KR101690333B1 - Solar cell and method for manufacturing the same - Google Patents

Solar cell and method for manufacturing the same Download PDF

Info

Publication number
KR101690333B1
KR101690333B1 KR1020100135340A KR20100135340A KR101690333B1 KR 101690333 B1 KR101690333 B1 KR 101690333B1 KR 1020100135340 A KR1020100135340 A KR 1020100135340A KR 20100135340 A KR20100135340 A KR 20100135340A KR 101690333 B1 KR101690333 B1 KR 101690333B1
Authority
KR
South Korea
Prior art keywords
electrodes
impurity doping
substrate
emitter
semiconductor
Prior art date
Application number
KR1020100135340A
Other languages
Korean (ko)
Other versions
KR20120073541A (en
Inventor
황성현
안준용
김진호
이영현
하정민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020100135340A priority Critical patent/KR101690333B1/en
Priority to US13/335,368 priority patent/US9368655B2/en
Priority to DE102011122252.2A priority patent/DE102011122252B4/en
Priority to CN201110441952.3A priority patent/CN102544135B/en
Publication of KR20120073541A publication Critical patent/KR20120073541A/en
Application granted granted Critical
Publication of KR101690333B1 publication Critical patent/KR101690333B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양 전지에 관한 것이다. 상기 태양 전지는 제1 도전성 타입의 기판, 상기 기판에 위치하고, 상기 제1 도전성 타입과 반대인 제2 도전성 타입의 불순물이 도핑되어 있는 에미터부, 상기 에미터부와 연결되어 있고, 서로 이격되어 나란히 뻗어 있는 복수의 제1 전극, 상기 복수의 제1 전극과 교차하는 방향으로 서로 이격되어 뻗어 있고, 상기 에미터부보다 높은 불순물 도핑 농도를 가지며 상기 에미터부의 표면으로부터 돌출되어 있는 복수의 반도체 전극, 그리고 상기 기판과 연결되어 있는 제2 전극을 포함한다. 이로 인해, 에미터부보다 작은 면저항값을 갖는 복수의 반도체 전극에 의해 전하의 수집량이 증가하여 태양 전지의 효율이 향상된다.The present invention relates to a solar cell. Wherein the solar cell comprises a substrate of a first conductivity type, an emitter portion located on the substrate and doped with an impurity of a second conductivity type opposite to the first conductivity type, and an emitter portion connected to the emitter portion, A plurality of semiconductor electrodes extending apart from each other in a direction intersecting the plurality of first electrodes and having an impurity doping concentration higher than that of the emitter portion and projecting from the surface of the emitter portion; And a second electrode connected to the substrate. This increases the amount of charge collected by the plurality of semiconductor electrodes having a smaller sheet resistance value than that of the emitter portion, thereby improving the efficiency of the solar cell.

Description

태양 전지 및 그 제조 방법{SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME}SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME

본 발명은 태양 전지 및 그 제조 방법에 관한 것이다. The present invention relates to a solar cell and a manufacturing method thereof.

최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 대체 에너지에 대한 관심이 높아지고, 이에 따라 태양 에너지로부터 전기 에너지를 생산하는 태양 전지가 주목 받고 있다.Recently, as energy resources such as oil and coal are expected to be depleted, interest in alternative energy to replace them is increasing, and solar cells that produce electric energy from solar energy are attracting attention.

일반적인 태양 전지는 p형과 n형처럼 서로 다른 도전성 타입(conductive type)에 의해 p-n 접합을 형성하는 반도체부, 그리고 서로 다른 도전성 타입의 반도체부에 각각 연결된 전극을 구비한다. Typical solar cells have a semiconductor portion that forms a p-n junction by different conductive types, such as p-type and n-type, and electrodes connected to semiconductor portions of different conductivity types, respectively.

이러한 태양 전지에 빛이 입사되면 반도체부에서 복수의 전자-정공 쌍이 생성되고, 생성된 전자-정공 쌍의 전자와 정공은 p-n 접합에 의해 각각 해당 방향, 즉, 전자는 n형의 반도체부 쪽으로 이동하고 정공은 p형의 반도체부 쪽으로 이동한다. 이동한 전자와 정공은 각각 n형의 반도체부와 p형의 반도체부에 연결된 서로 다른 전극에 의해 수집되고 이 전극들을 전선으로 연결함으로써 전력을 얻는다.When light is incident on such a solar cell, a plurality of electron-hole pairs are generated in the semiconductor portion, and electrons and holes of the generated electron-hole pairs are moved in the corresponding direction, that is, electrons move toward the n- And the holes move toward the p-type semiconductor portion. The transferred electrons and holes are collected by different electrodes connected to the n-type semiconductor portion and the p-type semiconductor portion, respectively, and electric power is obtained by connecting these electrodes with electric wires.

본 발명이 이루고자 하는 기술적 과제는 태양 전지의 효율을 향상시키기 위한 것이다. The technical problem to be solved by the present invention is to improve the efficiency of a solar cell.

본 발명의 한 특징에 따른 태양 전지는 제1 도전성 타입의 기판, 상기 기판에 위치하고, 상기 제1 도전성 타입과 반대인 제2 도전성 타입의 불순물이 도핑되어 있는 에미터부, 상기 에미터부와 연결되어 있고, 서로 이격되어 나란히 뻗어 있는 복수의 제1 전극, 상기 복수의 제1 전극과 교차하는 방향으로 서로 이격되어 뻗어 있고, 상기 에미터부보다 높은 불순물 도핑 농도를 가지며 상기 에미터부의 표면으로부터 돌출되어 있는 복수의 반도체 전극, 그리고 상기 기판과 연결되어 있는 제2 전극을 포함한다. A solar cell according to one aspect of the present invention includes a substrate of a first conductivity type, an emitter portion located on the substrate and doped with an impurity of a second conductivity type opposite to the first conductivity type, and an emitter portion connected to the emitter portion A plurality of first electrodes spaced apart from each other and extending in parallel to each other, a plurality of second electrodes protruding from the surface of the emitter section, And a second electrode connected to the substrate.

상기 복수의 반도체 전극은 200개 내지 245개일 수 있다.The number of the plurality of semiconductor electrodes may be 200 to 245.

상기 복수의 반도체 전극은 각각 30㎛ 내지 50㎛의 폭을 가질 수 있다.The plurality of semiconductor electrodes may have a width of 30 占 퐉 to 50 占 퐉, respectively.

인접한 두 반도체 전극간의 간격은 0.6㎜ 내지 0.7㎜일 수 있다.The distance between two adjacent semiconductor electrodes may be 0.6 mm to 0.7 mm.

상기 기판의 전면 전체면에 대한 상기 복수의 반도체 전극의 형성 비율은 4% 내지 8%인 것이 좋다.The formation ratio of the plurality of semiconductor electrodes to the entire front surface of the substrate is preferably 4% to 8%.

상기 복수의 반도체 전극은 상기 복수의 제1 전극과 교차하는 복수의 접촉부에서 복수의 제1 전극과 접촉하는 것이 바람직하다.The plurality of semiconductor electrodes preferably contact a plurality of first electrodes at a plurality of contact portions intersecting with the plurality of first electrodes.

상기 복수의 접촉부는 23,500개 내지 40,000개일 수 있다.The plurality of contact portions may be 23,500 to 40,000.

상기 에미터부는 상기 복수의 반도체 전극 각각보다 큰 면저항값을 가질 수 있다.The emitter portion may have a larger sheet resistance value than each of the plurality of semiconductor electrodes.

상기 에미터부는 90Ω/sq. 내지 140Ω/sq.의 면저항값을 갖고, 상기 각 반도체 전극은 10Ω/sq. 내지 30Ω/sq.의 면저항값을 가질 수 있다.The emitter portion has a resistance of 90? / Sq. To 140 Ω / sq., And each semiconductor electrode has a resistance of 10 Ω / sq. Lt; RTI ID = 0.0 > ohm / sq. ≪ / RTI >

상기 에미터부는 4×1019/㎤ 내지 6×1019/㎤의 불순물 도핑 농도를 갖고, 상기 각 반도체 전극은 9×1019/㎤ 내지 4×1020/㎤의 불순물 도핑 농도를 가질 수 있다.상기 에미터부는 0.5㎛ 내지 0.7㎛의 불순물 도핑 두께를 갖고, 상기 복수의 반도체 전극은 각각 0.6㎛ 내지 0.8㎛의 불순물 도핑 두께를 갖고 있을 수 있다.The emitter section has an impurity doping concentration of 4 x 10 19 / cm 3 to 6 x 10 19 / cm 3, and each semiconductor electrode can have an impurity doping concentration of 9 x 10 19 / cm 3 to 4 x 10 20 / cm 3 . The emitter portion has an impurity doping thickness of 0.5 to 0.7 mu m, and the plurality of semiconductor electrodes may each have an impurity doping thickness of 0.6 to 0.8 mu m.

상기 특징에 따른 태양 전지는 상기 에미터부와 상기 복수의 제1 전극에 연결되어 있는 버스바를 더 포함할 수 있다.The solar cell according to the above feature may further include a bus bar connected to the emitter portion and the plurality of first electrodes.

상기 복수의 반도체 전극은 상기 버스바와 동일한 방향으로 뻗어 있는 것이 좋다.The plurality of semiconductor electrodes may extend in the same direction as the bus bar.

상기 특징에 따른 태양 전지는 상기 에미터부 위와 상기 복수의 반도체 전극 위에 위치하는 반사 방지부를 더 포함할 수 있다.The solar cell according to the above feature may further include an antireflection unit positioned on the emitter and on the plurality of semiconductor electrodes.

상기 반사 방지부는 상기 에미터부와 상기 버스 바 사이에 더 위치할 수 있다.The anti-reflection portion may further be positioned between the emitter portion and the bus bar.

상기 반사 방지부는 실리콘 질화물(SiNx)로 이루어질 수 있다.The anti-reflection portion may be made of silicon nitride (SiNx).

상기 반사 방지부는 2.0 내지 2.1의 굴절률을 가질 수 있다.The anti-reflection portion may have a refractive index of 2.0 to 2.1.

상기 반사 방지부는 상기 에미터부와 상기 복수의 제1 전극 사이에 더 위치할 수 있다.The anti-reflection portion may further be positioned between the emitter portion and the plurality of first electrodes.

상기 특징에 따른 태양 전지는 상기 제2 전극과 접하는 상기 기판에 위치한 후면 전계부를 더 포함할 수 있다.The solar cell according to the above feature may further include a rear surface electric field portion located on the substrate in contact with the second electrode.

본 발명의 다른 특징에 따른 태양 전지의 제조 방법은 제1 도전성 타입을 갖는 기판의 제1 면에 상기 제1 도전성 타입과 반대인 제2 도전성 타입의 에미터층을 형성하는 단계, 상기 에미터층을 선택적으로 식각하여 불순물 도핑 두께가 서로 상이한 에미터부와 복수의 반도체 전극을 형성하는 단계, 상기 반도체 전극과 교차하는 방향으로 뻗어 있고 상기 에미터부와 연결되어있는 복수의 제1 전극과 상기 기판과 연결되어 있는 제2 전극을 형성하는 단계를 포함하고, 상기 에미터부는 상기 에미터층에서 상기 식각이 이루어진 부분이고, 상기 복수의 반도체 전극은 상기 에미터층에서 상기 식각이 이루어지지 않은 부분이다.A method of manufacturing a solar cell according to another aspect of the present invention includes the steps of forming an emitter layer of a second conductivity type opposite to the first conductivity type on a first surface of a substrate having a first conductivity type, Forming a plurality of semiconductor electrodes and an emitter portion having different impurity doping thicknesses from each other, a plurality of first electrodes extending in a direction crossing the semiconductor electrodes and connected to the emitter portion, And forming a second electrode, wherein the emitter portion is a portion where the etching is performed in the emitter layer, and the plurality of semiconductor electrodes are portions where the etching is not performed in the emitter layer.

상기 에미터층은 10Ω/sq. 내지 30Ω/sq.의 면저항값을 가질 수 있다.The emitter layer has a resistivity of 10? / Sq. Lt; RTI ID = 0.0 > ohm / sq. ≪ / RTI >

상기 특징에 따른 태양 전지의 제조 방법은 상기 에미터부와 상기 복수의 반도체 전극 위에 반사 방지부를 형성하는 단계를 더 포함할 수 있고, 상기 복수의 제1 전극 및 제2 전극 형성 단계는 상기 반사 방지부 위에 제1 전극 패턴을 형성하는 단계, 상기 제1 전극 패턴을 열처리하여 상기 제1 전극 패턴이 상기 반사방지부를 관통하여 상기 에미터부 및 복수의 반도체 전극과 연결되는 복수의 제1 전극을 형성하는 단계를 포함한다The method may further include forming an antireflection portion on the emitter portion and the plurality of semiconductor electrodes, wherein the plurality of first electrodes and the plurality of second electrodes are formed on the plurality of semiconductor electrodes, Forming a first electrode pattern on the first electrode pattern by heat treating the first electrode pattern so that the first electrode pattern passes through the anti-reflection portion to connect the emitter portion and the plurality of semiconductor electrodes; and a

상기 복수의 제1 전극 및 제2 전극 형성 단계는 상기 복수의 제1 전극과 교차하고 상기 에미터부와 연결되어 있는 버스바를 더 형성할 수 있고, 상기 버스바는 상기 반사 방지부를 관통하여 상기 에미터부와 연결된다. The plurality of first electrodes and the second electrodes may further include a bus bar which intersects the plurality of first electrodes and is connected to the emitter portion. The bus bar penetrates the antireflection portion, Lt; / RTI >

이러한 특징에 따르면, 에미터부의 불순물 도핑 농도와 면저항값이 다른 복수의 반도체 전극으로 인해, 전하의 수집량을 증가하여 태양 전지의 효율이 향상된다.According to this aspect, the plurality of semiconductor electrodes having different impurity doping concentrations and sheet resistance values in the emitter section increase the amount of charge collected, thereby improving the efficiency of the solar cell.

도 1은 본 발명의 한 실시예에 따른 태양 전지의 일부 사시도이다.
도 2는 도 1에 도시한 태양 전지를 II-II선을 따라 잘라 도시한 단면도이다.
도 3은 본 발명의 한 실시예에 따른 에미터부의 일부 사시도이다.
도 4는 본 발명의 한 실시예에 따른 전면 전극부와 그 하부에 위치한 에미터부를 도시한 평면도이다.
도 5a 내지 도 5e는 본 발명의 한 실시예에 따른 태양 전지의 제조 방법을 순차적으로 도시한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 태양 전지의 일부 사시도이다.
도 7은 도 1에 도시한 태양 전지를 VII-VII선을 따라 잘라 도시한 단면도이다.
도 8a와 도 8b 및 도 9a와 도 9b는 각각 본 발명의 다른 실시예에 따른 태양 전지의 제조 방법의 일부를 도시한 예들이다.
1 is a partial perspective view of a solar cell according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the solar cell shown in FIG. 1 taken along line II-II.
3 is a partial perspective view of an emitter portion according to an embodiment of the present invention.
4 is a plan view illustrating a front electrode unit and an emitter unit disposed at a lower portion thereof according to an embodiment of the present invention.
FIGS. 5A to 5E are views sequentially illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.
6 is a partial perspective view of a solar cell according to another embodiment of the present invention.
7 is a cross-sectional view taken along the line VII-VII of the solar cell shown in FIG.
FIGS. 8A and 8B and FIGS. 9A and 9B are views showing a part of a manufacturing method of a solar cell according to another embodiment of the present invention, respectively.

아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In order to clearly illustrate the present invention, parts not related to the description are omitted, and similar parts are denoted by like reference characters throughout the specification.

도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한 어떤 부분이 다른 부분 위에 "전체적"으로 형성되어 있다고 할 때에는 다른 부분의 전체 면에 형성되어 있는 것뿐만 아니라 가장 자리 일부에는 형성되지 않은 것을 뜻한다.In the drawings, the thickness is enlarged to clearly represent the layers and regions. When a layer, film, region, plate, or the like is referred to as being "on" another portion, it includes not only the case directly above another portion but also the case where there is another portion in between. Conversely, when a part is "directly over" another part, it means that there is no other part in the middle. Further, when a certain portion is formed as "whole" on another portion, it means not only that it is formed on the entire surface of the other portion but also that it is not formed on the edge portion.

그러면 도 1 및 도 2를 참고로 하여 본 발명의 한 실시예에 따른 태양 전지에 대하여 설명한다.A solar cell according to an embodiment of the present invention will now be described with reference to FIGS. 1 and 2. FIG.

