KR101707674B1 - Porphyra yezoensis Py503G KCTC 12860BP with Improved Expression of Heat Shock Protein 70 - Google Patents

Porphyra yezoensis Py503G KCTC 12860BP with Improved Expression of Heat Shock Protein 70 Download PDF

Info

Publication number
KR101707674B1
KR101707674B1 KR1020150101211A KR20150101211A KR101707674B1 KR 101707674 B1 KR101707674 B1 KR 101707674B1 KR 1020150101211 A KR1020150101211 A KR 1020150101211A KR 20150101211 A KR20150101211 A KR 20150101211A KR 101707674 B1 KR101707674 B1 KR 101707674B1
Authority
KR
South Korea
Prior art keywords
py503g
heat shock
shock protein
kctc
present
Prior art date
Application number
KR1020150101211A
Other languages
Korean (ko)
Other versions
KR20170010222A (en
Inventor
최종일
이학증
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020150101211A priority Critical patent/KR101707674B1/en
Publication of KR20170010222A publication Critical patent/KR20170010222A/en
Application granted granted Critical
Publication of KR101707674B1 publication Critical patent/KR101707674B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2523/00Culture process characterised by temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2529/00Culture process characterised by the use of electromagnetic stimulation
    • C12N2529/10Stimulation by light

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 고온 스트레스 내성이 우수한 방사무늬 김 Py503G(KCTC 12860BP) 및 이의 제조방법을 제공한다. 본 발명에 따르면, 본 발명의 방사무늬 김 Py503G(KCTC 12860BP)는 야생형 방사무늬 김과 비교하여 열충격 단백질 70(Heat Shock Protein 70)의 발현이 증가하여 고온 스트레스에 대한 내성을 나타낼 것이다.The present invention provides radiopaque pyrazine Py503G (KCTC 12860BP) which is excellent in high temperature stress tolerance and a method for producing the same. According to the present invention, the radiolabelled Py503G (KCTC 12860BP) of the present invention exhibits tolerance to high temperature stress by increasing the expression of heat shock protein 70 (70) as compared with the wild type radiolabelled.

Description

열충격 단백질 70의 발현이 증가된 방사무늬 김 Py503G(KCTC12860BP){Porphyra yezoensis Py503G KCTC 12860BP with Improved Expression of Heat Shock Protein 70}Porphyra yezoensis Py503G KCTC 12860BP with Improved Expression of Heat Shock Protein 70 < RTI ID = 0.0 >

본 발명은 열충격 단백질 70의 발현이 증가된 방사무늬 김 Py503G(KCTC12860BP)에 관한 것이다.The present invention relates to radiolabelled Py503G (KCTC12860BP) with increased expression of heat shock protein 70.

열충격 단백질(Heat Shock Protein; HSP)은 고온 및 다양한 환경 스트레스(고온, 저온, 염분, 수분, 산화, 중금속 등) 하에서 발현되는 단백질들을 총칭한다. 환경 스트레스 하에서 분자 샤페론(Molecular chaperone)의 기능을 수행하는데, 스트레스 하에서 변성된 다양한 세포 내 단백질과 비특이적으로 결합하여 그 구조 및 기능을 회복시켜, 생명체의 스트레스 내성을 향상시킨다.Heat Shock Protein (HSP) is a general term for proteins expressed under high temperature and various environmental stresses (high temperature, low temperature, salinity, moisture, oxidation, heavy metals, etc.). Under the environmental stress, it performs the function of molecular chaperone. It restores its structure and function by nonspecifically binding with various proteins in cells modified under stress, and improves stress tolerance of life.

이러한 방어 기작 중 하나로 단백질의 변성을 막기 위해 열충격 단백질이라 불리는 열충격 단백질을 생산하게 되는데, 식물을 포함한 진핵생물에서 합성되는 열충격 단백질은 분자량에 따라 HSP100, HSP90, HSP70, HSP60 및 small HSPs(sHSPs)로 분류된다.One of these defense mechanisms is to produce a heat shock protein called heat shock protein in order to prevent protein denaturation. Thermal shock proteins synthesized in eukaryotes including plants are classified into HSP100, HSP90, HSP70, HSP60 and small HSPs .

고등식물은 여러가지 복합적인 환경 스트레스에 노출되어 있다. 세포는 주위 환경으로부터 스트레스를 받을 경우 그 세포가 가지고 있던 본래의 기능을 유지하지 못한다. 특히, 온도 스트레스는 광합성과 성장을 저해하며, 이러한 스트레스는 주로 단백질을 변성 시킨다고 알려져 있다.Higher plants are exposed to multiple environmental stresses. Cells do not retain their original function when stressed from the environment. In particular, temperature stress inhibits photosynthesis and growth, and these stresses are known to mainly denature proteins.

고온에 노출되면 열충격 단백질들이 합성되어 세포 내 단백질 변성방지 및 단백질 간의 응집 등을 방지하는 분자 샤페론 기능을 수행함으로써 내열성을 증가시키는 것으로 알려져 있다.It is known that heat shock proteins are synthesized when exposed to high temperature to increase heat resistance by performing molecular chaperon function to prevent protein denaturation and protein aggregation.

또한 스트레스가 없는 상태에서도 열충격 단백질은 분자 샤페론으로 작용하여 세포 내에서 중요한 역할을 담당하기 때문에 다양한 종 및 세포에서 유전자 구조와 조절 메커니즘 그리고 세포 내 기능이 매우 잘 보존되어 있다.In addition, even in the absence of stress, heat shock proteins function as molecular chaperones and play an important role in cells, so gene structures, regulatory mechanisms and intracellular functions are well preserved in various species and cells.

