caaagagctg gaggataccg 960 ttcgtgcgaa gtttccgaat gcgaaactgg gtcaaggcta cggtatgact gaagcaggtc 1020 cggtgctggc gatgtgcttg gcgttcgcga aagagccgtt cgaaatcaaa agcggtgcgt 1080 gcggtaccgt ggtgcgtaat gctgaaatga aaattgtgga tccgaaaacc ggcaacagcc 1140 tgccgcgcaa ccagagcggt gagatttgta ttcgcggtga ccagattatg aagggctacc 1200 tgaatgaccc ggaggccact gcgcgtacga tcgacaaaga gggttggctg tataccggcg 1260 acatcggtta tatcgatgac gacgacgagc tgttcatcgt tgatcgcctg aaagagttga 1320 ttaagtacaa gggtttccaa gttgcgcctg cggaactgga ggctctgctg ttgaatcatc 1380 cgaacattag cgatgcagca gtcgttccga tgaaggatga gcaggcgggt gaagttccgg 1440 tcgcgtttgt tgtgcgtagc aacggcagca cgatcaccga ggatgaggta aaggatttca 1500 tttccaaaca agtcatcttc tataagcgta tcaagcgtgt gtttttcgtc gatgcaatcc 1560 cgaaaagccc gtccggtaag atcctgcgca aagacttgcg tgcgaagctg gcggcaggtc 1620 tgccgaatta gtaagctt 1638 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> opTAL-F primer <400> 8 catatgaccc aggtggttga acgcc 25 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pET-Cpac primer <400> 9 ttaattaatg cgccgctaca gggcgcgtcc 30 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pET-Npac primer <400> 10 ttaattaatc gccgcgacaa tttgcgacgg 30 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> pET-Cspe primer <400> 11 actagttcct cctttcagca aaaaacccct c 31 <210> 12 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 4CL2nt-F primer <400> 12 catatggaga aagacacgaa gcaagttgac atc 33 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> 4CL2nt-R primer <400> 13 aagcttacta attcggcaga cctgccgcc 29 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pET-Nspe <400> 14 actagtaggt tgaggccgtt gagcaccgcc 30 <210> 15 <211> 1539 <212> DNA <213> Artificial Sequence <220> <223> sam <400> 15 atgaccatca cgtcacctgc gccggcgggc cggctcaaca acgtccgccc gatgacgggc 60 gaggagtacc tggaatcact gcgggacggc cgagaggtct acatctacgg cgagcgggtc 120 gacgacgtca ccacgcacct ggccttccgc aacagcgtgc gctccatcgc gcggctctac 180 gacgtgctgc acgacccggc gtccgaaggt gtgctgcggg tgcccaccga caccggcaac 240 ggcgggttca cccacccgtt cttcaagacc gcccggtcgt cggaggacct ggtcgccgcg 300 cgcgaggcca tcgtcggctg gcagcggctg gtgtacgggt ggatgggccg caccccggac 360 tacaaggcgg cgttcttcgg cacgctcgac gccaacgccg agttctacgg gccgttcgag 420 gccaacgccc gccgctggta ccgcgacgcc caggaacggg tgctgtactt caaccacgcg 480 atcgtgcacc cgccggtcga ccgggaccgg cccgccgacc ggaccgccga catctgcgtg 540 cacgtggagg aggagaccga cagcgggttg atcgtctccg gcgccaaggt ggtcgcgacc 600 ggctccgcga tgaccaacgc gaacctcatc gcgcactacg ggcttccggt gcgggacaag 660 aagttcggcc tggtgttcac ggtcccgatg aactcgcccg gcctcaagct catctgccgc 720 acctcctacg agctgatggt cgcgacgcag ggctcgccct tcgactaccc gctgtcgagc 780 cggctcgacg agaacgactc gatcatgatc ttcgaccggg tgctggtgcc ctgggagaac 840 gtgttcatgt acgacgcggg cgcggccaac tccttcgcca ccgggtcagg cttcctcgaa 900 cgcttcacct tccacggctg cacccgcctc gcggtcaagc tggacttcat cgccggctgc 960 gtcatgaagg cggtggaggt caccggcacc acgcacttcc ggggcgtgca ggcgcaggtc 1020 ggcgaagtgc tcaactggcg cgacgtgttc tggggcctgt ccgacgcgat ggccaagtcg 1080 ccgaactcgt gggtcggcgg ctcggtgcag ccgaacctca actacgggct cgcgtaccgc 1140 accttcatgg gcgtgggcta cccgcgcatc aaggagatca tccagcagac cctcggcagc 1200 gggttgatct acctgaactc ctcggccgcc gactggaaga accccgacgt ccgcccgtac 1260 ctcgaccgct acctgcgcgg ctcgcggggc atccaggcga tcgaccgggt caagctgctg 1320 aagctgctgt gggacgcggt cggcaccgag ttcgccggcc ggcacgagct ctacgagcgc 1380 aactacggcg gcgaccacga gggcatccgg gtgcagaccc tgcaggcgta ccaggcgaac 1440 ggccaagccg ccgcgctcaa gggtttcgcc gagcagtgca tgtccgagta cgacctcgac 1500 ggctggacga ggcccgacct gatcaacccc ggcacctga 1539 <210> 16 <211> 1547 <212> DNA <213> Artificial Sequence <220> <223> sam comprising restriction enzyme sequence <400> 16 catatgacca tcacgtcacc tgcgccggcg ggccggctca acaacgtccg cccgatgacg 60 ggcgaggagt acctggaatc actgcgggac ggccgagagg tctacatcta cggcgagcgg 120 gtcgacgacg tcaccacgca cctggccttc cgcaacagcg tgcgctccat cgcgcggctc 180 tacgacgtgc tgcacgaccc ggcgtccgaa ggtgtgctgc gggtgcccac cgacaccggc 240 aacggcgggt tcacccaccc gttcttcaag accgcccggt cgtcggagga cctggtcgcc 300 gcgcgcgagg ccatcgtcgg ctggcagcgg ctggtgtacg ggtggatggg ccgcaccccg 360 gactacaagg cggcgttctt cggcacgctc gacgccaacg ccgagttcta cgggccgttc 420 gaggccaacg cccgccgctg gtaccgcgac gcccaggaac gggtgctgta cttcaaccac 480 gcgatcgtgc acccgccggt cgaccgggac cggcccgccg accggaccgc cgacatctgc 540 gtgcacgtgg aggaggagac cgacagcggg ttgatcgtct ccggcgccaa ggtggtcgcg 600 accggctccg cgatgaccaa cgcgaacctc atcgcgcact acgggcttcc ggtgcgggac 660 aagaagttcg gcctggtgtt cacggtcccg atgaactcgc ccggcctcaa gctcatctgc 720 cgcacctcct acgagctgat ggtcgcgacg cagggctcgc ccttcgacta cccgctgtcg 780 agccggctcg acgagaacga ctcgatcatg atcttcgacc gggtgctggt gccctgggag 840 aacgtgttca tgtacgacgc gggcgcggcc aactccttcg ccaccgggtc aggcttcctc 900 gaacgcttca ccttccacgg ctgcacccgc ctcgcggtca agctggactt catcgccggc 960 tgcgtcatga aggcggtgga ggtcaccggc accacgcact tccggggcgt gcaggcgcag 1020 gtcggcgaag tgctcaactg gcgcgacgtg ttctggggcc tgtccgacgc gatggccaag 1080 tcgccgaact cgtgggtcgg cggctcggtg cagccgaacc tcaactacgg gctcgcgtac 1140 cgcaccttca tgggcgtggg