KR101695215B1 - Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater - Google Patents

Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater Download PDF

Info

Publication number
KR101695215B1
KR101695215B1 KR1020130118983A KR20130118983A KR101695215B1 KR 101695215 B1 KR101695215 B1 KR 101695215B1 KR 1020130118983 A KR1020130118983 A KR 1020130118983A KR 20130118983 A KR20130118983 A KR 20130118983A KR 101695215 B1 KR101695215 B1 KR 101695215B1
Authority
KR
South Korea
Prior art keywords
ipa
separation process
wastewater
membrane separation
reverse osmosis
Prior art date
Application number
KR1020130118983A
Other languages
Korean (ko)
Other versions
KR20150040455A (en
Inventor
하성용
고형철
이충섭
배은석
임채성
Original Assignee
(주)에어레인
주식회사 에너엔비텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에어레인, 주식회사 에너엔비텍 filed Critical (주)에어레인
Priority to KR1020130118983A priority Critical patent/KR101695215B1/en
Priority to PCT/KR2014/008334 priority patent/WO2015053483A1/en
Priority to JP2016521636A priority patent/JP6235133B2/en
Priority to CN201480055455.1A priority patent/CN105683092B/en
Publication of KR20150040455A publication Critical patent/KR20150040455A/en
Application granted granted Critical
Publication of KR101695215B1 publication Critical patent/KR101695215B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/08Thin film evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/448Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen

Abstract

본 발명은 IPA 함유 폐수로부터 IPA의 농축 및 폐수처리를 위한 병합 막분리 공정에 관한 것으로, 보다 상세하게는 투과증발막분리공정과 역삼투막분리공정을 결합하여 IPA 함유 폐수로부터 IPA를 분리 및 농축하고, 동시에 폐수를 처리할 수 있는 병합 막분리 공정에 관한 것이다.
본 발명의 병합 막분리 공정에 따르면, IPA 세정폐수로부터 IPA를 선택적으로 분리 및 30 중량% 이상 농축하여 재활용할 수 있고, 동시에 0.5 중량% 이하의 낮은 농도의 IPA 세정폐수는 별도의 희석 없이 기존의 폐수처리장에서 그대로 처리할 수 있다.
More particularly, the present invention relates to a process for separating and concentrating IPA from wastewater containing IPA by combining a pervaporation membrane separation process and a reverse osmosis membrane separation process, and more particularly, to a process for separating and concentrating IPA from wastewater containing IPA, And at the same time to a combined membrane separation process capable of treating wastewater.
According to the combined membrane separation process of the present invention, IPA can be selectively separated from the IPA washing wastewater, and can be recycled by concentration of 30 wt% or more. At the same time, IPA washing wastewater having a concentration of 0.5 wt% It can be processed as it is at the wastewater treatment plant.

Description

IPA 함유 폐수로부터 IPA의 농축 및 폐수처리를 위한 병합 막분리 공정{Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater}[Background Art] Combined membrane separation process for concentrating IPA and wastewater treatment from IPA-containing wastewater [

본 발명은 IPA 함유 폐수로부터 IPA의 농축 및 폐수처리를 위한 병합 막분리 공정에 관한 것으로, 보다 상세하게는 투과증발막분리공정과 역삼투막분리공정을 결합하여 IPA 함유 폐수로부터 IPA를 분리 및 농축하고, 동시에 폐수를 처리할 수 있는 병합 막분리 공정에 관한 것이다.More particularly, the present invention relates to a process for separating and concentrating IPA from wastewater containing IPA by combining a pervaporation membrane separation process and a reverse osmosis membrane separation process, and more particularly, to a process for separating and concentrating IPA from wastewater containing IPA, And at the same time to a combined membrane separation process capable of treating wastewater.

IPA(이소프로필알코올)는 산업현장 특히, 반도체 제조공정, LCD 제조공정 등에서 세정용액으로 많이 사용하며, 그 사용된 세정폐수에는 일반적으로 5~15 중량%의 IPA가 함유되어 있다. 이렇게 발생된 폐수는 유기화합물, 그 중에서도 알코올의 회수라는 측면에서 보면, IPA의 농도가 매우 낮아 통상의 증류공정을 이용하여 분리농축시 경제성이 없으므로 현재는 전량 폐수처리 하는 문제점이 있다.IPA (isopropyl alcohol) is widely used as a cleaning solution in industrial fields, especially semiconductor manufacturing processes, LCD manufacturing processes, etc., and the cleaning wastewater used generally contains 5 to 15% by weight of IPA. Since the concentration of IPA is very low in view of the recovery of organic compounds, especially alcohol, in the wastewater thus generated, there is no economical efficiency in separation and concentration using a conventional distillation process.

한편으로, 이러한 IPA 세정폐수는 폐수처리라는 측면에서 보면, IPA의 농도가 너무 높아 물로 희석하여 IPA의 농도를 1% 이하로 낮추어 폐수처리를 하는 또 다른 문제점이 상존한다.On the other hand, the IPA washing wastewater has another problem in that the concentration of IPA is too high in terms of wastewater treatment to dilute with water to lower the concentration of IPA to 1% or less.