여러 선행 연구에 따르면 열충격 단백질들의 형질전환을 통해 고온 및 저온 내성이 향상된 식물 및 작물을 얻을 수 있었으며 이러한 결과들은 식물세포의 온도 내성에 밀접학 관여되어 있음을 알 수 있었다.Several previous studies have shown that plants and crops with improved heat and cold tolerance can be obtained through transformation of heat shock proteins and these results are closely related to the temperature tolerance of plant cells.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

본 발명자들은 고온, 한랭, 건조와 같은 환경 스트레스에 대한 내성과 관련이 있는 열충격 단백질이 과발현된 김을 제조하고자 노력하였다. 그 결과, 방사무늬 김에 방사선을 조사하여 열충격 단백질 70(Heat Shock Protein 70)이 과발현되는 돌연변이 방사무늬 김을 제조함으로써 본 발명을 완성하였다.The present inventors have sought to produce steams overexpressing heat shock proteins that are associated with tolerance to environmental stresses such as high temperature, cold, and drying. As a result, the present inventors completed the present invention by producing a mutant radiation patterned kimchi overexposing a heat shock protein 70 (heat shock protein 70) by irradiating the radiation pattern.

따라서, 본 발명의 목적은 방사무늬 김 Py503G(KCTC 12860BP)을 제공하는 데 있다.Therefore, it is an object of the present invention to provide a radiolabelled Py503G (KCTC 12860BP).

본 발명의 다른 목적은 방사무늬 김의 제조방법을 제공하는 데 있다.It is another object of the present invention to provide a method of manufacturing radiative fog.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 열충격 단백질 70(Heat Shock Protein 70)의 발현이 증가된 방사무늬 김 Py503G(KCTC 12860BP)을 제공한다.According to one aspect of the present invention, the present invention provides radiolabelled Py503G (KCTC 12860BP) with increased expression of heat shock protein 70 (Heat Shock Protein 70).

본 발명자들은 고온, 한랭, 건조와 같은 환경 스트레스에 대한 내성과 관련이 있는 열충격 단백질이 과발현된 김을 제조하고자 노력하였다. 그 결과, 방사무늬 김에 방사선을 조사하여 열충격 단백질 70(Heat Shock Protein 70)이 과발현되는 돌연변이 방사무늬 김을 제조하였다.The present inventors have sought to produce steams overexpressing heat shock proteins that are associated with tolerance to environmental stresses such as high temperature, cold, and drying. As a result, radiation pattern was irradiated to produce a mutant radiation patterned kimchi overexpressing heat shock protein 70 (Heat Shock Protein 70).

본 발명의 방사무늬 김 Py503G(KCTC 12860BP)는 상향-조절된 열충격 단백질 70의 발현을 나타낸다.The radiolabel Py503G (KCTC 12860BP) of the present invention represents the expression of up-regulated heat shock protein 70.

본 발명의 일 구현예에 따르면, 상기 방사무늬 김 Py503G(KCTC 12860BP)는 열충격 단백질 70(Heat shock protein 70)의 발현이 5-15배 증가된다.According to one embodiment of the present invention, the radiation pattern Py503G (KCTC 12860BP) increases the expression of Heat shock protein 70 by 5 to 15 times.

고온 스트레스에 노출된 시굴은 열충격 단백질을 합성하여 세포 내 단백질 변성방지 및 단백질 사이의 응집을 방지하는 분자 샤페론 기능을 수행함으로써 고온 스트레스에 대한 내성을 증가시키는 것으로 알려져 있다.It is known that prolonged exposure to high temperature stress increases the resistance to high temperature stress by performing molecular chaperone function to prevent thermal denaturation and protein aggregation by synthesizing heat shock protein.

본 발명의 방사무늬 김 Py503G(KCTC 12860BP)는 20 μmol photon m-2s-1 이상의 광도, 12:12 명암주기 및 12-20℃의 배양조건 하에 배양한다.The pyrazine Py503G (KCTC 12860BP) of the present invention is cultured under a culture condition of 20 μmol photon m -2 s -1 or higher, 12:12 light-dark cycle and 12-20 ° C.

본 발명의 방사무늬 김 Py503G(KCTC 12860BP)은 당업계의 공지된 김 배양 배지에서 배양할 수 있다.The radiolabelled Py503G (KCTC 12860BP) of the present invention can be cultured in a kimchi culture medium known in the art.

본 발명의 일 구현예에 따르면, 상기 방사무늬 김 Py503G(KCTC 12860BP)은 MGM(Modified Grund Medium)에서 배양한다.According to one embodiment of the present invention, the radiation pattern Py503G (KCTC 12860BP) is cultured in MGM (Modified Grund Medium).

상기 MGM는 멸균된 해수 1 L에 Na2EDTA(C10H14O6N2Na2ㆍH2O) 3.72 g, FeSO4ㆍ7H2O 0.28 g, Na2HPO4ㆍ12H2O 10.74 g, NaNO3 42.5 g, MnCl2ㆍ7H2O 0.019197 g 및 비타민 B12(시아노코브알라민) 1 ㎎을 포함하는 배양 배지이다.The MGM is Na2EDTA (C 10 H 14 O 6 N 2 Na 2 and H 2 O) in a sterilized water 1 L 3.72 g, FeSO 4 and 7H 2 O 0.28 g, Na 2 HPO 4 and 12H 2 O 10.74 g, NaNO 3 , 0.019197 g of MnCl 2 .7H 2 O, and 1 mg of vitamin B 12 (cyanocobalamine).

본 명세서에서 용어 ‘상향-조절’은 상기 제조방법에 의해 제조된 돌연변이 방사무늬 김에서의 상기 열충격 단백질 70읠 발현 정도가 야생형 방사무늬 김의 열충격 단백질 70의 발현양과 비교하여 높은 경우를 의미한다.As used herein, the term 'up-regulation' means that the degree of 70 읠 expression of the heat shock protein in the mutant radiolabeled kimchi prepared by the above production method is higher than the expression amount of the heat shock protein 70 in wild type radish kimchi.

본 발명의 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 고온 스트레스 내성 관련 열충격 단백질 70의 발현이 증가된 방사무늬 김의 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method of producing radiant fried kimchi with increased expression of hot stress tolerance related heat shock protein 70 comprising the steps of:

(a) 방사무늬 김(Porphyra yezoensis)을 배양배지에 접종하는 단계;(a) inoculating a culture medium with Porphyra yezoensis ;

(b) 상기 접종된 방사무늬 김을 10-50 μmol photon m-2s-1 광도, 10-14 시간 명주기 및 10-14시간 암주기, 및 10-20℃ 온도의 조건에서 1-15주 동안 배양하는 단계;(b) irradiating the inoculated radiant streaks at 10-50 μmol photon m -2 s -1 luminosity, 10-14 hour light cycle, 10-14 hour dark cycle, and 10-20 ° C. temperature for 1-15 weeks ≪ / RTI >

(c) 상기 단계 (b)의 결과물에 방사선을 조사하는 단계; 및(c) irradiating the result of step (b) with radiation; And

(d) 상기 단계 (c)의 결과물에서 열충격 단백질 70(Heat Shock Protein 70)의 발현이 상향-조절(up-regulated)된 돌연변이 방사무늬 김을 선별하는 단계.(d) selecting the mutant radiolabeled up-regulated up-regulated heat shock protein 70 in the result of step (c).