ctacccgcgc atcaaggaga tcatccagca gaccctcggc 1200 agcgggttga tctacctgaa ctcctcggcc gccgactgga agaaccccga cgtccgcccg 1260 tacctcgacc gctacctgcg cggctcgcgg ggcatccagg cgatcgaccg ggtcaagctg 1320 ctgaagctgc tgtgggacgc ggtcggcacc gagttcgccg gccggcacga gctctacgag 1380 cgcaactacg gcggcgacca cgagggcatc cgggtgcaga ccctgcaggc gtaccaggcg 1440 aacggccaag ccgccgcgct caagggtttc gccgagcagt gcatgtccga gtacgacctc 1500 gacggctgga cgaggcccga cctgatcaac cccggcacct gaagctt 1547 <210> 17 <211> 1092 <212> DNA <213> Artificial Sequence <220> <223> com <400> 17 atgggttcaa cggcagagac acaattaact ccggtgcaag tcaccgacga cgaagctgcc 60 ctcttcgcca tgcaactagc cagtgcttcc gttcttccga tggctttaaa atccgcctta 120 gagcttgacc ttcttgagat tatggccaag aatggttctc ccatgtctcc taccgagatc 180 gcttctaaac ttccgaccaa aaatcctgaa gctccggtca tgctcgaccg tatcctccgt 240 cttcttacgt cttactccgt cttaacctgc tccaaccgta aactttccgg tgatggcgtt 300 gaacggattt acgggcttgg tccggtttgc aagtatttga ccaagaacga agatggtgtt 360 tccattgctg ctctttgtct tatgaaccaa gacaaggttc tcatggaaag ctggtaccat 420 ttgaaggatg caattcttga tggtgggatt ccattcaaca aggcttatgg aatgagcgcg 480 ttcgagtacc acgggactga ccctagattc aacaaggtct ttaacaatgg aatgtctaac 540 cattccacaa tcaccatgaa gaagattctt gagacctata agggttttga aggattgact 600 tctttggttg atgttggtgg tggcattggt gctacactca aaatgattgt ctccaagtac 660 cctaatctta aaggcatcaa ctttgatctc ccacatgtca tcgaagatgc tccttctcat 720 cctggtattg agcatgttgg aggagatatg tttgtaagtg tccctaaagg tgatgccata 780 ttcatgaagt ggatatgtca tgactggagt gacgaacatt gcgtgaaatt cttgaagaac 840 tgctacgagt cacttccaga ggatggaaaa gtgatattag cagagtgtat acttccagag 900 acaccagact caagcctctc aaccaaacaa gtagtccatg tcgattgcat tatgttggct 960 cacaatcccg gaggcaaaga acgaaccgag aaagagtttg aggcattagc caaagcatca 1020 ggcttcaagg gcatcaaagt tgtctgcgac gcttttggtg ttaaccttat tgagttactc 1080 aagaagctct aa 1092 <210> 18 <211> 1099 <212> DNA <213> Artificial Sequence <220> <223> com comprising restriction enzymes seqence <400> 18 catatgggtt caacggcaga gacacaatta actccggtgc aagtcaccga cgacgaagct 60 gccctcttcg ccatgcaact agccagtgct tccgttcttc cgatggcttt aaaatccgcc 120 ttagagcttg accttcttga gattatggcc aagaatggtt ctcccatgtc tcctaccgag 180 atcgcttcta aacttccgac caaaaatcct gaagctccgg tcatgctcga ccgtatcctc 240 cgtcttctta cgtcttactc cgtcttaacc tgctccaacc gtaaactttc cggtgatggc 300 gttgaacgga tttacgggct tggtccggtt tgcaagtatt tgaccaagaa cgaagatggt 360 gtttccattg ctgctctttg tcttatgaac caagacaagg ttctcatgga aagctggtac 420 catttgaagg atgcaattct tgatggtggg attccattca acaaggctta tggaatgagc 480 gcgttcgagt accacgggac tgaccctaga ttcaacaagg tctttaacaa tggaatgtct 540 aaccattcca caatcaccat gaagaagatt cttgagacct ataagggttt tgaaggattg 600 acttctttgg ttgatgttgg tggtggcatt ggtgctacac tcaaaatgat tgtctccaag 660 taccctaatc ttaaaggcat caactttgat ctcccacatg tcatcgaaga tgctccttct 720 catcctggta ttgagcatgt tggaggagat atgtttgtaa gtgtccctaa aggtgatgcc 780 atattcatga agtggatatg tcatgactgg agtgacgaac attgcgtgaa attcttgaag 840 aactgctacg agtcacttcc agaggatgga aaagtgatat tagcagagtg tatacttcca 900 gagacaccag actcaagcct ctcaaccaaa caagtagtcc atgtcgattg cattatgttg 960 gctcacaatc ccggaggcaa agaacgaacc gagaaagagt ttgaggcatt agccaaagca 1020 tcaggcttca agggcatcaa agttgtctgc gacgcttttg gtgttaacct tattgagtta 1080 ctcaagaagc tctaagctt 1099 <210> 19 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> IF-N1 primer <400> 19 cggtacccgg ggatcactag ttgatcggcg cgagatttaa tcgccgcgac aat 53 <210> 20 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> IF-C1 primer <400> 20 gttaattaaa ctagtcacgc tgcgcgtaac caccacaccc gccgcgct 48 <210> 21 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> IF-FRT1 primer <400> 21 actagtttaa ttaaccctca ctaaaggggg ccgcgaagtt cctatt 46 <210> 22 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> IF-FRT2 primer <400> 22 cgactctaga ggatcactag taatacgact cactataggg ctcgaggaag ttcc 54 <210> 23 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> tyrRr primer <400> 23 atcaggcata ttcgcgctta ctcttcgttc ttcttctgac tcagaccata taatacgact 60 cactataggg ctc 73 <210> 24 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Inf-tyrRfAG primer <400> 24 gtcatatcat catattaatt gttctttttt caggtgaagg ttcccatgcg tactagtcgt 60 tctaccatcg acacc 75 <210> 25 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> tyrA-F primer <400> 25 ccatggttgc tgaattgacc gcattacg 28 <210> 26 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> aroG-R primer <400> 26 aagcttaacc acgacgcgct ttcacagc 28 <110> Korea Research Institute of Bioscience and Biotechnology <120> Method for producing Phenylacetyl homoserine lactone derivatives <130> 1-16p-1 <150> KR 10-2014-0091762 <151> 2014-07-21 <160> 26 <170> Kopatentin 2.0 <210> 1 <211> 218 <212> PRT <213> Artificial Sequence <220> <223> RPA1 amino acid <400> 1 Met Gln Val His Val Ile Arg Arg Glu Asn Arg Ala Leu Tyr Ala Gly   1 5 10 15 Leu Leu Glu Lys Tyr Phe Arg Ile Arg His Gln Ile Tyr Val Val Glu              20 25 30 Arg Gly Trp Lys Glu Leu Asp Arg Pro Asp Gly Arg Glu Ile Asp Gln          35 40 45 Phe Asp Thr Glu Asp Ala Val Tyr