IPA와 같은 알코올/물의 혼합용액으로부터 투과증발막을 이용하여 물을 선택적으로 분리하거나 또는 유기화합물 수용액으로부터 유기화합물을 선택적으로 분리하기 위한 투과증발막분리공정에 관한 선행연구들이 있었고(특허문헌 1, 2), 역삼투막분리공정을 이용하여 폐수를 처리하는 기술도 널리 알려져 있지만(특허문헌 3, 4), 투과증발막분리공정과 역삼투막분리공정은 각기 용도 및 특성에 따라 별개의 공정으로 수행되고 있었다.Prior art studies have been conducted on a pervaporation membrane separation process for selectively separating water from a mixed solution of alcohol / water such as IPA by using a pervaporation membrane or selectively separating an organic compound from an aqueous solution of an organic compound (see Patent Documents 1 and 2 ), And a technique for treating wastewater using a reverse osmosis membrane separation process is well known (Patent Literature 3 and 4). However, the pervaporation membrane separation process and the reverse osmosis membrane separation process have been performed in different processes depending on their applications and characteristics.

따라서 본 발명자는, 농축하여 재활용하거나 또는 폐수처리하기에 적합하지 않은 농도의 IPA 세정폐수로부터 투과증발막분리공정을 이용하여 IPA를 농축하고, 동시에 역삼투막분리공정을 이용하여 IPA 농도를 폐수처리에 적정한 농도로 분리하는 공정을 병합하여 적용하면, 전량 폐수처리 하였던 IPA 세정폐수로부터 IPA를 선택적으로 분리 및 농축하여 재활용할 수 있고, 아울러 낮은 농도의 IPA 세정폐수는 별도의 희석 없이 기존의 폐수처리장에서 그대로 처리할 수 있음에 착안하여 본 발명에 이르렀다.Therefore, the present inventors concentrated the IPA by using a pervaporation membrane separation process from the IPA washing wastewater which is not suitable for concentration and recycling or wastewater treatment, and at the same time, by using the reverse osmosis membrane separation process, Concentration IPA can be selectively separated and concentrated from the wastewater treated IPA wastewater, and the IPA wastewater with low concentration can be recycled without any additional dilution in the existing wastewater treatment plant So that the present invention has been accomplished.

특허문헌 1 공개특허공보 제10-2011-0083077호Patent Document 1: Japanese Patent Application Laid-Open No. 10-2011-0083077 특허문헌 2 공개특허공보 제10-2000-0067454호Patent Document 2: Japanese Patent Application Laid-Open No. 10-2000-0067454 특허문헌 3 공개특허공보 제10-2013-0032294호Patent Document 3: Japanese Patent Application Laid-Open No. 10-2013-0032294 특허문헌 4 공개특허공보 제10-2005-0026294호Patent Document 4: Japanese Patent Application Laid-Open No. 10-2005-0026294

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 IPA 세정폐수로부터 IPA를 선택적으로 분리 및 30 중량% 이상 농축하여 재활용할 수 있고, 동시에 0.5 중량% 이하의 낮은 농도의 IPA 세정폐수는 별도의 희석 없이 기존의 폐수처리장에서 그대로 처리할 수 있는 투과증발막분리공정과 역삼투막분리공정이 결합된 병합 막분리 공정을 제공하고자 하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method and apparatus for selectively separating and recycling IPA from IPA washing wastewater by 30 wt% or more, The washing wastewater is intended to provide a combined membrane separation process combining a pervaporation membrane separation process and a reverse osmosis membrane separation process, which can be treated as it is in a conventional wastewater treatment plant without any dilution.

상기한 바와 같은 목적을 달성하기 위한 본 발명은 I) IPA 함유 폐수로부터 투과증발막분리공정을 통하여 IPA를 농축하는 단계; 및 II) IPA 함유 폐수로부터 역삼투막분리공정을 통하여 폐수를 처리하는 단계;를 포함하는 병합 막분리 공정을 제공한다.According to an aspect of the present invention, there is provided a method for purifying IPA, comprising: i) concentrating IPA through a pervaporation membrane separation process from IPA-containing wastewater; And II) treating wastewater from IPA-containing wastewater through a reverse osmosis membrane separation process.

상기 I) 단계의 투과증발막분리공정은 i) 승온된 IPA 함유 폐수를 투과증발막모듈에 공급하는 단계; ii) 투과증발막모듈을 투과한 IPA를 액체상으로 응축하는 단계; 및 iii) 응축된 IPA를 투과용액 탱크로 이송하는 단계;를 포함하는 것을 특징으로 한다.The Pervaporation Membrane Separation Process in the step I) comprises the steps of: i) supplying the heated vaporized IPA wastewater to the Pervaporation Membrane Module; ii) condensing the IPA permeated through the pervaporation membrane module into a liquid phase; And iii) transferring the condensed IPA to the permeate solution tank.

상기 승온된 IPA 함유 폐수는 히터에 의하여 30~60℃로 유지된 것을 특징으로 한다.The heated IPA-containing wastewater is maintained at 30 to 60 ° C by a heater.

상기 투과증발막모듈에 공급하는 IPA 함유 폐수의 공급유량은 투과유량의 5배 이상인 것을 특징으로 한다.And the supply flow rate of the IPA-containing wastewater to be supplied to the pervaporation membrane module is at least 5 times the permeation flow rate.

상기 II) 단계의 역삼투막분리공정은 a) 승압된 IPA 함유 폐수를 역삼투막모듈에 공급하는 단계; 및 b) 역삼투막모듈을 투과한 폐수를 투과수 탱크로 이송하는 단계;를 포함하는 것을 특징으로 한다.The reverse osmosis membrane separation process in the step II) comprises: a) supplying the pressurized IPA-containing wastewater to a reverse osmosis membrane module; And b) transferring the wastewater that has permeated through the reverse osmosis membrane module to the permeated water tank.

