KR101680981B1 - 다중안테나 간섭채널에서 전력효율적인 간섭정렬을 위한 평균제곱오차 최소화 방법 - Google Patents

다중안테나 간섭채널에서 전력효율적인 간섭정렬을 위한 평균제곱오차 최소화 방법 Download PDF

Info

Publication number
KR101680981B1
KR101680981B1 KR1020150129910A KR20150129910A KR101680981B1 KR 101680981 B1 KR101680981 B1 KR 101680981B1 KR 1020150129910 A KR1020150129910 A KR 1020150129910A KR 20150129910 A KR20150129910 A KR 20150129910A KR 101680981 B1 KR101680981 B1 KR 101680981B1
Authority
KR
South Korea
Prior art keywords
transmitter
power
receiver
matrix
interference
Prior art date
Application number
KR1020150129910A
Other languages
English (en)
Inventor
장성진
김재명
주종옥
배인산
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020150129910A priority Critical patent/KR101680981B1/ko
Application granted granted Critical
Publication of KR101680981B1 publication Critical patent/KR101680981B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0862Weighted combining receiver computing weights based on information from the transmitter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

다중안테나 간섭채널에서 전력효율적인 간섭정렬을 위한 평균제곱오차 최소화 방법이 개시된다. 다중사용자다중안테나(MIMO) 시스템에서의 간섭정렬방법에 있어서, 간섭채널 상의 간섭정렬을 위해 송신기의 사용전력을 고려하여 상기 사용전력에 대한 평균제곱오차와 관련된 목적함수를 계산한 후 상기 목적함수를 통해 상기 송신기의 프리코딩 행렬과 수신기의 디코딩 행렬을 계산하는 단계를 포함한다.