Leu Leu Gly Val Asp Asn Asp Asp      50 55 60 Ile Val Ala Gly Met Arg Met Val Pro Thr Thr Ser Pro Thr Leu Leu  65 70 75 80 Ser Asp Val Phe Pro Gln Leu Ala Leu Ala Gly Pro Val Arg Arg Pro                  85 90 95 Asp Ala Tyr Glu Leu Ser Arg Ile Phe Val Val Pro Arg Lys Arg Gly             100 105 110 Glu His Gly Gly Pro Arg Ala Glu Ala Val Ile Gln Ala Ala Ala Met         115 120 125 Glu Tyr Gly Leu Ser Ile Gly Leu Ser Ala Phe Thr Ile Val Leu Glu     130 135 140 Thr Trp Trp Leu Pro Arg Leu Val Asp Gln Gly Trp Lys Ala Lys Pro 145 150 155 160 Leu Gly Leu Pro Gln Asp Ile Asn Gly Phe Ser Thr Thr Ala Val Ile                 165 170 175 Val Asp Val Asp Asp Asp Ala Trp Val Gly Ile Cys Asn Arg Arg Ser             180 185 190 Val Pro Gly Pro Thr Leu Glu Trp Arg Gly Leu Glu Ala Ile Arg Arg         195 200 205 His Ser Leu Pro Glu Phe Gln Val Ser Ser     210 215 <210> 2 <211> 657 <212> DNA <213> Artificial Sequence <220> <223> novel op RPA1 gene <400> 2 atgcaagttc atgttattcg tcgcgagaac cgcgcgctct atgccggttt gctagaaaaa 60 tatttccgta ttcgtcacca aatctacgtc gtagaacgcg gctggaaaga attggatcgg 120 ccggatggac gagaaattga tcagttcgat accgaagacg cggtgtatct tttaggtgtc 180 gacaatgatg atattgtagc tggcatgcgt atggtgccga ccacgtctcc gacacttctg 240 agcgatgttt ttccacaact cgcgctggct ggtccagtaa gaaggcctga tgcctatgag 300 ttatctcgga tatttgtggt tcctcgtaag cgcggagagc atgggggccc acgtgctgag 360 gcagtgatac aggcggccgc aatggaatac ggtttatcga ttggcctgtc agcctttact 420 atcgtactgg aaacttggtg gctgccgcga ctggttgacc agggctggaa agcaaaacct 480 ttaggtctgc ctcaggatat caatggattt tccaccacag cagtcatcgt tgatgttgac 540 gatgatgctt gggtcggtat ttgtaataga cgcagtgttc ccggacccac gttagaatgg 600 agagggttag aagcaatacg gcgtcatagt cttccggaat ttcaggtgat ttcataa 657 <210> 3 <211> 542 <212> PRT <213> Artificial Sequence <220> <222> 4CL2nt amino acid <400> 3 Met Glu Lys Asp Thr Lys Gln Val Asp Ile Ile Phe Arg Ser Ser Lys Leu   1 5 10 15 Pro Asp Ile Tyr Ile Pro Asn His Leu Pro Leu His Ser Tyr Cys Phe              20 25 30 Glu Asn Ile Ser Glu Phe Ser Ser Arg Pro Cys Leu Ile Asn Gly Ala          35 40 45 Asn Lys Gln Ile Tyr Thr Tyr Ala Asp Val Glu Leu Asn Ser Arg Lys      50 55 60 Val Ala Ala Gly Leu His Lys Gln Gly Ile Gln Pro Lys Asp Thr Ile  65 70 75 80 Met Ile Leu Leu Pro Asn Ser Pro Glu Phe Val Phe Ala Phe Ile Gly                  85 90 95 Ala Ser Tyr Leu Gly Ala Ile Ser Thr Met Ala Asn Pro Leu Phe Thr             100 105 110 Pro Ala Glu Val Val Lys Gln Ala Lys Ala Ser Ser Ala Lys Ile Ile         115 120 125 Val Thr Gln Ala Cys His Val Asn Lys Val Lys Asp Tyr Ala Phe Glu     130 135 140 Asn Asp Val Lys Ile Ile Cys Ile Asp Ser Ala Pro Glu Gly Cys Leu 145 150 155 160 His Phe Ser Val Leu Thr Gln Ala Asn Glu His Asp Ile Pro Glu Val                 165 170 175 Glu Ile Gln Pro Asp Val Val Ala Leu Pro Tyr Ser Ser Gly Thr             180 185 190 Thr Gly Leu Pro Lys Gly Val Met Leu Thr His Lys Gly Leu Val Thr         195 200 205 Ser Val Ala Gln Gln Val Asp Gly Glu Asn Pro Asn Leu Tyr Ile His     210 215 220 Ser Glu Asp Val Met Leu Cys Val Leu Pro Leu Phe His Ile Tyr Ser 225 230 235 240 Leu Asn Ser Val Leu Leu Cys Gly Leu Arg Val Gly Ala Ala Ile Leu                 245 250 255 Ile Met Gln Lys Phe Asp Ile Val Ser Phe Leu Glu Leu Ile Gln Arg             260 265 270 Tyr Lys Val Thr Ile Gly Pro Phe Val Pro Ile Val Leu Ala Ile         275 280 285 Ala Lys Ser Pro Met Val Asp Asp Tyr Asp Leu Ser Ser Val Arg Thr     290 295 300 Val Met Ser Gly Ala Ala Pro Leu Gly Lys Glu Leu Glu Asp Thr Val 305 310 315 320 Arg Ala Lys Phe Pro Asn Ala Lys Leu Gly Gln Gly Tyr Gly Met Thr                 325 330 335 Glu Ala Gly Pro Val Leu Ala Met Cys Leu Ala Phe Ala Lys Glu Pro             340 345 350 Phe Glu Ile Lys Ser Gly Ala Cys Gly Thr Val Val Arg Asn Ala Glu         355 360 365 Met Lys Ile Val Asp Pro Lys Thr Gly Asn Ser Leu Pro Arg Asn Gln     370 375 380 Ser Gly Glu Ile Cys Ile Arg Gly Asp Gln Ile Met Lys Gly Tyr Leu 385 390 395 400 Asn Asp Pro Glu Ala Thr Ala Arg Thr Ile Asp Lys Glu Gly Trp Leu                 405 410 415 Tyr Thr Gly Asp Ile Gly Tyr Ile Asp Asp Asp Asp Glu Leu Phe Ile             420 425 430 Val Asp Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Phe Gln Val Ala         435 440 445 Pro Ala Glu Leu Glu Ala Leu Leu Leu Asn His Pro Asn Ile Ser Asp     450 455 460 Ala Ala Val Val Pro Met Lys Asp Glu Gln Ala Gly Glu Val Pro Val 465 470 475 480 Ala Phe Val Val Arg Ser Asn Gly Ser Thr Ile Thr Glu Asp Glu Val                 485 490 495 Lys Asp Phe Ile Ser Lys Gln Val Ile Phe Tyr Lys Arg Ile Lys Arg             500 505 510 Val Phe Phe Val Asp Ala Ile Pro Lys Ser Pro Ser Gly Lys Ile Leu         515 520 525 Arg Lys Asp Leu Arg Ala Lys Leu Ala Ala Gly Leu Pro Asn     530 535 540 <210> 4 <211> 1632 <212> DNA <213> Artificial Sequence <220> <223> novel 4CL2nt gene <400> 4 atggagaaag acacgaagca agttgacatc atttttcgct cgaaactgcc ggacatttac 60 attccgaatc atctgccgct gcatagctac tgcttcgaga acatttctga attttctagc 120 cgtccgtgtc tgattaacgg tgccaataaa cagatctata cgtacgcgga cgtcgagttg 180 aacagccgta aggtcgcagc