상기 승압된 IPA 함유 폐수는 고압펌프에 의하여 10~70bar로 유지된 것을 특징으로 한다.Wherein the pressurized IPA-containing wastewater is maintained at 10 to 70 bar by a high-pressure pump.

상기 역삼투막모듈에 공급하는 IPA 함유 폐수의 공급유량은 투과유량의 3배 이상인 것을 특징으로 한다.The supply flow rate of the IPA-containing wastewater to be supplied to the reverse osmosis membrane module is three times or more of the permeation flow rate.

본 발명의 병합 막분리 공정에 따르면, IPA 세정폐수로부터 IPA를 선택적으로 분리 및 30 중량% 이상 농축하여 재활용할 수 있고, 동시에 0.5 중량% 이하의 낮은 농도의 IPA 세정폐수는 별도의 희석 없이 기존의 폐수처리장에서 그대로 처리할 수 있다.According to the combined membrane separation process of the present invention, IPA can be selectively separated from the IPA washing wastewater, and can be recycled by concentration of 30 wt% or more. At the same time, IPA washing wastewater having a concentration of 0.5 wt% It can be processed as it is at the wastewater treatment plant.

도 1은 본 발명에 따른 연속식(continuous) 병합 막분리 공정도를 나타낸 블록 다이어그램.
도 2는 본 발명에 따른 배치식(batch) 병합 막분리 공정도를 나타낸 블록 다이어그램.
1 is a block diagram showing a continuous merged membrane separation process according to the present invention.
2 is a block diagram showing a batch merging membrane separation process according to the present invention.

이하에서는 본 발명에 따른 투과증발막분리공정을 이용하여 IPA를 농축하고, 동시에 역삼투막분리공정을 이용하여 IPA 농도를 폐수처리에 적정한 농도로 분리하는 병합 막분리 공정에 관하여 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, a combined membrane separation process for concentrating IPA using a pervaporation membrane separation process according to the present invention and simultaneously separating IPA concentration into a concentration suitable for wastewater treatment using a reverse osmosis membrane separation process will be described in detail with reference to the accompanying drawings .

본 발명은 I) IPA 함유 폐수로부터 투과증발막분리공정을 통하여 IPA를 농축하는 단계; 및 II) IPA 함유 폐수로부터 역삼투막분리공정을 통하여 폐수를 처리하는 단계;를 포함하는 병합 막분리 공정을 제공한다.The present invention provides a process for the preparation of IPA comprising: I) concentrating IPA through a pervaporation membrane separation process from IPA containing wastewater; And II) treating wastewater from IPA-containing wastewater through a reverse osmosis membrane separation process.

또한, 상기 I) 단계의 투과증발막분리공정은 i) 승온된 IPA 함유 폐수를 투과증발막모듈에 공급하는 단계; ii) 투과증발막모듈을 투과한 IPA를 액체상으로 응축하는 단계; 및 iii) 응축된 IPA를 투과용액 탱크로 이송하는 단계;를 포함하는바, 도 1의 연속(continuous) 공정 블록 다이어그램에 나타낸 바와 같이, 먼저 IPA함유 폐수(IPA 용액)를 IPA 용액 탱크(100)에 저장하고, 히터(110)와 같은 통상의 가열수단에 의하여 IPA 용액 탱크의 IPA 용액을 승온시킨다. 이 때, IPA 용액의 온도가 30℃미만이면 투과증발막 모듈의 투과량이 너무 작아지고, IPA 용액의 온도가 60℃를 초과하면 에너지 소모가 너무 커지므로, IPA 용액은 히터(110)에 의하여 승온시켜 30~60℃로 유지하는 것이 바람직하다.In addition, in the step i), the pervaporation membrane separation process may include the steps of: i) supplying the heated IPA-containing wastewater to the pervaporation membrane module; ii) condensing the IPA permeated through the pervaporation membrane module into a liquid phase; And iii) transferring the condensed IPA to the permeate solution tank, wherein the IPA containing wastewater (IPA solution) is first introduced into the IPA solution tank 100, as shown in the continuous process block diagram of Figure 1, And the IPA solution in the IPA solution tank is heated by a normal heating means such as the heater 110. At this time, if the temperature of the IPA solution is less than 30 ° C., the permeation amount of the PVA membrane module becomes too small. If the temperature of the IPA solution exceeds 60 ° C., the energy consumption becomes too large. And maintained at 30 to 60 캜.

이어서 30~60℃로 승온된 IPA 용액은 투과증발막모듈(150)에 공급되는데, 여기서는 IPA 용액 공급펌프(120), 용액필터(130) 및 IPA 용액 유량계(140)를 순차적으로 거치는 과정이 수반된다. 이 때, 투과증발막모듈(150)에 공급하는 IPA 용액의 공급유량은 투과유량의 5배 이상으로 조절하는 것이 바람직하다. 만약 IPA 용액을 투과증발막모듈(150)에 5배 이하로 공급하면 투과증발막모듈(150)을 통과하여 투과하는 투과용액의 IPA 농도가 낮아 분리 및 농축이 원활하게 수행되지 않는다.The IPA solution heated to 30 to 60 ° C is then supplied to the pervaporation membrane module 150 where the process of sequentially passing the IPA solution supply pump 120, the solution filter 130 and the IPA solution flow meter 140 is followed. do. At this time, the supply flow rate of the IPA solution supplied to the pervaporation membrane module 150 is preferably controlled to be 5 times or more of the permeation flow rate. If the IPA solution is supplied to the pervaporation membrane module 150 at a rate of 5 times or less, the IPA concentration of the permeate solution passing through the pervaporation membrane module 150 is low, so separation and concentration can not be performed smoothly.