Description

다중안테나 간섭채널에서 전력효율적인 간섭정렬을 위한 평균제곱오차 최소화 방법{mmse algorithm for power efficient interference alignment in mimo interference channel}
아래의 설명은 다중안테나 사용자들로 구성된 간섭채널 네트워크에서 전력을 효율적으로 사용하기 위해 평균제곱오차 최소화 기반의 간섭정렬 알고리즘을 구성하는 방법에 관한 것이다.
간섭정렬 알고리즘(IA: interference alignment)은 다중안테나 간섭채널에서 상호간 간섭을 해결하는데 있어 중요한 역할을 담당한다. 간섭정렬을 통해 시간, 주파수, 공간적인 차원에서 간섭신호를 협력적으로 정렬함으로써 K개의 사용자로 이뤄진 간섭채널에서 최대의 자유도(DoF: degree of freedom)을 달성하게 된다. 간섭정렬 기법에는 신호공간, 신호크기, 에르고딕 간섭정렬이 있으나 그 중 가장 활발하게 연구되는 기법은 신호공간 간섭정렬기법이다.
신호공간상에서의 간섭정렬은 송신기들의 프리코더가 원하지 않는 수신기에 미치는 간섭을 고려하여 의도하지 않은 수신기에서 관찰할 수 있는 신호공간의 1/2에 해당하는 간섭 부공간에 중첩시키고, 반면 수신기에서 원하는 신호는 전체 신호공간의 1/2에 해당하는 신호공간에 들어올 수 있도록 한다. 이를 통해 네트워크의 사용자들은 K 개의 사용자들로 이뤄진 M×M 다중안테나 간섭채널에서 KM/2의 자유도를 달성할 수 있음이 증명되었다.
신호공간 상에서 다중안테나 사용자들로 구성된 간섭정렬 알고리즘은 닫힌 형태(closed form)와 반복 형태(iterative form)로 구현될 수 있다. 닫힌 형태의 간섭정렬은 3개 이상의 사용자에 대해 알고리즘을 용이하게 확장할 수 없고, 모든 채널정보가 요구되기 때문에 3개의 사용자로 이뤄진 네트워크로만 한정된다. 반복 형태로서의 간섭정렬은 다양한 사용자로 이뤄진 네트워크로의 확장이 용이하고 요구되는 정보가 한정적이기 때문에 구현에 있어 보다 바람직하다. 이러한 반복 형태의 간섭정렬은 상하향 링크 채널에 대해 호혜성(reciprocity)을 적용 가능한지의 여부로 나뉠 수 있다.
간섭정렬방법으로서, (1) 채널의 호혜성을 가정하여 각 사용자의 국소채널정보를 간섭누설을 줄이는 반복형태의 간섭정렬 알고리즘, (2) 간섭정렬 네트워크에 참여하지 않는 다른 송신기로부터의 잡음인 착색잡음(colored noise)을 고려한 간섭정렬 알고리즘, (3) 교차적 간섭 최소화 알고리즘에서 프리코딩/디코딩 행렬 각각을 용량합의 그레디언트로 주어지는 방향으로 이동하게 하는 용량합 최대화 알고리즘, (4) 원하는 신호공간과 간섭신호 부분공간을 고려한 랭크가 제한된 랭크 최소화(RCRM: rank constrained rank minimization) 알고리즘이 제안된 바 있다. (4)의 알고리즘은 분산알고리즘에는 적합하지 않다. 상기한 효혜성이 가정된 알고리즘들은 TDMA와 같이 상향링크와 하향링크가 동일한 채널에서 사용된다.
채널호혜성이 적용되지 않는 접근방법으로, (5) 원하지 않는 수신기의 간섭부공간을 고려하여 프리코딩/디코딩 행렬을 교차적으로 최적화하는 알고리즘, (6) 간섭신호들의 프로젝터거리를 최소화한 뒤 최대경사도법(steepest descent)을 적용한 알고리즘, (7) 반복적인 가중치 용량합최대화 알고리즘, (8) 원하는 신호와 간섭신호를 동시에 고려하여 간섭부공간으로 흘러들어가는 신호전력과 신호부공간으로 흘러들어가는 간섭전력을 최소화하는 알고리즘이 제안되었다. 그러나, (5)~(8)의 방법들은 성능이 점진적으로 수렴하므로 수렴 속도를 높이기 위해 가우스-뉴튼 방법을 사용한 이차 수렴(quadratic convergent) 방법이 제안된 바 있다.
다중안테나 사용자들로 구성된 간섭채널 네트워크에서 전력을 효율적으로 사용하기 위해 평균제곱오차 최소화 기반의 간섭정렬 알고리즘을 구성하는 방법을 제공한다.
다중 안테나를 갖는 다중 사용자 간섭환경에서 간섭정렬을 수행하는 데에 있어 송신기가 전력이 부족할 때 사용하는 전력을 최소화하면서도 어느 정도의 성능을 만족하기 위해 프리코딩을 구성하는 것이다. 이를 위해, 평균제곱오차최소화 알고리즘에서 사용하는 목적함수를 사용하는 전력을 고려하여 새로이 설계하고 이를 사용하여 프리코딩을 구성함으로써 사용전력을 줄이고 전력효율성을 최대화할 수 있다.
컴퓨터로 구현되는 다중사용자다중안테나(MIMO) 시스템에서의 간섭정렬방법에 있어서, 간섭채널 상의 간섭정렬을 위해 송신기의 사용전력을 고려하여 상기 사용전력에 대한 평균제곱오차와 관련된 목적함수를 계산한 후 상기 목적함수를 통해 상기 송신기의 프리코딩 행렬과 수신기의 디코딩 행렬을 계산하는 단계를 포함하는 간섭정렬방법을 제공한다.
일 측면에 따르면, 상기 단계는, 상기 목적함수로서 수학식 1의 최적화 목적을 만족하는 라그랑지안을 수학식 2를 통해 계산한다.
수학식 1:
Figure 112015089273245-pat00001
(여기서, Hkk는 k번째 송신기에서 k번째 수신기로의 채널 행렬, Vk은 k번째 송신기의 프리코딩 행렬, Vl은 l번째 송신기의 프리코딩 행렬,
Figure 112015089273245-pat00002
는 실험상수, Uk는 k번째 수신기의 디코딩 행렬, pl은 l번째 송신기의 송신 전력,
Figure 112015089273245-pat00003
은 복소수의 실수값을 나타낸다.)
수학식 2:
Figure 112015089273245-pat00004
(여기서,
Figure 112015089273245-pat00005