gggtctgcac aagcaaggca tccagcctaa agataccatc 240 atgattctgt tgccaaattc tccggagttt gtgtttgcgt ttatcggcgc aagctacctg 300 ggtgcgatta gcacgatggc aaatccgctg tttaccccgg ctgaggttgt taaacaagca 360 aaagccagca gcgcgaagat catcgtgacc caagcatgcc acgtcaacaa agttaaggac 420 tatgccttcg aaaatgacgt caagatcatt tgcatcgata gcgcgcctga aggttgtctg 480 catttcagcg ttctgacgca ggctaacgaa cacgatattc cggaagttga gattcagccg 540 gacgatgtgg tggccctgcc gtactccagc ggtaccaccg gcctgccgaa aggcgttatg 600 ctgacccaca agggcctggt gacgagcgtc gcccagcagg tcgatggtga aaacccgaac 660 ctgtacatcc acagcgaaga tgttatgctg tgtgttctgc cactgttcca catctattcc 720 ctgaacagcg tcctgctgtg cggcctgcgt gtgggcgctg ccattttgat tatgcagaag 780 tttgacattg tcagcttctt ggaactgatc caacgctaca aggtgacgat cggtccgttc 840 gtcccgccga ttgttttggc cattgcaaaa agcccaatgg tggatgacta tgacctgtcg 900 agcgtgcgta ccgtgatgtc cggtgcagcg ccgctgggca aagagctgga ggataccgtt 960 cgtgcgaagt ttccgaatgc gaaactgggt caaggctacg gtatgactga agcaggtccg 1020 gtgctggcga tgtgcttggc gttcgcgaaa gagccgttcg aaatcaaaag cggtgcgtgc 1080 ggtaccgtgg tgcgtaatgc tgaaatgaaa attgtggatc cgaaaaccgg caacagcctg 1140 ccgcgcaacc agagcggtga gatttgtatt cgcggtgacc agattatgaa gggctacctg 1200 aatgacccgg aggccactgc gcgtacgatc gacaaagagg gttggctgta taccggcgac 1260 atcggttata tcgatgacga cgacgagctg ttcatcgttg atcgcctgaa agagttgatt 1320 aagtacaagg gtttccaagt tgcgcctgcg gaactggagg ctctgctgtt gaatcatccg 1380 aacattagcg atgcagcagt cgttccgatg aaggatgagc aggcgggtga agttccggtc 1440 gcgtttgttg tgcgtagcaa cggcagcacg atcaccgagg atgaggtaaa ggatttcatt 1500 tccaaacaag tcatcttcta taagcgtatc aagcgtgtgt ttttcgtcga tgcaatcccg 1560 aaaagcccgt ccggtaagat cctgcgcaaa gacttgcgtg cgaagctggc ggcaggtctg 1620 ccgaattagt aa 1632 <210> 5 <211> 1533 <212> DNA <213> Artificial Sequence <220> <223> optal gene <400> 5 atgacccagg tggttgaacg ccaggccgat cgcctgagta gtcgtgaata cttagctcgc 60 gtcgttcgta gtgccggctg ggatgcgggc ctaacctctt gtacagatga agaaattgtt 120 cgcatgggcg cgtcagcccg caccatcgag gaatatttaa aaagtgataa accgatttat 180 ggtttaaccc aaggcttcgg cccgctggta ctgtttgatg cggatagcga attagaacag 240 ggtggtagcc tgattagcca tctgggcacc ggtcagggcg cgccgctggc gccggaagtg 300 agtcgtttaa ttctgtggct gcgtattcaa aacatgcgca aaggttatag cgccgttagc 360 ccggttttct ggcaaaaact ggcagaccta tggaataaag gctttacccc ggcaattccg 420 cgtcatggta ccgtttccgc ctcgggtgat ctgcaaccgc tggcgcatgc cgcgctggca 480 ttcaccggcg tgggtgaagc gtggacccgc gatgcagatg gccgctggag caccgttccg 540 gctgttgatg ccctggcagc gctgggtgcc gaaccgtttg attggcctgt ccgcgaagca 600 ctggcgtttg ttaatggcac cggagccagc ctggcggttg ctgttttaaa tcatcgttct 660 gccctgcgcc tggttcgcgc gtgtgcggta ctgagcgcac gcctggcgac cctgctgggc 720 gcaaatccgg aacattatga cgttggtcat ggcgttgccc gcggtcaggt tggccagctg 780 accgcggcgg aatggattcg tcagggcctg ccacgtggta tggtgcgcga tggaagccgt 840 ccgttgcagg aaccttatag ccttcgctgc gctccgcagg ttctaggcgc tgttctggat 900 cgctggacg gtgcgggtga cgtgctggcc cgcgaagttg atggttgcca ggataaccct 960 attacctacg aaggtgaatt gctgcatggc ggtaacttcc atgccatgcc ggttggtttt 1020 gcaagtgatc agattggtct ggcgatgcac atggcggcct acctggctct acgccagctg 1080 ggcctgctgg ttagcccggt aaccaatggt gatttaccac cgatgctgac cccgcgtgcc 1140 ggccgtggtg cgggtcttgc tggcgtccag atttctgcca ccagcttcgt ttctcgtatt 1200 cgccaactgg ttttcccggc gtctctgacc accctgccga ccaacggttg gaatcaagac 1260 catgtaccga tggcactgaa tggcgctaat agcgttttcg aagcactgga actgggttgg 1320 ttaaccgttg gaagcctggc ggtgggcgtt gcacagctgg cggcgatgac cggtcatgcg 1380 gctgaagggg tttgggcaga actggcaggc atttgcccgc cgttagatgc cgaccgtccg 1440 ctgggtgcgg aagttcgcgc agcccgtgat ctgctgagcg cgcacgctga tcagctgttg 1500 gtggacgaag ccgatggtaa agactttggc taa 1533 <210> 6 <211> 666 <212> DNA <213> Artificial Sequence <220> <223> op RPA1 gene comprising restriction enzyme <400> 6 catatgcaag ttcatgttat tcgtcgcgag aaccgcgcgc tctatgccgg tttgctagaa 60 aaatatttcc gtattcgtca ccaaatctac gtcgtagaac gcggctggaa agaattggat 120 cggccggatg gacgagaaat tgatcagttc gataccgaag acgcggtgta tcttttaggt 180 gtcgacaatg atgatattgt agctggcatg cgtatggtgc cgaccacgtc tccgacactt 240 ctgagcgatg tttttccaca actcgcgctg gctggtccag taagaaggcc tgatgcctat 300 gagttatctc ggatatttgt ggttcctcgt aagcgcggag agcatggggg cccacgtgct 360 gaggcagtga tacaggcggc cgcaatggaa tacggtttat cgattggcct gtcagccttt 420 actatcgtac tggaaacttg gtggctgccg cgactggttg accagggctg gaaagcaaaa 480 cctttaggtc tgcctcagga tatcaatgga ttttccacca cagcagtcat cgttgatgtt 540 gacgatgatg cttgggtcgg tatttgtaat agacgcagtg ttcccggacc cacgttagaa 600 tggagagggt tagaagcaat acggcgtcat agtcttccgg aatttcaggt gatttcataa 660 ctcgag 666 <210> 7 <211> 1638 <212> DNA <213> Artificial Sequence <220> <223> 4CL2nt gene comprising restriction enzyme <400> 7 ccatggagaa agacacgaag caagttgaca tcatttttcg ctcgaaactg ccggacattt 60 acattccgaa tcatctgccg ctgcatagct actgcttcga gaacatttct gaattttcta 120 gccgtccgtg tctgattaac ggtgccaata aacagatcta tacgtacgcg gacgtcgagt 180 tgaacagccg taaggtcgca gcgggtctgc acaagcaagg catccagcct aaagatacca 240 tcatgattct gttgccaaat tctccggagt ttgtgtttgc gtttatcggc gcaagctacc 300 tgggtgcgat tagcacgatg gcaaatccgc tgtttacccc ggctgaggtt