도 1 및 도 2를 참고로 하면, 본 발명의 한 실시예에 따른 태양 전지(11)는 기판(110), 빛이 입사되는 기판(110)의 면인 입사면[이하, '전면(front surface)'라 함]에 위치한 불순물 도핑부(impurity doped region)(121), 불순물 도핑부(121) 위에 위치하는 반사 방지부(130), 불순물 도핑부(121)와 연결되어 있는 전면 전극부(140), 기판(110)의 전면의 반대쪽 면인 기판(110)의 면[이하, '후면(back surface)'이라 함]에 위치하는 후면 전계(back surface field, BSF)부(BSF region)(172), 그리고 기판(110)의 후면 위에 위치하는 후면 전극부(150)를 구비한다. 1 and 2, a solar cell 11 according to an embodiment of the present invention includes a substrate 110, an incident surface (hereinafter referred to as a front surface) that is a surface of the substrate 110 on which light is incident, An antireflection portion 130 located on the impurity doping portion 121 and a front electrode portion 140 connected to the impurity doping portion 121. The impurity doped region 121 is formed on the impurity doped region 121, A back surface field (BSF) region 172 located on a surface of a substrate 110 (hereinafter referred to as a 'back surface') opposite to the front surface of the substrate 110, And a rear electrode unit 150 positioned on the rear surface of the substrate 110.

기판(110)은 제1 도전성 타입, 예를 들어 p형 도전성 타입을 갖고 있고 단결정 실리콘으로 이루어진 반도체 기판이다. 기판(110)이 p형의 도전성 타입을 가질 경우, 붕소(B), 갈륨, 인듐 등과 같은 3가 원소의 불순물이 기판(110)에 도핑(doping)된다. 하지만, 이와는 달리, 기판(110)은 n형 도전성 타입일 수 있다. 기판(110)이 n형의 도전성 타입을 가질 경우, 인(P), 비소(As), 안티몬(Sb) 등과 같이 5가 원소의 불순물이 기판(110)에 도핑될 수 있다.The substrate 110 is a semiconductor substrate of a first conductivity type, for example, a p-type conductivity type and made of monocrystalline silicon. Impurities such as boron (B), gallium, indium, and the like are doped to the substrate 110 when the substrate 110 has a p-type conductivity type. Alternatively, however, the substrate 110 may be of the n-type conductivity type. Impurities of pentavalent elements such as phosphorus (P), arsenic (As), and antimony (Sb) may be doped to the substrate 110 when the substrate 110 has an n-type conductivity type.

도 1 및 도 2와는 달리, 대안적인 예에서, 기판(110)의 전면은 텍스처링(texturing)되어 요철면인 텍스처링 표면(textured surface)을 가질 수 있다. 이 경우, 기판(110)의 전면 위에 위치한 불순물 도핑부(121)와 반사 방지부(130) 역시 요철면을 갖는다.1 and 2, in an alternate example, the front side of the substrate 110 may be textured to have a textured surface that is an uneven surface. In this case, the impurity doping portion 121 and the antireflection portion 130 located on the front surface of the substrate 110 also have an uneven surface.

이와 같이, 기판(110)의 전면이 텍스처링되어 있을 경우, 기판(110)의 입사 면적이 증가하고 요철에 의한 복수 번의 반사 동작으로 빛 반사도가 감소하여, 기판(110)으로 입사되는 빛의 양이 증가하므로 태양 전지(11)의 효율이 향상된다.불순물 도핑부(121)는 기판(110)의 도전성 타입과 반대인 제2 도전성 타입, 예를 들어, n형의 도전성 타입의 불순물이 기판(110)에 도핑된 영역으로, 빛이 입사되는 면, 즉, 기판(110)의 전면에 위치한다. 따라서 제2 도전성 타입의 불순물 도핑부(121)는 기판(110) 중 제1 도전성 타입 부분과 p-n 접합을 이룬다.When the front surface of the substrate 110 is textured, the incident area of the substrate 110 increases and the light reflectivity decreases due to a plurality of reflection operations due to the irregularities, so that the amount of light incident on the substrate 110 The efficiency of the solar cell 11 is improved because the impurity doping portion 121 is doped with impurities of a second conductivity type opposite to the conductivity type of the substrate 110, for example, n- ), That is, a surface on which light is incident, that is, a front surface of the substrate 110. [ Thus, the second conductive type impurity doping portion 121 forms a p-n junction with the first conductive type portion of the substrate 110.

이러한 불순물 도핑부(121)는 서로 다른 불순물 도핑 두께를 갖는 제1 불순물 도핑부(1211)와 복수의 제2 불순물 도핑부(1212)를 구비한다.The impurity doping portion 121 includes a first impurity doping portion 1211 having a different impurity doping thickness and a plurality of second impurity doping portions 1212.

본 실시예에서, 제1 불순물 도핑부(1211)의 불순물 도핑 두께는 제2 불순물 도핑부(1212)의 불순물 도핑 두께보다 작다. 이와 같이, 제1 및 제2 불순물 도핑부(1211, 1212)의 불순물 도핑 두께가 서로 상이하므로, 제1 및 제2 불순물 도핑부(1211, 1212)의 불순물 도핑 농도 역시 상이하다. 따라서, 제1 불순물 도핑부(1211)의 불순물 도핑 농도는 제2 불순물 도핑부(1212)의 불순물 도핑 농도보다 작다. In this embodiment, the impurity doping thickness of the first impurity doping portion 1211 is smaller than the impurity doping thickness of the second impurity doping portion 1212. Since the impurity doping thicknesses of the first and second impurity doping portions 1211 and 1212 are different from each other, the impurity doping concentrations of the first and second impurity doping portions 1211 and 1212 are also different. Therefore, the impurity doping concentration of the first impurity doping portion 1211 is smaller than the impurity doping concentration of the second impurity doping portion 1212.

따라서 제1 불순물 도핑부(1211)의 불순물 도핑 두께는 약 0.5㎛ 내지 약 0.7㎛일 수 있고, 각 제2 불순물 도핑부(1212)의 불순물 도핑 두께는 약 0.6㎛ 내지 약 0.8㎛일 수 있다. 또한, 제1 불순물 도핑부 (1211)의 불순물 도핑 농도는 4×1019/㎤ 내지 6×1019/㎤일 수 있고, 제2 불순물 도핑부(1212)의 불순물 도핑 농도는 9×1019/㎤ 내지 4×1020/㎤일 수 있다. Accordingly, the impurity doping thickness of the first impurity doping portion 1211 may be about 0.5 mu m to about 0.7 mu m, and the impurity doping thickness of each second impurity doping portion 1212 may be about 0.6 mu m to about 0.8 mu m. The impurity doping concentration of the first impurity doping portion 1211 may be 4 × 10 19 / cm 3 to 6 × 10 19 / cm 3 and the impurity doping concentration of the second impurity doping portion 1212 may be 9 × 10 19 / Lt; 20 > / cm < 3 >.

이처럼, 제1 및 제2 불순물 도핑부(1211, 1212)의 불순물 도핑 두께가 서로 상이하므로, 기판(110)의 표면에서부터 제1 불순물 도핑부(1211)와 상기 기판(110)과의 p-n 접합면(제1 접합면)까지의 최단 거리(즉, 두께)와 기판(110)의 표면에서부터 제2 불순물 도핑부(1212)와 기판(110)과의 p-n 접합면(제2 접합면)까지의 최단 거리(즉, 두께)는 서로 상이하다. 예를 들어, 도 1 및 도 2에 도시한 것처럼, 기판(110)의 표면에서부터 제1 접합면까지의 제1 최단 거리(d1)(두께)는 기판(110)의 표면에서부터 제2 접합면까지의 제2 최단 거리(d2)(두께)보다 짧다.Since the impurity doping thicknesses of the first and second impurity doping portions 1211 and 1212 are different from each other, the pn junction surface between the first impurity doping portion 1211 and the substrate 110 from the surface of the substrate 110 (That is, the thickness) from the surface of the substrate 110 to the pn junction surface (second junction surface) of the second impurity doping portion 1212 and the substrate 110 (the first junction surface) The distances (i.e., thickness) are different from each other. For example, as shown in FIGS. 1 and 2, the first shortest distance d1 (thickness) from the surface of the substrate 110 to the first bonding surface is the distance from the surface of the substrate 110 to the second bonding surface Is shorter than the second shortest distance d2 (thickness).

또한, 기판(110) 내에서 제1 접합면과 제2 접합면은 동일선 상에 위치하여, 기판(110)의 후면에서부터 제1 접합면까지의 제1 최단 거리와 기판(110)의 후면에서부터 제2 접합면까지의 제2 최단 거리는 동일하다. 이때, 기판(110)의 전면이 텍스처링 표면을 가질 경우, 텍스처링 표면의 각 요철의 높이 차이로 인한 오차 범위 내에서 제1 최단 거리(d1)와 제2 최단 거리(d2)는 동일한 것으로 간주하다.In the substrate 110, the first bonding surface and the second bonding surface are located on the same line, and the first shortest distance from the rear surface of the substrate 110 to the first bonding surface and the first shortest distance from the rear surface of the substrate 110 The second shortest distance to the joining surface is the same. At this time, when the front surface of the substrate 110 has a textured surface, the first shortest distance d1 and the second shortest distance d2 are considered to be the same within an error range due to the height difference of the irregularities of the textured surface.

또한, 제1 및 제2 불순물 도핑부(1211, 1212)의 불순물 도핑 두께 차이로 인해, 제1 및 제2 불순물 도핑부(1211, 1212)의 면저항값(sheet resistance) 역시 서로 상이하다. 일반적으로 면저항값은 불순물 도핑 두께에 반비례하므로, 불순물 도핑 두께가 얇은 제1 불순물 도핑부(1211)의 면저항값이 제2 불순물 도핑부(1212)의 면저항값보다 크다. 예를 들어, 제1 불순물 도핑부(1211)의 면저항값은 약 90Ω/sq. 내지 약 140Ω/sq. 일 수 있고, 각 제2 불순물 도핑부(1212)의 면저항값은 약 10Ω/sq. 내지 약 30Ω/sq. 일 수 있다.Also, the sheet resistance of the first and second impurity doping portions 1211 and 1212 is also different due to the difference in the dopant doping thickness of the first and second impurity doping portions 1211 and 1212. Since the sheet resistance value is generally inversely proportional to the thickness of the impurity doping, the sheet resistance value of the first impurity doping portion 1211 having a thin impurity doping thickness is larger than the sheet resistance value of the second impurity doping portion 1212. For example, the sheet resistance value of the first impurity doping portion 1211 is about 90? / Sq. To about 140? / Sq. And the sheet resistance value of each second impurity doping portion 1212 is about 10? / Sq. To about 30? / Sq. Lt; / RTI >

도 1 및 도 3에 도시한 것처럼, 높은 불순물 도핑 농도를 갖는 복수의 제2 불순물 도핑부(1212)는 서로 이격되어 나란히 기판(110)의 정해진 한 방향을 따라 길게 뻗어 있다. 따라서 각 제2 불순물 도핑부(1212)는 스트라이프 형상을 갖고 있다.As shown in FIGS. 1 and 3, a plurality of second impurity doping portions 1212 having a high impurity doping concentration are extended apart along a predetermined direction of the substrate 110 side by side. Therefore, each second impurity doping portion 1212 has a stripe shape.

각 제2 불순물 도핑부(1212)의 폭(W1)은 약 30㎛ 내지 약 50㎛이고, 인접한 두 제2 불순물 도핑부(1212) 간의 간격(W2)은 약 0.6㎜ 내지 약 0.7㎜ 이다. 복수의 제2 불순물 도핑부(1212)의 개수는 약 200개 내지 약 245개일 수 있다. 이때, 기판(110)의 가로×세로의 크기는 약 156㎜×156㎜일 수 있다. 또한, 기판(110)의 전면 전체 평면의 약 4% 내지 8%에 복수의 제2 불순물 도핑부(1212)가 위치한다.이로 인해, 기판(110)과 불순물 도핑부(121)와의 p-n 접합에 인한 내부 전위차(built-in potential difference)에 의해, 기판(110)에 입사된 빛에 의해 생성된 전하인 전자와 정공은 해당하는 방향, 즉, 전자는 n형 쪽으로 이동하고 정공은 p형 쪽으로 이동한다. 따라서, 기판(110)이 p형이고 불순물 도핑부(121)가 n형일 경우, 분리된 정공은 기판(110) 후면 쪽으로 이동하고 분리된 전자는 불순물 도핑부(121) 쪽으로 이동한다.The width W1 of each second impurity doping portion 1212 is about 30 占 퐉 to about 50 占 퐉 and the interval W2 between two adjacent second impurity doping portions 1212 is about 0.6 mm to about 0.7 mm. The number of the second impurity doping portions 1212 may be about 200 to about 245. At this time, the width of the substrate 110 may be about 156 mm x 156 mm. A plurality of second impurity doping portions 1212 are disposed at about 4% to 8% of the entire front surface of the substrate 110. This allows the pn junction between the substrate 110 and the impurity doping portion 121 Due to the built-in potential difference caused by the incident light, electrons and holes, which are charges generated by light incident on the substrate 110, move in the corresponding directions, that is, electrons move toward the n-type and holes move toward the p- do. Therefore, when the substrate 110 is p-type and the impurity doping portion 121 is n-type, the separated holes move toward the back surface of the substrate 110, and the separated electrons move toward the impurity doping portion 121.

불순물 도핑부(121)는 기판(110), 즉, 기판(110)의 제1 도전성 부분과 p-n접합을 형성하므로, 본 실시예와 달리, 기판(110)이 n형의 도전성 타입을 가질 경우, 불순물 도핑부(121)는 p형의 도전성 타입을 가진다. 이 경우, 분리된 전자는 기판(110)의 후면 쪽으로 이동하고 분리된 정공은 불순물 도핑부(121)쪽으로 이동한다.Since the impurity doping portion 121 forms a pn junction with the first conductive portion of the substrate 110, that is, the substrate 110, unlike the present embodiment, when the substrate 110 has the n-type conductivity type, The impurity doping portion 121 has a p-type conductivity type. In this case, the separated electrons move toward the back surface of the substrate 110, and the separated holes move toward the impurity doping portion 121.

불순물 도핑부(121)가 n형의 도전성 타입을 가질 경우, 불순물 도핑부(121)는 5가 원소의 불순물을 기판(110)에 도핑하여 형성될 수 있고, 반대로 p형의 도전성 타입을 가질 경우, 3가 원소의 불순물을 기판(110)에 도핑하여 형성될 수 있다.When the impurity doping portion 121 has an n-type conductivity type, the impurity doping portion 121 can be formed by doping an impurity of a pentavalent element into the substrate 110, and when the impurity doping portion 121 has a p-type conductivity type And doping the substrate 110 with an impurity of a trivalent element.

이와 같이, 기판(110)의 제1 도전성 타입 부분과 불순물 도핑부(121)와의 p-n 접합에 의해 전자와 정공의 이동이 이루어질 때, 불순물 도핑부(121)의 위치에 따라 면저항값과 불순물 도핑 농도가 서로 상이한 제1 및 제2 불순물 도핑부(1211, 1212)에 의해, 전하의 이동 방향과 불순물에 의한 전하의 손실량이 달라지게 된다.As described above, when electrons and holes are moved by the pn junction between the first conductive type portion of the substrate 110 and the impurity doping portion 121, the sheet resistance value and the impurity doping concentration The first and second impurity doping portions 1211 and 1212 differ in the direction of movement of the charge and the loss amount of the charge due to the impurity.

즉, 일반적으로 불순물 도핑부(121)의 면저항값이 높은 부분을 통해 이동할 때보다 면저항값이 낮을 부분을 통해 이동할 때, 전하의 이동은 보다 용이하게 행해지고, 또한, 불순물 도핑부(121)의 불순물 도핑 농도가 증가할 수록 해당 부분의 전도도는 증가하게 된다.That is, in general, the charges are more easily moved when moving through the portion where the sheet resistance value is lower than when the sheet resistance value of the impurity doping portion 121 moves through a portion having a high sheet resistance value. Further, As the doping concentration increases, the conductivity of the part increases.

따라서, 본 예와 같이, 해당 전하(예, 전자)가 불순물 도핑부(121)로 이동할 경우, 높은 면저항값을 갖는 제1 불순물 도핑부(1211)에 위치한 전하는 자신보다 낮은 면저항값을 갖고 있고 자신이 위치한 곳에서부터 가까운 곳에 위치하는 제2 불순물 도핑부(1212)으로 이동하게 된다. 이때, 제1 불순물 도핑부(1211)의 불순물 도핑 농도가 제2 불순물 도핑부(1212)에 비해 작기 때문에, 제1 불순물 도핑부(1211)에서 제2 불순물 도핑부(1212)로 이동하는 도중 불순물에 의해 전하가 손실되는 양은 제2 불순물 도핑부(1212)을 통해 이동할 때보다 크게 줄어든다.Therefore, when the charge (for example, electrons) moves to the impurity doping portion 121 as in the present example, the charge located in the first impurity doping portion 1211 having a high sheet resistance value has a lower sheet resistance value than itself, The second dopant doping portion 1212 is located closer to the second impurity doping portion 1212 than the second dopant doping portion 1212. At this time, since the impurity doping concentration of the first impurity doping portion 1211 is smaller than that of the second impurity doping portion 1212, the impurity concentration of the impurity doped in the first impurity doping portion 1211 during the movement from the first impurity doping portion 1211 to the second impurity doping portion 1212 The amount of charge lost by the second impurity doping portion 1212 is greatly reduced.