본 발명의 또다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 고온 스트레스 내성 방사무늬 김의 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for producing hot stress resistant radiation pattern steels, comprising the steps of:

(a) 방사무늬 김(Porphyra yezoensis)을 배양배지에 접종하는 단계;(a) inoculating a culture medium with Porphyra yezoensis ;

(b) 상기 접종된 방사무늬 김을 10-50 μmol photon m-2s-1 광도, 10-14 시간 명주기 및 10-14시간 암주기, 및 10-20℃ 온도의 조건에서 1-15주 동안 배양하는 단계;(b) irradiating the inoculated radiant streaks at 10-50 μmol photon m -2 s -1 luminosity, 10-14 hour light cycle, 10-14 hour dark cycle, and 10-20 ° C. temperature for 1-15 weeks ≪ / RTI >

(c) 상기 단계 (b)의 결과물에 방사선을 조사하는 단계; 및(c) irradiating the result of step (b) with radiation; And

(d) 상기 단계 (c)의 결과물에서 열충격 단백질 70(Heat Shock Protein 70)의 발현이 상향-조절(up-regulated)된 돌연변이 방사무늬 김을 선별하는 단계.(d) selecting the mutant radiolabeled up-regulated up-regulated heat shock protein 70 in the result of step (c).

본 발명의 방사무늬 김의 제조방법은 방사무늬 김에 방사선을 조사하여 랜덤 돌연변이를 유발(random mutagenesis)한다.The method of manufacturing the radiation patterned iris of the present invention irradiates the radiation pattern to random mutagenesis.

본 발명의 일 구현예에 따르면, 상기 상기 단계 (c)의 방사선은 0.1-4.0 kGy 흡수선량의 방사선이다. 본 명세서에서 용어 ‘흡수선량’은 방사선이 피폭하는 물질에 흡수되는 단위 질량당 에너지 양을 의미한다. 즉, 상기 0.1-4.0 kGy은 방사무늬 김 1 ㎏당 0.1-4.0 kJ의 에너지가 흡수되는 것을 의미한다.According to an embodiment of the present invention, the radiation of step (c) is radiation having an absorbed dose of 0.1-4.0 kGy. As used herein, the term " absorbed dose " refers to the amount of energy per unit mass that is absorbed by the radiation-exposed material. That is, the above-mentioned 0.1-4.0 kGy means that the energy of 0.1-4.0 kJ is absorbed per kilogram of the radiation pattern.

본 발명의 다른 구현예에 따르면, 상기 방사선은 0.1-3.0 kGy, 0.1-2.0 kGy 또는 0.1-2.0 kGy 흡수선량의 방사선이다.According to another embodiment of the invention, the radiation is 0.1-3.0 kGy, 0.1-2.0 kGy or 0.1-2.0 kGy of absorbed dose.

본 발명의 열충격 단백질 70의 발현이 증가된 방사무늬 김의 제조방법 및 고온 스트레스 내성 방사무늬 김의 제조방법은 상기 단계 (c) 이후에 단계 (b)와 동일한 배양조건 하에 배양하는 단계를 추가적으로 포함한다.The method for producing radiant fimbriae and the method for producing high-temperature stress-tolerant radiant fimbriae in which the expression of the heat shock protein 70 of the present invention is increased further includes a step of culturing under the same culture conditions as in step (b) after the step (c) do.

본 발명의 방법에 의해 제조된 방사무늬 김은 방사선에 의한 돌연변이로 열충격 단백질 70의 발현이 증가한다.The radiation pattern produced by the method of the present invention increases the expression of heat shock protein 70 due to radiation mutagenesis.

본 발명의 일 구현예에 따르면, 상기 단계 (d)의 열충격 단백질 70의 발현은 유전자 증폭 반응을 통해 검출한다.According to an embodiment of the present invention, the expression of the heat shock protein 70 in the step (d) is detected through a gene amplification reaction.