이렇게 투과증발막모듈(150)에 공급된 IPA 용액은 분리막 내에 IPA가 용해되고, 분리막 내에서 확산되어 증기상으로 투과하는 작용기전을 갖는다. 이러한 작용기전은 투과증발막모듈(150)의 일단이 IPA 공급용액과 접하고 있고, 다른 일단이 낮은 투과물의 증기압과 접하고 있는데, 낮은 증기압 조건은 진공을 걸어 주거나 불활성 담체 가스를 흐르게 하여 만들 수 있는바, 일반적으로 투과증발막 내부에 투과증발막분리공정의 추진력(driving force)인 화학적 포텐셜의 구배가 발생하여 막을 통한 물질의 투과가 이루어지는 것이므로, 본 발명에서는 투과증발막분리공정의 추진력을 유지하기 위하여 진공펌프(170)를 사용함으로써 투과부에 진공이 유지되도록 한다.The IPA solution supplied to the pervaporation membrane module 150 has an action mechanism that dissolves IPA in the separation membrane, diffuses in the separation membrane, and permeates into the vapor phase. One such mechanism is that one end of the pervaporation membrane module 150 is in contact with the IPA feed solution and the other end is in contact with the vapor pressure of the lower permeate. In general, the gradient of the chemical potential, which is the driving force of the pervaporation membrane separation process, is generated in the pervaporation membrane to permeate the material through the membrane. Therefore, in order to maintain the propulsion of the pervaporation membrane separation process Vacuum is maintained in the permeable portion by using the vacuum pump 170.

다음으로, 투과증발막모듈(150)을 투과한 증기상의 IPA는 통상의 응축기(160)에서 액체상으로 응축되고, 응축된 액상의 IPA는 투과용액 유량계(180)를 거쳐 투과용액 탱크(190)로 이송된다. 이 투과증발막분리공정을 통하여 얻어지는 IPA 용액은 30% 이상으로 농축되므로 재활용할 수 있다.The vapor phase IPA permeated through the pervaporation membrane module 150 is condensed into a liquid phase in a conventional condenser 160 and the condensed liquid IPA is passed through the permeate solution flow meter 180 to the permeate solution tank 190 Lt; / RTI > The IPA solution obtained through this pervaporation membrane separation process can be recycled since it is concentrated to 30% or more.

한편, 본 발명의 병합 막분리 공정에서는 역삼투막분리공정을 동시에 수행하는데, 상기 II) 단계의 역삼투막분리공정은 a) 승압된 IPA 함유 폐수를 역삼투막모듈에 공급하는 단계; 및 b) 역삼투막모듈을 투과한 폐수를 투과수 탱크로 이송하는 단계;를 포함하는바, 도 1의 연속(continuous) 공정 블록 다이어그램에 나타낸 바와 같이, 먼저 IPA 용액 탱크(100)로부터 IPA 함유 폐수가 용액필터(210)를 거쳐 IPA 용액 고압펌프(220)로 이송되어 IPA 용액이 승압된다. 이 때, 고압펌프(220)에서의 공급압력은 10~70bar로 유지하는 것이 바람직한데, 10bar 미만으로 운전하게 되면 추진력이 낮아 역삼투막의 투과량이 크게 감소하게 되고, 70bar를 초과하면 역삼투막의 장기 안정성이 떨어지게 되므로, IPA 용액은 고압펌프(220)에 의하여 승압시켜 10~70bar를 유지하도록 조절한다.Meanwhile, the reverse osmosis membrane separation process of the present invention simultaneously performs a reverse osmosis membrane separation process, wherein the reverse osmosis membrane separation process in the step II) comprises the steps of: a) supplying wastewater containing IPA to the reverse osmosis membrane module; And b) transferring the wastewater having permeated the reverse osmosis membrane module to the permeated water tank. As shown in the continuous process block diagram of Fig. 1, first, the IPA-containing waste water from the IPA solution tank 100 Solution filter 210 to the IPA solution high-pressure pump 220 so that the IPA solution is boosted. At this time, it is desirable to maintain the supply pressure at 10 to 70 bar at the high-pressure pump 220. If the pressure is lower than 10 bar, the propellant is low and the permeation amount of the reverse osmosis membrane is greatly reduced. The IPA solution is pressurized by the high-pressure pump 220 so as to be maintained at 10 to 70 bar.

이어서 10~70bar로 승압된 IPA 용액을 용액유량계(230)를 거쳐 역삼투막모듈(240)에 공급하고, 역삼투막모듈(240)을 투과한 폐수는 투과수유량계(250)를 거쳐 투과수 탱크(260)로 이송된다. 이 역삼투막분리공정을 통하여 투과되는 폐수(투과수)는 IPA 농도가 0.5% 이하이므로 별도의 희석 없이 그대로 폐수처리장에서 처리하면 된다.The IPA solution which has been increased to 10 to 70 bar is supplied to the reverse osmosis membrane module 240 through the solution flow meter 230. The wastewater that has passed through the reverse osmosis membrane module 240 passes through the permeated water flow meter 250, Lt; / RTI > The wastewater (permeated water) permeated through this reverse osmosis membrane separation process has an IPA concentration of 0.5% or less and can be directly treated at the wastewater treatment plant without dilution.