이와 같이, 제1 불순물 도핑부(1211)에 위치한 전하들이 제2 불순물 도핑부(1212)로 이동하면 이 제2 불순물 도핑부(1212)의 전도도는 제1 불순물 도핑부(1211)보다 크기 때문에, 제2 불순물 도핑부(1212)로 이동한 전하는 해당 방향으로 뻗어 있는 제2 불순물 도핑부(1212)를 따라 이동하게 된다. 따라서 제2 불순물 도핑부(1212)는 전하를 전송하는 반도체 전극(semiconductor electrode)으로서 작용한다.When the charges located in the first impurity doping portion 1211 move to the second impurity doping portion 1212, the conductivity of the second impurity doping portion 1212 is larger than that of the first impurity doping portion 1211, The charge moving to the second impurity doping portion 1212 moves along the second impurity doping portion 1212 extending in the corresponding direction. Therefore, the second impurity doping portion 1212 acts as a semiconductor electrode for transferring electric charges.

따라서, 제1 및 제2 불순물 도핑부(1211, 1212)는 기판(110)과 p-n 접합을 형성하고, 이들 불순물 도핑부(1211, 1212) 중에서 제1 불순물 도핑부(1211)는 발생한 전하를 전면 전극부(140)이나 제2 불순물 도핑부(1212) 쪽으로 이동시키고 전하를 출력하는 전면 전극부(140)와 연결되어 있으므로 에미터부(emitter)로서 기능하고, 제2 불순물 도핑부(1212)는 이미 설명한 것처럼 반도체 전극으로서 기능하다.The first and second impurity doping portions 1211 and 1212 form a pn junction with the substrate 110. The first impurity doping portion 1211 of the impurity doping portions 1211 and 1212 forms a charge And the second impurity doping portion 1212 functions as an emitter because it is connected to the electrode portion 140 or the second impurity doping portion 1212 and is connected to the front electrode portion 140 for outputting charges, And functions as a semiconductor electrode as described above.

이때, 제1 불순물 도핑부(1211)의 일부는 전면 전극부(140)와 접해 있고, 이 전면전극부(140)은 금속을 함유하고 있으므로, 전면 전극부(140)의 전도도는 제1 불순물 도핑부(1211)뿐만 아니라 제2 불순물 도핑부(1212)보다도 훨씬 크다. 따라서, 전면 전극부(140)와 접하고 있는 제1 불순물 도핑부(1211)에 위치하는 전하나 전면 전극부(140)와 인접하게 위치하고 있는 전하는 전면 전극부(140) 쪽으로 이동하게 된다. A portion of the first impurity doping portion 1211 is in contact with the front electrode portion 140. Since the front electrode portion 140 contains a metal, the conductivity of the front electrode portion 140 is higher than that of the first impurity doping Is much larger than the second impurity doping portion 1212 as well as the second impurity doping portion 1212. Therefore, the charge located adjacent to the front electrode unit 140 located at the first impurity doping unit 1211, which is in contact with the front electrode unit 140, moves toward the front electrode unit 140.

이와 같이, 제2 불순물 도핑부(1212)의 형성으로 인해, 전하는 전면 전극부(140)와 접해 있는 인접한 제1 불순물 도핑부(1211)뿐만 아니라 인접한 제2 불순물 도핑부(1212)로도 이동하게 되고, 이로 인해, 전하의 이동 거리는 감소하게 된다. 따라서, 해당 도핑부(1211, 1212)로 이동 도중 손실되는 전하량이 감소하고, 결국 전면 전극부(140)로 전송되는 전하의 양이 증가하게 된다.As described above, due to the formation of the second impurity doping portion 1212, the charge is transferred to the adjacent first impurity doping portion 1212 as well as the adjacent first impurity doping portion 1211 in contact with the front electrode portion 140 , Thereby reducing the travel distance of the charge. Therefore, the amount of charges lost during the movement to the doping portions 1211 and 1212 decreases, and the amount of charges transferred to the front electrode portion 140 increases.

제1 불순물 도핑부(1211)의 면저항값이 약 140Ω/sq. 이하이거나 제1 불순물 도핑부(1211)의 불순물 도핑 두께가 약 0.5㎛ 이상일 경우, 그 위에 위치한 전면 전극부(140)가 제1 불순물 도핑부(1211)를 관통하여 기판(110)과 접촉하는 션트(shunt) 불량을 방지하고, 제1 불순물 도핑부(1211)의 면저항값이 약 90Ω/sq. 이상이거나 제1 불순물 도핑부(1211)의 불순물 도핑 두께가 약 0.7㎛ 이하일 경우, 제1 불순물 도핑부(1211) 자체에서 흡수되는 빛의 양을 좀더 감소시켜 기판(110)으로 입사되는 빛의 양을 증가시키고, 불순물에 의한 전하 손실을 좀더 감소시킨다.When the sheet resistance value of the first impurity doping portion 1211 is about 140? / Sq. The front electrode part 140 positioned on the front electrode part penetrates the first impurity doped part 1211 and contacts the substrate 110 when the impurity doping thickness of the first impurity doping part 1211 is about 0.5 μm or more, the shunt defect is prevented, and the sheet resistance value of the first impurity doping portion 1211 is about 90? / sq. The amount of light absorbed by the first impurity doping portion 1211 itself is further reduced and the amount of light incident on the substrate 110 is increased by reducing the amount of light absorbed by the second impurity doping portion 1211 itself or when the impurity doping thickness of the first impurity doping portion 1211 is about 0.7 μm or less, And the charge loss due to impurities is further reduced.

또한, 제2 불순물 도핑부(1212)의 면저항값이 약 30Ω/sq. 이하이거나 제2 불순물 도핑부(1212)의 불순물 도핑 두께가 약 0.6㎛ 이상일 경우, 제2 불순물 도핑부(1212)의 전도도가 좀더 안정적으로 확보되어 전하의 이동량을 좀더 증가시킬 수 있고, 제2 불순물 도핑부(1212)의 면저항값이 약 10Ω/sq. 이상이거나 제2 불순물 도핑부(1212)의 불순물 도핑 두께가 약 0.8㎛ 이하일 경우, 제2 불순물 도핑부(1212) 자체에서 흡수되는 빛의 양을 감소시켜, 기판(110)으로 입사되는 빛의 양이 증가된다. Also, the second impurity doping portion 1212 has a sheet resistance value of about 30? / Sq. Or the impurity doping thickness of the second impurity doping portion 1212 is about 0.6 mu m or more, the conductivity of the second impurity doping portion 1212 can be more stably secured and the amount of charge transfer can be further increased, The sheet resistance value of the doping portion 1212 is about 10? / Sq. The amount of light absorbed by the second impurity doping portion 1212 per se is reduced and the amount of light incident on the substrate 110 is reduced by the amount of light incident on the second impurity doping portion 1212 itself when the impurity doping thickness of the second impurity doping portion 1212 is about 0.8 mu m or less. Is increased.

복수의 제2 불순물 도핑부(1212)의 개수는 200개 이상일 경우, 반도체 전극으로 기능하는 복수의 제2 불순물 도핑부(1212)를 이용함에 따른 전하 전송율 향상이 좀더 안정적으로 얻어지고, 복수의 제2 불순물 도핑부(1212)의 개수는 245개 이하일 경우, 불순물 도핑부(121)의 고농도 도핑 영역의 증가로 인한 전하의 재결합율을 크게 증가시키지 않고 반도체 전극을 이용한 전하 전송 효율을 안정적으로 얻는다.When the number of the second impurity doping portions 1212 is 200 or more, the improvement of the charge transfer rate due to the use of the plurality of second impurity doping portions 1212 functioning as semiconductor electrodes can be more stably obtained, When the number of the second impurity doping portions 1212 is 245 or less, the charge transfer efficiency using the semiconductor electrode can be stably obtained without greatly increasing the recombination rate of charges due to the increase of the high concentration doping region of the impurity doping portion 121.

또한, 기판(110)의 전면 전체면에 대한 복수의 제2 불순물 도핑부(1212)의 형성 면적 비율이 약 4% 이상일 경우, 복수의 제2 불순물 도핑부(1212)를 반도체 전극으로 이용함에 따른 전하 전송율 향상이 좀더 안정적으로 얻어지고, 또한, 기판(110)의 전면 전체면에 대한 복수의 제2 불순물 도핑부(1212)의 형성 면적 비율이 약 8% 이하일 경우, 불순물 도핑부(121)의 고농도 도핑 영역의 증가로 인한 전하의 재결합율을 크게 증가시키지 않고 반도체 전극을 이용한 전하 전송 효율을 안정적으로 얻는다.When the ratio of the formation area of the plurality of second impurity doping portions 1212 to the entire front surface of the substrate 110 is about 4% or more, a plurality of second impurity doping portions 1212 are used as semiconductor electrodes When the ratio of the formation area of the second impurity doping portions 1212 to the entire front surface of the substrate 110 is about 8% or less, the impurity doping portion 121 The charge transfer efficiency using the semiconductor electrode can be stably obtained without greatly increasing the charge recombination ratio due to the increase of the high concentration doping region.

불순물 도핑부(121) 위에 위치한 반사 방지부(130)는 태양 전지(11)로 입사되는 빛의 반사도를 줄이고 특정한 파장 영역의 선택성을 증가시켜, 태양 전지(11)의 효율을 높인다.The antireflective portion 130 located on the dopant doping portion 121 reduces the reflectivity of light incident on the solar cell 11 and increases the selectivity of a specific wavelength region to increase the efficiency of the solar cell 11.

이러한 반사 방지부(130)는 투명하고 수소화된 실리콘 질화물(SiNx)로 이루어질 수 있고, 약 70㎚ 내지 약 80㎚의 두께를 가지며, 약 2.0 내지 2.1의 굴절률을 가질 수 있다.The antireflective portion 130 may be made of transparent and hydrogenated silicon nitride (SiNx), has a thickness of about 70 nm to about 80 nm, and may have a refractive index of about 2.0 to 2.1.

반사 방지부(130)의 굴절률이 2.0 이상일 경우, 빛의 반사도가 감소되면서 반사 방지부(130) 자체에서 흡수되는 빛의 양이 좀더 감소되고, 반사 방지부(130)의 굴절률이 2.1 이하일 경우, 반사 방지부(130)의 반사도가 좀더 감소한다.When the refractive index of the antireflection unit 130 is 2.0 or more, the amount of light absorbed by the antireflection unit 130 itself is further reduced while the reflectivity of light is reduced. When the refractive index of the antireflection unit 130 is 2.1 or less, The reflectivity of the antireflection portion 130 is further reduced.

또한, 본 예에서, 반사 방지부(130)의 굴절률(2.0 내지 2.1)은 공기의 굴절률(약 1)과 기판(110)의 굴절률(약 3.5) 사이의 값을 갖고 있다. 따라서, 공기에서부터 기판(110) 쪽으로의 굴절률 변화가 순차적으로 증가하므로, 이러한 굴절률 변화에 의해 빛의 반사도는 더욱 감소하여 기판(110)으로 입사하는 빛의 양은 더 증가한다. In this example, the refractive index (2.0 to 2.1) of the antireflection portion 130 has a value between the refractive index (about 1) of air and the refractive index (about 3.5) of the substrate 110. Accordingly, since the change in the refractive index from the air toward the substrate 110 sequentially increases, the reflectivity of light is further reduced by the change in the refractive index, and the amount of light incident on the substrate 110 is further increased.

또한, 반사 방지부(130)의 두께가 약 70㎚ 이상일 경우, 좀더 효율적인 빛의 반사 방지 효과가 얻어진다. 반사 방지부(130)의 두께가 약 80㎚ 이하일 경우, 반사 방지부(130) 자체에서 흡수되는 빛의 양을 감소시켜 기판(110)으로 입사되는 빛의 양이 증가되며, 태양 전지(11)의 제조 공정 시 전면 전극부(140)가 좀더 안정적이고 용이하게 반사 방지부(130)를 관통하여, 전면 전극부(140)와 불순물 도핑부(121)가 좀더 안정적으로 연결된다.Further, when the thickness of the antireflecting portion 130 is about 70 nm or more, a more effective effect of preventing reflection of light is obtained. When the thickness of the antireflective portion 130 is about 80 nm or less, the amount of light absorbed by the antireflective portion 130 itself is reduced to increase the amount of light incident on the substrate 110, The front electrode part 140 is more stably and easily penetrated through the reflection preventing part 130 and the front electrode part 140 and the impurity doping part 121 are more stably connected.

반사 방지부(130)는 또한 함유된 수소(H)를 이용하여 기판(110)의 표면 및 그 근처에 존재하는 댕글링 결합(dangling bond)과 같은 결함(defect)을 안정한 결합으로 바꾸고, 이로 인해 결함에 의해 기판(110)의 표면 쪽으로 이동한 전하가 소멸되는 것을 감소시키는 패시베이션 기능(passivation function)을 실행한다. 따라서, 반사 방지부(130)의 패시베이션 기능에 의해 결함에 의한 손실되는 전하의 양이 줄어든다.The antireflective portion 130 also uses a contained hydrogen (H) to change a defect such as a dangling bond existing on the surface of the substrate 110 and its vicinity to a stable bond, And performs a passivation function to reduce the disappearance of the charges that have moved toward the surface of the substrate 110 due to the defects. Therefore, the amount of charge lost due to the defect is reduced by the passivation function of the antireflecting portion 130.

도 1 및 도 2에서, 반사 방지부(130)는 단일막 구조를 갖지만 이중막과 같은 다층막 구조를 가질 수 있고, 필요에 따라 생략될 수 있다.1 and 2, the antireflection portion 130 has a single-layer structure, but may have a multilayer structure such as a double-layer structure and may be omitted as necessary.

또한, 이미 설명한 것처럼, 본 실시예의 불순물 도핑부(121)는 서로 다른 면저항값을 갖는 제1 및 제2 불순물 도핑부(1211, 1212)를 구비하고 있다.Further, as already described, the impurity doping section 121 of this embodiment has the first and second impurity doping sections 1211 and 1212 having different sheet resistance values.

이러한 구조를 얻기 위해, 본 예에서는 식각 공정을 이용하여 불순물 도핑 농도와 불순물 도핑 두께가 서로 상이한 제1 및 제2 불순물 도핑부(1211, 1212)를 형성한다. 예를 들어, 기판(110) 내부에 인(P)이나 붕소(B)와 같은 n형 또는 p형의 불순물을 기판(110) 내부로 확산시켜 에미터층을 형성한 후, 에미터층의 일부를 식각으로 제거하여 위치에 따라 면저항값(불순물 도핑 두께)이 상이한 제1 불순물 도핑부(1211)과 제2 불순물 도핑부(1212)를 형성할 수 있다. In order to obtain such a structure, in this embodiment, first and second impurity doping portions 1211 and 1212 having different impurity doping concentrations and impurity doping thicknesses are formed by using an etching process. For example, after an emitter layer is formed by diffusing an n-type or p-type impurity such as phosphorus (P) or boron (B) into the substrate 110 into the substrate 110, The first impurity doping portion 1211 and the second impurity doping portion 1212 having different sheet resistance values (impurity doping thickness) may be formed depending on the positions.

이 경우, p-n 접합면에서부터 기판(110)의 표면 쪽으로 갈수록 불순물 도핑 농도가 증가하므로, 비활성 불순물의 농도 역시 기판(110)의 표면 쪽으로 갈수록 증가한다. 따라서 기판(110)의 표면 및 그 근처에 이러한 비활성 불순물들이 모여 있고, 이들 비활성 불순물들은 기판(110)의 표면 및 그 근처에서 데드 영역(dead layer)을 형성한다. 이러한 데드 영역에 존재하는 비활성 불순물에 의해 전하의 손실이 발생한다. 본 예에서, 기판(110) 내부로 확산된 불순물이 정상적으로 기판(110)의 물질들, 예를 들어, 실리콘(Si) 등과 결합하지 못한(용해되지 않는) 불순물을 비활성 불순물이라 한다. In this case, since the impurity doping concentration increases from the p-n junction surface toward the surface of the substrate 110, the concentration of the inactive impurity also increases toward the surface of the substrate 110. Thus, these inactive impurities are gathered at and near the surface of the substrate 110, and these inactive impurities form a dead layer at and near the surface of the substrate 110. Charge loss occurs due to the inactive impurities present in the dead region. In this example, an impurity diffused into the substrate 110 and not capable of normally bonding (not dissolving) with the materials of the substrate 110, for example, silicon (Si) or the like, is referred to as an inert impurity.