본 명세서에 기재된 용어“증폭 반응”은 핵산 분자를 증폭하는 반응을 의미한다. 다양한 증폭 반응들이 당업계에 보고되어 있으며, 이는 중합효소 연쇄반응(PCR)(미국 특허 제4,683,195, 4,683,202, 및 4,800,159호), 역전사-중합효소 연쇄반응(RT-PCR)(Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)), Miller, H. I.(WO 89/06700) 및 Davey, C. 등(EP 329,822)의 방법, 리가아제 연쇄 반응(ligase chain reaction; LCR)(17, 18), Gap-LCR(WO 90/01069), 복구 연쇄 반응(repair chain reaction; EP439,182), 전사-중재 증폭(transcription-mediated amplification; TMA)(19) (WO 88/10315), 자가 유지 염기서열 복제(self sustained sequence replication)(20)(WO 90/06995), 타깃 폴리뉴클레오티드 염기서열의 선택적 증폭(selective amplification of target polynucleotide sequences)(미국 특허 제6,410,276호), 컨센서스 서열 프라이밍 중합효소 연쇄 반응(consensus sequence primed polymerase chain reaction; CP-PCR)(미국 특허 제4,437,975호), 임의적 프라이밍 중합효소 연쇄 반응(arbitrarily primed polymerase chain reaction; APPCR)(미국 특허 제5,413,909호 및 제5,861,245호), 핵산 염기서열 기반 증폭(nucleic acid sequence based amplification; NASBA)(미국 특허 제5,130,238호, 제5,409,818호, 제5,554,517호, 및 제6,063,603호), 가닥 치환 증폭(strand displacement amplification)(21, 22) 및 고리-중재 항온성 증폭(loop-mediated isothermal amplification; LAMP)(23)를 포함하나, 이에 한정되지는 않는다. 사용 가능한 다른 증폭 방법들은 미국특허 제5,242,794, 5,494,810, 4,988,617호 및 미국 특허 제09/854,317호에 기술되어 있다.The term " amplification reaction " as used herein refers to a reaction to amplify a nucleic acid molecule. A variety of amplification reactions have been reported in the art, including polymerase chain reaction (PCR) (US Pat. Nos. 4,683,195, 4,683,202 and 4,800,159), reverse-transcription polymerase chain reaction (RT-PCR) (Sambrook et al., Molecular Cloning. (LCR) (see, for example, A Laboratory Manual, 3rd Ed. Cold Spring Harbor Press (2001)), Miller, HI (WO 89/06700) and Davey, C. et al (EP 329,822) 17, 18), Gap-LCR (WO 90/01069), repair chain reaction (EP 439,182), transcription-mediated amplification (TMA) 19 (WO 88/10315) (WO 90/06995), selective amplification of target polynucleotide sequences (U.S. Patent No. 6,410,276), consensus sequence priming polymerase < RTI ID = 0.0 > A consensus sequence primed polymerase chain reaction (CP-PCR) (U.S. Patent No. 4,437,975), a random (APPCR) (U.S. Patent Nos. 5,413,909 and 5,861,245), nucleic acid sequence based amplification (NASBA) (U.S. Patent Nos. 5,130,238, 5,409,818 5,554,517, and 6,063,603), strand displacement amplification (21,22), and loop-mediated isothermal amplification. (LAMP) 23, but is not limited thereto. Other amplification methods that may be used are described in U.S. Patent Nos. 5,242,794, 5,494,810, 4,988,617 and U.S. Patent No. 09 / 854,317.

본 발명의 일 구현예에 따르면, 상기 유전자 증폭 반응은 서열목록 제1서열의 뉴클레오타이드 서열로 이루어진 정방향 프라이머 및 서열목록 제2서열의 뉴클레오타이드 서열로 이루어진 역방향 프라이머를 이용하여 실시한다.According to an embodiment of the present invention, the gene amplification reaction is performed using a forward primer consisting of the nucleotide sequence of the first sequence of the sequence listing and a reverse primer consisting of the nucleotide sequence of the second sequence of the sequence listing.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 고온 스트레스 내성이 우수한 방사무늬 김 Py503G(KCTC 12860BP) 및 이의 제조방법을 제공한다.(a) The present invention provides a radiolabelled Py503G (KCTC 12860BP) which is excellent in high temperature stress resistance and a method for producing the same.

(b) 본 발명의 방사무늬 김 Py503G(KCTC 12860BP)는 야생형 방사무늬 김과 비교하여 열충격 단백질 70(Heat Shock Protein 70)의 발현이 증가하여 고온 스트레스에 대한 내성을 나타낼 것이다.(b) The radiolabelled Py503G (KCTC 12860BP) of the present invention exhibits resistance to high temperature stress by increasing the expression of Heat Shock Protein 70 in comparison with the wild type radiolabelled.

도 1은 야생형 방사무늬 김 및 방사무늬 김 Py503G(P. yezoensis Py503G)의 열충격 단백질 70(Heat Shock Protein 70) 발현을 역전사연쇄중합반응(Reverse Transcription PCR)로 확인한 결과를 나타낸다.
도 2는 야생형 방사무늬 김 및 방사무늬 김 Py503G(P. yezoensis Py503G)의 열충격 단백질 70(Heat Shock Protein 70) 발현을 실시간연쇄중합반응(Real time-PCR)로 확인한 결과를 나타낸다.
1 shows the results of confirming the expression of Heat Shock Protein 70 in the wild-type radiant stamen and pyrazine Py503G ( P. yezoensis Py503G) by reverse transcription PCR.
FIG. 2 shows the results of real-time PCR analysis of the heat shock protein 70 expression of the wild-type radiative fungus and the radiating fungus Py503G ( P. yezoensis Py503G).

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예 1: 방사무늬 김 Py503G(Example 1: Radiant patterning Py503G ( Porphyra yezoensisPorphyra yezoensis Py503G) 제조 Py503G) production

방사무늬 김(P. yezoensis)은 국립수산과학원 해조류연구센터로부터 분양 받아 사용하였다. P. yezoensis was distributed from the National Fisheries Research and Development Institute.

방사무늬 김을 MGM(Modified Grund Medium) 배지에 넣은 다음, 식물 배양 디쉬(100×40 ㎜)에 100 ㎖의 부피로 첨가하고 광도 20 μmol photon m-2s-1 이상, 12:12의 광/암주기 및 온도 12℃의 조건에서 1-10주 동안 배양하였다.The radiant streaks were placed in a MGM (Modified Grund Medium) medium, and then added to a plant culture dish (100 × 40 mm) in a volume of 100 ml. The light intensity was 20 μmol photon m -2 s -1 or more, 12:12 light / And incubated for 1 - 10 weeks at a temperature of 12 ° C.

방사선 조사는 MGM에서 배양 중인 방사무늬 김에 코발트-60 조사장치(point source, AECL, IR-79, Nordion, Canada)를 이용하여 각각 0 kGy, 0.1 kGy, 0.2 kGy, 0.5 kGy 및 1 kGy의 흡수선량이 되도록 방사선을 조사하였다. 방사선의 선량측정은 알라닌 선량계(alanine dosimeters, Bruker Instruments, Rheinstetten, Germany)를 이용하여 Bruker EMS 104 EPR 분석기로 분석하였다.Irradiation was carried out using a cobalt-60 irradiator (AECL, IR-79, Nordion, Canada) at a dose of 0 kGy, 0.1 kGy, 0.2 kGy, 0.5 kGy and 1 kGy, respectively, . Radiation doses were analyzed with a Bruker EMS 104 EPR analyzer using an alanine dosimeter (Bruker Instruments, Rheinstetten, Germany).