는 l번째 송신기의 전력 제한을 위해 사용되는 라그랑지안 곱상수,
Figure 112015089273245-pat00006
은 복소수의 실수값을 나타낸다.)
다른 측면에 따르면, 상기 단계는, 상기 목적함수로서 상기 사용전력을 고려한 라그랑지안을 계산하는 단계; 및 상기 라그랑지안을 미분하여 송신기의 프리코딩 행렬과 수신기의 디코딩 행렬을 교차적으로 계산하는 단계를 포함한다.
또 다른 측면에 따르면, 송신기의 프리코딩 행렬과 수신기의 디코딩 행렬을 교차적으로 계산하는 상기 단계는, l번째 송신기의 프리코딩 행렬 Vl에 대해 KKT(Karush-Kuhn-Tucker) 조건을 만족하는 k번째 수신기의 디코딩 행렬 Uk를 구성하는 제1 단계; 및 k번째 수신기의 디코딩 행렬 Uk에 대해 KKT(Karush-Kuhn-Tucker) 조건을 만족하는 l번째 송신기의 프리코딩 행렬 Vl을 구성하는 제2 단계를 포함한다.
또 다른 측면에 따르면, 상기 프리코딩 행렬 Vl과 상기 디코딩 행렬 Uk 간의 결과 값이 수렴할 때까지 상기 제1 단계 내지 상기 제2 단계를 반복 수행한다.
또 다른 측면에 따르면, 상기 l번째 송신기의 프리코딩 행렬 Vl은 안테나 개수와 자유도를 행과 열의 개수로 하는 송신전력에 따른 프리코딩 벡터로 나타낸다.
본 발명의 실시예들에 따르면, 간섭정렬을 사용하는 모바일 기기에서 전력이 부족하여 전력 최소화 모드로 동작할 필요가 있을 때 사용전력을 고려하여 목적함수를 재구성함으로써 이에 따라 프리코딩을 사용하는 전력효율적인 평균제곱오차 최소화 간섭정렬 알고리즘을 적용할 수 있으며 사용전력을 줄이고 전력효율성을 최대화할 수 있다.
도 1은 본 발명의 일실시예에 따른 간섭정렬에 참여하는 다중안테나 시스템으로 이뤄진 네트워크를 나타내는 그림이다.
도 2는 본 발명의 일실시예에 따른 송신전력을 고려한 평균제곱오차 최소화 알고리즘의 구현을 나타내는 그림이다.
도 3은 본 발명의 일실시예에 따른 송신전력을 고려한 평균제곱오차 최소화 알고리즘의 SNR 대비 정규화된 전력사용을 나타낸 그림이다.
도 4는 본 발명의 일실시예에 따른 송신전력을 고려한 평균제곱오차 최소화 알고리즘의 반복회수 대비 정규화된 전력사용을 나타낸 그림이다.
도 5는 본 발명의 일실시예에 따른 송신전력을 고려한 평균제곱오차 최소화 알고리즘의 SNR 대비 평균용량합을 나타낸 그림이다.
도 6은 본 발명의 일실시예에 따른 송신전력을 고려한 평균제곱오차 최소화 알고리즘의 SNR 대비 사용전력 당 평균용량합인 전력효율을 나타낸 그림이다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
본 발명은 전력사용량을 고려한 프리코딩을 설계하기 위해 평균제곱오차 최소화 알고리즘에 사용되는 프리코딩을 새롭게 구성하는 방법인 간섭정렬 알고리즘에 대한 기술이다. 이를 위해, 평균제곱오차에 관련된 목적함수를 전력사용량을 고려해 새롭게 구성하고, 이러한 목적함수를 통해 송신기의 프리코딩과 수신기의 디코딩을 설계함으로써 전력효율을 최대화할 수 있는 절전모드로 동작할 수 있다.
본 발명은 전력효율적인 평균제곱오차 및 사용하는 전력의 최소화를 목적함수로 구성하고, 이러한 목적함수를 사용하여 송신기의 프리코딩을 계산한 뒤, 수신기에서는 기존의 방법으로 수신기의 디코딩을 계산하는 일련의 방법이 반복적으로 수행되면서 간섭을 정렬하게 된다.
본 발명에서 다중 안테나를 갖는 다중 사용자 간섭환경에서의 전력효율적인 평균제곱오차 최소화 간섭정렬 알고리즘은 사용전력을 고려한 목적함수를 구성한 후 이를 미분하여 프리코딩 및 디코딩 행렬을 교차적으로 계산하는 것을 포함한다. 사용전력을 고려한 목적함수 구성 방법은 기존의 목적함수에 송신기의 사용전력을 고려하여 사용전력에 대한 최적함수로 사용할 수 있다. 이때, 목적함수는 라그랑지안을 도출할 수 있으며, 프리코딩 및 디코딩 행렬은 라그랑지안을 미분한 뒤 얻을 수 있는 해에 해당된다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 일실시예에 따른 간섭정렬에 참여하는 다중안테나 시스템(100)으로 이뤄진 네트워크를 나타내는 그림이다.
도 1은 다중안테나를 갖고 있는 3개 이상의 K 사용자(송신기-수신기 쌍)들에 대한 간섭채널 네트워크를 나타내고 있다. 각각의 송신기(102)와 수신기(103)가
Figure 112015089273245-pat00007
개의 송신 안테나(101)와
Figure 112015089273245-pat00008
개의 수신 안테나(104)를 갖는다고 할 때, 얻을 수 있는 자유도는
Figure 112015089273245-pat00009
다. 본 발명에서 모든 사용자는
Figure 112015089273245-pat00010
개의 동일한 안테나와
Figure 112015089273245-pat00011
의 동일한 자유도를 갖는 것을 가정한다. 이러한 대칭적 다중안테나 간섭 채널은
Figure 112015089273245-pat00012
로 표현될 수 있다. 이러한 시스템 모델에서 송신기(102)와 수신기(103) 중 송신기 k는 수신기 k와 원하는 신호를 주고 받게 되고, 따라서 송신기 k는 원하지 않는 모든 수신기들에 대해 동일채널 간섭을 발생시키게 된다. 본 발명에서 고려하는 다중안테나 간섭채널모델은 협대역 블록페이딩이고, 여기서 채널은 하나의 심볼전송구간 동안 정적인 것으로 간주한다.
따라서, 수신기 k에서 수신된 신호(
Figure 112015089273245-pat00013
)는 수학식 1과 같다.
[수학식 1]
Figure 112015089273245-pat00014