하지만 본 실시예의 경우 식각법을 이용하여 제1 및 제2 불순물 도핑부(1211,1212)를 형성하므로, 기판(110)의 표면에서부터 원하는 만큼 에미터층을 제거하게 되고, 이러한 제거 공정에 의해 기판(110)의 표면 부분에 존재하는 데드 영역의 적어도 일부가 식각 공정 시 제거된다. 이처럼, 데드 영역이 제거됨에 따라, 데드 영역에 위치한 불술물로 인한 전하의 재결합율이 크게 줄어 전하의 손실량이 크게 감소하고, 또한 데드 영역의 적어도 일부가 제거되어 결함이 많이 제거된 제1 불순물 도핑부(1211) 위에 반사 방지부(130)가 위치하므로, 반사 방지부(130)에 의해 패시베이션 효과는 더욱 향상된다.However, in this embodiment, since the first and second impurity doping portions 1211 and 1212 are formed by using the etching method, the emitter layer is removed as much as desired from the surface of the substrate 110, At least a part of the dead region existing in the surface portion of the semiconductor substrate 110 is removed during the etching process. As the dead region is removed, the recombination rate of the charge due to the impurity in the dead region is greatly reduced, so that the amount of loss of the charge is greatly reduced. Also, at least a part of the dead region is removed and the first impurity doping The anti-reflection part 130 is positioned on the part 1211, so that the passivation effect is further improved by the anti-reflection part 130.

전면 전극부(140)는 복수의 전면 전극(141)과 복수의 전면 전극(141)과 연결되어 있는 복수의 전면 버스바(142)를 구비한다. The front electrode unit 140 includes a plurality of front electrodes 141 and a plurality of front bus bars 142 connected to the plurality of front electrodes 141.

복수의 전면 전극(141)은 제1 불순물 도핑부(1211) 위에 위치하여, 제1 불순물 도핑부(1211)와 바로 전기적 및 물리적으로 연결되어 있고, 서로 이격되어 정해진 방향으로 나란히 뻗어있다. 따라서, 복수의 전면 전극(141) 하부에는 반사 방지부(130)가 존재하지 않는다. The plurality of front electrodes 141 are located on the first impurity doping portion 1211 and electrically and physically connected directly to the first impurity doping portion 1211 and are spaced apart from each other and extend in a predetermined direction. Therefore, the reflection prevention part 130 does not exist under the plurality of front electrodes 141.

이러한 복수의 전면 전극(141)은 은(Ag)과 같은 적어도 하나의 도전성 물질로 이루어져 있다.The plurality of front electrodes 141 are made of at least one conductive material such as silver (Ag).

본 예에서, 전면 전극(141)의 각 선폭(W3)은 약 50㎛ 내지 약 120㎛일 수 있고, 인접한 두 전면 전극(141) 간의 간격(W4)은 약 1.8㎜ 내지 약 2.5㎜일 수 있다.In this example, the line width W3 of the front electrode 141 may be about 50 占 퐉 to about 120 占 퐉, and the interval W4 between the adjacent two front electrodes 141 may be about 1.8 mm to about 2.5 mm .

각 전면 전극(141)의 선폭(W3)이 약 50㎛ 이상일 경우, 각 전면 전극(141)의 배선 저항이 좀더 감소하고 전도도가 좀더 안정적으로 확보되어 전하의 이동이 보다 안정적으로 행해지고, 전면 전극(141)의 공정이 좀더 용이해지고, 각 전면 전극(141)의 선폭(W3)이 약 120㎛ 이하일 경우, 입사 면적이 좀더 안정적으로 확보되어 입사 면적의 감소로 인해 전하 생성량이 줄어드는 것이 좀더 방지된다. When the line width W3 of each front electrode 141 is about 50 mu m or more, the wiring resistance of each front electrode 141 is further reduced and the conductivity is more stably secured, so that the charge is more stably moved, 141 can be more easily performed. When the line width W3 of each front electrode 141 is about 120 mu m or less, the incident area is more stably secured, and the reduction of the charge generation amount due to the reduction of the incident area is further prevented.

인접한 두 전면 전극(141) 간의 간격(W4)이 약 1.8㎜ 이상일 경우, 전면 전극(141)으로 인한 빛의 입사 면적을 크게 감소시키지 않으므로 안정적으로 전하를 수집하고, 인접한 두 전면 전극(141) 간의 간격(W4)이 약 2.5㎜ 이하일 경우, 전하의 이동 거리보다 넓은 간격(W4)으로 인해 전하가 인접한 전면 전극(141)으로 이동하지 못하고 손실되는 전하의 발생을 방지한다. When the gap W4 between the adjacent two front electrodes 141 is about 1.8 mm or more, the incident area of the light due to the front electrodes 141 is not greatly reduced. Therefore, charges are stably collected, When the interval W4 is about 2.5 mm or less, the charge can not move to the adjacent front electrode 141 due to the interval W4 that is wider than the movement distance of the charge, and prevents the generation of the lost charge.

이때, 복수의 전면 전극(141)은 반도체 전극인 복수의 제2 불순물 도핑부(1212)와 교차하는 방향으로 뻗어 있다. 따라서, 도 4에 도시한 것처럼, 각 전면 전극(141)는 복수의 제2 불순물 도핑부(1212)와 중첩하는 부분(CT)(이하, '접촉부'라 함)에서 복수의 제2 불순물 도핑부(1212)와 전기적 및 물리적으로 연결되어 있다. At this time, the plurality of front electrodes 141 extend in a direction intersecting the plurality of second impurity doping portions 1212 which are semiconductor electrodes. 4, each front electrode 141 is connected to a plurality of second impurity doping portions 1212 in a portion CT (hereinafter referred to as a "contact portion") which overlaps with the plurality of second impurity doping portions 1212. Therefore, Lt; RTI ID = 0.0 > 1212 < / RTI >

따라서, 복수의 제2 불순물 도핑부(1212)와 중첩하는 부분을 제외하면, 각 전면 전극(141)은 제1 불순물 도핑부(1211)와 바로 접해 있다.Therefore, except for a portion overlapping the plurality of second impurity doping portions 1212, each front electrode 141 directly contacts the first impurity doping portion 1211.

이러한 복수의 전면 전극(141)은 접해 있는 제1 불순물 도핑부(1211)를 통해 이동한 전하(예, 전자)를 수집한다. 또한, 복수의 전면 전극(141)은 복수의 제2 불순물 도핑부(1212)와의 각 접촉부(CT)에서 복수의 제2 불순물 도핑부(1212)와 연결되어 있으므로, 각 제2 불순물 도핑부(1212)를 따라 이동한 전하는 각 접촉부(CT)를 통해서 연결된 해당 전면 전극(141)으로 수집된다.The plurality of front electrodes 141 collects charge (for example, electrons) traveling through the first dopant doping portion 1211 in contact with each other. Since the plurality of front electrodes 141 are connected to the plurality of second impurity doping portions 1212 at the respective contact portions CT of the plurality of second impurity doping portions 1212, ) Is collected by the corresponding front electrode 141 connected to each contact portion CT.

이처럼, 복수의 전면 전극(141)이 형성되지 않은 부분에 복수의 전면 전극(141)과 교차하는 방향으로 반도체 전극인 복수의 제2 불순물 도핑부(1212)를 형성함에 따라 전극[즉, 전면 전극(141) 또는 제2 불순물 도핑부(1212)]까지 이동하는 전하의 이동 거리가 줄어들게 된다. 따라서, 감소한 이동 거리에 의해, 인접한 전면 전극(141)이나 인접한 제2 불순물 도핑부(1212)로 이동할 때 불순물이나 결함 등에 의해 손실되는 전하의 양이 감소한다. As described above, since the plurality of second impurity doping portions 1212, which are semiconductor electrodes, are formed in a direction crossing the plurality of front electrodes 141 at the portion where the plurality of front electrodes 141 are not formed, (The first impurity doped region 141 or the second impurity doped region 1212). Therefore, the amount of charge lost due to impurities, defects, and the like when moving to the adjacent front electrode 141 or the adjacent second impurity doping portion 1212 is reduced by the reduced moving distance.

또한, 복수의 제2 불순물 도핑부(1212) 위에는 투명한 반사 방지부(130)만 존재하고, 빛의 입사 면적을 감소시키는 금속 물질(예, Ag)을 함유한 전면 전극(141)이 위치하지 않는다. 따라서, 복수의 제2 불순물 도핑부(1212)에 의한 입사 면적의 감소는 발생하지 않고, 대신 이미 기재한 것처럼, 전하의 이동 거리 감소와 전하 손실량 감소로 인해, 빛의 입사 면적을 감소시키지 않으면서 각 전면 전극(141)으로 이동하는 전하의 양은 크게 증가한다. In addition, only the transparent antireflection portion 130 is present on the plurality of second impurity doping portions 1212, and the front electrode 141 containing a metal material (for example, Ag) for reducing the incidence area of light is not located . Therefore, the incident area of the plurality of second impurity doping portions 1212 does not decrease, but instead of decreasing the travel distance of the charges and reducing the amount of charge loss as described above, The amount of charge moving to each front electrode 141 greatly increases.

이때, 각 제2 불순물 도핑부(1212)의 폭(W1)은 이미 설명한 것처럼, 약 30㎛ 내지 40㎛이고, 각 제2 불순물 도핑부(1212)의 폭(W1)이 약 30㎛ 이상일 경우, 원하는 폭(W1)을 갖는 제2 불순물 도핑부(1212)가 좀더 용이하고 안정적으로 설계된다. 또한, 불순물의 도핑 농도가 증가할수록 불순물에 의한 전하의 손실량이 증가하게 된다. 따라서, 각 제2 불순물 도핑부(1212)의 폭(W1)이 약 40㎛ 이하일 경우, 고농도의 불순물 도핑 영역인 제2 불순물 도핑부(1212)의 증가로 인해 불순물에 의한 전하의 손실량을 좀더 감소시킨다. 따라서, 각 제2 불순물 도핑부(1212)의 폭(W1)이 약 40㎛ 이하일 경우, 좀더 안정적으로 제2 불순물 도핑부(1212)로 수집된 전하의 이동이 이루어져 복수의 전면 전극(141)으로의 전하 전송율이 향상된다. At this time, when the width W1 of each second impurity doping portion 1212 is about 30 占 퐉 to 40 占 퐉 as described above and the width W1 of each second impurity doping portion 1212 is about 30 占 퐉 or more, The second impurity doping portion 1212 having the desired width W1 is designed more easily and stably. Also, as the doping concentration of the impurity increases, the amount of charge loss due to the impurity increases. Therefore, when the width W1 of each second impurity doping portion 1212 is about 40 mu m or less, the amount of charge loss due to the impurity is further reduced due to the increase in the second impurity doping portion 1212, which is the high concentration impurity doping region . Accordingly, when the width W1 of each second impurity doping portion 1212 is about 40 mu m or less, the charge collected by the second impurity doping portion 1212 is more stably moved to the plurality of front electrodes 141 Is improved.

인접한 두 제2 불순물 도핑부(1212)간의 간격(W2)이 0.6㎜ 이상일 경우, 제2 불순물 도핑부(1212)의 고농도 불순물 농도로 인해 손실되는 전하량을 감소시키고, 인접한 제2 불순물 도핑부(1212) 간의 간격(W2)이 0.7㎜ 이하일 경우, 전하의 이동 거리를 좀더 안정적으로 보상하여 제2 불순물 도핑부(1212)로 이동하는 전하의 손실량을 감소시킨다. The amount of charge lost due to the high concentration impurity concentration of the second impurity doping portion 1212 can be reduced and the amount of charges lost due to the second impurity doping portion 1212 adjacent to the second impurity doping portion 1212 can be reduced when the interval W2 between the two adjacent second impurity doping portions 1212 is 0.6 mm or more ) Is 0.7 mm or less, the amount of charge transferred to the second impurity doping portion 1212 is reduced by more stably compensating the movement distance of the charge.

또한, 본 예에서, 복수의 제2 불순물 도핑부(1212)와 복수의 제1 전극(141)이 서로 접촉하는 접촉부(CT)의 개수는 약 23,500개 내지 약 40,000개일 수 있다.Also, in this example, the number of contact portions CT in which the plurality of second dopant doping portions 1212 and the plurality of first electrodes 141 are in contact with each other may be about 23,500 to about 40,000.

접촉부(CT)의 개수가 약 23,500개 이상일 경우, 복수의 제2 불순물 도핑부(1212)에서 복수의 전면 전극(141)으로 전달되는 전하의 양이 좀더 안정적으로 확보되고, 접촉부(CT)의 개수가 약 40,000개 이하일 경우, 고농도의 불순물 도핑 영역인 제2 불순물 도핑부(1212)의 형성 면적 증가로 인해 불순물에 의한 전하의 손실량이 좀더 감소된다. When the number of the contact portions CT is about 23,500 or more, the amount of charges transferred from the plurality of second impurity doping portions 1212 to the plurality of front electrodes 141 is more stably secured and the number of contact portions CT Is less than about 40,000, the amount of charge loss due to impurities is further reduced due to an increase in the formation area of the second impurity doping portion 1212, which is a high concentration impurity doping region.

복수의 전면 버스바(142)는 제1 불순물 도핑부(1211)와 전기적 및 물리적으로 연결되어 있고 복수의 전면 전극(141)과는 교차하는 방향, 즉, 복수의 제2 불순물 도핑부(1212)와 동일한 방향으로 나란하게 뻗어 있다. 이로 인해, 복수의 전면 버스바(142)는 복수의 전면 전극(141)과 달리 제1 불순물 도핑부(1211)와만 접해 있다.The plurality of front bus bars 142 are electrically and physically connected to the first impurity doping portions 1211 and are electrically connected to the plurality of second impurity doping portions 1212 in a direction crossing the plurality of front electrodes 141, In the same direction. Therefore, unlike the plurality of front electrodes 141, the plurality of front bus bars 142 are in contact with the first impurity doping portion 1211 only.

이때, 복수의 전면 버스바(142)는 각 전면 전극(141)과 교차하는 지점에서 해당 전면 전극(141)과 전기적 및 물리적으로 연결되어 있다.At this time, the plurality of front bus bars 142 are electrically and physically connected to the front electrodes 141 at the intersections of the front electrodes 141.

따라서, 도 1에 도시한 것처럼, 복수의 전면 전극(141)은 가로 또는 세로 방향으로 뻗어 있는 스트라이프(stripe) 형상을 갖고, 복수의 전면 버스바(142)는 세로 또는 가로 방향으로 뻗어 있는 스트라이프 형상을 갖고 있어, 전면 전극부(140)는 기판(110)의 전면에 격자 형태로 위치한다. 1, the plurality of front electrodes 141 has a stripe shape extending in the horizontal or vertical direction, and the plurality of front bus bars 142 have stripe shapes extending in the vertical or horizontal direction And the front electrode unit 140 is disposed on the front surface of the substrate 110 in a lattice form.

복수의 전면 버스바(142)는 접촉된 제1 불순물 도핑부(1211)으로부터 이동하는 전하뿐만 아니라 복수의 전면 전극(141)에 의해 수집되어 이동하는 전하를 수집한다. The plurality of front bus bars 142 collect the charge moving from the contacted first impurity doping portion 1211 as well as the charges collected and moved by the plurality of front electrodes 141.

이러한 복수의 전면 버스바(142)는 외부 장치와 연결되어 수집된 전하(예, 전자)를 외부 장치로 출력된다. The plurality of front bus bars 142 are connected to an external device to output the collected electric charges (e.g., electrons) to an external device.

각 전면 버스바(142)는 교차하는 복수의 전면 전극(141)에 의해 수집된 전하를 모아서 원하는 방향으로 이동시켜야 하므로, 따라서, 전면 버스바(142)의 폭은 각 전면 전극(141)의 폭보다 크다.The width of the front bus bar 142 must be equal to or greater than the width of each front electrode 141. In this case, Lt; / RTI >

각 전면 버스바(142)은 약 1.5㎜ 내지 2㎜의 폭(W5)을 갖고 있다. Each front bus bar 142 has a width W5 of about 1.5 mm to 2 mm.

이와 같이, 인접한 전면 전극부(140)로의 전하 이동이 주로 행해지는 부분에서, 전면 전극부(140)는 낮은 불순물 도핑 농도를 갖고 있는 제1 불순물 도핑부(1211)와 연결되어 있으므로 불순물로 인한 전하의 손실을 감소시켜 전하의 이동도가 향상되고, 복수의 제2 불순물 도핑부(1212)와 연결되는 각 전면 전극(141) 부분은 높은 불순물 도핑 농도를 갖고 있는 제2 불순물 도핑부(1212)와 연결되어 있으므로, 연결된 제2 불순물 도핑부(1212)에서부터 해당 전면 전극(141)으로의 전도도가 향상되어, 제2 불순물 도핑부(1212)에서 전면 전극(141)으로 이동하는 전하의 전송량이 증가한다. 따라서 태양 전지(11)의 효율은 증가한다. Since the front electrode unit 140 is connected to the first impurity doping unit 1211 having a low impurity doping concentration at a portion where charge transfer to the adjacent front electrode unit 140 is mainly performed, The portion of each front electrode 141 connected to the plurality of second impurity doping portions 1212 has a second impurity doping portion 1212 having a high impurity doping concentration, The conduction from the connected second impurity doping portion 1212 to the corresponding front electrode 141 is improved and the amount of charge transferred from the second impurity doping portion 1212 to the front electrode 141 increases . Therefore, the efficiency of the solar cell 11 increases.