방사선이 조사된 각각의 방사무늬 김 시료를 MGM에 옮겨 광도 20 μmol photon m-2s-1 이상, 12:12의 광/암주기 및 온도 12℃의 조건에서 1-10주 동안 배양한 후 현미경을 이용한 세포 계수(cell counting)을 통하여 김의 생존율을 분석하였다.Each irradiated specimen irradiated with radiation was transferred to MGM, and cultured for 1 to 10 weeks at a light / dark cycle of 12 μmol / m 2 s -1 or more at a light intensity of 20 μmol photon m -2 s -1 or higher, The survival rate of Kim was analyzed by cell counting.

방사선 조사 후 생존한 방사무늬 김을 다시 MGM에 옮기고 광도 20 μmol photon m-2s-1 이상, 12:12의 광/암주기 및 온도 12℃의 조건에서 1-10주 동안 배양하였으며, 포자의 방출은 김의 배양 온도를 20℃로 증가시켜 유도하였다. 수득한 포자는 새로운 MGM에 광도 20 μmol photon m-2s-1 이상, 12:12의 광/암주기 및 온도 12℃의 조건에서 10주 동안 배양하였다.After irradiation, the surviving radial streaks were transferred to MGM and cultured for 1 to 10 weeks at a light / dark cycle of 12: 12 photon m -2 s -1 and a light intensity of 12 μmol and a temperature of 12 ° C. Release was induced by increasing the incubation temperature of the kimchi to 20 ℃. The resulting spores were incubated with new MGM at a light intensity of 20 μmol photon m -2 s -1 or higher, a light / dark cycle of 12:12 and a temperature of 12 ° C. for 10 weeks.

상기에서 MGM은 Na2EDTA(C10H14O6N2Na2ㆍH2O) 3.72 g, FeSO4ㆍ7H2O 0.28 g, Na2HPO4ㆍ12H2O 10.74 g, NaNO3 42.5 g, MnCl2ㆍ7H2O 0.019197 g 및 비타민 B12(시아노코브알라민) 1 ㎎을 포함한 멸균된 해수 1 L를 사용하였다.In the above, MGM was prepared by dissolving 3.72 g of Na 2 EDTA (C 10 H 14 O 6 N 2 Na 2 .H 2 O), 0.28 g of FeSO 4揃 7H 2 O, 10.74 g of Na 2 HPO 4揃 12H 2 O, 42.5 g of NaNO 3 , 2 · 7H 2 O 0.019197 g and vitamin B 12 (cyano Cove Ala min) it was used as a sterile 1 L water containing 1 ㎎.

상기에서 방사선 조사 후 생존한 방사무늬 김을 MGM에 배양하여 수득한 방사무늬 김 중 야생형 방사무늬 김보다 열충격 단백질 70(Heat Shock Protein 70; HSP 70)의 발현이 높은 방사무늬 김을 선별하여 방사무늬 김 Py503G(Porphyra yezoensis Py503G)로 명명하였으며, 2015년 6월 23일 한국생명공학연구원 미생물자원센터(KCTC)에 KCTC 12860BP의 기탁번호로 기탁하였다.In the above, the radiative stamina surviving after the irradiation of radiation was cultivated in MGM, and the radiative stamina having high heat shock protein 70 (HSP 70) ( Porphyra yezoensis Py503G), and deposited on June 23, 2015 with the deposit number KCTC 12860BP at the Microbiological Resource Center (KCTC) of the Korea Research Institute of Bioscience and Biotechnology.

한편, 야생형 방사무늬 김과 방사선을 조사한 후 생존한 방사무늬 김 Py503G의 열충격 단백질 70의 발현을 비교하기 위해 프라이머는 프라이머 3 프로그램을 사용하여 300 bp 이하의 크기로 제작하였다.On the other hand, in order to compare the expression of the heat shock protein 70 of the surviving radiolabeled Py503G after irradiation with the wild-type radiolabeled radiation, primers were prepared to a size of 300 bp or less using a primer 3 program.

표 1에서처럼 프라이머를 제작하였고, 역전사연쇄중합반응(Reverse Transcription-Polymerase Chain Reaction; RT-PCR)을 실시하여 열충격 단백질 70의 발현을 확인하였다.The primers were prepared as shown in Table 1 and reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the expression of heat shock protein 70.

유전자gene 뉴클레오타이드 서열Nucleotide sequence 열충격 단백질 70Heat shock protein 70 Py_PyHSP70 정방향 프라이머Py_PyHSP70 forward primer GTGGGAAGCCTACCGTCATAGTGGGAAGCCTACCGTCATA 서열목록 제1서열Sequence Listing 1st sequence Py_PyHSP70 역방향 프라이머Py_PyHSP70 Reverse primer CCTCCTGGCAATTTGTCCTACCTCCTGGCAATTTGTCCTA 서열목록 제서열Sequence Listing Sequence

실험예 1: 방사무늬 김 Py503G의 RNA 추출 및 cDNA 합성Experimental Example 1: RNA extraction and cDNA synthesis of radiolabeled Py503G