gttaaacaag 360 caaaagccag cagcgcgaag atcatcgtga cccaagcatg ccacgtcaac aaagttaagg 420 actatgcctt cgaaaatgac gtcaagatca tttgcatcga tagcgcgcct gaaggttgtc 480 tgcatttcag cgttctgacg caggctaacg aacacgatat tccggaagtt gagattcagc 540 cggacgatgt ggtggccctg ccgtactcca gcggtaccac cggcctgccg aaaggcgtta 600 tgctgaccca caagggcctg gtgacgagcg tcgcccagca ggtcgatggt gaaaacccga 660 acctgtacat ccacagcgaa gatgttatgc tgtgtgttct gccactgttc cacatctatt 720 ccctgaacag cgtcctgctg tgcggcctgc gtgtgggcgc tgccattttg attatgcaga 780 agtttgacat tgtcagcttc ttggaactga tccaacgcta caaggtgacg atcggtccgt 840 tcgtcccgcc gattgttttg gccattgcaa aaagcccaat ggtggatgac tatgacctgt 900 cgagcgtgcg taccgtgatg tccggtgcag cgccgctggg caaagagctg gaggataccg 960 ttcgtgcgaa gtttccgaat gcgaaactgg gtcaaggcta cggtatgact gaagcaggtc 1020 cggtgctggc gatgtgcttg gcgttcgcga aagagccgtt cgaaatcaaa agcggtgcgt 1080 gcggtaccgt ggtgcgtaat gctgaaatga aaattgtgga tccgaaaacc ggcaacagcc 1140 tgccgcgcaa ccagagcggt gagatttgta ttcgcggtga ccagattatg aagggctacc 1200 tgaatgaccc ggaggccact gcgcgtacga tcgacaaaga gggttggctg tataccggcg 1260 acatcggtta tatcgatgac gacgacgagc tgttcatcgt tgatcgcctg aaagagttga 1320 ttaagtacaa gggtttccaa gttgcgcctg cggaactgga ggctctgctg ttgaatcatc 1380 cgaacattag cgatgcagca gtcgttccga tgaaggatga gcaggcgggt gaagttccgg 1440 tcgcgtttgt tgtgcgtagc aacggcagca cgatcaccga ggatgaggta aaggatttca 1500 tttccaaaca agtcatcttc tataagcgta tcaagcgtgt gtttttcgtc gatgcaatcc 1560 cgaaaagccc gtccggtaag atcctgcgca aagacttgcg tgcgaagctg gcggcaggtc 1620 tgccgaatta gtaagctt 1638 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> opTAL-F primer <400> 8 catatgaccc aggtggttga acgcc 25 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pET-Cpac primer <400> 9 ttaattaatg cgccgctaca gggcgcgtcc 30 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pET-Npac primer <400> 10 ttaattaatc gccgcgacaa tttgcgacgg 30 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> pET-Cspe primer <400> 11 actagttcct cctttcagca aaaaacccct c 31 <210> 12 <211> 33 <212> DNA <213> Artificial Sequence <220> <222> 4CL2nt-F primer <400> 12 catatggaga aagacacgaa gcaagttgac atc 33 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <222> 4CL2nt-R primer <400> 13 aagcttacta attcggcaga cctgccgcc 29 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pET-Nspe <400> 14 actagtaggt tgaggccgtt gagcaccgcc 30 <210> 15 <211> 1539 <212> DNA <213> Artificial Sequence <220> <223> sam <400> 15 atgaccatca cgtcacctgc gccggcgggc cggctcaaca acgtccgccc gatgacgggc 60 gaggagtacc tggaatcact gcgggacggc cgagaggtct acatctacgg cgagcgggtc 120 gacgacgtca ccacgcacct ggccttccgc aacagcgtgc gctccatcgc gcggctctac 180 gacgtgctgc acgacccggc gtccgaaggt gtgctgcggg tgcccaccga caccggcaac 240 ggcgggttca cccacccgtt cttcaagacc gcccggtcgt cggaggacct ggtcgccgcg 300 cgcgaggcca tcgtcggctg gcagcggctg gtgtacgggt ggatgggccg caccccggac 360 tacaaggcgg cgttcttcgg cacgctcgac gccaacgccg agttctacgg gccgttcgag 420 gccaacgccc gccgctggta ccgcgacgcc caggaacggg tgctgtactt caaccacgcg 480 atcgtgcacc cgccggtcga ccgggaccgg cccgccgacc ggaccgccga catctgcgtg 540 cacgtggagg aggagaccga cagcgggttg atcgtctccg gcgccaaggt ggtcgcgacc 600 ggctccgcga tgaccaacgc gaacctcatc gcgcactacg ggcttccggt gcgggacaag 660 aagttcggcc tggtgttcac ggtcccgatg aactcgcccg gcctcaagct catctgccgc 720 acctcctacg agctgatggt cgcgacgcag ggctcgccct tcgactaccc gctgtcgagc 780 cggctcgacg agaacgactc gatcatgatc ttcgaccggg tgctggtgcc ctgggagaac 840 gtgttcatgt acgacgcggg cgcggccaac tccttcgcca ccgggtcagg cttcctcgaa 900 cgcttcacct tccacggctg cacccgcctc gcggtcaagc tggacttcat cgccggctgc 960 gtcatgaagg cggtggaggt caccggcacc acgcacttcc ggggcgtgca ggcgcaggtc 1020 ggcgaagtgc tcaactggcg cgacgtgttc tggggcctgt ccgacgcgat ggccaagtcg 1080 ccgaactcgt gggtcggcgg ctcggtgcag ccgaacctca actacgggct cgcgtaccgc 1140 accttcatgg gcgtgggcta cccgcgcatc aaggagatca tccagcagac cctcggcagc 1200 gggttgatct acctgaactc ctcggccgcc gactggaaga accccgacgt ccgcccgtac 1260 ctcgaccgct acctgcgcgg ctcgcggggc atccaggcga tcgaccgggt caagctgctg 1320 aagctgctgt gggacgcggt cggcaccgag ttcgccggcc ggcacgagct ctacgagcgc 1380 aactacggcg gcgaccacga gggcatccgg gtgcagaccc tgcaggcgta ccaggcgaac 1440 ggccaagccg ccgcgctcaa gggtttcgcc gagcagtgca tgtccgagta cgacctcgac 1500 ggctggacga ggcccgacct gatcaacccc ggcacctga 1539 <210> 16 <211> 1547 <212> DNA <213> Artificial Sequence <220> 230 <400> 16 catatgacca tcacgtcacc tgcgccggcg ggccggctca acaacgtccg cccgatgacg 60 ggcgaggagt acctggaatc actgcgggac ggccgagagg tctacatcta cggcgagcgg 120 gtcgacgacg tcaccacgca cctggccttc cgcaacagcg tgcgctccat cgcgcggctc 180 tacgacgtgc tgcacgaccc ggcgtccgaa ggtgtgctgc gggtgcccac cgacaccggc 240 aacggcgggt tcacccaccc gttcttcaag accgcccggt cgtcggagga cctggtcgcc 300 gcgcgcgagg ccatcgtcgg ctggcagcgg ctggtgtacg ggtggatggg ccgcaccccg 360 gactacaagg cggcgttctt cggcacgctc gacgccaacg ccgagttcta cgggccgttc 420 gaggccaacg cccgccgctg gtaccgcgac gcccaggaac gggtgctgta cttcaaccac 480 gcgatcgtgc acccgccggt cgaccgggac cggcccgccg accggaccgc cgacatctgc 540 gtgcacgtgg aggaggagac cgacagcggg ttgatcgtct ccggcgccaa ggtggtcgcg 600 accggctccg