본 예에서, 반사 방지부(130)가 양(+)의 고정 전하(positive fixed charge)의 특성을 갖고 있는 실리콘 질화물(SiNx)로 이루어져 있으므로, 기판(110)이 p형 도전성 타입을 가질 경우, 기판(110)으로부터 전면 전극부(140)로의 전하 전송 효율이 향상된다. 즉, 반사 방지부(130)가 양 전하의 특성을 띄게 되므로, 양 전하인 정공의 이동을 방해한다. In this example, since the antireflective portion 130 is made of silicon nitride (SiNx) having positive positive charge characteristics, when the substrate 110 has the p-type conductivity type, The charge transfer efficiency from the substrate 110 to the front electrode portion 140 is improved. That is, since the antireflective portion 130 has a characteristic of positive electric charge, it hinders the movement of positive electric charges.

즉, 기판(110)이 p형의 도전성 타입을 가질 경우, 반사 방지부(130)가 양 전하의 특성을 띄게 될 때, 반사 방지부(130) 쪽으로 이동하는 음 전하인 전자는 반사 방지부(130)와 반대의 극성을 갖고 있으므로 반사 방지부(130)의 극성에 의해 반사 방지부(130) 쪽으로 끌어 당겨지고, 반면, 반사 방지부(130)와 동일한 극성을 갖는 양 전하인 정공은 반사 방지부(130)의 극성에 의해 반사 방지부(130)의 반대쪽으로 밀려나게 된다.That is, when the substrate 110 has a p-type conductivity type, electrons, which are negative charges moving toward the antireflection portion 130 when the antireflection portion 130 has a characteristic of positive electric charge, The polarity of the anti-reflection part 130 is pulled toward the anti-reflection part 130 because the polarity of the anti-reflection part 130 is opposite to that of the anti-reflection part 130. On the other hand, And is pushed to the opposite side of the anti-reflection portion 130 by the polarity of the portion 130.

따라서, 양 극성의 실리콘 질화물(SiNx)에 의해, 기판(110)으로부터 전면 전극부(140)로 이동하는 전자의 이동량은 좀더 증가되고, 이동을 원치 않은 전하(예, 정공)의 이동은 좀더 효율적으로 방지되어, 기판(110) 전면에서의 전하의 재결합량은 좀더 낮아진다.Therefore, the movement amount of electrons moving from the substrate 110 to the front electrode portion 140 is further increased by the silicon nitride (SiNx) of both polarities, and the movement of charges (e.g., holes) So that the recombination amount of charges on the entire surface of the substrate 110 is further lowered.

본 예에서, 복수의 전면 버스바(142)는 복수의 전면 전극(141)과 동일한 재료로 이루어진다.In this example, the plurality of front bus bars 142 are made of the same material as the plurality of front electrodes 141.

후면 전계부(172)는 기판(110)과 동일한 도전성 타입의 불순물이 기판(110)보다 고농도로 도핑된 영역, 예를 들면, p+ 영역이다. The rear electric field 172 is a region in which impurities of the same conductivity type as the substrate 110 are doped at a higher concentration than the substrate 110, for example, a p + region.

이러한 기판(110)의 제1 도전성 영역(예, p형)과 후면 전계부(172)간의 불순물 농도 차이로 인해 전위 장벽이 형성되고, 이로 인해, 정공의 이동 방향인 후면 전계부(172) 쪽으로 전자 이동은 방해되는 반면, 후면 전계부(172) 쪽으로의 정공 이동은 좀더 용이해진다. 따라서, 후면 전계부(172)는 기판(110)의 후면 및 그 부근에서 전자와 정공의 재결합으로 손실되는 전하의 양을 감소시키고 원하는 전하(예, 정공)의 이동을 가속화시켜 후면 전극부(150)로의 전하 이동량을 증가시킨다.A potential barrier is formed due to the difference in impurity concentration between the first conductive region (for example, p-type) of the substrate 110 and the rear electric field 172, and thus the electric field is directed toward the rear electric field 172 The electron transport is disturbed while the hole transport toward the rear electric field 172 becomes easier. Accordingly, the rear electric field 172 reduces the amount of electric charge lost due to the recombination of electrons and holes at the back surface of the substrate 110 and the vicinity thereof, and accelerates the movement of a desired electric charge (e.g., a hole) ) In the direction of the arrow.

후면 전극부(150)는 후면 전극(151)과 후면 전극(151)과 연결되어 있는 복수의 후면 버스바(152)를 구비한다.The rear electrode unit 150 includes a plurality of rear bus bars 152 connected to the rear electrode 151 and the rear electrode 151.

후면 전극(151)은 기판(110)의 후면에 위치한 후면 전계부(172)와 접촉하고 있고, 후면 버스바(152)가 위치한 부분을 제외하면 실질적으로 기판(110)의 후면 전체에 위치한다. 대안적인 예에서, 후면 전극(151)은 기판(110) 후면의 가장자리 부분에 위치하지 않을 수 있다.The rear electrode 151 is in contact with the rear electric field 172 located on the rear surface of the substrate 110 and substantially entirely on the rear surface of the substrate 110 except for the portion where the rear bus bar 152 is located. In an alternative example, the back electrode 151 may not be located at the edge portion of the back surface of the substrate 110. [

후면 전극(151)은 알루미늄(Al)과 같은 도전성 물질을 함유하고 있다. The rear electrode 151 contains a conductive material such as aluminum (Al).

이러한 후면 전극(151)은 후면 전계부(172)쪽으로부터 이동하는 전하, 예를 들어 정공을 수집한다.This rear electrode 151 collects charge, for example, holes, moving from the rear electric field 172 side.

이때, 후면 전극(151)이 기판(110)보다 높은 불순물 농도를 갖는 후면 전계부(172)와 접촉하고 있으므로, 기판(110), 즉 후면 전계부(172)와 후면 전극(151) 간의 접촉 저항이 감소하여 기판(110)으로부터 후면 전극(151)으로의 전하 전송 효율이 향상된다.In this case, since the rear electrode 151 is in contact with the rear electric field portion 172 having a higher impurity concentration than the substrate 110, the contact resistance between the substrate 110, i.e., the rear electric field portion 172 and the rear electrode 151 And the charge transfer efficiency from the substrate 110 to the rear electrode 151 is improved.

복수의 후면 버스바(152)는 후면 전극(151)이 위치하지 않는 기판(110)의 후면 위에 위치하며 인접한 후면 전극(151)과 연결되어 있다. The plurality of rear bus bars 152 are located on the rear surface of the substrate 110 where the rear electrodes 151 are not located and are connected to the adjacent rear electrodes 151.

또한, 복수의 후면 버스바(152)는 기판(110)을 중심으로 복수의 전면 버스바(142)와 대응되게 마주본다.In addition, the plurality of rear bus bars 152 are opposed to the plurality of front bus bars 142 in correspondence with the substrate 110 as a center.

복수의 후면 버스바(152)는 복수의 전면 버스바(142)와 유사하게, 후면 전극(151)으로부터 전달되는 전하를 수집한다.A plurality of rear bus bars 152 collects charge transferred from the rear electrode 151, similar to a plurality of front bus bars 142.

복수의 후면 버스바(152) 역시 외부 장치와 연결되어, 복수의 후면 버스바(152)에 의해 수집된 전하(예, 정공)는 외부 장치로 출력된다. A plurality of rear bus bars 152 are also connected to external devices so that the charges (e.g., holes) collected by the plurality of rear bus bars 152 are output to an external device.

이러한 복수의 후면 버스바(152)는 후면 전극(151)보다 양호한 전도도를 갖는 물질로 이루어질 수 있고, 예를 들어, 은(Ag)과 같은 적어도 하나의 도전성 물질을 함유한다.These plurality of rear bus bars 152 may be made of a material having a better conductivity than the back electrode 151 and contain at least one conductive material such as, for example, silver (Ag).

본 예에서, 후면 버스바(152) 하부에 위치한 기판(110)의 후면에는 기판(110)의 도전성 타입과 반대인 도전성 타입을 갖는 에미터층(120)이 존재하지만, 이에 한정되지 않는다.In this example, the emitter layer 120 having a conductive type opposite to the conductive type of the substrate 110 is provided on the rear surface of the substrate 110 located under the rear bus bar 152, but the present invention is not limited thereto.

대안적인 예에서, 후면 전극(151)은 후면 버스바(152)가 위치한 기판(110)의 후면 부분에도 위치할 수 있고, 이 경우, 복수의 후면 버스바(152)는 기판(110)을 중심으로 복수의 전면 버스바(142)와 대응되게 마주보며 후면 전극(151) 위에 위치한다. 이때, 경우에 따라 후면 전극(151)은 후면의 가장 자리 부분을 제외한 실질적인 후면 전체 면에 위치할 수 있다.The backside electrode 151 may also be located on the backside portion of the substrate 110 where the backside bus bar 152 is located, Facing the plurality of front bus bars 142 and on the rear electrode 151. [ At this time, the rear electrode 151 may be positioned substantially on the entire rear surface excluding the edge portion of the rear surface.

이와 같은 구조를 갖는 본 실시예에 따른 태양 전지(11)의 동작은 다음과 같다.The operation of the solar cell 11 according to this embodiment having such a structure is as follows.

태양 전지(11)로 빛이 조사되어 반사 방지부(130)를 통해 반도체부인 불순물 도핑부(121)와 기판(110)으로 입사되면 빛 에너지에 의해 반도체부에서 전자-정공 쌍이 발생한다. 이때, 반사 방지부(130)에 의해 기판(110)으로 입사되는 빛의 반사 손실이 줄어들어 기판(110)으로 입사되는 빛의 양이 증가한다. When light is irradiated to the solar cell 11 and is incident on the substrate 110 and the impurity doping portion 121 which is a semiconductor part through the reflection preventing part 130, electron-hole pairs are generated in the semiconductor part due to light energy. At this time, the reflection loss of the light incident on the substrate 110 is reduced by the anti-reflection unit 130, and the amount of light incident on the substrate 110 is increased.

이들 전자-정공 쌍은 기판(110)과 불순물 도핑부(121)의 p-n 접합에 의해 서로 분리되어 전자와 정공은, 예를 들어, n형의 도전성 타입을 갖는 불순물 도핑부(121)와 p형의 도전성 타입을 갖는 기판(110) 쪽으로 각각 이동한다. 이처럼, 불순물 도핑부(121) 쪽으로 이동한 전자는 복수의 전면 전극(141)과 복수의 전면 버스바(142)에 의해 수집되어 복수의 전면 버스바(142)를 따라 이동하고, 기판(110) 쪽으로 이동한 정공은 인접한 후면 전극(151)와 복수의 후면 버스바(152)에 의해 수집되어 복수의 후면 버스바(152)를 따라 이동한다. 이러한 전면 버스바(142)와 후면 버스바(152)를 도선으로 연결하면 전류가 흐르게 되고, 이를 외부에서 전력으로 이용하게 된다.These electron-hole pairs are separated from each other by the pn junction of the substrate 110 and the impurity doping portion 121, so that the electrons and the holes are separated from the impurity doping portion 121 having the n-type conductivity type, for example, To the substrate 110 having the conductive type. The electrons moved toward the dopant doping portion 121 are collected by the plurality of front electrodes 141 and the plurality of front bus bars 142 and travel along the plurality of front bus bars 142, Holes are collected by the adjacent rear electrode 151 and the plurality of rear bus bars 152 and move along the plurality of rear bus bars 152. [ When the front bus bar 142 and the rear bus bar 152 are connected to each other by a wire, a current flows and is used as electric power from the outside.

또한, 복수의 전면 전극(141)과 교차하는 방향으로 높은 불순물 농도를 갖는 복수의 제2 불순물 도핑부(1212), 즉 반도체 전극을 형성함에 따라, 불순물 도핑부(121)를 통해 이동하는 전하는 인접한 전면 전극(141)이나 인접한 전면 버스바(142)뿐만 아니라 인접한 반도체 전극인 제2 불순물 도핑부(1212)로도 이동한다. 따라서, 인접한 전극(141, 1212)이나 버스바(142)로 이동하는 전하의 이동 거리가 줄어들어 전면 전극부(140)나 제2 불순물 도핑부(1212)로 이동하는 전하의 양이 증가한다. 또한, 전면 전극(141)과 접촉하는 제2 불순물 도핑부(1212)가 전도도가 높은 고농도 불순물 도핑 농도를 갖고 있으므로, 제2 불순물 도핑부 (1212)로부터 전면 전극(141)으로의 전도도와 제2 제2 불순물 도핑부(1212)와 전면 전극(141)간의 접촉 저항이 감소하여, 제2 제2 불순물 도핑부(1212)로부터 전면 전극(141)으로의 전하 전송율이 향상된다. 이로 인해, 불순물 도핑부(121)에서 전면 버스바(142)로 전송되는 전하의 양이 증가하여, 태양 전지(11)의 효율은 향상된다. Further, since a plurality of second impurity doping portions 1212, that is, semiconductor electrodes having a high impurity concentration in the direction crossing the plurality of front electrodes 141 are formed, the electric charges traveling through the impurity doping portions 121 are adjacent to each other But also to the second impurity doping portion 1212 which is the adjacent semiconductor electrode as well as the front electrode 141 and the adjacent front bus bar 142. Accordingly, the movement distance of the charges moving to the adjacent electrodes 141 and 1212 and the bus bar 142 is reduced, so that the amount of charges moving to the front electrode portion 140 and the second impurity doping portion 1212 increases. Since the second impurity doping portion 1212 in contact with the front electrode 141 has a high concentration impurity doping concentration with high conductivity, the conductivity from the second impurity doping portion 1212 to the front electrode 141, The contact resistance between the second impurity doping portion 1212 and the front electrode 141 is reduced and the charge transfer rate from the second second impurity doping portion 1212 to the front electrode 141 is improved. As a result, the amount of charges transferred from the impurity doping portion 121 to the front bus bar 142 increases, and the efficiency of the solar cell 11 is improved.

다음, 도 5a 내지 도 5e를 참고로 하여, 본 발명의 한 실시예에 따른 태양 전지(11)의 제조 방법에 대하여 설명한다.Next, a method of manufacturing the solar cell 11 according to one embodiment of the present invention will be described with reference to FIGS. 5A to 5E. FIG.

먼저, 도 5a에 도시한 것처럼, 단결정 또는 다결정 실리콘 등으로 이루어진 결정질 반도체 기판(110)에 5가 원소 또는 3가 원소의 불순물을 포함하는 물질을 열 확산법 등으로 기판(110)에 도핑하여, 기판(110)에 불순물 도핑층인 에미터층(120)을 형성한다. 이때, 기판(110)이 n형일 경우, 인(P) 등을 포함하는 물질(예, POCl3이나 H3PO4)을 이용하고, 기판(110)이 p형일 경우, 붕소(B) 등을 포함하는 물질(예, B2H6)을 이용하여 기판(110)에 에미터층(120)을 형성한다. 또한, 열 확산법으로 에미터층(120)을 형성할 경우, 기판(11)의 전면, 후면 및 측면에 에미터층(120)이 형성된다. First, as shown in FIG. 5A, a substrate 110 is doped with a material containing an impurity of a pentavalent or trivalent element in a crystalline semiconductor substrate 110 made of single crystal, polycrystalline silicon, or the like by a thermal diffusion method, An emitter layer 120, which is an impurity doping layer, is formed. When the substrate 110 is n-type, a material including phosphorus (P) or the like (for example, POCl 3 or H 3 PO 4 ) is used. When the substrate 110 is p-type, boron using the materials (for example, B 2 H 6), comprising forming the emitter layer 120 to the substrate 110. When the emitter layer 120 is formed by the thermal diffusion method, the emitter layer 120 is formed on the front surface, the back surface, and the side surface of the substrate 11.