이상 기술한 바와 같이 도 1에 나타낸 연속(continuous) 병합 막분리 공정을 실제 운전함에 있어서는, IPA 함유 폐수(IPA 용액)를 탱크(100)에 일정량 채우고, 투과증발막분리공정을 이용하여 IPA를 분리 및 농축, 동시에 역삼투막분리공정도 함께 가동하여 물(폐수)을 투과시켜 투과수 탱크(260)로 이송하는데, 이 때 투과증발막분리공정의 IPA 농축액 양과 역삼투막분리공정의 투과수 양을 확인하여 IPA 용액 탱크(100)에 연속적으로 보충하며, 연속적으로 처리할 양(연속적인 폐수발생량)에 따라 투과증발막분리공정과 역삼투막분리공정의 용량을 설계하여 연속 운전할 수 있다.As described above, in actual operation of the continuous combined membrane separation step shown in FIG. 1, the IPA-containing wastewater (IPA solution) is filled in the tank 100 to a certain extent and the IPA is separated And the reverse osmosis membrane separation process is performed simultaneously to transfer the water (wastewater) to the permeated water tank 260. At this time, the amount of the IPA concentrate and the amount of permeate in the reverse osmosis membrane separation process in the pervaporation membrane separation process are checked, The capacity of the pervaporation membrane separation process and the reverse osmosis membrane separation process can be designed and continuously operated depending on the amount of continuous treatment (continuous wastewater generation) supplemented continuously to the solution tank 100.

한편, 또 다른 운전예로 도 2에 나타낸 배치(batch) 타입의 병합 막분리 공정도 가능한바, IPA 함유 폐수(IPA 용액)를 탱크(100)에 일정량 채우고, 투과증발막분리공정을 이용하여 IPA를 분리 및 농축한 후, 원래 IPA 함유 폐수의 농도가 일정 농도 이하로 낮아지면 IPA 용액 탱크(100)의 용액을 또 다른 IPA 용액 탱크(200)로이송하고, 그 이송된 IPA 함유 폐수는 역삼투막분리공정에 의하여 물을 투과시켜 투과수 탱크(260)에 저장하며, IPA 용액 탱크(200)의 IPA 용액에서 물이 제거되어 IPA가 일정 농도로 증가하면 IPA 용액 탱크(100)로 이송되어 다시 투과증발막분리공정을 수행하는 공정을 반복 운전함으로써 IPA 함유 폐수를 모두 처리하게 되며, 투과수 탱크(260)의 투과수는 IPA의 농도가 낮아져 폐수처리장에서 처리될 수 있다.2, a certain amount of IPA-containing wastewater (IPA solution) is filled in the tank 100, and the IPA-containing wastewater (IPA solution) The solution of the IPA solution tank 100 is transferred to another IPA solution tank 200. The transferred IPA-containing wastewater is separated from the IPA solution tank 200 by the reverse osmosis membrane separation Water is stored in the permeated water tank 260. When water is removed from the IPA solution of the IPA solution tank 200 and the IPA is increased to a predetermined concentration, the water is transferred to the IPA solution tank 100, The IPA-containing wastewater is treated by repeating the process of performing the membrane separation process, and the permeated water of the permeated water tank 260 can be treated in the wastewater treatment plant because the concentration of IPA is low.

아울러, 첨부된 도면에 도시하지는 않았지만, IPA 함유 폐수(IPA 용액)를 탱크(100)에 일정량 채우고, 투과증발막분리공정을 이용하여 IPA를 분리 및 농축, 동시에 역삼투막분리공정도 함께 가동하여 물(폐수)을 투과시켜 투과수 탱크(260)로 이송한 후, 계속 운전하여 IPA 용액 탱크(100)의 레벨이 일정량 이하가 되면 IPA 함유 폐수를 보충하고, IPA 용액 탱크(100)의 상한 및 하한 레벨에 따라 배치(batch)식으로 운전하는 반-배치(semi-batch) 타입의 병합 막분리 공정도 가능하다.In addition, although not shown in the accompanying drawings, the IPA-containing wastewater (IPA solution) is filled into the tank 100 to separate and concentrate the IPA using a pervaporation membrane separation process, And the IPA solution tank 100 is fed to the permeated water tank 260. When the level of the IPA solution tank 100 becomes lower than a predetermined level, the IPA-containing wastewater is replenished and the upper and lower levels of the IPA solution tank 100 A semi-batch type of coalescing membrane separation process is also possible, which is operated in a batch mode according to the method of FIG.

한편, 본 발명의 병합 막분리 공정에 포함되는 투과증발막분리공정의 막 소재로서는 폴리에테르이미드 등의 다공성 지지체에 폴리디메틸실록산(PDMS)과 같은 유기폴리실록산이 코팅된 실리콘계 복합막이 바람직하나, 이에 제한되는 것은 아니며, 역삼투막분리공정의 막 소재로서는 폴리술폰 등의 다공성 지지체에 폴리아미드가 코팅된 폴리아미드계 복합막이 바람직하지만, 역시 이에 제한되는 것은 아니다.
Meanwhile, as the membrane material of the pervaporation membrane separation step included in the combined membrane separation step of the present invention, a silicone based composite membrane having a porous support such as polyetherimide coated with an organopolysiloxane such as polydimethylsiloxane (PDMS) As the membrane material of the RO membrane separation process, a polyamide-based composite membrane in which a porous support such as polysulfone is coated with polyamide is preferable, but the present invention is not limited thereto.