cgatgaccaa cgcgaacctc atcgcgcact acgggcttcc ggtgcgggac 660 aagaagttcg gcctggtgtt cacggtcccg atgaactcgc ccggcctcaa gctcatctgc 720 cgcacctcct acgagctgat ggtcgcgacg cagggctcgc ccttcgacta cccgctgtcg 780 agccggctcg acgagaacga ctcgatcatg atcttcgacc gggtgctggt gccctgggag 840 aacgtgttca tgtacgacgc gggcgcggcc aactccttcg ccaccgggtc aggcttcctc 900 gaacgcttca ccttccacgg ctgcacccgc ctcgcggtca agctggactt catcgccggc 960 tgcgtcatga aggcggtgga ggtcaccggc accacgcact tccggggcgt gcaggcgcag 1020 gtcggcgaag tgctcaactg gcgcgacgtg ttctggggcc tgtccgacgc gatggccaag 1080 tcgccgaact cgtgggtcgg cggctcggtg cagccgaacc tcaactacgg gctcgcgtac 1140 cgcaccttca tgggcgtggg ctacccgcgc atcaaggaga tcatccagca gaccctcggc 1200 agcgggttga tctacctgaa ctcctcggcc gccgactgga agaaccccga cgtccgcccg 1260 tacctcgacc gctacctgcg cggctcgcgg ggcatccagg cgatcgaccg ggtcaagctg 1320 ctgaagctgc tgtgggacgc ggtcggcacc gagttcgccg gccggcacga gctctacgag 1380 cgcaactacg gcggcgacca cgagggcatc cgggtgcaga ccctgcaggc gtaccaggcg 1440 aacggccaag ccgccgcgct caagggtttc gccgagcagt gcatgtccga gtacgacctc 1500 gacggctgga cgaggcccga cctgatcaac cccggcacct gaagctt 1547 <210> 17 <211> 1092 <212> DNA <213> Artificial Sequence <220> <223> com <400> 17 atgggttcaa cggcagagac acaattaact ccggtgcaag tcaccgacga cgaagctgcc 60 ctcttcgcca tgcaactagc cagtgcttcc gttcttccga tggctttaaa atccgcctta 120 gagcttgacc ttcttgagat tatggccaag aatggttctc ccatgtctcc taccgagatc 180 gcttctaaac ttccgaccaa aaatcctgaa gctccggtca tgctcgaccg tatcctccgt 240 cttcttacgt cttactccgt cttaacctgc tccaaccgta aactttccgg tgatggcgtt 300 gaacggattt acgggcttgg tccggtttgc aagtatttga ccaagaacga agatggtgtt 360 tccattgctg ctctttgtct tatgaaccaa gacaaggttc tcatggaaag ctggtaccat 420 ttgaaggatg caattcttga tggtgggatt ccattcaaca aggcttatgg aatgagcgcg 480 ttcgagtacc acgggactga ccctagattc aacaaggtct ttaacaatgg aatgtctaac 540 cattccacaa tcaccatgaa gaagattctt gagacctata agggttttga aggattgact 600 tctttggttg atgttggtgg tggcattggt gctacactca aaatgattgt ctccaagtac 660 cctaatctta aaggcatcaa ctttgatctc ccacatgtca tcgaagatgc tccttctcat 720 cctggtattg agcatgttgg aggagatatg tttgtaagtg tccctaaagg tgatgccata 780 ttcatgaagt ggatatgtca tgactggagt gacgaacatt gcgtgaaatt cttgaagaac 840 tgctacgagt cacttccaga ggatggaaaa gtgatattag cagagtgtat acttccagag 900 acaccagact caagcctctc aaccaaacaa gtagtccatg tcgattgcat tatgttggct 960 cacaatcccg gaggcaaaga acgaaccgag aaagagtttg aggcattagc caaagcatca 1020 ggcttcaagg gcatcaaagt tgtctgcgac gcttttggtg ttaaccttat tgagttactc 1080 aagaagctct aa 1092 <210> 18 <211> 1099 <212> DNA <213> Artificial Sequence <220> <223> com comprising restriction enzymes seqence <400> 18 catatgggtt caacggcaga gacacaatta actccggtgc aagtcaccga cgacgaagct 60 gccctcttcg ccatgcaact agccagtgct tccgttcttc cgatggcttt aaaatccgcc 120 ttagagcttg accttcttga gattatggcc aagaatggtt ctcccatgtc tcctaccgag 180 atcgcttcta aacttccgac caaaaatcct gaagctccgg tcatgctcga ccgtatcctc 240 cgtcttctta cgtcttactc cgtcttaacc tgctccaacc gtaaactttc cggtgatggc 300 gttgaacgga tttacgggct tggtccggtt tgcaagtatt tgaccaagaa cgaagatggt 360 gtttccattg ctgctctttg tcttatgaac caagacaagg ttctcatgga aagctggtac 420 catttgaagg atgcaattct tgatggtggg attccattca acaaggctta tggaatgagc 480 gcgttcgagt accacgggac tgaccctaga ttcaacaagg tctttaacaa tggaatgtct 540 aaccattcca caatcaccat gaagaagatt cttgagacct ataagggttt tgaaggattg 600 acttctttgg ttgatgttgg tggtggcatt ggtgctacac tcaaaatgat tgtctccaag 660 taccctaatc ttaaaggcat caactttgat ctcccacatg tcatcgaaga tgctccttct 720 catcctggta ttgagcatgt tggaggagat atgtttgtaa gtgtccctaa aggtgatgcc 780 atattcatga agtggatatg tcatgactgg agtgacgaac attgcgtgaa attcttgaag 840 aactgctacg agtcacttcc agaggatgga aaagtgatat tagcagagtg tatacttcca 900 gagacaccag actcaagcct ctcaaccaaa caagtagtcc atgtcgattg cattatgttg 960 gctcacaatc ccggaggcaa agaacgaacc gagaaagagt ttgaggcatt agccaaagca 1020 tcaggcttca agggcatcaa agttgtctgc gacgcttttg gtgttaacct tattgagtta 1080 ctcaagaagc tctaagctt 1099 <210> 19 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> IF-N1 primer <400> 19 cggtacccgg ggatcactag ttgatcggcg cgagatttaa tcgccgcgac aat 53 <210> 20 <211> 48 <212> DNA <213> Artificial Sequence <220> IF-C1 primer <400> 20 gtacca <210> 21 <211> 46 <212> DNA <213> Artificial Sequence <220> IF-FRT1 primer <400> 21 actagtttaa ttaaccctca ctaaaggggg ccgcgaagtt cctatt 46 <210> 22 <211> 54 <212> DNA <213> Artificial Sequence <220> IF-FRT2 primer <400> 22 cgactctaga ggatcactag taatacgact cactataggg ctcgaggaag ttcc 54 <210> 23 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> tyrRr primer <400> 23 atcaggcata ttcgcgctta ctcttcgttc ttcttctgac tcagaccata taatacgact 60 cactataggg ctc 73 <210> 24 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Inf-tyrRfAG primer <400> 24 gtcatatcat catattaatt gttctttttt caggtgaagg ttcccatgcg tactagtcgt 60 tctaccatcg acacc 75 <210> 25 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> tyrA-F primer <400> 25 ccatggttgc tgaattgacc gcattacg 28 <210> 26 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> aroG-R primer <400> 26 aagcttaacc acgacgcgct ttcacagc 28