이때, 형성되는 에미터층(120)은 약 10Ω/sq. 내지 30Ω/sq.의 면저항값을 갖는다.At this time, the emitter layer 120 to be formed is about 10 Ω / sq. To 30 < RTI ID = 0.0 > OMEGA / sq. ≪ / RTI >

그런 다음, p형 불순물 또는 n형 불순물이 기판(110) 내부로 확산됨에 따라 생성된 인을 포함하는 산화물(phosphorous silicate glass, PSG)이나 붕소를 포함하는 산화물(boron silicate glass, BSG)을 식각 공정을 통해 제거한다.Then, a phosphorus silicate glass (PSG) or a boron silicate glass (BSG) containing phosphorus, which is generated as the p-type impurity or n-type impurity diffuses into the substrate 110, Lt; / RTI >

필요할 경우, 에미터층(120)을 형성하기 전에, 기판(110)의 전면을 테스처링하여, 요철면인 텍스처링 표면을 형성할 수 있다. 이때, 기판(110)이 단결정 실리콘으로 이루어질 경우, KOH, NaOH 등의 염기 용액을 사용하여 기판(110)의 표면을 텍스처링할 수 있고, 기판(110)이 다결정 실리콘으로 이루어질 경우, HF나 HNO3와 같은 산 용액을 사용하여 기판(110)의 표면을 텍스처링할 수 있다.If necessary, the front surface of the substrate 110 may be tested before forming the emitter layer 120 to form a textured surface that is an uneven surface. When the substrate 110 is made of monocrystalline silicon, the surface of the substrate 110 may be textured using a base solution such as KOH or NaOH. When the substrate 110 is made of polycrystalline silicon, HF or HNO 3 May be used to texture the surface of the substrate 110.

다음, 도 5b에 도시한 것처럼, 기판(110)의 전면 위에 위치한 에미터층(120) 위에 제1 식각 방지막(61)을 선택적으로 위치시켜 에미터층(120)의 일부를 노출시키고, 기판(110)의 후면 전체에 제2 식각 방지막(62)을 위치시킨다. 이때, 복수의 제1 식각 방지막(61)은 에미터층(120) 위에 서로 이격되어 있어 한 방향으로 서로 나란히 뻗어 있다. 제1 및 제2 식각 방지막(61, 62)은 스크린 인쇄법(screen printing)이나 사진 식각법 등을 이용하여 형성될 수 있다. 5B, a first etch stop layer 61 is selectively positioned on the emitter layer 120 located on the front surface of the substrate 110 to expose a portion of the emitter layer 120, The second etching preventive film 62 is placed on the entire rear surface of the wafer W. At this time, the plurality of first etching preventive films 61 are spaced apart from each other on the emitter layer 120 and extend in parallel with each other in one direction. The first and second etching preventive films 61 and 62 may be formed using a screen printing method, a photolithography method, or the like.

그런 다음, 기판(110) 전체를 식각액에 침전시켜, 식각액에 노출된 에미터층(120)의 일부를 제거하여 불순물 도핑 농도와 불순물 도핑 두께가 서로 상이한 제1 제2 불순물 도핑부(1211)와 복수의 제2 제2 불순물 도핑부(1212)를 구비한 불순물 도핑부(121)를 형성하다. 그런 다음, 기판(110) 위에 위치한 제1 및 제2 식각 방지막(61, 62)을 제거한다.이와 같이 에미터층(120)의 원하는 부분을 제거하여 제1 제2 불순물 도핑부(1211)를 형성하고, 식각 방지막(61)에 의해 보호되어 식각이 이루어지지 않은 부분 즉, 서로 이격되어 나란하게 기판(110)의 한 방향을 따라 뻗어 있는 부분은 복수의 제2 불순물 도핑부(1212)를 형성하여, 불순물부(121)를 완성한다. 이때, 기판(110)에 제1 불순물 도핑부(1211)와 제2 불순물 도핑부(1212)는 교대로 위치한다.Then, the entire substrate 110 is deposited in an etchant to remove a portion of the emitter layer 120 exposed to the etchant, thereby forming a first second impurity doping portion 1211 having a different impurity doping concentration and an impurity doping thickness, Doped portion 121 having the second second impurity doping portion 1212 of the second impurity doping portion 1212 is formed. The first and second etching preventive films 61 and 62 are then removed from the substrate 110. A desired portion of the emitter layer 120 is removed to form a first second impurity doped region 1211 And portions of the substrate 110 which are protected by the etch stopping layer 61 and are not etched, that is, the portions extending along one direction of the substrate 110 in parallel to each other, form a plurality of second impurity doping portions 1212 , The impurity portion 121 is completed. At this time, the first impurity doping portion 1211 and the second impurity doping portion 1212 are alternately disposed on the substrate 110.

이와 같이, 식각이 행해진 부분이 제1 불순물 도핑부(1211)로 형성되므로, 제1 불순물 도핑부(1211)는 제2 불순물 도핑부(1212)보다 두께가 감소하여 제1 불순물 도핑부(1211)는 제2 불순물 도핑부(1212)보다 큰 면저항값을 갖는다.Since the etched portions are formed by the first impurity doping portion 1211, the thickness of the first impurity doping portion 1211 is smaller than that of the second impurity doping portion 1212, Doped region 1212 has a larger sheet resistance value than the second impurity doped region 1212.

이로 인해, 불순물 도핑부(121)에 존재하는 전하는 높은 면저항 부분인 제1 불순물 도핑부(1211)보다 저항이 낮은 제2 불순물 도핑부(1212) 쪽으로 이동하게 되고, 또한 제1 불순물 도핑부(1211)보다 제2 불순물 도핑부(1212)의 불순물 도핑 농도가 높기 때문에, 제2 불순물 도핑부(1212)는 제1 불순물 도핑부(1211)보다 높은 전도도를 갖는다. 이로 인해, 제1 불순물 도핑부(1211)에서 인접한 제2 불순물 도핑부(1212)로 이동한 전하는 제1 불순물 도핑부(1211)를 통해 이동하기 보다 높은 전도도를 갖는 제2 불순물 도핑부(1212)를 통해 이동하게 되고, 이로 인해, 제2 불순물 도핑부(1212)의 전하(예, 전자)는 주로 제2 불순물 도핑부(1212)를 따라 이동하게 된다.This causes charges present in the impurity doping portion 121 to move toward the second impurity doping portion 1212 having lower resistance than the first impurity doping portion 1211 which is a high surface resistance portion and the first impurity doping portion 1211 The second impurity doping portion 1212 has higher conductivity than the first impurity doping portion 1211 because the impurity doping concentration of the second impurity doping portion 1212 is higher than that of the first impurity doping portion 1211. [ Therefore, the charge transferred to the adjacent second impurity doping portion 1212 in the first impurity doping portion 1211 is transferred to the second impurity doping portion 1212 having a conductivity higher than that through the first impurity doping portion 1211, (E. G., Electrons) of the second impurity doping portion 1212 are moved mainly along the second impurity doping portion 1212. In this case,

본 예와 달리, 건식 식각법으로 기판(110)의 전면에 위치한 에미터층(120)의 일부를 제거하거나 기판(110)의 전면만 식각액에 노출시켜 복수의 제1 및 제2 불순물 도핑부(1211, 1212)를 구비한 불순물 도핑부(121)를 형성할 수 있고, 이 경우, 식각 물질이나 식각액에 노출되지 않은 기판(110)의 후면에는 별도의 식각 방지막을 형성하지 않아도 된다.A part of the emitter layer 120 located on the front surface of the substrate 110 is removed by dry etching or only the front surface of the substrate 110 is exposed to the etching solution to form a plurality of first and second impurity doping portions 1211 And 1212 may be formed on the substrate 110. In this case, a separate etch stop layer may not be formed on the back surface of the substrate 110 that is not exposed to the etchant or etchant.

다음, 도 5d에 도시한 것처럼, 플라즈마 화학 기상 증착법(plasma enhanced chemical vapor deposition, PECVD) 등을 이용하여 기판(110)의 전면에 형성된 불순물 도핑부(121) 위에 반사 방지부(130)를 형성한다.Next, as shown in FIG. 5D, the antireflection portion 130 is formed on the impurity doping portion 121 formed on the entire surface of the substrate 110 by using plasma enhanced chemical vapor deposition (PECVD) or the like .

다음, 도 5e에 도시한 것처럼, 반사 방지부(130)의 해당 부분에 위에 전면전극부 패턴(40)을 형성하고, 기판(110)의 후면에 형성된 에미터층(120) 위에 후면전극 패턴(51)과 후면 버스바 패턴(52)을 형성하여 후면전극부 패턴(50)을 완성한다.5E, a front electrode pattern 40 is formed on a corresponding portion of the antireflective portion 130 and a rear electrode pattern 51 is formed on the emitter layer 120 formed on the rear surface of the substrate 110. Next, And a rear bus bar pattern 52 are formed to complete the rear electrode pattern 50. FIG.

이때, 전면전극부 패턴(40)은 은(Ag)을 포함하는 전면전극부용 페이스트(paste)를 스크린 인쇄법으로 반사 방지부(130) 위에 선택적으로 인쇄한 후 건조시켜 형성되고, 전면전극용 부분(41)와 전면 버스바용 부분(42)을 구비하고 있다.At this time, the front electrode pattern 40 is formed by selectively printing a paste for front electrode part including silver (Ag) on the antireflection part 130 by screen printing and then drying the paste, (41) and a front bus bar portion (42).

후면전극 패턴(51)은 알루미늄(Al)을 함유하는 후면전극용 페이스트를 스크린 인쇄법으로 기판(110)의 후면 위에 선택적으로 인쇄한 후 건조시켜 형성되고, 후면 버스바 패턴(52)은 은(Ag)을 함유한 후면 버스바용 페이스트를 스크린 인쇄법으로 후면전극 패턴(51)이 위치하지 않은 기판(110)의 후면 위에 선택적으로 인쇄한 후 건조시켜 형성된다.The rear electrode pattern 51 is formed by selectively printing a rear electrode paste containing aluminum (Al) on the rear surface of the substrate 110 by screen printing and drying the rear electrode pattern 51. The rear bus bar pattern 52 is formed by silver Ag is selectively printed on the rear surface of the substrate 110 on which the rear electrode pattern 51 is not formed by a screen printing method and then dried.

이때, 이들 패턴(40, 51, 52)의 건조 온도는 약 120℃ 내지 약 200℃일 수 있고, 패턴(40, 51, 52)의 형성 순서는 변경 가능하다.At this time, the drying temperature of these patterns 40, 51, and 52 may be about 120 ° C to about 200 ° C, and the order of forming the patterns 40, 51, and 52 may be changed.

그런 다음, 전면전극부 패턴(40)과 후면전극부 패턴(50)이 형성된 기판(110)을 약 750℃ 내지 약 800℃의 온도에서 열처리 공정을 시행하여, 제1 불순물 도핑부(1211)와 접촉하고 복수의 전면 전극(141)과 복수의 전면 버스바(142)를 구비한 전면 전극부(140), 기판(110)과 전기적으로 연결되는 후면 전극(151)과 후면 버스바(152)를 구비한 후면 전극부(150), 그리고 후면 전극(151)와 접하는 기판(110) 내에 후면 전계부(172)를 형성한다.The substrate 110 on which the front electrode pattern 40 and the rear electrode pattern 50 are formed is subjected to a heat treatment process at a temperature of about 750 ° C. to about 800 ° C. to form the first dopant doping portion 1211 A front electrode unit 140 having a plurality of front electrodes 141 and a plurality of front bus bars 142 and a rear electrode 151 and a rear bus bar 152 electrically connected to the substrate 110, The rear electrode unit 150 and the backside electrode 172 are formed in the substrate 110 in contact with the backside electrode 151.

즉, 열처리 공정에 의해, 전면전극부 패턴(40)에 함유된 납(Pb) 등에 의해, 전면전극부 패턴(40)은 접촉 부위의 반사 방지부(130)를 관통하여 하부에 위치하는 불순물 도핑부(121)의 제1 불순물 도핑부(1211)와 접촉하는 복수의 전면전극(141)과 복수의 전면전극용 버스바(142)가 형성되어 전면 전극부(140)가 완성된다. In other words, the front electrode pattern 40 penetrates through the antireflection portion 130 at the contact portion by the lead (Pb) contained in the front electrode pattern 40 by the heat treatment process, A plurality of front electrodes 141 and a plurality of front electrode bus bars 142 are formed in contact with the first impurity doping portions 1211 of the first insulating layer 121 to complete the front electrode portions 140.

이때, 전면전극부 패턴(40)의 전면전극 패턴(41)은 복수의 전면 전극(141)이 되고, 전면버스바 패턴(42)은 복수의 전면전극용 버스바(142)가 된다. At this time, the front electrode pattern 41 of the front electrode pattern 40 becomes a plurality of front electrodes 141, and the front bus bar pattern 42 becomes a plurality of front electrode bus bars 142.

복수의 전면 전극(141)은 복수의 제2 불순물 도핑부(1212)와 교차하는 방향을 뻗어 있고, 복수의 전면 버스바(142)는 복수의 제2 불순물 도핑부(1212)와 같은 방향으로 복수의 제2 불순물 도핑부(1212)과 나란하게 뻗어 있다. 따라서, 각 전면 전극(141)은 제1 불순물 도핑부(1211)뿐만 아니라 복수의 제2 불순물 도핑부(1212)와 교차하는 부분에서는 복수의 제2 불순물 도핑부(1212)와 접촉하고 있고, 각 전면 버스바(142)는 해당 제1 불순물 도핑부(1211)와만 접촉하고 있다.A plurality of front electrodes 141 extend in a direction intersecting the plurality of second impurity doping portions 1212. A plurality of front bus bars 142 extend in the same direction as the plurality of second impurity doping portions 1212, The second dopant doping portion 1212 of FIG. Therefore, each of the front electrodes 141 is in contact with the plurality of second impurity doping portions 1212 at portions intersecting with the plurality of second impurity doping portions 1212 as well as the first impurity doping portions 1211, The front bus bar 142 is in contact only with the first impurity doping portion 1211.

따라서, 각 전면 전극(141)은 하부에 위치하는 제1 불순물 도핑부(1211)뿐만 아니라 접촉부(CT)를 통해 접촉하는 있는 복수의 제2 불순물 도핑부(1212)를 통해 전송된 전하를 수집한 후 인접한 전면 버스바(142)로 전송한다.Accordingly, each front electrode 141 collects the charges transmitted through the plurality of second impurity doping portions 1212 that are in contact with the first impurity doping portions 1211 located below and the contact portions CT, And then to the adjacent front side bus bar 142.

또한, 열처리 공정에 의해, 후면전극부 패턴(50)의 후면 전극 패턴(51)과 후면버스바 패턴(52)은 각각 후면 전극(151)과 복수의 후면 버스바(152)로 형성되고, 후면전극부 패턴(50)의 후면 전극 패턴(51)에 포함된 알루미늄(Al)이 기판(110)의 후면에 형성된 에미터층(120)뿐만 아니라 그 넘어서까지 기판(110)으로 확산되어 기판(110) 내부에 기판(110)보다 높은 불순물 농도를 갖는 불순물부인 후면 전계부(172)가 형성된다. 이로 인해, 후면 전극(151)은 후면 전계부(172)와 접촉하여 기판(110)과 전기적으로 연결된다. 따라서, 후면 전극 패턴(51)이 위치하지 않은 기판(110)의 후면에 존재하는 에미터층(120)은 그대로 존재하지만, 이에 한정되지 않는다.The rear electrode pattern 51 and the rear bus bar pattern 52 of the rear electrode pattern 50 are formed by the rear electrode 151 and the plurality of rear bus bars 152 by the heat treatment process, Aluminum included in the rear electrode pattern 51 of the electrode pattern 50 is diffused into the substrate 110 as well as the emitter layer 120 formed on the rear surface of the substrate 110, A rear electric field portion 172 is formed in which an impurity portion having an impurity concentration higher than that of the substrate 110 is formed. Thus, the rear electrode 151 is electrically connected to the substrate 110 in contact with the rear electric part 172. Therefore, although the emitter layer 120 existing on the rear surface of the substrate 110 on which the rear electrode pattern 51 is not present is present, it is not limited thereto.

열처리 공정 시, 패턴(40, 50)에 함유된 금속 성분과 각 접촉하는 층(121, 110)과의 화학적 결합으로 접촉 저항이 감소하여 전하의 전송 효율이 향상되어 전류 흐름이 증가된다.During the heat treatment process, the contact resistance decreases due to the chemical bonding with the layers 121 and 110 which are in contact with the metal components contained in the patterns 40 and 50, thereby improving the transfer efficiency of the electric charge, thereby increasing the current flow.

그런 다음, 레이저빔이나 식각 공정을 이용하여 기판(110)의 측면으로 확산되어 측면에 도핑된 에미터층(120)을 제거하는 측면 분리(edge isolation) 공정을 실시하여 태양 전지(11)를 완성한다. 하지만, 측면 분리 공정 시기는 필요에 따라 변경 가능하며, 생략될 수 있다. Then, the solar cell 11 is completed by performing an edge isolation process of diffusing to the side surface of the substrate 110 using a laser beam or an etching process to remove the doped emitter layer 120 on the side surface . However, the timing of the side-separating process can be changed as needed and can be omitted.