이하 구체적인 실시예를 상세히 설명한다.Hereinafter, specific examples will be described in detail.

(( 실시예Example 1) One)

IPA 함유 폐수의 IPA 농도를 5.2 중량%, 공급유량을 80 LPM(liter per minute)로 고정하고, 공급용액의 온도를 각각 35℃, 45℃ 및 55℃로 변화시켜 도 1에 나타낸 바와 같은 연속 병합 막분리 공정을 수행하였고, 표 1에 투과증발막분리공정에 의한 공급용액의 온도에 따른 투과용액의 IPA 농도와 투과유량을 나타내었다.
The IPA concentration of the IPA-containing wastewater was fixed at 5.2% by weight and the feed flow rate at 80 LPM (liter per minute), and the temperature of the feed solution was changed to 35 ° C, 45 ° C and 55 ° C, respectively, The membrane separation process was performed, and Table 1 shows the IPA concentration and permeate flow rate of the permeate solution according to the temperature of the feed solution by the pervaporation membrane separation process.

공급용액온도 (oC)Feed solution temperature ( o C) 투과용액 농도 (중량 %)Concentration of permeate solution (% by weight) 투과유량 (g/m2hr)Transmitted flow rate (g / m 2 hr) 3535 45.645.6 510510 4545 41.541.5 752752 5555 38.438.4 10091009

(( 실시예Example 2) 2)

IPA 함유 폐수의 IPA 농도를 8.7 중량%로 고정한 것 이외에는 실시예 1과 동일한 방법으로 연속 병합 막분리 공정을 수행하였고, 표 2에 투과증발막분리공정에 의한 공급용액의 온도에 따른 투과용액의 IPA 농도와 투과유량을 나타내었다.
The continuous merged membrane separation step was performed in the same manner as in Example 1 except that the IPA concentration of the IPA-containing wastewater was fixed to 8.7% by weight. Table 2 shows the IPA of the permeate solution according to the temperature of the feed solution by the pervaporation membrane separation step Concentration and permeate flow rate.

공급용액온도 (oC)Feed solution temperature ( o C) 투과용액 농도 (중량 %)Concentration of permeate solution (% by weight) 투과유량 (g/m2hr)Transmitted flow rate (g / m 2 hr) 3535 53.253.2 630630 4545 48.848.8 895895 5555 43.543.5 11801180

(( 실시예Example 3) 3)

공급용액의 온도를 35, 공급유량을 20 LPM으로 고정하고, IPA 함유 폐수의 IPA 농도를 각각 5.2 중량%, 6.2 중량%, 7.3 중량% 및 8.5 중량%로 변화시켜 도 1에 나타낸 바와 같은 연속 병합 막분리 공정을 수행하였고, 표 3에 역삼투막분리공정에 의한 투과용액(투과수)의 IPA 농도 및 투과유량을 나타내었다.
The temperature of the feed solution was fixed at 35, the feed flow rate at 20 LPM, and the IPA concentrations of the IPA-containing wastewater were changed to 5.2 wt%, 6.2 wt%, 7.3 wt% and 8.5 wt%, respectively, The membrane separation process was performed, and the IPA concentration and permeate flow rate of the permeate solution (permeated water) by the reverse osmosis membrane separation process were shown in Table 3.

공급용액 농도(중량 %)Feed solution concentration (% by weight) 투과용액(투과수) IPA 농도(중량 %)Permeation solution (permeated water) IPA concentration (% by weight) 투과유량(LPM)Permeate flow (LPM) 5.25.2 0.310.31 1.201.20 6.26.2 0.350.35 1.121.12 7.37.3 0.410.41 0.980.98 8.58.5 0.500.50 0.890.89

표 1 및 2에서 보는 바와 같이, 본 발명의 병합 막분리 공정의 실시예 1, 2에 따른 투과증발막분리공정에 의하면, 공급용액의 온도가 동일한 경우, IPA 함유 폐수의 IPA가 농도가 더 높을수록 투과용액의 IPA 농도와 투과유량이 더 증가함을 알 수 있고, 또한 어느 경우에서나 투과용액의 IPA 농도가 모두 38% 이상을 나타내어 투과용액을 재활용할 수 있음을 확인하였다.As shown in Tables 1 and 2, according to the pervaporation membrane separation process according to Examples 1 and 2 of the combined membrane separation process of the present invention, when the temperature of the supply solution is the same, the concentration of IPA in IPA- The IPA concentration and permeate flow rate of the permeate solution were further increased. In all cases, the IPA concentration of the permeate solution was more than 38%, indicating that the permeate solution can be recycled.

아울러 표 3에서 보는 바와 같이, 본 발명의 병합 막분리 공정의 실시예 3에 따른 역삼투막분리공정에 의하면, IPA 함유 폐수의 IPA 농도(공급용액의 농도)가 5.2 중량%에서 8.5 중량%로 증가하면 투과용액(투과수)의 IPA 농도가 다소 증가하고 투과유량은 감소하지만, 어느 경우에서나 투과용액(투과수)의 IPA 농도가 0.5 중량% 미만이므로, 투과용액(투과수)을 그대로 폐수처리장으로 이송하여 폐수처리 할 수 있음을 확인하였다.As shown in Table 3, according to the reverse osmosis membrane separation process according to Example 3 of the combined membrane separation process of the present invention, when the IPA concentration (concentration of the feed solution) of IPA-containing wastewater increases from 5.2 wt% to 8.5 wt% The IPA concentration of the permeated solution (permeated water) is slightly increased and the permeated flow rate is decreased. In any case, however, the IPA concentration of the permeated solution (permeated water) is less than 0.5 wt% It was confirmed that the wastewater treatment can be performed.