여기서,
Figure 112015089273245-pat00015
는 안테나 개수 N과 자유도 d를 행과 열의 개수로 하는 송신기 k의 프리코딩 벡터를 나타낸다. 이러한 프리코딩 벡터는
Figure 112015089273245-pat00016
의 유니터리 행렬이고 d의 열은 선형독립이며 Pk는 송신기 k의 송신전력을 나타낸다. 그리고,
Figure 112015089273245-pat00017
는 N×N 크기의 l번째 송신기에서 k번째 수신기로 가는 독립항등분포를 갖는 복소페이딩 계수로 이뤄진 다중안테나 채널행렬을 나타낸다. 또한, Hkk는 송신기 k에서 수신기 k로 가는 다중안테나 채널행렬을, xk는 송신기 k의 송신신호를, vk는 송신기 k의 프리코딩 행렬을 나타낸다.
Figure 112015089273245-pat00018
는 공분산행렬이
Figure 112015089273245-pat00019
가 되는 수신기 k에서의 0평균 독립항등분포를 갖는 복소가우시안 잡음벡터를 나타낸다. 송신하는 심볼 xl는 독립항등분포를 가지고 채널 Hkl는 full rank이며 상호독립임을 가정한다. 이러한 신호 모델은 모든 K개의 송신기 동기화되고 주파수 오프셋은 없는 것으로 가정한다. 그러면, 수신기 k에서 디코딩을 통해 수신되는 신호는 수학식 2와 같다.
[수학식 2]
Figure 112015089273245-pat00020
여기서,
Figure 112015089273245-pat00021
는 디코딩을 통해 추정한 k의 송신신호,
Figure 112015089273245-pat00022
는 N행 d열의 선형독립열을 갖는 디코딩 행렬이고 직교성을 갖도록
Figure 112015089273245-pat00023
의 유니터리 행렬로 설계될 수 있다.
이러한 프리코딩, 디코딩, 신호모델들을 고려할 때 시스템의 순시 용량합은 수학식 3과 같다.
[수학식 3]
Figure 112015089273245-pat00024
여기서,
Figure 112015089273245-pat00025
는 수신기 k에서 수신된 신호의 공분산행렬을 나타내고,
Figure 112015089273245-pat00026
는 수신기 k에서의 간섭 더하기 잡음의 공분산 행렬을 나타낸다.
도 2는 본 발명의 일실시예에 따른 송신전력을 고려한 평균제곱오차 최소화 알고리즘(200)의 구현을 나타내는 그림이다.
평균제곱오차 최소화 알고리즘(200)은 무선통신시스템에서 송신정보에 대한 평균제곱오차를 최소화하는 일반적인 알고리즘으로써 간섭으로 작용하는 채널을 역으로 곱해주어 간섭 및 잡음의 영향을 평균화시킨다. 본 발명에서는 모바일 기기가 전력이 부족할 때 절약모드로 동작할 수 있도록 평균제곱오차 최소화 알고리즘(200)에 사용하는 송신전력을 고려할 수 있으며, 일반적인 평균제곱오차의 목적함수(
Figure 112015089273245-pat00027
)는 수학식 4와 같다.
[수학식 4]
Figure 112015089273245-pat00028
그리고, 이와 관련하여 최적화의 목적은 수학식 5로 표현할 수 있다.
[수학식 5]
Figure 112015089273245-pat00029
여기서, pl은 송신기 l의 전력제한 조건이다.
그러면, 사용하는 송신전력을 고려하여 최적화의 목적을 실험상수
Figure 112015089273245-pat00030
를 추가하고 수학식 6으로 표현할 수 있다.
[수학식 6]
Figure 112015089273245-pat00031
여기서,
Figure 112015089273245-pat00032
은 복소수의 실수값을 나타낸다.
수학식 6으로 표현된 최적화의 목적은 KKT(Karush-Kuhn-Tucker) 조건과 수학식 6의 라그랑지안으로 표현되는 수학식 7로 해결할 수 있다.
[수학식 7]
Figure 112015089273245-pat00033
여기서,
Figure 112015089273245-pat00034
는 프리코더 l의 전력 제한을 위해 사용되는 라그랑지안 곱상수이다. 이와 관련한 KKT 조건은 수학식 8과 같다.
[수학식 8]
Figure 112015089273245-pat00035
Figure 112015089273245-pat00036
Figure 112015089273245-pat00037
을 고정시키고
Figure 112015089273245-pat00038
을 풀면
Figure 112015089273245-pat00039
을 얻을 수 있고, 교차적으로
Figure 112015089273245-pat00040
Figure 112015089273245-pat00041
을 고정시키고
Figure 112015089273245-pat00042
을 풀면
Figure 112015089273245-pat00043
을 얻을 수 있다. 이는 수학식 9와 수학식 10으로 표현될 수 있다.
[수학식 9]
Figure 112015089273245-pat00044
[수학식 10]
Figure 112015089273245-pat00045
이러한 일련의 반복과정을 표1로 표현하였다.
송신 전력을 고려한 평균제곱오차 최소화 알고리즘은 도 2와 같고, 간섭정렬을 위한 일련의 반복적인 과정은 표 1과 같다.
1. 초기화: 임의의 k번째 수신기의 디코딩 행렬
Figure 112015089273245-pat00046
로 알고리즘 시작
2. 간섭정렬을 위한 반복 과정의 시작
3. 수학식 9를 사용하여 l번째 송신기의 프리코딩 행렬 Vl에 대해 KKT 조건을 만족하는 k번째 수신기의 디코딩 행렬 Uk를 계산
Figure 112015089273245-pat00047