본 실시예에의 경우, 기판(110)의 후면에 형성된 에미터층(120)는 별도로 제거되지 않았지만, 대안적인 예에서, 후면전극부 패턴(50)을 형성하기 전에 기판(110)의 후면에 위치하는 에미터층(120)를 제거하기 위한 별도의 공정이 행해질 수 있다.In this embodiment, the emitter layer 120 formed on the backside of the substrate 110 is not separately removed, but in an alternative example, the backside electrode pattern 50 is formed on the backside of the substrate 110, A separate process for removing the emitter layer 120 may be performed.

다음, 도 6 및 도 7를 참고로 하여, 본 발명의 다른 실시예에 따른 태양 전지(12)를 설명한다. 도 1 및 도 2와 비교하여, 동일한 구성요소에 대해서는 같은 도면 부호를 부여하였고, 그에 대한 상세한 설명은 생략한다.Next, a solar cell 12 according to another embodiment of the present invention will be described with reference to FIGS. 6 and 7. FIG. 1 and 2, the same reference numerals are assigned to the same constituent elements, and a detailed description thereof will be omitted.

도 6 및 도 7에 도시한 태양 전지(12)는 도 1 및 도 2에 도시한 태양 전지(11)와 유사한 구조를 갖는다.The solar cell 12 shown in Figs. 6 and 7 has a structure similar to that of the solar cell 11 shown in Figs. 1 and 2.

즉, 본 실시예에 따른 태양 전지(12)는 기판(110)의 전면에 위치하고 제1 불순물 도핑부(1211)와 복수의 제2 불순물 도핑부(1212)을 구비한 불순물 도핑부(121), 불순물 도핑부(121) 위에 위치하는 반사 방지부(130a), 불순물 도핑부(121)와 연결되어 있고, 복수의 전면 전극(141a)과 복수의 전면 버스바(142a)를 구비한 전면 전극부(140a), 기판(110)의 후면에 위치하는 후면 전계부(172), 그리고 기판(110)의 후면 위에 위치하는 후면 전극부(150)를 구비한다. That is, the solar cell 12 according to the present embodiment includes an impurity doping unit 121 located on the front surface of the substrate 110 and having a first impurity doping unit 1211 and a plurality of second impurity doping units 1212, A front electrode part 130a connected to the antireflection part 130a and the impurity doping part 121 located on the impurity doping part 121 and having a plurality of front electrodes 141a and a plurality of front side bus bars 142a A rear electric part 172 positioned on the rear surface of the substrate 110 and a rear electrode part 150 positioned on the rear surface of the substrate 110. [

하지만, 도 1 및 도 2의 태양 전지(11)와 비교할 때, 태양 전지(12)는 반사 방지부(130)의 형성 위치가 상이하다. However, as compared with the solar cell 11 of Figs. 1 and 2, the position of the solar cell 12 is different from that of the antireflection portion 130.

즉, 도 1 및 도 2의 태양 전지(11)에서, 반사 방지부(130)는 복수의 전면 전극(141)과 복수의 전면 버스바(142) 하부에는 존재하지 않고, 전면 전극부(140)과 연결되어 있는 불순물 도핑부(121) 부분을 제외한 불순물 도핑부(121)의 나머지 부분 위에 위치한다.1 and 2, the antireflection unit 130 does not exist under the plurality of front electrodes 141 and the plurality of front bus bars 142, but includes the front electrode unit 140, And is located on the remaining portion of the impurity doping portion 121 except for the portion of the impurity doping portion 121 connected to the impurity doping portion 121.

하지만, 본 예의 태양 전지(12)에서, 반사 방지부(130a)는 복수의 제2 불순물 도핑부(1212)와 복수의 전면 전극(141)이 접촉하는 부분을 제외한 불순물 도핑부(121) 부분 위에 위치한다. 따라서, 반사 방지부(130a)는 모든 제1 불순물 도핑부(121) 위와 복수의 전면 전극(141)과 교차하지 않는 부분의 제2 불순물 도핑부(1212) 위에 위치한다.However, in the solar cell 12 of the present embodiment, the antireflective portion 130a is formed on the portion of the impurity doping portion 121 excluding the portion where the plurality of second impurity doping portions 1212 and the plurality of front electrodes 141 are in contact with each other Located. Therefore, the antireflection portion 130a is located on the first impurity doping portion 121 and on the second impurity doping portion 1212 that does not intersect with the plurality of front electrodes 141. [

이로 인해, 전면 전극부(140a)는, 도 1 및 도 2의 태양 전지(11)의 전면 전극부(140)와 달리, 불순물 도핑부(121)와 접촉하는 위치가 상이하다. Therefore, the front electrode portion 140a differs from the front electrode portion 140 of the solar cell 11 of FIGS. 1 and 2 in the position in which it contacts the impurity doping portion 121.

즉, 전면 전극부(140a)의 복수의 전면 버스바(142a)는 불순물 도핑부(121)의 제1 불순물 도핑부(1211)와 접촉하는 대신 반사 방지부(130a) 위에 위치하고, 복수의 전면 전극(141a)은 복수의 제2 불순물 도핑부(1212)와 교차하는 부분을 제외하면 역시 반사 방지부(130a) 위에 위치한다. 결국, 전면 전극부(140a) 중에서, 복수의 제2 불순물 도핑부(1212)와 중첩하는 복수의 전면 전극(141a) 부분만이 불순물 도핑부(121)과 접촉한다. 이러한 차이점을 제외하면, 전면 전극부(140a)는 도 1 및 도 2에 도시된 전면 전극부(140)와 동일하다.That is, the plurality of front bus bars 142a of the front electrode part 140a are positioned on the antireflection part 130a instead of contacting the first impurity doping part 1211 of the impurity doping part 121, The first impurity doping portion 141a is also located on the antireflection portion 130a except for a portion intersecting the plurality of second impurity doping portions 1212. [ As a result, among the front electrode portions 140a, only a plurality of front electrode 141a portions overlapping the plurality of second dopant doping portions 1212 make contact with the impurity doping portions 121. [ Except for these differences, the front electrode part 140a is the same as the front electrode part 140 shown in FIGS. 1 and 2.

이와 같이, 복수의 전면 전극(141)과 교차하는 부분의 제2 불순물 도핑부(1212)를 제외하면, 불순물 도핑부(121)의 모든 면 위에 반사 방지부(130a)가 존재하므로, 반사 방지부(130a)에 의해 패시베이션 기능이 수행되는 면적이 증가하게 된다. 따라서, 반사 방지부(130a)에 의한 패시베이션 기능에 의해, 불순물 도핑부(121)의 표면 및 그 부근에서 결함에 의해 손실되는 전하의 양이 크게 감소하고, 이로 인해 태양 전지(12)의 효율은 더욱 향상된다.Since the antireflection portion 130a is present on all the surfaces of the impurity doping portion 121 except for the second impurity doping portion 1212 which intersects with the plurality of front electrodes 141, The area where the passivation function is performed is increased by the passivation layer 130a. Therefore, the passivation function of the antireflective portion 130a greatly reduces the amount of charge lost due to defects on the surface of the impurity doping portion 121 and the vicinity thereof, and as a result, the efficiency of the solar cell 12 becomes And further improved.

이러한 태양 전지(12)를 제조하는 방법 역시, 도 5a 내지 도 5e와 유사하므로, 도 5a 내지 도 5e뿐만 아니라 도 8a와 도 8b 및 도 9a 및 도 9b를 참고로 하여, 태양 전지(12)의 제조 방법을 설명한다.5A to 5E, and referring to Figs. 8A and 8B and Figs. 9A and 9B as well as Figs. 5A to 5E, the method of manufacturing the solar cell 12 is similar to that of the solar cell 12 The manufacturing method will be described.

도 5a 내지 도 5d에 도시한 것과 동일하게, 기판(110)에 제1 불순물 도핑부(1211)와 복수의 제2 불순물 도핑부(1212)를 구비한 불순물 도핑부(121)를 형성하고, 불순물 도핑부(121) 위에 반사 방지부(130)를 형성한다.5A to 5D, an impurity doping portion 121 having a first impurity doping portion 1211 and a plurality of second impurity doping portions 1212 is formed on a substrate 110, The anti-reflection part 130 is formed on the doping part 121.

그런 다음, 도 8b에 도시한 것처럼, 반사 방지부(130) 위에 식각 방지막(64)을 형성한다. 식각 방지막(64)은 반사 방지부(130)의 일부를 드러내는 복수의 개구부(181)를 구비하고 있다. 이때, 각 개구부(181)의 크기는 각 제2 불순물 도핑부와 각 전면 전극이 중첩하는 크기와 동일하거나 작을 수 있다. 식각 방지막(64)은 스크린 인쇄법이나 사진 식각법 등을 통해 반사 방지부(130)의 원하는 부분에 선택적으로 형성할 수 있다.Then, as shown in FIG. 8B, an anti-etching film 64 is formed on the antireflection portion 130. The etching prevention film 64 has a plurality of openings 181 for exposing a part of the antireflection portion 130. At this time, the size of each opening 181 may be equal to or smaller than the size of overlapping each second impurity doping portion and each front electrode. The anti-etching film 64 can be selectively formed on a desired portion of the anti-reflection portion 130 through screen printing or photolithography.

다음, 기판(110)의 전면을 식각하여, 식각 방지막(64)에 의해 보호되지 않고 복수의 개구부(181)를 통해 노출된 반사 방지부(130)를 제거하여, 제2 불순물 도핑부(1212)의 일부를 드러내는 반사 방지부(130a)를 완성한다.Next, the entire surface of the substrate 110 is etched to remove the antireflection portion 130 exposed through the plurality of openings 181 without being protected by the etch stopping layer 64, thereby forming the second impurity doping portion 1212. [ Reflection portion 130a that exposes a part of the reflection preventing portion 130a.

다음, 도 5e에 설명한 것처럼, 전면전극 패턴(41)과 전면버스바 패턴(42)을 구비한 전면전극부 패턴(40)을 반사 방지부(130a) 위에 선택적으로 그리고 드러난 제2 불순물 도핑부(1212) 위에 형성하고, 기판(110)의 후면 위에 후면전극 패턴(51) 및 후면 버스바 패턴(52)을 구비한 후면 전극부 패턴(50)을 형성한다.5E, a front electrode pattern 40 having a front electrode pattern 41 and a front bus bar pattern 42 is formed on a second impurity doping portion (not shown) selectively exposed on the antireflection portion 130a 1212 and a rear electrode pattern 50 having a rear electrode pattern 51 and a rear bus bar pattern 52 is formed on the rear surface of the substrate 110. [

그런 다음, 패턴(40, 50)을 구비한 기판(110)을 열처리하여, 제2 불순물 도핑부(1212)와 부분적으로 접촉하고 반사 방지부(130a) 위에 위치하는 복수의 전면 전극(141a) 및 복수의 전면 전극(142a)과 연결되어 있고 반사 방지부(130a) 위에 위치하는 복수의 전면 버스바(142a)를 구비한 전면 전극부(140a), 기판(110)과 연결되어 있는 후면전극(151) 및 후면 전극(151)과 기판(110)에 연결되어 있는 후면 버스바(152)를 구비한 후면 전극부(150), 그리고 후면 전극(151)과 접촉하는 기판(110)에 위치한 후면 전계부(172)를 형성한다.Then, the substrate 110 having the patterns 40 and 50 is subjected to heat treatment to form a plurality of front electrodes 141a and a plurality of front electrodes 141a and 142b, which are partially in contact with the second impurity doped region 1212, A front electrode part 140a connected to the plurality of front electrodes 142a and having a plurality of front bus bars 142a positioned on the reflection preventing part 130a, a rear electrode 151 connected to the substrate 110, A rear electrode unit 150 having a rear electrode 151 and a rear bus bar 152 connected to the substrate 110 and a rear electrode unit 150 disposed on the substrate 110 in contact with the rear electrode 151. [ (172).

이 경우, 이미 반사 방지부(130a)의 일부가 제거되어 제2 불순물 도핑부(1212이 노출된 부분 위에 전면전극 패턴(41)이 위치하므로, 전면전극 패턴(41)은 복수의 전면 전극(141a)과 제2 불순물 도핑부(1212) 간의 접촉을 위해 반사 방지부(130a)를 관통하지 않아도 된다. 이로 인해, 전면 전극부(140a)와 후면 전극부(150)를 형성하기 위한 열처리 온도가 낮아지므로, 열로 인한 기판(110)과 그 위에 위치한 구성 요소들의 열화 현상이나 물리적인 특성 변화가 감소되거나 방지된다.In this case, since the front electrode pattern 41 is located on the exposed portion of the second impurity doping portion 1212, the front electrode pattern 41 is electrically connected to the plurality of front electrodes 141a The heat treatment temperature for forming the front electrode part 140a and the rear electrode part 150 may be low and the second dopant doping part 1212 may not penetrate the anti-reflection part 130a. So that deterioration of the substrate 110 due to the heat and the components located thereon or deterioration of the physical characteristics of the substrate 110 is reduced or prevented.

이와는 달리, 서로 다른 두 종류의 페이스트를 이용하여 일부만 제2 불순물 도핑부(1212)와 직접 접촉하고 나머지 부분은 반사 방지부(130) 위에 위치하는 전면 전극부(140)를 형성한다.Alternatively, only the second impurity doping portion 1212 is directly in contact with the second impurity doping portion 1212 using the two kinds of different pastes, and the remaining portion forms the front electrode portion 140 positioned on the antireflection portion 130.

즉, 이미 설명한 것처럼, 기판(110)에 제1 및 제2 불순물 도핑부(1211, 1212)을 구비한 불순물 도핑부(121)와 그 위에 반사 방지부(130)을 형성한 후, 도 9a에 도시한 것처럼, 반사 방지부(130) 위에 부분적으로 제1 페이스트를 도포한 후 건조시켜, 접촉부 패턴(41a)을 형성한다. 이때 제1 페이스트가 도포된 위치는 복수의 제2 불순물 도핑부(1212)과 복수의 전면 전극(141)이 중첩하는 위치에 대응된다.That is, as described above, after the impurity doping portion 121 having the first and second impurity doping portions 1211 and 1212 and the antireflection portion 130 are formed on the substrate 110, As shown in the figure, a first paste is partially applied on the antireflection portion 130 and then dried to form a contact portion pattern 41a. At this time, the position where the first paste is applied corresponds to a position where the plurality of second impurity doping portions 1212 and the plurality of front electrodes 141 overlap.

그런 다음, 제1 페이스트가 도포되지 않은 반사 방지부(130)의 부분 위에 제2 페이스트를 도포한 후 건조시켜 전면전극 패턴(도시하지 않음)과 후면 버스바 패턴(42a)을 형성하여 전면 전극부 패턴을 완성한다. 이때, 전면전극 패턴은 접촉부 패턴(41a)과 접촉한다. Then, a second paste is applied onto the portion of the antireflective portion 130 to which the first paste is not applied and then dried to form a front electrode pattern (not shown) and a rear bus bar pattern 42a, Complete the pattern. At this time, the front electrode pattern contacts the contact portion pattern 41a.

이때, 제1 페이스트와 제2 페이스트는 글래스 프릿(glass frit)의 함량이 서로 상이하고, 예를 들어, 제2 페이스트보다 제1 페이스트가 많은 글래스 프릿을 함유하고 있다.At this time, the content of the glass frit is different between the first paste and the second paste, and for example, the glass paste contains a larger amount of the first paste than the second paste.

본 예와 달리, 제2 페이스트를 이용하여 전면전극 패턴을 형성할 때, 접촉부패턴(41a) 위에도 위치할 수 있다.Unlike the present embodiment, when the front electrode pattern is formed by using the second paste, it can also be placed on the contact pattern 41a.

그런 다음, 이미 설명한 것처럼, 기판(110)의 후면에 후면전극 패턴과 후면 버스바 패턴을 형성한 후, 약 750℃ 내지 약 800℃의 온도에서 기판(110)을 열처리한다.Then, as described above, after the rear electrode pattern and the rear bus bar pattern are formed on the rear surface of the substrate 110, the substrate 110 is heat-treated at a temperature of about 750 ° C to about 800 ° C.

이때, 이미 설명한 것처럼, 제1 페이스트로 이루어진 접촉부 패턴(41a)을 글래스 프릿의 양에 의해 하부에 위치한 반사 방지부(130)를 관통하여 제2 불순물 도핑부(1212)의 일부와 접촉한다. 반면, 제2 페이스트로 이루어진 부분은 적은 글래스 프릿의 양으로 인해 하부에 위치한 반사 방지부(130)의 관통 동작은 이루어지지 않고, 반사 방지부(130)와의 화학적 결합이 이루어진다. 또한, 기판(110)의 후면에는 기판(110)과 연결되어 있는 후면 전극(151), 기판(110)과 후면 전극(51)과 연결되어 있는 후면 버스바(152) 및 후면 전계부(172)가 형성된다.At this time, the contact portion pattern 41a made of the first paste passes through the antireflective portion 130 located below by the amount of the glass frit and comes into contact with a part of the second impurity doping portion 1212, as described above. On the other hand, due to the amount of the glass frit, the portion of the second paste is chemically coupled to the anti-reflection portion 130 without passing through the lower anti-reflection portion 130. A backside bus bar 152 and a backside electrical part 172 are connected to the substrate 110. The backside electrode 151 is connected to the substrate 110. The backside bus bar 152 and the backside electrical part 172 are connected to the substrate 110 and the backside electrode 51, .