따라서 본 발명의 병합 막분리 공정에 따르면, IPA 세정폐수로부터 IPA를 선택적으로 분리 및 30 중량% 이상 농축하여 재활용할 수 있고, 동시에 0.5 중량% 이하의 낮은 농도의 IPA 세정폐수는 별도의 희석 없이 기존의 폐수처리장에서 그대로 처리할 수 있는 현저한 효과를 나타낸다.Therefore, according to the combined membrane separation process of the present invention, IPA can be selectively separated from the IPA washing wastewater and can be recycled by concentration of 30 wt% or more. At the same time, IPA washing wastewater having a concentration of 0.5 wt% Of the waste water treatment plant of the present invention.

Claims (9)

I) IPA 함유 폐수로부터 투과증발막분리공정을 통하여 IPA를 농축하는 단계; 및
II) IPA 함유 폐수로부터 역삼투막분리공정을 통하여 폐수를 처리하는 단계;를 포함하는 병합 막분리 공정으로서,
상기 I) 단계의 투과증발막분리공정은 i) 승온된 IPA 함유 폐수를 투과증발막모듈에 공급하는 단계;
ii) 투과증발막모듈을 투과한 IPA를 액체상으로 응축하는 단계; 및
iii) 응축된 IPA를 투과용액 탱크로 이송하는 단계;를 포함하고,
상기 II) 단계의 역삼투막분리공정은 a) 고압펌프에 의하여 10~70bar로 유지된 승압된 IPA 함유 폐수를 역삼투막모듈에 공급하는 단계; 및
b) 역삼투막모듈을 투과한 폐수를 투과수 탱크로 이송하는 단계;를 포함하며,
상기 투과증발막모듈에 공급하는 IPA 함유 폐수의 공급유량은 투과유량의 5배 이상이며,
상기 투과증발막분리공정의 막 소재는 폴리에테르이미드의 다공성 지지체에 폴리디메틸실록산이 코팅된 실리콘계 복합막이고, 상기 역삼투막분리공정의 막 소재는 폴리술폰의 다공성 지지체에 폴리아미드가 코팅된 폴리아미드계 복합막인 것을 특징으로 하는 병합 막분리 공정.
I) concentrating IPA through a pervaporation membrane separation process from IPA-containing wastewater; And
II) treating wastewater through a reverse osmosis membrane separation process from IPA-containing wastewater,
The Pervaporation Membrane Separation Process in the step I) comprises the steps of: i) supplying the heated vaporized IPA wastewater to the Pervaporation Membrane Module;
ii) condensing the IPA permeated through the pervaporation membrane module into a liquid phase; And
iii) transferring the condensed IPA to the permeate solution tank,
The reverse osmosis membrane separation process in the step II) comprises: a) supplying the IPA-containing wastewater maintained at 10 to 70 bar by a high-pressure pump to the reverse osmosis membrane module; And
b) transferring the wastewater, which has permeated through the reverse osmosis membrane module, to a permeated water tank,
Wherein the supply flow rate of the IPA-containing wastewater to be supplied to the pervaporation membrane module is at least 5 times the permeation flow rate,
The membrane material of the pervaporation membrane separation process is a silicon-based composite membrane coated with a polydimethylsiloxane on a porous support of a polyetherimide. The membrane material of the reverse osmosis membrane separation process is a polyamide- And a composite membrane.
삭제delete 제1항에 있어서, 상기 승온된 IPA 함유 폐수는 히터에 의하여 30~60℃로 유지된 것을 특징으로 하는 병합 막분리 공정.The combined membrane separation process according to claim 1, wherein the heated IPA-containing wastewater is maintained at 30 to 60 ° C by a heater. 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 역삼투막모듈에 공급하는 IPA 함유 폐수의 공급유량은 투과유량의 3배 이상인 것을 특징으로 하는 병합 막분리 공정.The process according to claim 1, wherein the supply flow rate of the IPA-containing wastewater to be supplied to the reverse osmosis membrane module is at least three times the permeation flow rate. 삭제delete 삭제delete
KR1020130118983A 2013-10-07 2013-10-07 Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater KR101695215B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020130118983A KR101695215B1 (en) 2013-10-07 2013-10-07 Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater
PCT/KR2014/008334 WO2015053483A1 (en) 2013-10-07 2014-09-04 Combined membrane separation process for concentrating ipa from wastewater containing ipa and treating wastewater
JP2016521636A JP6235133B2 (en) 2013-10-07 2014-09-04 Combined membrane separation process for IPA concentration and wastewater treatment from IPA containing wastewater
CN201480055455.1A CN105683092B (en) 2013-10-07 2014-09-04 For carrying out IPA concentration and the compound membrane separating method of wastewater treatment to the waste water containing IPA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130118983A KR101695215B1 (en) 2013-10-07 2013-10-07 Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater

Publications (2)

Publication Number Publication Date
KR20150040455A KR20150040455A (en) 2015-04-15
KR101695215B1 true KR101695215B1 (en) 2017-01-11

Family

ID=52813271

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130118983A KR101695215B1 (en) 2013-10-07 2013-10-07 Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater

Country Status (4)