4. 수학식 10을 사용하여 k번째 수신기의 디코딩 행렬 Uk에 대해 KKT 조건을 만족하는 l번째 송신기의 프리코딩 행렬 Vl을 계산
Figure 112015089273245-pat00048

5. 프리코딩 행렬 Vl과 디코딩 행렬 Uk 간의 결과 값이 수렴될 때까지 상기한 3. 과정 내지 4. 과정을 반복 수행함
도 3, 도 4, 도 5, 도 6은 본 발명에 대한 컴퓨터 시뮬레이션의 성능검증 결과로서 시스템 환경은 안테나 수 N=2와 사용자 수 K=3를 가정하였고 각각의 송신기에서 사용하는 전력은 정규화된 전력(
Figure 112015089273245-pat00049
)을 사용하는 것을 가정하였다. 그리고 사용된 상수
Figure 112015089273245-pat00050
는 실험적인 값으로서 0.005를 사용하였다.
도 3은 본 발명의 일실시예에 따른 SNR에 대한 정규화 전력의 사용량을 나타낸 결과 그래프(300)로, 기존의 제곱오차 최소화 알고리즘(310)과 전력최적화 제곱오차 최소화 알고리즘(320)에 대해 비교한 도면이다.
기존의 알고리즘은 50dB에서 75%의 전력을 사용하나 본 발명에 따른 알고리즘은 63%의 전력만을 사용하는 것을 확인할 수 있다.
도 4는 본 발명의 일 실시 예에 따른 알고리즘 반복횟수에 대한 정규화 전력의 사용량을 나타낸 결과 그래프(400)로, SNR 5dB에서 기존의 제곱오차 최소화 알고리즘(410)과 전력최적화 제곱오차 최소화 알고리즘(420)에 대해 비교한 도면이다.
본 발명에 따른 방법은 대략적으로 99.6%의 전력을 사용하고 이를 통해 본 발명에 따른 알고리즘이 좀더 적은 전력을 사용하는 것을 확인할 수 있다.
도 5는 본 발명의 일 실시 예에 따른 SNR에 대한 평균용량합을 나타낸 결과 그래프(500)로, 기존의 제곱오차 최소화 알고리즘(510)과 전력최적화 제곱오차 최소화 알고리즘(520)에 대해 비교한 도면이다.
적은 전력을 사용하는 대신 본 발명에 따른 방법이 평균적으로 0.301bps/Hz의 용량합손실을 보는 것을 확인할 수 있다.
도 6은 본 발명의 일 실시 예에 따른 SNR에 대한 사용전력 당 평균용량합인 전력효율을 나타낸 결과 그래프(600)로, 기존의 제곱오차 최소화 알고리즘(610)과 전력최적화 제곱오차 최소화 알고리즘(620)에 대해 비교한 도면이다.
50dB에서 기존의 알고리즘이 수치상으로 50의 전력효율을 보이고 본 발명에 따른 방법은 55의 전력효율을 보이는 것을 알 수 있다.
이처럼 본 발명의 실시예들에 따르면, 간섭정렬을 사용하는 모바일 기기에서 전력이 부족하여 전력 최소화 모드로 동작할 필요가 있을 때 사용전력을 고려하여 목적함수를 재구성함으로써 이에 따라 프리코딩을 사용하는 전력효율적인 평균제곱오차 최소화 간섭정렬 알고리즘을 적용할 수 있으며 사용전력을 줄이고 전력효율성을 최대화할 수 있다.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 어플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (6)