Claims (23)

서열번호 4로 표시되는 코엔자임 에이 라이게이즈 효소를 암호화하는 유전자(4CL2nt), 서열번호 2로 표시되는 아실 호모세린 락톤 생합성 효소를 암호화하는 유전자 (opRpaI) 를 포함하는 화학식 1의 페닐아세틸 호모세린 락톤 생산용 발현 벡터:
[화학식 1]
Figure 112016083979186-pat00013

상기 화학식 1에서 Ra는 수소, 메톡시 또는 하이드록시이며, 및 Rb는 수소, 메톡시 또는 하이드록시임.
(4CL2nt) encoding the coenzyme A ligation enzyme represented by SEQ ID NO: 4, and a gene (opRpaI) encoding the acyl homoserine lactone biosynthesis enzyme represented by SEQ ID NO: 2, the phenylacetyl homoserine lactone Expression vector for production:
[Chemical Formula 1]
Figure 112016083979186-pat00013

Wherein Ra is hydrogen, methoxy or hydroxy, and Rb is hydrogen, methoxy or hydroxy.
삭제delete 삭제delete 제1항에 있어서, 서열번호 5로 표시되는 티로신 암모니아 리아제를 암호화하는 유전자(opTAL)를 더 포함하는, 페닐아세틸 호모세린 락톤 생산용 발현 벡터.
The expression vector for producing phenylacetyl homoserine lactone according to claim 1, further comprising a gene (opTAL) encoding the tyrosine ammonia lyase represented by SEQ ID NO: 5.
제4항에 있어서, 상기 발현벡터는 유전자가 opTAL-4CL2nt-opRpaI 순서로 연결된 것을 특징으로 하는 벡터.
5. The vector according to claim 4, wherein the expression vector is a gene in which the gene is linked in the order of opTAL-4CL2nt-opRpaI.
삭제delete 제4항에 있어서, 서열번호 15로 표시되는 4-쿠마린산 3-수산화효소 Sam5 암호화 유전자(sam 5)를 더 포함하는, 페닐아세틸 호모세린 락톤 생산용 발현 벡터.
5. The expression vector for producing phenylacetyl homoserine lactone according to claim 4, further comprising the 4-coumaric acid 3-hydroxylase Sam5 coding gene (sam 5) represented by SEQ ID NO:
제7항에 있어서, 유전자가 opTAL-Sam5-4CL2nt-opRpaI 순서로 연결된 것을 특징으로 하는 벡터.
8. The vector according to claim 7, wherein the gene is linked in the order of opTAL-Sam5-4CL2nt-opRpaI.
삭제delete 제7항에 있어서, 서열번호 17로 표시되는 카페인산 O-메틸전이효소 (Caffeic acid O-methyltransferase, COMT)를 암호화하는 com 유전자를 더 포함하는 페닐아세틸 호모세린 락톤 생산용 발현 벡터.
The expression vector for producing phenylacetyl homoserine lactone according to claim 7, further comprising a com gene coding for caffeic acid O-methyltransferase (COMT) represented by SEQ ID NO: 17.
삭제delete 제10항에 있어서, 유전자가 opTAL-Sam5-4CL2nt-com-opRpaI 순서로 연결된 것을 특징으로 하는 벡터.
11. The vector according to claim 10, wherein the genes are linked in the order of opTAL-Sam5-4CL2nt-com-opRpaI.
제1항, 제4항, 제5항, 제7항, 제8항, 제10항 및 제12항 중 어느 한 항에 있어서, 상기 페닐아세틸 호모세린 락톤은 화학식2 내지 5로 표시되는 쿠마로일 호모세린 락톤, 카페오일-호모세린 락톤, 페루로일-호모세린 락톤 및 신나모일 호모세린 락톤으로 이루어진 군에서 선택된 1종 이상인, 페닐아세틸 호모세린 락톤 생산용 발현 벡터:
[화학식 2]
Figure 112016083979186-pat00014
,
[화학식 3]
Figure 112016083979186-pat00015
,
[화학식 4]
Figure 112016083979186-pat00016
,
[화학식 5]
Figure 112016083979186-pat00017
.
12. The pharmaceutical composition according to any one of claims 1, 4, 5, 7, 8, 10, and 12, wherein the phenylacetyl homoserine lactone is represented by the formula (2) An expression vector for producing phenylacetyl homoserine lactone, which is at least one selected from the group consisting of homoserine lactone, caffeoyl-homoserine lactone, peryloyl-homoserine lactone and cinnamoyl homoserine lactone;
(2)
Figure 112016083979186-pat00014
,
(3)
Figure 112016083979186-pat00015
,
[Chemical Formula 4]
Figure 112016083979186-pat00016
,
[Chemical Formula 5]
Figure 112016083979186-pat00017
.
제1항, 제4항, 제5항, 제7항, 제8항, 제10항 및 제12항 중 어느 한 항의 발현 벡터가 도입된, 페닐아세틸 호모세린 락톤 생산용 형질전환체.
A transformant for producing phenylacetyl homoserine lactone, wherein the expression vector of any one of claims 1, 4, 5, 7, 8, 10, and 12 is introduced.
제14항에 있어서, 상기 형질전환체는 티로신 생산 변이 균주인 것을 특징으로 하는 형질전환체.
15. The transformant according to claim 14, wherein the transformant is a mutant of tyrosine production.
제15항에 있어서, 상기 티로신 생산 변이 균주는 서열번호 27 로 표시되는 염기서열로 이루어진 tyrAfbr[코리스믹산 뮤타제/프리페닉산 탈수소효소 유전자(chorismate mutase/prephenate dehydrogenase gene, tyrA)의 피드백-저해-저항성(feedback-inhibition-resistant, fbr) 유전자]; 및 서열번호 28 로 표시되는 염기서열로 이루어진 aroGfbr[3-디옥시-D-아라비노-햅튤로소내이트-7-인산염합성효소 유전자(3-deoxy-D-arabino-heptulosonate-7-phosphate(DAHP) synthase, aroG)의 피드백-저해-저항성(feedbackinhibition-resistant, fbr) 유전자]가 tyrR(Tyrosine DNA-binding transcriptional repressor) 조절유전자 부위에 삽입된 것인, 형질전환체.
The tyrosine production mutant strain according to claim 15, wherein the tyrosine production mutant strain comprises a tyrAfbr comprising the nucleotide sequence of SEQ ID NO: 27 (feedback inhibition of chorismate mutase / prephenate dehydrogenase gene, tyrA) Feedback-inhibition-resistant (fbr) gene]; And aroGfbr [3-deoxy-D-arabino-haptenulosonate-7-phosphate (DAHP-3-deoxy-D- arabinose-heptulosonate-7-phosphate synthase gene consisting of the nucleotide sequence shown in SEQ ID NO: wherein the feedback-inhibition-resistant (fbr) gene of the promoter of the promoter is inserted into the tyrosine DNA-binding transcriptional repressor regulatory gene region.
1) 제14항의 형질전환체를 배양 배지에서 배양하는 단계; 및
2) 상기 1) 단계의 배양액으로부터 페닐아세틸 호모세린 락톤을 수득하는 단계; 를 포함하는 페닐아세틸 호모세린 락톤 생산 방법.
1) culturing the transformant of claim 14 in a culture medium; And
2) obtaining phenylacetyl homoserine lactone from the culture broth of step 1); &Lt; / RTI &gt;
제17항에 있어서, 상기 1) 단계의 배양 배지에 페놀산을 첨가하는 것을 특징으로 하는, 페닐아세틸 호모세린 락톤 생산 방법.
18. The method for producing phenylacetyl homoserine lactone according to claim 17, wherein phenol acid is added to the culture medium of step 1).
제18항에 있어서, 상기 페놀산은 4-쿠마린산, 카페인산, 페룰린산 및 신나믹산으로 이루어진 군에서 선택된 1종 이상인, 페닐아세틸 호모세린 락톤 생산 방법.
The method for producing phenylacetyl homoserine lactone according to claim 18, wherein the phenolic acid is at least one selected from the group consisting of 4-coumarinic acid, caffeic acid, ferulic acid and cinnamic acid.
제17항에 있어서, 상기 1) 단계의 형질전환체는 티로신 생산 변이 균주인 것을 특징으로 하는 방법.
18. The method according to claim 17, wherein the transformant of step 1) is a mutant strain of tyrosine production.
제17항에 있어서, 1) 단계의 배양 배지에 메티오닌 (methionine) 또는 S-아데노실 메티오닌(S-Adenosyl methionine, SAM)을 첨가하는 것을 특징으로 하는, 페닐아세틸 호모세린 락톤 생산 방법.
18. The method for producing phenylacetyl homoserine lactone according to claim 17, wherein methionine or S-adenosyl methionine (SAM) is added to the culture medium of step 1).
제17항에 있어서, 상기 페닐아세틸 호모세린 락톤은 4-쿠마로일 호모세린 락톤, 카페오일-호모세린 락톤 및 페루로일-호모세린 락톤으로 이루어진 군에서 선택된 1종 이상인, 페닐아세틸 호모세린 락톤 생산 방법.
18. The pharmaceutical composition according to claim 17, wherein the phenylacetyl homoserine lactone is at least one selected from the group consisting of 4-coumaroyl homoserine lactone, caffeoyl-homoserine lactone, and peryloyl-homoserine lactone, Production method.
1) 코엔자임 에이 라이게이즈 효소 및 아실 호모세린 락톤 생합성 효소를 페놀산에 처리하는 단계;
2) 상기 1) 단계의 처리액을 배양하는 단계; 및
3) 상기 2) 단계의 배양액에서 페닐 아세틸 호모세린 락톤을 수득하는 단계를 포함하는 하기 화학식 1로 표시되는 페닐 아세틸 호모세린 락톤을 생산하는 방법:
[화학식 1]
Figure 112015070645530-pat00018