이로 인해, 각 전면 전극(141)은 반사 방지부(130) 위에 위치하다가 제2 불순물 도핑부(1212)와 중첩하는 부분에서만 반사 방지부(130)를 관통하여 제2 불순물 도핑부(1212)와 부분적으로 접하게 된다.Each of the front electrodes 141 is positioned on the antireflection portion 130 and passes through the antireflection portion 130 only at a portion overlapping the second impurity doping portion 1212 to form the second impurity doping portion 1212 Partially contacted.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, It belongs to the scope of right.

11, 12: 태양 전지 40: 전면전극부 패턴
41: 전면 전극 패턴 42: 전면 버스바 패턴
50: 후면전극부 패턴 51: 후면전극 패턴
52: 후면 버스바 패턴 61, 62, 64: 식각 방지막
110: 기판 120: 에미터층
121: 불순물 도핑부 130, 130a: 반사 방지부
140, 140a: 전면 전극부 141, 141a: 전면 전극
142, 142a: 전면 버스바 150: 후면 전극부
151: 후면 전극 152: 후면 버스바
172: 후면 전계부 1211: 제1 불순물 도핑부
1212: 제2 불순물 도핑부
11, 12: solar cell 40: front electrode part pattern
41: front electrode pattern 42: front bus bar pattern
50: rear electrode part pattern 51: rear electrode pattern
52: rear bus bar pattern 61, 62, 64: etching barrier film
110: substrate 120: emitter layer
121: Impurity doping section 130, 130a:
140, 140a: front electrode part 141, 141a: front electrode part
142, 142a: front bus bar 150: rear electrode part
151: Rear electrode 152: Rear bus bar
172: rear electric field portion 1211: first impurity doping portion
1212: second impurity doping portion

Claims (26)

제1 도전성 타입의 기판,
상기 기판에 위치하고, 상기 제1 도전성 타입과 반대인 제2 도전성 타입의 불순물이 도핑되어 있으며, 상기 기판의 전면에 형성되어 있고, 제1 두께를 갖는 에미터부,
상기 에미터부에 연결되어 있고, 제1 방향으로 연장되어 서로 이격되어 나란히 뻗어 있는 복수의 제1 전극,
상기 에미터부보다 높은 불순물 도핑 농도를 가지며, 상기 에미터부의 표면으로부터 돌출되어 상기 제1 두께보다 두꺼운 제2 두께를 가지고, 상기 제1 방향과 교차하는 제2 방향으로 연장되어 서로 나란하게 뻗어 있는 복수의 반도체 전극, 그리고
상기 기판과 연결되어 있는 제2 전극
을 포함하며,
상기 복수의 반도체 전극은 상기 복수의 제1 전극과 교차하는 복수의 접촉부에서 복수의 제1 전극과 접촉하고 있는 태양 전지.
A substrate of a first conductivity type,
An emitter portion located on the substrate and doped with an impurity of a second conductivity type opposite to the first conductivity type and formed on a front surface of the substrate,
A plurality of first electrodes connected to the emitter section and extending in a first direction and spaced apart from each other,
A plurality of second semiconductor layers having a second thickness that is greater than the first thickness and protrudes from the surface of the emitter layer and has a higher impurity doping concentration than the emitter layer and extends in a second direction crossing the first direction, A semiconductor electrode of
And a second electrode
/ RTI >
Wherein the plurality of semiconductor electrodes are in contact with a plurality of first electrodes at a plurality of contact portions intersecting with the plurality of first electrodes.
제1항에서,
상기 복수의 반도체 전극은 상기 기판 1개에서 200개 내지 245개 형성되어 있는 태양 전지.
The method of claim 1,
Wherein the number of the plurality of semiconductor electrodes is 200 to 245 in one substrate.
제1항에서,
상기 복수의 반도체 전극은 각각 30㎛ 내지 50㎛의 폭을 갖고 있는 태양 전지.
The method of claim 1,
Wherein each of the plurality of semiconductor electrodes has a width of 30 占 퐉 to 50 占 퐉.
제1항에서,
인접한 두 반도체 전극간의 간격은 0.6㎜ 내지 0.7㎜인 태양 전지.
The method of claim 1,
And a distance between two adjacent semiconductor electrodes is 0.6 mm to 0.7 mm.
제1항에서,
상기 기판의 전면 전체면에 대한 상기 복수의 반도체 전극의 형성 비율은 4% 내지 8%인 태양 전지.
The method of claim 1,
Wherein a ratio of formation of the plurality of semiconductor electrodes to an entire front surface of the substrate is 4% to 8%.
삭제delete 제1항에서,
상기 복수의 접촉부는 상기 기판 1개에서 23,500개 내지 40,000개인 태양 전지.
The method of claim 1,
Wherein the plurality of contact portions are 23,500 to 40,000 in one substrate.
제1항에서,
상기 에미터부는 상기 복수의 반도체 전극 각각보다 큰 면저항값을 갖는 태양 전지.
The method of claim 1,
Wherein the emitter portion has a larger sheet resistance value than each of the plurality of semiconductor electrodes.
제8항에서,
상기 에미터부는 90Ω/sq. 내지 140Ω/sq.의 면저항값을 갖고, 상기 각 반도체 전극은 10Ω/sq. 내지 30Ω/sq.의 면저항값을 갖는 태양 전지.
9. The method of claim 8,
The emitter portion has a resistance of 90? / Sq. To 140 Ω / sq., And each semiconductor electrode has a resistance of 10 Ω / sq. To 30 < RTI ID = 0.0 > ohm / sq. ≪ / RTI >
제1항 또는 제8항에서,
상기 에미터부는 4×1019/㎤ 내지 6×1019/㎤의 불순물 도핑 농도를 갖고, 상기 각 반도체 전극은 9×1019/㎤ 내지 4×1020/㎤의 불순물 도핑 농도를 갖는 태양 전지.
9. The method according to claim 1 or 8,
Wherein the emitter section has an impurity doping concentration of 4 x 10 19 / cm 3 to 6 x 10 19 / cm 3, and each semiconductor electrode is a solar cell having an impurity doping concentration of 9 x 10 19 / cm 3 to 4 x 10 20 / .
제10항에서,
상기 에미터부는 0.5㎛ 내지 0.7㎛의 불순물 도핑 두께를 갖고, 상기 복수의 반도체 전극은 각각 0.6㎛ 내지 0.8㎛의 불순물 도핑 두께를 갖고 있는 태양 전지.
11. The method of claim 10,
Wherein the emitter section has an impurity doping thickness of 0.5 to 0.7 mu m, and the plurality of semiconductor electrodes each have an impurity doping thickness of 0.6 to 0.8 mu m.
제1항에서,
상기 에미터부와 상기 복수의 제1 전극에 연결되어 있는 버스바를 더 포함하는 태양 전지.
The method of claim 1,
And a bus bar connected to the emitter section and the plurality of first electrodes.
제12항에서,
상기 복수의 반도체 전극은 상기 버스바와 동일한 방향으로 뻗어 있는 태양 전지.
The method of claim 12,
Wherein the plurality of semiconductor electrodes extend in the same direction as the bus bar.
제12항에서,
상기 에미터부 위와 상기 복수의 반도체 전극 위에 위치하는 반사 방지부를 더 포함하는 태양 전지.
The method of claim 12,
And an antireflective portion disposed on the emitter portion and the plurality of semiconductor electrodes.
제14항에서,
상기 반사 방지부는 상기 에미터부와 상기 버스 바 사이에 더 위치하는 태양 전지.
The method of claim 14,
Wherein the reflection preventing portion is further located between the emitter portion and the bus bar.
제14항 또는 제15항에서,
상기 반사 방지부는 실리콘 질화물로 이루어져 있는 태양 전지.
15. The method according to claim 14 or 15,
Wherein the reflection preventing portion is made of silicon nitride.
제14항 또는 제15항에서,
상기 반사 방지부는 2.0 내지 2.1의 굴절률을 갖는 태양 전지.
15. The method according to claim 14 or 15,
Wherein the antireflective portion has a refractive index of 2.0 to 2.1.
제1항에서,
상기 에미터부 위와 상기 복수의 반도체 전극 위에 위치하는 반사 방지부를 더 포함하는 태양 전지.
The method of claim 1,
And an antireflective portion disposed on the emitter portion and the plurality of semiconductor electrodes.
제18항에서,
상기 반사 방지부는 상기 에미터부와 상기 복수의 제1 전극 사이에 더 위치하는 태양 전지.
The method of claim 18,
Wherein the reflection preventing portion is further located between the emitter portion and the plurality of first electrodes.
제18항 또는 제19항에서,
상기 반사 방지부는 실리콘 질화물로 이루어져 있는 태양 전지.
20. The method according to claim 18 or 19,
Wherein the reflection preventing portion is made of silicon nitride.
제18항 또는 제19항에서,
상기 반사 방지부는 2.0 내지 2.1의 굴절률을 갖는 태양 전지.
20. The method according to claim 18 or 19,
Wherein the antireflective portion has a refractive index of 2.0 to 2.1.
제1항에서,
상기 제2 전극과 접하는 상기 기판에 위치한 후면 전계부를 더 포함하는 태양 전지.
The method of claim 1,
And a rear surface electric field portion located on the substrate in contact with the second electrode.
제1 도전성 타입을 갖는 기판의 제1 면에 상기 제1 도전성 타입과 반대인 제2 도전성 타입의 에미터층을 형성하는 단계,
상기 에미터층을 선택적으로 식각하여 제1 두께를 갖는 에미터부와 상기 에미터부의 표면으로부터 돌출되어 상기 제1 두께보다 두꺼운 제2 두께를 갖는 복수의 반도체 전극을 형성하는 단계,
상기 반도체 전극과 교차하는 방향으로 뻗어 있고 상기 에미터부와 연결되어있는 복수의 제1 전극을 상기 기판의 제1 면에 형성하고, 상기 기판과 연결되어 있는 제2 전극을 상기 제1 면과 반대의 제2 면에 형성하는 단계
를 포함하고,
상기 에미터부는 상기 에미터층에서 상기 식각이 이루어진 부분이고, 상기 복수의 반도체 전극은 상기 에미터층에서 상기 식각이 이루어지지 않은 부분이고,
상기 복수의 반도체 전극은 상기 복수의 제1 전극과 교차하는 복수의 접촉부에서 복수의 제1 전극과 접촉하고 있는,
태양 전지의 제조 방법.
Forming an emitter layer of a second conductivity type opposite to the first conductivity type on a first side of a substrate having a first conductivity type,
Forming an emitter layer having a first thickness and a plurality of semiconductor electrodes protruding from a surface of the emitter layer and having a second thickness larger than the first thickness by selectively etching the emitter layer;
A plurality of first electrodes extending in a direction intersecting with the semiconductor electrode and connected to the emitter section are formed on a first surface of the substrate, and a second electrode connected to the substrate is formed on the first surface opposite to the first surface, Forming on the second surface
Lt; / RTI >
Wherein the emitter layer is a portion where the etching is performed in the emitter layer and the plurality of semiconductor electrodes are portions where the etching is not performed in the emitter layer,
Wherein the plurality of semiconductor electrodes are in contact with a plurality of first electrodes at a plurality of contact portions intersecting with the plurality of first electrodes,
A method of manufacturing a solar cell.
제23항에서,
상기 에미터층은 10Ω/sq. 내지 30Ω/sq.의 면저항값을 갖는 태양 전지의 제조 방법.
24. The method of claim 23,
The emitter layer has a resistivity of 10? / Sq. To 30 < RTI ID = 0.0 > ohm / sq. ≪ / RTI >
제23항에서,
상기 에미터부와 상기 복수의 반도체 전극 위에 반사 방지부를 형성하는 단계를 더 포함하고,
상기 복수의 제1 전극 및 제2 전극 형성 단계는 상기 반사 방지부 위에 제1 전극 패턴을 형성하는 단계,
상기 제1 전극 패턴을 열처리하여 상기 제1 전극 패턴이 상기 반사방지부를 관통하여 상기 에미터부 및 복수의 반도체 전극과 연결되는 복수의 제1 전극을 형성하는 단계
를 포함하는 태양 전지의 제조 방법.
24. The method of claim 23,
Further comprising forming an antireflection portion on the emitter portion and the plurality of semiconductor electrodes,
The forming of the plurality of first electrodes and the forming of the second electrodes may include forming a first electrode pattern on the anti-
Forming a plurality of first electrodes through which the first electrode pattern penetrates the antireflection portion and is connected to the emitter portion and the plurality of semiconductor electrodes by heat treating the first electrode pattern;
Wherein the method comprises the steps of:
제25항에서,
상기 복수의 제1 전극 및 제2 전극 형성 단계는 상기 복수의 제1 전극과 교차하고 상기 에미터부와 연결되어 있는 버스바를 더 형성하고,
상기 버스바는 상기 반사 방지부를 관통하여 상기 에미터부와 연결되는 태양 전지의 제조 방법.
26. The method of claim 25,
The plurality of first electrodes and the second electrode forming step may further include a bus bar crossing the plurality of first electrodes and connected to the emitter part,
Wherein the bus bar passes through the antireflection portion and is connected to the emitter portion.
KR1020100135340A 2010-12-27 2010-12-27 Solar cell and method for manufacturing the same KR101690333B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020100135340A KR101690333B1 (en) 2010-12-27 2010-12-27 Solar cell and method for manufacturing the same
US13/335,368 US9368655B2 (en) 2010-12-27 2011-12-22 Solar cell and method for manufacturing the same
DE102011122252.2A DE102011122252B4 (en) 2010-12-27 2011-12-23 Solar cell and process for its production
CN201110441952.3A CN102544135B (en) 2010-12-27 2011-12-26 Solar cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100135340A KR101690333B1 (en) 2010-12-27 2010-12-27 Solar cell and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20120073541A KR20120073541A (en) 2012-07-05
KR101690333B1 true KR101690333B1 (en) 2017-01-09

Family

ID=46707868

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100135340A KR101690333B1 (en) 2010-12-27 2010-12-27 Solar cell and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101690333B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959410B1 (en) * 2012-07-27 2019-03-18 엘지전자 주식회사 Solar cell and solar cell module with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010462A1 (en) * 2008-07-25 2010-01-28 Gp Solar Gmbh Method for producing a solar cell having a two-stage doping
US20100136718A1 (en) * 2009-05-19 2010-06-03 Andreas Meisel Methods and apparatus for aligning a set of patterns on a silicon substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013307A2 (en) * 2007-07-26 2009-01-29 Universität Konstanz Method for producing a silicon solar cell with a back-etched emitter as well as a corresponding solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010462A1 (en) * 2008-07-25 2010-01-28 Gp Solar Gmbh Method for producing a solar cell having a two-stage doping
US20100136718A1 (en) * 2009-05-19 2010-06-03 Andreas Meisel Methods and apparatus for aligning a set of patterns on a silicon substrate

Also Published As

Publication number Publication date
KR20120073541A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
EP2371009B1 (en) Solar cell and method of manufacturing the same
US9368655B2 (en) Solar cell and method for manufacturing the same
EP2993703B1 (en) Solar cell and method for manufacturing the same
KR101729304B1 (en) Solar cell and method for manufacturing the same
EP2212920B1 (en) Solar cell, method of manufacturing the same, and solar cell module
KR20100098993A (en) Solar cell and manufacturing mehtod of the same
KR101699310B1 (en) Solar cell and method for manufacturing the same
KR20130096822A (en) Solar cell and method for manufacturing the same
US9000291B2 (en) Solar cell and method for manufacturing the same
US9997647B2 (en) Solar cells and manufacturing method thereof
KR101699312B1 (en) Solar cell and manufacturing method thereof
KR101714779B1 (en) Solar cell and manufacturing method thereof
KR101699309B1 (en) Method for manufacturing solar cell
KR101135585B1 (en) Solar cell and method for manufacturing the same
KR101729311B1 (en) Solar cell and method for manufacturing the same
KR101130195B1 (en) Solar cell and method for manufacturing the same
KR101690333B1 (en) Solar cell and method for manufacturing the same
KR101680384B1 (en) Method for manufacturing solar cell
KR101743716B1 (en) Solar cell and method for manufacturing the same
KR20120082664A (en) Method for manufacturing solar cell
KR101579321B1 (en) Method for manufacturing solar cell
KR101199213B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR20120041437A (en) Solar cell and method for manufacturing the same
KR101199214B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR101149540B1 (en) Solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191114

Year of fee payment: 4