  1. 컴퓨터로 구현되는 다중사용자다중안테나(MIMO) 시스템에서의 간섭정렬방법에 있어서,
    간섭채널 상의 간섭정렬을 위해 송신기의 사용전력을 고려하여 상기 사용전력에 대한 평균제곱오차와 관련된 목적함수를 계산한 후 상기 목적함수를 통해 상기 송신기의 프리코딩 행렬과 수신기의 디코딩 행렬을 계산하는 단계
    를 포함하고,
    상기 단계는,
    상기 간섭정렬을 사용하는 상기 송신기에서 전력 최소화 모드로 동작하도록 상기 송신기의 사용전력을 고려하여 상기 평균제곱오차와 관련된 목적함수를 재구성하고 상기 목적 함수를 통해 송신기의 프리코딩 행렬과 수신기의 디코딩 행렬을 계산하는 일련의 과정을 반복하는 것으로,
    상기 목적함수로서 상기 사용전력을 고려한 라그랑지안을 계산하는 단계; 및
    상기 라그랑지안을 미분하여 송신기의 프리코딩 행렬과 수신기의 디코딩 행렬을 교차적으로 계산하는 단계
    를 포함하고,
    상기 사용전력을 고려한 라그랑지안을 계산하는 단계는,
    상기 목적함수로서 수학식 1의 최적화 목적을 만족하는 라그랑지안을 수학식 2를 통해 계산하고,
    수학식 1:
    Figure 112016107155886-pat00063