상기 화학식 1에서 Ra는 수소, 메톡시 또는 하이드록시이며, 및 Rb는 수소, 메톡시 또는 하이드록시임.
1) treating a coenzyme A lasease enzyme and an acyl homoserine lactone biosynthesis enzyme to a phenolic acid;
2) culturing the treatment liquid of step 1); And
3) A method of producing phenylacetyl homoserine lactone represented by the following Formula 1, which comprises the step of obtaining phenylacetyl homoserine lactone in the culture medium of Step 2)
[Chemical Formula 1]
Figure 112015070645530-pat00018

Wherein Ra is hydrogen, methoxy or hydroxy, and Rb is hydrogen, methoxy or hydroxy.
KR1020150102958A 2014-07-21 2015-07-21 Method for producing Phenylacetyl homoserine lactone derivatives KR101726288B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140091762 2014-07-21
KR20140091762 2014-07-21

Publications (2)

Publication Number Publication Date
KR20160011170A KR20160011170A (en) 2016-01-29
KR101726288B1 true KR101726288B1 (en) 2017-04-12

Family

ID=55163320

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150102958A KR101726288B1 (en) 2014-07-21 2015-07-21 Method for producing Phenylacetyl homoserine lactone derivatives

Country Status (2)

Country Link
KR (1) KR101726288B1 (en)
WO (1) WO2016013844A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876380B (en) * 2019-10-30 2021-08-20 湖南省植物保护研究所 Application of p-coumaroyl homoserine lactone in prevention and treatment of tobacco mosaic virus
US20230044530A1 (en) * 2019-12-13 2023-02-09 The Regents Of The University Of California Compositions and methods of using inducible signaling for tunable dyanmics in microbial communities
CN114703113B (en) * 2022-03-29 2022-10-11 陕西海斯夫生物工程有限公司 Recombinant amycolatopsis, construction method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479732B1 (en) 1999-04-23 2002-11-12 Mitsubishi Paper Mills, Limited cDNA of 4-coumarate: coenzyme a ligase and process for modifying lignin in plants

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064588A2 (en) * 2001-07-05 2003-08-07 Regents Of The University Of Colorado Structural basis of quorum sensing signal generation and methods and therapeutic agents derived therefrom
KR101381048B1 (en) 2010-10-20 2014-04-14 씨제이제일제당 (주) A microorganism producing O-phosphoserine and the method of producing L-cysteine or derivatives thereof from O-phosphoserine using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479732B1 (en) 1999-04-23 2002-11-12 Mitsubishi Paper Mills, Limited cDNA of 4-coumarate: coenzyme a ligase and process for modifying lignin in plants

Also Published As

Publication number Publication date
WO2016013844A1 (en) 2016-01-28
KR20160011170A (en) 2016-01-29

Similar Documents

Publication Publication Date Title
RU2710714C2 (en) Compositions and methods for biological production of lactate from c1-compounds using transformants of lactate dehydrogenase
JP4474518B2 (en) Polynucleotide encoding 2-hydroxyisoflavanone dehydratase and application thereof
KR101091155B1 (en) Genes which are related to 4-Coumaric acid, caffeic acid and ferulic acid biosynthesis and a method of production using therof
CN113136373B (en) Carbonoside glycosyltransferase and application thereof
KR101726288B1 (en) Method for producing Phenylacetyl homoserine lactone derivatives
WO2021164673A1 (en) Bifunctional c-glycoside glycosyltransferases and application thereof
JP7318989B2 (en) Biosynthetic production of UDP-rhamnose
KR20160017427A (en) Method for the production of 13-hydroxylinoleic acid by lipoxygenase from Burkholderia thailandensis and composition therefor
CN112513263A (en) Method for producing a bryodin compound
WO2009065777A1 (en) Dicarboxylic acid production in a filamentous fungus
KR101527802B1 (en) Method of production of 4-coumaric acid, caffeic acid and ferulic acid by artificial metabolism pathway in strain producing high tyrosine
US7575892B2 (en) Expression vector encoding a triterpene hydroxylase polypeptide
KR101585165B1 (en) Polynucleotide encoding methyltransferase and method for producing methyl stilbene compound using thereof
KR101685943B1 (en) Transformant for producing 4-hydroxystyrene and its derivatives and method of producing thereof
KR102335035B1 (en) Process for preparing crocin-4 using enzyme reaction
KR20220043918A (en) Recombinant Corynebacterium glutamicum strain for producing 5-hydroxyvaleric acid and a method of producing glutaric acid using the same
CN113584110A (en) Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate
US9340809B2 (en) Microbial conversion of sugar acids and means therein
JP5638807B2 (en) Lignan hydroxylase
KR102489243B1 (en) Recombinant microorganism for producing S-methylmethionine, and method for preparing S-methylmethionine using the same
KR101581185B1 (en) Method for mass production of quercetin-3-O-galactoside using PeF3GalGT gene in Escherichia coli
KR101859137B1 (en) Recombination vectors for producing Pinostilbene or Pterostilbene
JP7039005B2 (en) A method for producing an alkane using cells into which a plant-derived alkane synthase gene has been introduced.
CN117305209A (en) Corynebacterium glutamicum engineering bacteria for synthesizing dencichine and construction method and application thereof
Li et al. Streptomyces lividans Blasticidin S

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 4