방사무늬 김 Py503G로부터 RNA 추출RNA extraction from radiolabeled Py503G

상기 실시예에서 수득한 방사무늬 김 Py503G로부터 RNA를 추출하였다. 야생형 방사무늬 김과 방사무늬 김 Py503G 각각 100 ㎎을 액체질소로 냉동시켜 멸균된 막자사발로 제분(milling)하였다. RNA 정제 키트로는 QIAGEN RNeasy 미니 키트를 사용하였으며, 제분된 조직 100 ㎎을 1.5 ㎖ 미세원심분리 튜브에 넣고 450 ㎕ RLT 완충액을 넣고 볼텍싱(vortexing)한 후 QIAshredder 스핀 컬럼에 옮겨 2분 동안 15000 rpm으로 원심분리를 실시하였다. 분리된 완충액에 에탄올을 0.5 부피로 혼합하고 700 ㎕ RW1 완충액으로 15초, 8000 g 이상의 조건으로 원심분리를 실시하여 세척하였다. 용출된 완충액을 제거하고 컬럼에 700 ㎕ RW1 완충액으로 15초, 8000 g 이상의 조건으로 원심분리를 실시한 후, 다시 용출된 완충액을 500 ㎕ RPE 완충액으로 15분, 2분 동안 8000 g 이상의 조건으로 원심분리를 실시하여 세척하였다. 컬럼을 새로운 1.5 ㎖ 미세원심분리 튜브로 옮겨 30-50 ㎕의 초순수(RNase-free water)를 첨가하여 1분, 8000 g의 조건으로 원심분리를 실시한 후 야생형 방사무늬 김 및 방사무늬 김 Py503G로부터 RNA를 분리하였다.RNA was extracted from the radiolabelled Py503G obtained in the above example. 100 mg of each wild-type radish stalk and radish stalk Py503G was frozen in liquid nitrogen and milled into a sterilized mulberry bowl. The RNA purification kit used was a QIAGEN RNeasy mini kit. 100 ㎎ of the milled tissue was placed in a 1.5 ml microcentrifuge tube, 450 쨉 l RLT buffer was added, vortexed, transferred to a QIAshredder spin column, . ≪ / RTI > The separated buffer was mixed with 0.5 volume of ethanol and washed by centrifugation in 700 μl RW1 buffer for 15 seconds at 8000 g or more. The eluted buffer was removed and the column was centrifuged with 700 μl RW1 buffer for 15 seconds at 8000 g or more. The eluted buffer was centrifuged for 15 minutes with 500 μl RPE buffer and 8000 g for 2 minutes. . The column was transferred to a new 1.5-ml microcentrifuge tube, 30-50 μl of RNase-free water was added, and centrifugation was carried out for 1 min at 8000 g. Then, wild-type radiolabelled and radiolabelled Py503G .

총 RNA의 정량Quantification of total RNA

Biodrop(Biochrom, Germany)를 흡광도 230 ㎚ 및 280 ㎚의 파장 범위로 설정하고 초순수 2 ㎕을 스팟에 넣고 기준(base)을 잡았다. 상기 실시예에서 추출한 RNA 시료 2 ㎕을 스팟에 넣고 260 ㎚ 파장에서 흡광도를 측정하여 RNA 정량 값을 확인하고 야생형 방사무늬 김 및 방사무늬 김 Py503G의 RNA를 정량하였다.Biodrop (Biochrom, Germany) was set at a wavelength range of 230 nm and 280 nm absorbance, and 2 쨉 l of ultrapure water was added to the spot to obtain a base. 2 μl of the RNA sample extracted in the above example was spotted, absorbance was measured at 260 nm wavelength, RNA quantification value was confirmed, and RNAs of wild-type and radiolabeled Py503G were quantified.

방사무늬 김 Py503G 및 방사무늬 김의 cDNA 합성Synthetic cDNA Synthesis of Radiation Patterned Py503G and Radially Patterned Kim

상기 실험예에서 정량한 방사무늬 김 Py503G 및 야생형 방사무늬 김의 2 ㎕ RNA 시료를 Transcriptor Fiest Strand cDNA Synthesis Kit(Roche, Germany)를 사용하여 cDNA를 합성시켰다. 정량된 각각의 2 ㎕ RNA 시료에 oligo-dT 1 ㎕ 및 DEPC-water를 이용하여 총 13 ㎕로 맞추어 65 ℃에서 10분 동안 항온반응 하였다. 처리 후 RT 반응(5×) 4 ㎕, 역전사 효소 1 ㎕, RNase 억제제 0.5 ㎕, dNTP 2 ㎕을 첨가하여 50 ℃에서 60분, 85℃에서 5분 동안 항온반응하여 방사무늬 김 Py503G 및 야생형 방사무늬 김의 cDNA를 합성하였다.CDNA was synthesized using a transcriptor Fiest Strand cDNA Synthesis Kit (Roche, Germany) with 2 ㎕ RNA samples of the radiolabeled Py503G and the wild-type radiolabel identified in the above Experimental Example. To each 2 μl RNA sample, 1 μl of oligo-dT and DEPC-water were added to a total of 13 μl and incubated at 65 ° C for 10 minutes. After the treatment, 4 μl of RT reaction (5 ×), 1 μl of reverse transcriptase, 0.5 μl of RNase inhibitor and 2 μl of dNTP were added and incubated at 50 ° C. for 60 minutes and 85 ° C. for 5 minutes to obtain radiolabelled Py503G and wild- The cDNA of Kim was synthesized.

시험예 2: 역전사연쇄중합반응의 평가Test Example 2: Evaluation of reverse transcription polymerization

mRNA에 대해 PCR을 적용하기 위한 방법으로 역전사연쇄중합반응(RT-PCR)은 유전자 발현, 즉 mRNA가 발현하고 있는지를 검색할 뿐 아니라 mRNA의 정량도 가능하다.Reverse transcription-polymerase chain reaction (RT-PCR) is a method for applying PCR to mRNA. It can not only detect gene expression, that is, express mRNA but also quantify mRNA.

합성된 방사무늬 김 Py503G 및 야생형 방사무늬김의 cDNA를 1 ㎕ 넣고 AccuPower PCR PreMix, 유전자-특이적 프라이머 (10 pmol/㎕) 1 ㎕ 및 DEPC-water 7 ㎕을 첨가하여 PCR을 수행하였다. 반응조건은 95℃로 5분 동안 변성하고 95℃ 30초, 60℃ 30초, 72℃ 30초로 35 사이클 동안 증폭시킨 후 75℃ 7분동안 반응시켰다.1 μl of synthesized radiolabeled Py503G and wild-type radiolabelled cDNA was added and 1 μl of AccuPower PCR PreMix, gene-specific primer (10 pmol / μl) and 7 μl of DEPC-water were added to perform PCR. The reaction conditions were denatured at 95 ° C for 5 minutes, amplified for 35 cycles at 95 ° C for 30 seconds, 60 ° C for 30 seconds, and 72 ° C for 30 seconds, followed by reaction at 75 ° C for 7 minutes.