    (여기서, Hkk는 k번째 송신기에서 k번째 수신기로의 채널 행렬, Vk은 k번째 송신기의 프리코딩 행렬, Vl은 l번째 송신기의 프리코딩 행렬,
    Figure 112016107155886-pat00064
    는 실험상수, Uk는 k번째 수신기의 디코딩 행렬, pl은 l번째 송신기의 송신 전력,
    Figure 112016107155886-pat00065
    은 복소수의 실수값을 나타낸다.)
    수학식 2:
    Figure 112016107155886-pat00066

    (여기서,
    Figure 112016107155886-pat00067
    는 l번째 송신기의 전력 제한을 위해 사용되는 라그랑지안 곱상수,
    Figure 112016107155886-pat00068
    은 복소수의 실수값을 나타낸다.)
    상기 송신기의 프리코딩 행렬과 수신기의 디코딩 행렬을 교차적으로 계산하는 단계는,
    임의의 k번째 수신기의 디코딩 행렬 Uk를 시작으로 간섭정렬을 위한 일련의 과정을 시작하는 것으로,
    l번째 송신기의 프리코딩 행렬 Vl에 대해 KKT(Karush-Kuhn-Tucker) 조건을 만족하는 k번째 수신기의 디코딩 행렬 Uk를 구성하는 제1 단계;
    k번째 수신기의 디코딩 행렬 Uk에 대해 KKT(Karush-Kuhn-Tucker) 조건을 만족하는 l번째 송신기의 프리코딩 행렬 Vl을 구성하는 제2 단계; 및
    상기 프리코딩 행렬 Vl과 상기 디코딩 행렬 Uk 간의 결과 값이 수렴할 때까지 상기 제1 단계와 상기 제2 단계를 반복 수행하는 단계
    를 포함하는 간섭정렬방법.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 제1항에 있어서,
    상기 l번째 송신기의 프리코딩 행렬 Vl은 안테나 개수와 자유도를 행과 열의 개수로 하는 송신전력에 따른 프리코딩 벡터로 나타내는 것
    을 특징으로 하는 간섭정렬방법.
KR1020150129910A 2015-09-14 2015-09-14 다중안테나 간섭채널에서 전력효율적인 간섭정렬을 위한 평균제곱오차 최소화 방법 KR101680981B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150129910A KR101680981B1 (ko) 2015-09-14 2015-09-14 다중안테나 간섭채널에서 전력효율적인 간섭정렬을 위한 평균제곱오차 최소화 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150129910A KR101680981B1 (ko) 2015-09-14 2015-09-14 다중안테나 간섭채널에서 전력효율적인 간섭정렬을 위한 평균제곱오차 최소화 방법