Country Link
JP (1) JP6235133B2 (en)
KR (1) KR101695215B1 (en)
CN (1) CN105683092B (en)
WO (1) WO2015053483A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210082711A (en) * 2019-12-26 2021-07-06 주식회사 에너엔비텍 Pervaporation membrane separation process for concentration of the organic compound and treatment of wastewater from specific organic compound containing wastewater
CN113943209B (en) * 2020-08-28 2023-05-23 苏州智程半导体科技股份有限公司 Method and device for purifying isopropanol waste liquid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274006A (en) * 2008-05-14 2009-11-26 Miura Co Ltd Wastewater treatment apparatus
JP2013141643A (en) * 2012-01-11 2013-07-22 Kurita Water Ind Ltd Method and apparatus for recovery of process wastewater from electronic industry

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166901A (en) * 1982-03-29 1983-10-03 Kuri Kagaku Sochi Kk Osmotic evaporation membrane and separation using said membrane
JPS61257205A (en) * 1985-05-10 1986-11-14 Agency Of Ind Science & Technol Permselective membrane for alcohol and separation of alcohol using the same
DE3679990D1 (en) * 1986-07-29 1991-08-01 Gft Ges Fuer Trenntechnik PERVAPORATION METHOD AND MEMBRANE.
US4944882A (en) * 1989-04-21 1990-07-31 Bend Research, Inc. Hybrid membrane separation systems
TW224058B (en) * 1990-12-27 1994-05-21 Mitsubishi Chemicals Co Ltd
DE4130661C1 (en) * 1991-09-14 1993-05-19 Dornier Gmbh, 7990 Friedrichshafen, De
JPH06292819A (en) * 1993-04-09 1994-10-21 Hitachi Chem Co Ltd Treatment of phenols-containg waste liquid with pervaporation method and device there for
US5464540A (en) * 1993-12-09 1995-11-07 Bend Research, Inc. Pervaporation by countercurrent condensable sweep
US5989426A (en) * 1995-07-05 1999-11-23 Nitto Denko Corp. Osmosis membrane
KR20000067454A (en) 1999-04-28 2000-11-15 김충섭 Separation membranes using crosslinked polymers with siloxane main chains
KR100523338B1 (en) 2003-09-09 2005-10-24 한국과학기술연구원 Method for treating and reusing high-strength organic wastewater
JP4563093B2 (en) * 2004-07-13 2010-10-13 日東電工株式会社 Method for producing high salt rejection composite reverse osmosis membrane
WO2007074066A1 (en) * 2005-12-29 2007-07-05 Basf Se A process for separating propylene glycol from aqueous compositions
US8425734B2 (en) * 2007-07-02 2013-04-23 I3 Nanotec Llc Membrane-based hybrid process for separation of mixtures of organics, solids, and water
KR20110083077A (en) 2010-01-13 2011-07-20 한국과학기술연구원 A separation membrane for water/ethanol mixture and a method for manufacturing the same
CN102167463B (en) 2010-02-26 2014-05-14 通用电气公司 Water disposal facility and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274006A (en) * 2008-05-14 2009-11-26 Miura Co Ltd Wastewater treatment apparatus
JP2013141643A (en) * 2012-01-11 2013-07-22 Kurita Water Ind Ltd Method and apparatus for recovery of process wastewater from electronic industry

Also Published As

Publication number Publication date
WO2015053483A1 (en) 2015-04-16
JP6235133B2 (en) 2017-11-22
CN105683092B (en) 2018-04-03
CN105683092A (en) 2016-06-15
KR20150040455A (en) 2015-04-15
JP2016532542A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
Tomaszewska Membrane distillation-examples of applications in technology and environmental protection
US9630862B2 (en) Desalination system and method for desalination
US10500544B2 (en) Advancements in osmotically driven membrane systems including multi-stage purification
CN101489937B (en) Multi-stage column distillation (MSCD) method reclaimed for osmotic solute
CN1898011B (en) Apparatus and method for osmotic membrane distillation
KR101398352B1 (en) Thermal desalination
US20200198991A1 (en) Systems and methods for recovery of purified water and concentrated brine
JP2014512952A5 (en)
US20150232348A1 (en) Water desalination and brine volume reduction process
US20130112603A1 (en) Forward osmotic desalination device using membrane distillation method
JPH02293023A (en) Combination method of membrane separation
US8491795B2 (en) Conversion of seawater to drinking water at room temperature
US20130233797A1 (en) Methods for osmotic concentration of hyper saline streams
JP2018001110A (en) Processing method of brine, processing method of desalinating salt water, processing system of brine, and processing method of desalinating salt water
TWM526569U (en) Recovery apparatus for sewage treatment
JP2007275690A (en) Method for separating and recovering organic liquid from organic liquid aqueous solution
JP5900743B2 (en) Method and apparatus for treatment of associated water from a well
US20130277308A1 (en) Water Treatment System and Method for Continuous Forward Osmosis Process Using Osmotically Active Compound with Phase Transition
KR101695215B1 (en) Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater
JP2014184403A (en) Water treatment apparatus
KR20190140270A (en) Vapor permeation membrane separation process for concentration of isopropyl alcohlol and treatment of wastewater from isopropyl alcohol-containing wastewater
Criscuoli et al. Boron removal by membrane contactors: the water that purifies water
KR20210082711A (en) Pervaporation membrane separation process for concentration of the organic compound and treatment of wastewater from specific organic compound containing wastewater
KR20160006914A (en) Hybrid desalination system and method
JP2016087504A (en) Desalination system and desalination method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191024

Year of fee payment: 4