상기 방사무늬 김 Py503G의 역전사연쇄중합반응 평가를 비교하였다. 도 1에서처럼 역전사연쇄중합반응으로 열충격 단백질 70 발현 결과를 비교한 결과, 12℃의 온도에서 배양시 방사선을 조사하지 않은 야생형 방사무늬 김보다 방사무늬 김 Py503G이 더 높게 발현되는 것으로 나타났다. 이러한 도 1의 결과로부터 본 발명의 방사무늬 김 Py503G는 야생형 방사무늬 김에 비해 열충격단백질 70 발현이 높다는 것을 알 수 있다.The pyrosequence polymerization reaction evaluation of the pyrazine Py503G was compared. As shown in FIG. 1, when the heat shock protein 70 expression was compared with that of the reverse transcription polymerase, Py503G was expressed at a higher temperature than that of the wild-type radiating Kim without irradiation at a temperature of 12 ° C. From the results shown in Fig. 1, it can be seen that the pyramidal pyrazolopyrimidine Py503G of the present invention has a higher expression of the heat shock protein 70 than that of the wild-type pyramidal pyrazin.

시험예 3: 실시간연쇄중합반응 평가Test Example 3: Real-time chain polymerization evaluation

본 발명에서는 유전자의 발현 특정을 실시간으로 확인하기 위하여 실시간연쇄중합반응(Real-time PCR)을 사용하였다. 실시간연쇄중합반응은 PCR 산물의 양이 각 사이클마다 측정된다. 특히 증폭이 일어나는 구간에서의 반응을 실시간으로 확인할 수 있으므로 확인하고자 하는 유전자의 최초 양을 정확하게 확인할 수 있다.In the present invention, real-time PCR (real-time PCR) was used to confirm the expression pattern of the gene in real time. In a real-time chain-reaction, the amount of PCR product is measured for each cycle. In particular, since the reaction in the amplification section can be confirmed in real time, the initial amount of the gene to be confirmed can be confirmed accurately.

상기 실시예에서 얻은 방사무늬 김 Py503G 및 야생형 방사무늬 김에 대한 열충격 단백질 70의 발현차이를 비교하였다.The differences in the expression of heat shock protein 70 in radiolabeled Py503G and wild-type radiolabel obtained in the above examples were compared.

연쇄중합반응은 QIAGEN QunatiTect SYBR Green PCR 키트를 이용하여 Eco™ 실시간 연쇄중합반응 시스템에서 수행하였다. 합성된 방사무늬 김 Py503G 및 야생형 방사무늬 김 cDNA를 1 ㎕ 넣고 SYBR Green PCR Kit 마스터 믹스 10 ㎕ 및 유전자 특이적 프라이머 (10 pmol/㎕) 1 ㎕와 DEPC-water 7 ㎕을 첨가하여 PCR을 수행하였다. 반응조건은 95℃로 10분 동안 변성반응시키고 95℃ 15초, 55℃ 15초 및 95℃ 15초로 반응시켰다. Py18s 유전자의 프라이머를 이용하여 내부 컨트롤 유전자로 설정하여 각 처리구의 발현량을 비교하였다. 실험의 신뢰도를 높이기 위하여 2중으로 실행하였다. 증폭과정이 종료되면, 각 시료의 Ct 값을 확인하고, Ct 값을 이용해, △Ct 값 및 △△Ct 값을 확인하였다. △Ct 값은 각 시료의 평균 Ct 값에서 내부 컨트롤 유전자(Py18s)의 평균 Ct 값을 뺀 값이다. 이때, 대조구끼리 계산하고 처리구는 처리구끼리 계산하여 대조구와 처리구의 △Ct 값을 각각 구한다. △△Ct 값은 각 시료의 처리구 △Ct 값에서 대조구 △Ct 값을 뺀 값이다. 처리구의 상대적 발현량은 2^-△△Ct 값을 이용해 확인하였다. 또한 대조구의 발현량을 1로 설정하였을때, 처리구의 상대적 발현량을 확인하였다.The chain polymerization was performed in an EcoTM real-time chain reaction system using QIAGEN QunatiTect SYBR Green PCR kit. 1 μl of the synthesized radiolabelled Py503G and wild-type radiolabeled cDNA was added, and 10 μl of the SYBR Green PCR Kit master mix and 1 μl of the gene-specific primer (10 pmol / μl) and 7 μl of DEPC-water were added to perform PCR . Reaction conditions were denatured at 95 ° C for 10 minutes, and reacted at 95 ° C for 15 seconds, at 55 ° C for 15 seconds, and at 95 ° C for 15 seconds. The primers of the Py18s gene were used as internal control genes and the expression levels of the respective treatments were compared. In order to increase the reliability of the experiment, it was performed in duplicate. When the amplification process was completed, the Ct value of each sample was confirmed, and the value of Ct and the value of Ct were confirmed using the Ct value. The ΔCt value is obtained by subtracting the average Ct value of the internal control gene (Py18s) from the average Ct value of each sample. At this time, the control is calculated between the control and the treatments are calculated between the treatments to obtain the ΔCt values of the control and the treatments. The value of ΔΔCt is the value obtained by subtracting the value of the control ΔCt from the value of ΔCt of the treated sample of each sample. The relative expression level of the treatments was confirmed by 2 ^ - ΔΔCt values. When the expression level of the control was set to 1, the relative expression level of the treatments was confirmed.

도 2에서 확인할 수 있듯이, 열충격 단백질 70의 발현은 방사무늬 김이 야생형 방사무늬 김과 비교하여 약 10배 정도 높은 값을 나타내었다. 이는 방사무늬 김 Py503G이 야생형 방사무늬김에 비해 열충격 단백질 70 발현이 더 높게 유지됨을 의미한다.As can be seen from FIG. 2, the expression of heat shock protein 70 was about 10 times higher than that of wild-type radiation pattern. This means that Py503G radiolabeled leaves maintain a higher level of thermal shock protein 70 expression compared to wild-type radiolabeled roots.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

한국생명공학연구원Korea Biotechnology Research Institute KCTC12860BPKCTC12860BP 2015062320150623

<110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Porphyra yezoensis Py503G KCTC -----BP with Improved Expression of Heat Shock Protein 70 <130> PN150216 <160> 2 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Py-PyHSP70 forward primer <400> 1 gtgggaagcc taccgtcata 20 <210> 2 <211> 20 <212> DNA <213> Py_PyHSP70 reverse primer <400> 2 cctcctggca atttgtccta 20 <110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Porphyra yezoensis Py503G KCTC ----- BP with Improved Expression          of Heat Shock Protein 70 <130> PN150216 <160> 2 <170> Kopatentin 2.0 <210> 1 <211> 20 <212> DNA <213> Py-PyHSP70 forward primer <400> 1 gtgggaagcc taccgtcata 20 <210> 2 <211> 20 <212> DNA <213> Py_PyHSP70 reverse primer <400> 2 cctcctggca atttgtccta 20