Publications (1)

Publication Number Publication Date
KR101680981B1 true KR101680981B1 (ko) 2016-11-30

Family

ID=57707473

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150129910A KR101680981B1 (ko) 2015-09-14 2015-09-14 다중안테나 간섭채널에서 전력효율적인 간섭정렬을 위한 평균제곱오차 최소화 방법

Country Status (1)

Country Link
KR (1) KR101680981B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250780A1 (en) * 2009-12-18 2012-10-04 Huawei Technologies Co., Ltd. Method and device for pre-coding, and method and device for decoding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250780A1 (en) * 2009-12-18 2012-10-04 Huawei Technologies Co., Ltd. Method and device for pre-coding, and method and device for decoding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Luis Miguel Cortés-Pe?a et al.; Joint optimization of stream allocation and beamforming and combining weights for the MIMO interference channel; GLOBECOM 2013; Page(s):3907 - 3913; 9-13 Dec. 2013*

Similar Documents

Publication Publication Date Title
KR101562557B1 (ko) Massive MIMO 하향링크를 위한 두 단계 빔포머 기반의 사용자 스케줄링 방법, 장치 및 기록매체
KR101750656B1 (ko) 매시브 안테나 기반의 패턴/편파 빔 분할 다중 접속 방법 및 이를 수행하는 장치
WO2015182902A1 (ko) Mimo 수신기가 mimo 송신기와의 통신을 위한 파라미터를 결정하는 방법
Sabbagh et al. Pilot allocation and sum-rate analysis in cell-free massive MIMO systems
JP2008306713A (ja) サブチャネル割当装置
Li et al. Massive MIMO for ray-based channels
Parihar et al. Energy and spectral efficiency of very large multiuser MIMO systems
Turan et al. Unsupervised learning of adaptive codebooks for deep feedback encoding in FDD systems
KR101669857B1 (ko) 대규모 다중-입력 다중-출력 통신 시스템에서 채널 추정 및 피드백 방법
CN106664174B (zh) 用于形成re组的方法和mimo发射器
CN116508269A (zh) 无线电信网络
Demir et al. RIS-assisted massive MIMO with multi-specular spatially correlated fading
KR101680981B1 (ko) 다중안테나 간섭채널에서 전력효율적인 간섭정렬을 위한 평균제곱오차 최소화 방법
KR101819318B1 (ko) 제한된 채널 피드백 환경에서 다중 사용자 다중 안테나 시스템의 효율적 간섭 제거 방법 및 그 시스템
KR101556482B1 (ko) 다중안테나 간섭채널에서 slnr 최대화를 통한 간섭정렬 방법 및 장치
KR20200001397A (ko) 기지국장치 및 기지국장치의 동작 방법
KR101625805B1 (ko) 다중사용자다중안테나 시스템에서 용량합 최대화 기반의 전력효율적인 간섭정렬방법
Taniguchi et al. Resource efficiency and pilot decontamination in XL‐MIMO double‐scattering correlated channels
Su et al. Diversity and multiplexing technologies by 3D beams in polarized massive MIMO systems
KR102110493B1 (ko) 무선 네트워크에서 밀리미터파 기반 통신 방법 및 장치들
Amin et al. A deep reinforcement learning for energy efficient resource allocation Intelligent Reflecting Surface (IRS) driven Non-Orthogonal Multiple Access Beamforming (NOMA-BF)
Medra et al. Per-user outage-constrained power loading technique for robust MISO downlink
Belhabib et al. Ant colony‐based strategy to mitigate the pilot contamination problem in multicell massive multiple‐input multiple‐output systems
Taiwo et al. Adaptive beamforming for multiple-access millimeter wave communications: invited presentation
KR101718637B1 (ko) 공간 다중화 시스템에서의 송신 안테나 상관관계를 고려한 mimo 시스템

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 4