Claims (8)

방사무늬 김(Porphyra yezoensis)에 0.1-4.0 kGy 흡수선량의 방사선을 조사하여 제조된 열충격 단백질 70(Heat Shock Protein 70)의 발현이 증가된 방사무늬 김 Py503G(KCTC 12860BP).
Radiation pattern Py503G (KCTC 12860BP) with increased expression of heat shock protein 70 (Heat shock protein 70) prepared by irradiating 0.1-4.0 kGy of radiation dose to Porphyra yezoensis .
제 1 항에 있어서, 상기 방사무늬 김 Py503G(KCTC 12860BP)는 열충격 단백질 70(Heat shock protein 70)의 발현이 5-15배 증가된 것을 특징으로 하는 방사무늬 김 Py503G(KCTC 12860BP).
The radiation pattern Py503G (KCTC 12860BP) according to claim 1, wherein the radiation pattern Py503G (KCTC 12860BP) has a 5-15 fold increase in expression of heat shock protein 70 (KCTC 12860BP).
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020150101211A 2015-07-16 2015-07-16 Porphyra yezoensis Py503G KCTC 12860BP with Improved Expression of Heat Shock Protein 70 KR101707674B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150101211A KR101707674B1 (en) 2015-07-16 2015-07-16 Porphyra yezoensis Py503G KCTC 12860BP with Improved Expression of Heat Shock Protein 70

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150101211A KR101707674B1 (en) 2015-07-16 2015-07-16 Porphyra yezoensis Py503G KCTC 12860BP with Improved Expression of Heat Shock Protein 70

Publications (2)

Publication Number Publication Date
KR20170010222A KR20170010222A (en) 2017-01-26
KR101707674B1 true KR101707674B1 (en) 2017-02-20

Family

ID=57992760

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150101211A KR101707674B1 (en) 2015-07-16 2015-07-16 Porphyra yezoensis Py503G KCTC 12860BP with Improved Expression of Heat Shock Protein 70

Country Status (1)

Country Link
KR (1) KR101707674B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102026013B1 (en) * 2018-01-30 2019-09-26 전남대학교산학협력단 Mutant Porphyra yezoensis 500GE comprising higher glutamate content, method of preparing thereof and method of preparing glutamate using the same
KR102026016B1 (en) * 2018-02-20 2019-09-26 전남대학교산학협력단 Mutant Porphyra yezoensis 500GEAA comprising higher essential amino acids content, method of preparing thereof and method of preparing glutamate using the same
KR102200022B1 (en) * 2018-05-24 2021-01-08 전남대학교산학협력단 Mutant Porphyra yezoensis 503MAA comprising higher Mycosporine-like Amino Acids content, method of preparing thereof and method of preparing Mycosporine-like Amino Acids using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Applied Phycology, Vol.23, Issue.5, pp.841-847 (2011)*

Also Published As

Publication number Publication date
KR20170010222A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
Ma et al. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis of gene expression in Lycoris aurea
GWAG et al. Characterization of new microsatellite markers in mung bean, Vigna radiata (L.)
Kumar et al. Evidences showing ultraviolet-B radiation-induced damage of DNA in cyanobacteria and its detection by PCR assay
JP2018516569A (en) Methods and related compositions and kits for next generation genome walking
KR101707674B1 (en) Porphyra yezoensis Py503G KCTC 12860BP with Improved Expression of Heat Shock Protein 70
Zapomělová et al. POLYPHASIC CHARACTERIZATION OF DOLICHOSPERMUM SPP. AND SPHAEROSPERMOPSIS SPP.(NOSTOCALES, CYANOBACTERIA): MORPHOLOGY, 16S rRNA GENE SEQUENCES AND FATTY ACID AND SECONDARY METABOLITE PROFILES 1
Munakata et al. Convergent evolution of the UbiA prenyltransferase family underlies the independent acquisition of furanocoumarins in plants
Matsuura et al. Suppression of Tomato mosaic virus disease in tomato plants by deep ultraviolet irradiation using light‐emitting diodes
CN110343781A (en) A kind of identification method of rice Wx gene mutation and its application
CN104404063B (en) One cultivate peanut vitamin E synthesis key gene and application
CN109833358A (en) Rosa roxburghii Tratt extract is used to prepare the purposes of cell return of spring composition
KR101727478B1 (en) A mutant Porphyra yezoensis Py501G expressing higher level of ascorbate peroxide and preparation method thereof
Wang et al. Development of sex‐linked SSR marker in the genus Phoenix and validation in P. dactylifera
Eu et al. Phylogenic relationships of Rubus species revealed by randomly amplified polymorphic DNA markers
Guo et al. Cloning and characterization of nitrate reductase gene in Ulva prolifera (Ulvophyceae, Chlorophyta)
Ma et al. The type of mutations induced by carbon-ion-beam irradiation of the filamentous fungus Neurospora crassa
Matsuyama et al. Efficient mutation induction using heavy-ion beam irradiation and simple genomic screening with random primers in taro (Colocasia esculenta L. Schott)
CN108728569A (en) A kind of okra reference gene and its application
KR102121145B1 (en) Development of CAPS marker for discrimination of ABL and its mutation for mycelial browning and use thereof
Hanafiah et al. GENETIC ANALYSIS OF SOYBEAN MUTANT LINES RESISTANCE TO STEM ROT DISEASE (Athelia rolfsii Curzi).
WO2012032785A1 (en) Method for detecting pathogen candidatus phlomobacter fragariae causative of strawberry marginal chlorosis
CN107058515A (en) A kind of rapidly and efficiently screening technique of microcystin degrading bacterial
Abu-Mejdad et al. Isolation and molecular identification of yeasts, study their potential for producing killer toxins and evaluation of toxins activity against some bacteria and pathogenic fungi
TW201122104A (en) Fungi strain for production of melanin and uses thereof
KR20170138890A (en) Method and primer set for selecting cylindrocarpon destructans

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant