KR101644710B1 - Preparing method of adhesive having conductive materials - Google Patents

Preparing method of adhesive having conductive materials Download PDF

Info

Publication number
KR101644710B1
KR101644710B1 KR1020140172863A KR20140172863A KR101644710B1 KR 101644710 B1 KR101644710 B1 KR 101644710B1 KR 1020140172863 A KR1020140172863 A KR 1020140172863A KR 20140172863 A KR20140172863 A KR 20140172863A KR 101644710 B1 KR101644710 B1 KR 101644710B1
Authority
KR
South Korea
Prior art keywords
weight
parts
carbon nanotubes
conductive
methacryloxypropyltrimethoxysilane
Prior art date
Application number
KR1020140172863A
Other languages
Korean (ko)
Other versions
KR20160068052A (en
Inventor
하기룡
박성환
권재범
김성훈
Original Assignee
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 계명대학교 산학협력단 filed Critical 계명대학교 산학협력단
Priority to KR1020140172863A priority Critical patent/KR101644710B1/en
Publication of KR20160068052A publication Critical patent/KR20160068052A/en
Application granted granted Critical
Publication of KR101644710B1 publication Critical patent/KR101644710B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components

Abstract

본 발명은 탄소나노튜브를 산으로 전처리하여 표면에 카르복시기(-COOH)를 형성하는 단계(제1단계); 상기 전처리된 탄소나노튜브의 표면을 하이드록시기(-OH)로 치환하는 단계(제2단계); 실란커플링제를 가수분해 하는 단계(제3단계); 상기 표면이 치환된 탄소나노튜브에 가수분해된 실란커플링제를 혼합하여 도전체를 제조하는 단계(제4단계); 및단량체와 유화제에 상기 도전체를 첨가하고 유화중합하여 도전성 점착제를 제조하는 단계(제5단계)를 포함하는 도전성 점착제 제조방법을 제공한다.
따라서 금속 또는 도전성 고분자를 대체하여 탄소나노튜브를 개질하는 경우 환경친화적인 유화중합으로 도전성 점착제를 제조할 수 있다. 탄소나노튜브를 포함하는 도전체는 첨가되는 수지와 잘 혼화되어 카본블랙 및 도전성 고분자와 같은 도전성 소재를 포함하지 않아도 도전성이 우수하여 점착물성이 증가된 도전성 수지를 제조할 수 있다
The present invention relates to a process for preparing a carbon nanotube having a carboxyl group (-COOH) on a surface thereof (step 1) by pretreating carbon nanotubes with an acid; Replacing the surface of the pretreated carbon nanotubes with a hydroxyl group (-OH) (second step); Hydrolyzing the silane coupling agent (third step); Mixing the surface-substituted carbon nanotubes with a hydrolyzed silane coupling agent to prepare a conductor (step 4); And a step of adding the conductor to the monomer and the emulsifier and emulsifying and polymerizing to prepare a conductive pressure sensitive adhesive (fifth step).
Therefore, when the carbon nanotubes are modified by replacing the metal or the conductive polymer, the conductive pressure-sensitive adhesive can be produced by environmental-friendly emulsion polymerization. The conductive material including the carbon nanotubes is well mixed with the resin to be added to produce a conductive resin having excellent conductivity and increased adhesive property without containing a conductive material such as carbon black and conductive polymer

Description

도전성 점착제 제조방법{Preparing method of adhesive having conductive materials}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

본 발명은 아크릴계 도전성 점착제 제조방법에 관한 것으로서, 보다 상세하게는 유화중합을 이용하여 점착물성이 증진된 아크릴계 도전성 점착제의 제조방법에 관한 것이다. The present invention relates to a method for producing an acrylic conductive pressure-sensitive adhesive, and more particularly, to a method for producing an acrylic conductive pressure-sensitive adhesive improved in adhesive property using emulsion polymerization.

일반적으로 아크릴계 점착제는 경제적인 이유로 포스트 잇, 양면테이프 등의 점착물질로 다수 사용되고 있다. 아크릴계 점착제는 용제를 사용하여 제조되나 용제형 점착제의 경우 환경을 오염시키는 용제를 다량으로 사용하고 있어, 보다 환경친화적인 유화중합을 이용한 점착제가 개발되고 있다. 한편 전자 부품 혹은 전자 기기들은 수송, 보관, 조립 중 표면의 손상을 최소화하기 위하여 보호 필름을 부착하는 경우가 있으며, 상기 보호 필름은 정전기 발생에 의한 기기손상이 없도록 도전성을 부여하여야 한다. 점착제에 도전성을 부여하기 위하여 첨가하는 물질로는 카본블랙과 같은 전도성 고분자 등이 있다. 그러나 도전성 고분자는 점착제와의 혼화성이 불량하여 효과적으로 도전성을 향상시키기가 쉽지 않은 문제가 있으며, 금속 섬유, 금속 박편, 카본블랙, 흑연 등과 같은 도전성 충진제를 첨가할 수 있으나 이들 대부분 다량 첨가 시 점착력 약화나 점착제와의 혼화성 문제가 발생하여 점착물성이 감소할 뿐만 아니라 도전성 충진제의 첨가에 의해 불투명하여지고 계면결합으로 인하여 기계적 강도가 저하되는 등의 문제점이 있다.In general, acrylic adhesives are often used as adhesive materials such as post-itts and double-sided tapes for economic reasons. Acrylic pressure-sensitive adhesives are manufactured using solvents, but in the case of solvent-based pressure-sensitive adhesives, a large amount of solvents are used to pollute the environment. Thus, pressure-sensitive adhesives using more environmentally friendly emulsion polymerization have been developed. On the other hand, electronic parts or electronic devices may be attached with a protective film in order to minimize damage to the surface during transportation, storage and assembly, and the protective film should be provided with conductivity so as to prevent damage to the device due to the generation of static electricity. As a substance to be added for imparting conductivity to the pressure-sensitive adhesive, there is a conductive polymer such as carbon black. However, since the conductive polymer has poor compatibility with the pressure-sensitive adhesive, it is difficult to effectively improve the conductivity, and conductive fillers such as metal fibers, metal flakes, carbon black, and graphite can be added. However, Or miscibility with a pressure-sensitive adhesive is caused, resulting in a deterioration of adhesive properties as well as opacity due to addition of a conductive filler, and mechanical strength is lowered due to interfacial bonding.

상기한 종래기술의 문제점을 해결하기 위해 대한민국 등록특허 제10-964561호에 도전성 점착제 조성물이 소개되어 있으나, 도전성 고분자를 도전성 소재를 포함했을 뿐 금속이나, 카본블랙을 대체하여 경제적이고 환경친화적인 도전성 소재를 개시하지 않았으며, 유화중합에 의하여도 용제형 점착제와 같은 전도성 및 점착물성을 가지는 점착제가 개시된 바가 없어서, 새로운 금속 섬유, 금속 박편, 카본 블랙과 같은 도전성 소재 대체하는 새로운 소재를 유화중합하여 도전성 점착제를 제조하는 방법이 매우 필요한 실정이다. In order to solve the problems of the prior art described above, Korean Patent No. 10-964561 discloses a conductive pressure-sensitive adhesive composition. However, the conductive pressure-sensitive adhesive composition contains a conductive material only as a substitute for a metal or a carbon black to provide an economical and environment- There has not been disclosed a pressure-sensitive adhesive having conductivity and adhesive properties such as a solvent-type pressure-sensitive adhesive even by emulsion polymerization, so that a new material replacing a conductive material such as a new metal fiber, a metal flake, or carbon black is emulsified A method for producing a conductive pressure-sensitive adhesive is very necessary.

본 발명은, 금속, 도전성 고분자 등의 도전성 소재를 대체하여 탄소나노튜브를 도전성 소재로 하고 용제를 사용하지 않아서 환경친화적이고 안전한 유화중합으로 도전성 점착제를 제조하는 방법을 제공하는데 목적이 있다.It is an object of the present invention to provide a method for producing a conductive pressure-sensitive adhesive by environmentally friendly and safe emulsion polymerization by using carbon nanotubes as a conductive material instead of conductive materials such as metals and conductive polymers.

상기 목적을 달성하기 위하여, 본 발명은 탄소나노튜브를 산으로 전처리하여 표면에 카르복시기(-COOH)를 형성하는 단계(제1단계); 상기 전처리된 탄소나노튜브의 표면을 하이드록시기(-OH)로 치환하는 단계(제2단계); 실란커플링제를 가수분해 하는 단계(제3단계); 상기 표면이 치환된 탄소나노튜브에 가수분해된 실란커플링제를 혼합하여 도전체를 제조하는 단계(제4단계); 및 단량체와 유화제에 상기 도전체를 첨가하고 유화중합하여 도전성 점착제를 제조하는 단계(제5단계)를 포함하는 도전성 점착제 제조방법을 제공한다.In order to accomplish the above object, the present invention provides a method for manufacturing a carbon nanotube, comprising: (a) a step of pretreating a carbon nanotube with an acid to form a carboxy group (-COOH) on the surface Replacing the surface of the pretreated carbon nanotubes with a hydroxyl group (-OH) (second step); Hydrolyzing the silane coupling agent (third step); Mixing the surface-substituted carbon nanotubes with a hydrolyzed silane coupling agent to prepare a conductor (step 4); And a step of adding the conductor to the monomer and the emulsifier and emulsifying and polymerizing to prepare a conductive pressure sensitive adhesive (fifth step).

또한 상기 제1단계의 산은, 황산(H2SO4) : 질산(HNO3)을 4 내지 3 : 1의 부피비로 혼합할 수 있다. The acid of the first step may be mixed with sulfuric acid (H 2 SO 4 ): nitric acid (HNO 3 ) in a volume ratio of 4: 3: 1.

또한 상기 제2단계에서, 전처리된 탄소나노튜브 총 100 중량부에 대하여 용매 7000 내지 7500 중량부 및 치환제 250 내지 300 중량부로 첨가하고 반응시켜, 탄소나노튜브의 카르복시기(-COOH)를 히드록시기(-OH)로 치환할 수 있다. Also, in the second step, 7000 to 7500 parts by weight of a solvent and 250-300 parts by weight of a substituent are added to 100 parts by weight of the total of the pretreated carbon nanotubes and reacted to react the carboxyl group (-COOH) OH).

여기서 상기 치환제는, 싸이오닐클로라이드(SOCl2), 1,4-부탄디올(1,4-butandiol), 및 에틸렌 글리콜(Ethylene glycol)로 이루어진 군에서 선택된 어느 하나일 수 있다. Here, the substituent may be any one selected from the group consisting of thionyl chloride (SOCl 2 ), 1,4-butanediol, and ethylene glycol.

또한 상기 제3단계는, 실란커플링제 100 중량부에 대하여 에탄올 1500 내지 2000 중량부 및 중합금지제 75 내지 100 중량부로 첨가하고 교반하여, 실란커플링제를 가수분해할 수 있다. In the third step, 1500 to 2000 parts by weight of ethanol and 75 to 100 parts by weight of a polymerization inhibitor are added to 100 parts by weight of the silane coupling agent, and the mixture is stirred to hydrolyze the silane coupling agent.

여기서 상기 실란커플링제는 3-메타아크릴록시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane; MPTMS), (3-아크릴록시프로필)트리메티옥시실란[(3-acryloxypropyl)trimethyoxysilane], N-(3-아크릴록시-2-하이드록시프로필)-3-아미노프로필트리에톡시실란[ N-(3-acryloxy-2-hydroxypropyl)-3-aminopropyltriethoxysilane], O-(메타아크릴록시에틸)-N-트리에톡시-시릴프로필)우레탄[ O-methacyloxyethyl)-N-(triethoxy-silylpropyl)urethane], N-(3-메타아크릴록시-2-하이드록시프로필)-3-아미노프로필트리에톡시실란[N-(3-methacyloxy-2-hydroxypropyl)-3-aminopropyltriethoxysilane], 메타아크릴록시메틸트리에톡시실란(methacyloxylmethyltriethoxysilane), 및 7-옥테닐 트리클로로실란(7-octenyl trichlorosilane; 7-OTCS)으로 이루어진 군에서 선택된 어느 하나일 수 있다.Wherein the silane coupling agent is selected from the group consisting of 3-methacryloxypropyltrimethoxysilane (MPTMS), (3-acryloxypropyl) trimethyoxysilane, N- (3-acryl Hydroxypropyl) -3-aminopropyltriethoxysilane], O- (methacryloxyethyl) -N-triethoxy- Methacryloxyethyl) -N- (triethoxy-silylpropyl) urethane, N- (3-methacryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane [N- methacyloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane], methacyloxylmethyltriethoxysilane, and 7-octenyl trichlorosilane (7-OTCS) .

또한 상기 제4단계는, 상기 표면이 치환된 탄소나노튜브 100 중량부에 대해, 상기 가수분해된 실란커플링제 4350 내지 4650 중량부로 혼합하고 실란화반응시켜 도전체를 제조할 수 있다. In the fourth step, the conductive carbon nanotubes may be mixed with the hydrolyzed silane coupling agent in an amount of 4350 to 4650 parts by weight based on 100 parts by weight of the surface-substituted carbon nanotubes, followed by silanation.

또한 상기 제5단계는, 단량체 100 중량부에 대해 유화제 1.65 내지 2 중량부 및 도전체를 0.1 내지 0.5 중량부 혼합하고 유화중합할 수 있다. In the fifth step, emulsion polymerization may be performed by mixing 1.65 to 2 parts by weight of the emulsifier and 0.1 to 0.5 parts by weight of the conductive material with respect to 100 parts by weight of the monomer.

본 발명의 구체적인 실시예에 따르면, 상기 도전성 점착제는, 도전체를 0.3 내지 0.5 중량%로 포함할 수 있다. According to a specific embodiment of the present invention, the conductive pressure-sensitive adhesive may include the conductive material in an amount of 0.3 to 0.5% by weight.

본 발명에 따른 도전성 점착제 제조방법에 의하면, 금속 또는 도전성 고분자를 대체하여 탄소나노튜브를 개질하는 경우 용제를 사용하지 않는 환경친화적인 유화중합으로 도전성 점착제를 제조할 수 있다. 개질된 탄소나노튜브를 포함하는 도전체는 첨가되는 수지와 잘 혼화되어 카본블랙 및 도전성 고분자와 같은 도전성 소재를 포함하지 않아도 도전성이 우수하여 점착물성이 증가된 도전성 수지를 제조할 수 있다. According to the method for producing a conductive pressure-sensitive adhesive according to the present invention, when the carbon nanotube is modified by replacing the metal or the conductive polymer, the conductive pressure-sensitive adhesive can be produced by environmentally friendly emulsion polymerization without using a solvent. The conductive material containing the modified carbon nanotubes is well mixed with the resin to be added, so that conductive resin having excellent conductivity and increased adhesive property can be produced without containing a conductive material such as carbon black and conductive polymer.

도 1은 본 발명의 실시예에 따른 도전성 점착제의 공정흐름도이다.
도 2는 본 발명의 실시예에 따른 도전성 점착제의 적외선분광분석 그래프이다.
도 3은 본 발명의 실시예에 따른 유화중합 전후의 적외선분광분석 그래프이다.
도 4는 본 발명의 실시예에 따른 도전성 점착제의 시차주사 열량측정(differentail scanning calorimetry; DSC) 결과를 나타낸 그래프이다.
도 5는 본 발명의 실시예에 따른 도전성 점착제의 주사전자현미경(scanning electron moicroscpoe; SEM) 사진이다.
1 is a process flow diagram of a conductive adhesive according to an embodiment of the present invention.
2 is an infrared spectroscopic analysis graph of a conductive adhesive according to an embodiment of the present invention.
3 is a graph of infrared spectroscopic analysis before and after emulsion polymerization according to an embodiment of the present invention.
4 is a graph showing the results of differential scanning calorimetry (DSC) of the conductive adhesive according to an embodiment of the present invention.
5 is a scanning electron microscope (SEM) photograph of a conductive adhesive according to an embodiment of the present invention.

본 발명자는 도전성 점착제를 연구하던 중에 종래의 점착제에 첨가되는 금속 섬유, 금속 박편, 카본 블랙, 흑연 등과 같은 도전성 소재를 대체하여 탄소나노튜브를 산처리하고, 실란커플링제와 혼합하여 도전체를 제조하는 경우에 용제를 사용하는 방법보다 환경친화적인 유화중합으로 도전성 점착제를 제조할 수 있는 것을 확인하여 본 발명을 완성하였다. The inventors of the present invention have been studying conductive pressure-sensitive adhesives to replace conductive materials such as metal fibers, metal flakes, carbon black, and graphite added to conventional pressure-sensitive adhesives by acid treatment of carbon nanotubes and mixing them with a silane coupling agent It is possible to produce an electrically conductive pressure sensitive adhesive by emulsion polymerization which is more environmentally friendly than a method using a solvent. Thus, the present invention has been completed.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 탄소나노튜브를 산으로 전처리하여 표면에 카르복시기(-COOH)를 형성하는 단계(제1단계); 상기 전처리된 탄소나노튜브의 표면을 하이드록시기(-OH)로 치환하는 단계(제2단계); 실란커플링제를 가수분해 하는 단계(제3단계); 상기 표면이 치환된 탄소나노튜브에 가수분해된 실란커플링제를 혼합하여 도전체를 제조하는 단계(제4단계); 및 단량체와 유화제에 상기 도전체를 첨가하고 유화중합하여 도전성 점착제를 제조하는 단계(제5단계)를 포함하는 도전성 점착제 제조방법을 제공한다.The present invention relates to a process for preparing a carbon nanotube having a carboxyl group (-COOH) on a surface thereof (step 1) by pretreating carbon nanotubes with an acid; Replacing the surface of the pretreated carbon nanotubes with a hydroxyl group (-OH) (second step); Hydrolyzing the silane coupling agent (third step); Mixing the surface-substituted carbon nanotubes with a hydrolyzed silane coupling agent to prepare a conductor (step 4); And a step of adding the conductor to the monomer and the emulsifier and emulsifying and polymerizing to prepare a conductive pressure sensitive adhesive (fifth step).

도 1은 본 발명의 실시예에 따른 도전성 점착제의 공정흐름도이다.1 is a process flow diagram of a conductive adhesive according to an embodiment of the present invention.

도면을 참조하면, 상기 탄소나노튜브는 그래핀을 말아서 2차원 벌집구조인 튜브형상으로 제조된 것으로서, 단위무게당 표면적이 매우 크며, 구리와 유사한 전도성을 갖는다. 탄소나노튜브를 도전성 소재로 하는 경우에 금속 박편과 같은 도전성 소재를 대체할 수 있다. Referring to the drawings, the carbon nanotubes are manufactured in a tubular shape having a two-dimensional honeycomb structure by grapping the graphene, and have a very large surface area per unit weight and conductivity similar to copper. When the carbon nanotubes are made of a conductive material, a conductive material such as a metal flake can be substituted.

상기 제1단계의 산은, 황산(H2SO4) : 질산(HNO3)을 4 내지 3 : 1의 부피비로 혼합할 수 있다. The acid of the first step may be mixed with sulfuric acid (H 2 SO 4 ): nitric acid (HNO 3 ) in a volume ratio of 4: 3: 1.

상기 탄소나노튜브를 황산 또는 질산만으로 전처리하는 경우보다 혼산을 사용하는 경우에 세척과 제조공정이 용이하고, 카르복시기를 효율적으로 형성할 수 있으며, 적외선 분광분석(fourier transform infrared spectroscopy; FT-IR)으로 비교하였을 때 산화된 부분의 피크가 명확하게 나타날 수 있다. The carbon nanotubes can be easily cleaned and manufactured in the case of using mixed acid as compared with the case of pretreating the carbon nanotubes only with sulfuric acid or nitric acid, can efficiently form a carboxyl group, and can be formed by Fourier transform infrared spectroscopy (FT-IR) When compared, the peak of the oxidized part can be clearly shown.

또한 상기 제2단계에서, 전처리된 탄소나노튜브 총 100 중량부에 대하여 용매 7000 내지 7500 중량부 및 치환제 250 내지 300 중량부로 첨가하고 반응시켜, 탄소나노튜브의 카르복시기(-COOH)를 하이드록시기(-OH)로 치환할 수 있다.Also, in the second step, 7000 to 7500 parts by weight of a solvent and 250-300 parts by weight of a substituent are added to 100 parts by weight of the total of the pretreated carbon nanotubes and reacted to react the carboxyl group (-COOH) (-OH).

상기 반응을 진행하며 200 rpm으로 교반하는 것이 바람직하다.The reaction is preferably carried out at 200 rpm.

상기 범위 미만으로 치환제를 첨가하는 경우에는 경우에 탄소나노튜브 표면에 형성된 카르복시기 하이드록시기로 충분하게 치환할 수 없으며, 상기 범위를 초과하는 경우에는 치환제가 잔류되어 치환의 효율성이 감소될 수 있다. When the substituent is added in the range below the above range, the carboxyl group hydroxy group formed on the surface of the carbon nanotube can not be sufficiently substituted. If the substituent is beyond the above range, the substituent may remain and the efficiency of substitution may be reduced.

여기서 상기 치환제는, 싸이오닐클로라이드(SOCl2), 1,4-부탄디올(1,4-butandiol), 및 에틸렌 글리콜(Ethylene glycol)로 이루어진 군에서 선택된 어느 하나일 수 있다.Here, the substituent may be any one selected from the group consisting of thionyl chloride (SOCl 2 ), 1,4-butanediol, and ethylene glycol.

상기 치환제는 사슬 양 끝에 하이드록시기를 포함하고 있으며, 유사한 구조를 가지고 있어 서로 대체가 가능하다. The substituent contains a hydroxy group at both ends of the chain and has a similar structure and can be substituted for each other.

여기서 상기 전처리된 탄소나노튜브의 표면을 하이드록시기로 치환하는 경우에 산으로 전처리된 탄소나노튜브에 우선 싸이오닐클로라이드를 첨가하여 카르복시기를 하이드록시기로 치환한 이후에 다시 1,4-부탄디올을 첨가하여 치환하는 단계를 수행하는 것이 바람직하다. When the surface of the pretreated carbon nanotube is substituted with a hydroxy group, thionyl chloride is first added to the carbon nanotubes pretreated with the acid to replace the carboxyl group with a hydroxy group, and 1,4-butanediol is further added thereto It is preferable to carry out the substitution step.

상기 싸이오닐클로라이드를 첨가하고 다시 1,4-부탄디올을 첨가하는 경우에서는 1,4-부탄디올의 체인이 길어서 가수분해된 실란커플링제와 용이하게 실란화반응이 일어날 수 있다. When the thionyl chloride is added and 1,4-butanediol is added again, the chain of 1,4-butanediol is long and the silanization reaction can easily occur with the hydrolyzed silane coupling agent.

또한 상기 제3단계는, 실란커플링제 100 중량부에 대하여 에탄올 1500 내지 2000 중량부 및 중합금지제 75 내지 100 중량부로 첨가하고 교반하여, 실란커플링제를 가수분해할 수 있다. In the third step, 1500 to 2000 parts by weight of ethanol and 75 to 100 parts by weight of a polymerization inhibitor are added to 100 parts by weight of the silane coupling agent, and the mixture is stirred to hydrolyze the silane coupling agent.

가수분해 시 마그네틱 바(magnetic bar)를 사용하고, 에탄올이 증발하지 않도록 호일로 덮어서 가수분해할 수 있다. Hydrolysis can be performed by using a magnetic bar and covering with foil to prevent evaporation of ethanol.

또한 상기 실란커플링제를 1 시간 동안 200 rpm 으로 교반하여 가수분해할 수 있다. Further, the silane coupling agent can be hydrolyzed by stirring at 200 rpm for 1 hour.

여기서 상기 실란커플링제는 3-메타아크릴록시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane; MPTMS), (3-아크릴록시프로필)트리메티옥시실란[(3-acryloxypropyl)trimethyoxysilane], N-(3-아크릴록시-2-하이드록시프로필)-3-아미노프로필트리에톡시실란[ N-(3-acryloxy-2-hydroxypropyl)-3-aminopropyltriethoxysilane], O-(메타아크릴록시에틸)-N-트리에톡시-시릴프로필)우레탄[ O-methacyloxyethyl)-N-(triethoxy-silylpropyl)urethane], N-(3-메타아크릴록시-2-하이드록시프로필)-3-아미노프로필트리에톡시실란[N-(3-methacyloxy-2-hydroxypropyl)-3-aminopropyltriethoxysilane], 메타아크릴록시메틸트리에톡시실란(methacyloxylmethyltriethoxysilane), 및 7-옥테닐 트리클로로실란(7-octenyl trichlorosilane; 7-OTCS)으로 이루어진 군에서 선택된 어느 하나일 수 있다.Wherein the silane coupling agent is selected from the group consisting of 3-methacryloxypropyltrimethoxysilane (MPTMS), (3-acryloxypropyl) trimethyoxysilane, N- (3-acryl Hydroxypropyl) -3-aminopropyltriethoxysilane], O- (methacryloxyethyl) -N-triethoxy- Methacryloxyethyl) -N- (triethoxy-silylpropyl) urethane, N- (3-methacryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane [N- methacyloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane], methacyloxylmethyltriethoxysilane, and 7-octenyl trichlorosilane (7-OTCS) .

종래에는 탄소나노튜브를 MPTMS와 반응시키는 경우 MPTMS를 가수분해하더라도 중합금지제를 첨가하여 가수분해를 실시한 경우는 없다.Conventionally, when a carbon nanotube is reacted with MPTMS, hydrolysis is not performed by adding a polymerization inhibitor even when MPTMS is hydrolyzed.

또한 상기 제4단계는, 상기 표면이 치환된 탄소나노튜브 100 중량부에 대해, 상기 가수분해된 실란커플링제 4350 내지 4650 중량부로 혼합하고 실란화반응시켜 도전체를 제조할 수 있다. In the fourth step, the conductive carbon nanotubes may be mixed with the hydrolyzed silane coupling agent in an amount of 4350 to 4650 parts by weight based on 100 parts by weight of the surface-substituted carbon nanotubes, followed by silanation.

상기 도전체는 유화중합법으로 제조되는 수계형 점착제의 점착물성을 증가시킬 수 있다. The conductor can increase the adhesive property of the water-based pressure-sensitive adhesive prepared by the emulsion polymerization method.

또한 상기 제5단계는, 단량체 100 중량부에 대해 유화제 1.65 내지 2 중량부 및 도전체를 0.1 내지 0.5 중량부 혼합하고 유화중합할 수 있다. In the fifth step, emulsion polymerization may be performed by mixing 1.65 to 2 parts by weight of the emulsifier and 0.1 to 0.5 parts by weight of the conductive material with respect to 100 parts by weight of the monomer.

상기 도전체가 조건을 벗어나는 경우에는 전도성이 감소되어 전도성 점착제를 제조할 수 없다. When the conductor is out of the conditions, the conductivity is reduced and the conductive adhesive can not be produced.

본 발명의 구체적인 실시예에 따르면, 상기 도전성 점착제는, 도전체를 0.3 내지 0.5 중량%로 포함할 수 있다. According to a specific embodiment of the present invention, the conductive pressure-sensitive adhesive may include the conductive material in an amount of 0.3 to 0.5% by weight.

상기 도전성 점착제가 포함하는 도전체가 상기 범위에서 중량%가 증가함에 따라 점도, 박리강도, 전기전도성 등의 점착물성이 증가할 수 있다.As the weight percentage of the conductive adhesive contained in the conductive pressure sensitive adhesive increases, the adhesive properties such as viscosity, peel strength, and electrical conductivity may increase.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples.

<실시예 1> 도전성 점착제 제조Example 1 Production of conductive pressure-sensitive adhesive

탄소나노튜브(이하'MWCNT', NC7000, Nanocyl), 산으로 전처리하기 위한 황산(Sulfuric acid; H2SO4, DUKSAN), 질산(Nitric acid; HNO3, DUKSAN), 실란커플링제( 3-Methacryloxypropyltrimethoxysilane; MPTMS, Tokyo Chemical Industry), 단량체인 2-에틸헥실아크릴레이트(2-ethylhexyl acrylate;2-EHA, DAEJUNG), 부틸아크릴레이트(Butyl acrylate;BA, DAEJUNG), 메틸 메타크릴레이트(Methyl methacrylate; MMA, DAEJUNG), 아크릴릭 애시드(Acrylic acid;AAc, DAEJUNG)을 준비하였다. (MWCNT, NC7000, Nanocyl), sulfuric acid (H 2 SO 4 , DUKSAN), nitric acid (HNO 3 , DUKSAN) and silane coupling agent (3-Methacryloxypropyltrimethoxysilane ; MPTMS, Tokyo Chemical Industry), 2-ethylhexyl acrylate (2-EHA, DAEJUNG), butyl acrylate (BA, DAEJUNG), Methyl methacrylate , DAEJUNG) and acrylic acid (AAc, DAEJUNG) were prepared.

또한 유화중합을 위한 유화제로 폴리에틸렌 글리콜 터트-옥틸페닐 에테르( Polyethylene glycol tert-octylphenyl ether;Triton 114, Sigma Aldrich) 및 소디움도데실설페이트(Sodium dodecyl sulfate; SDS, Sigma Aldrich)를 준비하였다. Polyethylene glycol tert-octylphenyl ether ( Triton® 114, Sigma Aldrich) and sodium dodecyl sulfate (SDS, Sigma Aldrich) were prepared as emulsifiers for emulsion polymerization.

버퍼용액으로 소디움바이카르보네이트(Sodium bicarbonate; Na2HCO3, SAMCHUN)를 준비하고, 개시제로서 포테슘퍼설페이트(Potassium persulfate;KPS, Sigma Aldrich)를 준비하였다.
Sodium bicarbonate (Na 2 HCO 3 , SAMCHUN) was prepared as a buffer solution and Potassium persulfate (KPS, Sigma Aldrich) was prepared as an initiator.

1. 탄소나노튜브의 산처리1. Acid treatment of carbon nanotubes

1000 ml 메디아 병에 황산(H2SO4) : 질산(HNO3)이 3 : 1의 부피비로 혼합된 혼산 750 ml와 MWCNT 1.5g을 첨가하여 상온에서 샤워형(Bath type) 초음파기기로 분산시켰다. 분산 후, 진공펌프, 부흐너 깔데기(bㆌchner funnel) 및 테프론 멤브레인 필터(teflon membrane filter; Merck Millipore R3EA06791, 필터지름: 90 mm, 기공: 5 μm)를 사용하여 진공 여과하고, 탈 이온수로 반복하여 세척한 후, 70 ℃ 진공오븐에서 2시간 동안 건조하여 표면에 카르복시기가 형성된 탄소나노튜브(이하'MWCNT-COOH')를 제조하였다.
750 ml of a mixture of sulfuric acid (H 2 SO 4): nitric acid (HNO 3) in a volume ratio of 3: 1 was added to a 1000 ml median bottle and 1.5 g of MWCNT, and the mixture was dispersed in a bath type ultrasonic apparatus at room temperature. After dispersion, vacuum filtration was carried out using a vacuum pump, a Buchner funnel and a teflon membrane filter (Merck Millipore R3EA06791, filter diameter: 90 mm, pore: 5 μm) and repeated with deionized water , And dried in a vacuum oven at 70 캜 for 2 hours to prepare carbon nanotubes (hereinafter, referred to as 'MWCNT-COOH') having a carboxyl group on its surface.

2. 카르복시기를 하이드록시기로 치환2. Substitution of a carboxy group with a hydroxy group

MWCNT-COOH의 표면을 하이드록시기로 치환하기 위해서 250 ml 4구 둥근바닥 플라스크에 상기 산으로 전처리된 MWCNT-COOH 2.0 g과 디메틸설폭사이드(dimethylsulfoxide; DMSO) 150 ml 및 치환제 싸이오닐클로라이드(SOCl2) 5 ml를 첨가하고 온도계, 기계식 교반기 및 질소투입기를 설치하여, 상온에서 질소 분위기하에서 20시간 동안 교반하였다. 교반 후 디메틸폼아마이드(dimethylformamide; DMF) 10 ml와 1,4-부탄디올(1,4-butandiol; BD) 4 ml를 첨가하고 20 시간 동안 교반하며 반응을 실시하였다. 반응 후, 부흐너 깔데기, 셀룰로오스 섬유 필터 페이퍼(cellulose fiber filter paper, Advantec 10720050, 필터지름: 110 mm, 구경: 5 μm)를 사용하여 진공 여과하고, DMSO, DMF, 아세톤(acetone) 및 탈이온수로 세척하고 70 ℃ 진공오븐에서 2시간 동안 건조하여 표면이 하이드록시기로 치환된 탄소나노튜브(이하'MWCNT-OH')를 수득하였다.
In order to replace the surface of MWCNT-COOH with a hydroxy group, 2.0 g of MWCNT-COOH pretreated with the above acid, 150 ml of dimethylsulfoxide (DMSO) and a substituent thionyl chloride (SOCl 2 ), A thermometer, a mechanical stirrer and a nitrogen introducer were installed, and the mixture was stirred at room temperature for 20 hours under a nitrogen atmosphere. After stirring, 10 ml of dimethylformamide (DMF) and 4 ml of 1,4-butanediol (BD) were added and the mixture was stirred for 20 hours. After the reaction, vacuum filtration was carried out using Buchner funnel and cellulose fiber filter paper (Advantec 10720050, filter diameter: 110 mm, aperture: 5 μm), and the filtration was carried out in DMSO, DMF, acetone and deionized water To clean And then dried in a vacuum oven at 70 캜 for 2 hours to obtain a carbon nanotube whose surface was substituted with a hydroxy group (hereinafter referred to as 'MWCNT-OH').

3. 실란커플링제의 가수분해3. Hydrolysis of silane coupling agent

250 ml의 비이커에 MPTMS 2.0 g, 에탄올 40 g과 중합금지제인 하이드로퀴논( hydroquinone; HQ) 0.15 g을 첨가하고 자석교반기를 사용하여 상온에서 1시간 동안 교반하여 MPTMS를 가수분해하였다.
2.0 g of MPTMS and 40 g of ethanol and 0.15 g of hydroquinone (HQ) as a polymerization inhibitor were added to a 250 ml beaker and MPTMS was hydrolyzed using a magnetic stirrer at room temperature for 1 hour.

4. 도전체 제조4. Conductor manufacturing

500 ml 비이커형 반응조에 상기 MWCNT-OH 1.0 g과 에탄올 160 g을 넣은 후 반응조 뚜껑을 덮고 상온에서 1시간 동안 샤워형(bath type) 초음파기로 분산시켰다. 1.0 g of MWCNT-OH and 160 g of ethanol were placed in a 500 ml beaker type reaction tank, and the reaction vessel was covered with a lid and dispersed by a bath type ultrasonicator at room temperature for 1 hour.

500 ml 비이커형 반응조에 MWCNT-OH가 분산된 상태에서 상기 250 ml 비이커에 담긴 가수분해된 MPTMS 용액을 넣고, 베스형 초음파기를 사용하여 상온에서 1시간 동안 추가적으로 초음파처리를 실시하였다. 초음파 처리 후, 500 ml 비이커형 반응조에 반응조 클램프와 4구 반응조 뚜껑을 설치하고, 온도계, 냉각기 및 기계식 교반기를 설치하여 60 ℃에서00 rpm으로 2시간동안 교반하면서 실란화 반응을 실시하였다.The hydrolyzed MPTMS solution contained in the 250 ml beaker was added to a 500 ml beaker type reactor while MWCNT-OH was dispersed therein, and further ultrasonic treatment was performed at room temperature for 1 hour using a Bess type ultrasonic machine. After the ultrasonic treatment, the reactor clamp and the four-necked reaction vessel lid were installed in a 500 ml beaker type reactor, and a silanization reaction was carried out with a thermometer, a cooler and a mechanical stirrer while stirring at 60 ° C and 00 rpm for 2 hours.

실란 반응후 부흐너깔데기, 셀룰로오스 섬유 필터 페이퍼(cellulose fiber filter paper, Advantec 10720050, 필터지름: 110 mm, 구경: 5 μm)을 사용하여 여과한 후, 에탄올(ethanol), 아세톤(acetone) 및 탈이온수를 순서대로 첨가하여 세척하고 70 ℃ 진공오븐에서 2시간 동안 건조하여 도전체(이하'MWCNT-MPTMS')를 제조하였다.
After silane reaction, Buchner funnel, After filtration using a cellulose fiber filter paper (Advantec 10720050, filter diameter: 110 mm, diameter: 5 μm), ethanol, acetone and deionized water were added sequentially and washed And dried in a vacuum oven at 70 캜 for 2 hours to prepare a conductor (hereinafter, referred to as 'MWCNT-MPTMS').

5. 도전성 점착제 제조5. Conductive adhesive production

600ml 비이커에 0.3 wt% MWCNT-MPTMS, 단량체로 2-EHA 106 g , n-BA 80 g , MMA 12 g , AAc 2 g을 첨가하고, 탈이온수 70 g, 유화제로 SDS 0.65 g, Triton X-114 0.3 g, 및 버퍼용액으로 소디움 바이카르보네이트(Na2HCO3)를 첨가한 이후에 호모지나이저(homogenizer)로 20 분간 균일하게 섞어 전유탁액(pre-emulsion)을 제조하였다. 70 g of deionized water, 0.65 g of SDS as an emulsifying agent, 0.1 g of Triton X-114 as an emulsifying agent, 0.3 g of MWCNT-MPTMS as a monomer, 106 g of 2-EHA, 80 g of n-BA, 0.3 g of sodium bicarbonate (Na 2 HCO 3 ) as a buffer solution and then homogenized for 20 minutes using a homogenizer to prepare a pre-emulsion.

1000ml 비이커형 반응조에 5구 반응조 뚜껑 클램프, 온도계, 냉각기 및 기계식 교반기를 설치하고, 탈이온수 60 g, 유화제로 SDS 1 g, Triton X-114 0.65 g 을 첨하하였다. 소디움 바이카르보네이트 0.3 g을 반응조에 넣고 오일 베스(oil bath)를 사용하여 80 ℃까지 승온시켰다. A 5-neck reaction tank lid clamp, a thermometer, a cooler and a mechanical stirrer were installed in a 1000 ml beaker type reaction tank, and 60 g of deionized water, 1 g of SDS as an emulsifier and 0.65 g of Triton X-114 were added. Sodium bicarbonate 0.3 g were placed in a reactor and heated to 80 DEG C using an oil bath.

승온 후 전유탁액과 탈이온수 10g으로 용해시킨 개시제 포테슘퍼설페이트 4g을 3시간 30분 동안 적하병(dropping funnel)으로 적하하였다. 미반응 단량체가 있을 수 있으므로 탈이온수 10g로 녹인 개시제 0.4g을 다시 적하하고, 1시간동안 숙성을 실시하였다. After elevated temperature, 4 g of initiator phytosphingosulfate dissolved in 10 g of total emulsion and deionized water was added dropwise for 3 hours and 30 minutes. Since there may be unreacted monomers, 0.4 g of the initiator dissolved in 10 g of deionized water was again added dropwise and aged for 1 hour.

숙성 후, 에멀전 온도가 40℃ 이하가 되었을 때 유화중합 반응을 종결시켰다.
After the aging, the emulsion polymerization reaction was terminated when the emulsion temperature reached 40 占 폚 or lower.

<실험예 1> 도전성 점착제의 물성 EXPERIMENTAL EXAMPLE 1 Physical properties of conductive pressure-sensitive adhesive

실시예1에서 제조된 도전성 점착제의 물성을 조사하였다. The physical properties of the conductive pressure-sensitive adhesive prepared in Example 1 were examined.

적외선 분광기(fourier transform infrared spectroscopy; FT-IR, Thermol scientific, Nicolet iS50)을 이용하여 도전성 점착제 구조 내 작용기를 분석하였다. The functional groups in the conductive adhesive structure were analyzed using an infrared spectroscopy (FT-IR, Thermol scientific, Nicolet iS50).

도 2는 본 발명의 실시예에 따른 도전성 점착제의 적외선분광분석 그래프이다. 2 is an infrared spectroscopic analysis graph of a conductive adhesive according to an embodiment of the present invention.

도 2의 (a)는 순수한 MWCNT의 작용기를 나타낸 그래프이고, (b)는 MWCNT-COOH, (c)는 MWCNT-OH 및 (d)는 MWCNT-MPTMS를 나타낸 그래프이다. FIG. 2 (a) is a graph showing the functional groups of pure MWCNTs, (b) MWCNT-COOH, (c) MWCNT-OH and (d) MWCNT-MPTMS.

도면을 참조하면, (c)의 2972cm-1, 2880cm-1의 영역은 (CH3-)를 나타내고 2921cm-1, 2850cm-1의 영역은 (CH2-)를 나타내며, 1725cm-1의 영역은 C=O를 나타내어 탄소나노튜브의 표면이 하이드록시기로 치환된 것을 확인하였다. Referring to the drawings, 2972cm -1, 2880cm -1 region of the (CH 3 -) in (c) represents a 2921cm -1, 2850cm -1 region of the (CH 2 -) represents a sphere of 1725cm -1 is C = O, indicating that the surface of the carbon nanotubes was substituted with a hydroxy group.

도 3은 본 발명의 실시예에 따른 유화중합 전후의 적외선분광분석 그래프이다. 3 is a graph of infrared spectroscopic analysis before and after emulsion polymerization according to an embodiment of the present invention.

도 3(a)는 중합전의 그래프이고, 도 3(b)는 중합후의 그래프이다. 도면을 참조하면, 중합 전, 후의 C=O 피크가 1725cm-1 에서 1730cm-1으로 이동하고, C=C 의 피크가 1618cm-1에서 1640cm-1으로 이동한 스펙트럼이 관찰되었다. C=O 및 C=C의 피크가 이동 한 것으로 보아 중합이 일어난 것으로 확인되었다. Fig. 3 (a) is a graph before polymerization, and Fig. 3 (b) is a graph after polymerization. Is a reference to the figure, move to the polymerization before and after the C = O peak at 1730cm -1 and 1725cm -1, a peak of C = C moves from 1618cm -1 to 1640cm -1 spectrum was observed. The peaks of C = O and C = C showed that the polymerization occurred.

도 4는 본 발명의 실시예에 따른 도전성 점착제의 시차주사 열량측정(differentail scanning calorimetry; DSC) 결과를 나타낸 그래프이다. 4 is a graph showing the results of differential scanning calorimetry (DSC) of the conductive adhesive according to an embodiment of the present invention.

상기 시차주사열량측정은 점착제를 70 ℃, 30분간 건조 하고, 10mg을 기준으로 질소분위기 하에서 10 ℃/분의 승온속도로 - 80 ℃내지 20 ℃의 온도범위에서 측정하였다. In the differential scanning calorimetry, the pressure-sensitive adhesive was dried at 70 캜 for 30 minutes, and measured at a temperature raising rate of 10 캜 / minute under a nitrogen atmosphere at a temperature of -80 캜 to 20 캜 based on 10 mg.

도면을 참조하면, (a)에서 MWCNT-MPTMS가 0 중량%로 첨가된 경우와 비교하여 0.5 중량%로 첨가된 경우 유리전이온도(Tg)가 크게 증가하여 제조된 도전체(MWCNT-MPTMS)가 고분자 사이에서 가교역할을 수행한 것으로 확인되었다. (MWCNT-MPTMS) prepared by increasing the glass transition temperature (Tg) when added in an amount of 0.5% by weight as compared with the case where MWCNT-MPTMS is added at 0% by weight in (a) It has been confirmed that it plays a bridge role between the polymers.

도 5는 본 발명의 실시예에 따른 도전성 점착제의 주사전자현미경(scanning electron moicroscpoe; SEM) 사진이다. 5 is a scanning electron microscope (SEM) photograph of a conductive adhesive according to an embodiment of the present invention.

도 5 (a)는 ×20000 배율이고, (b)는 ×50000 배율이다. FIG. 5 (a) shows a magnification of × 20000, and FIG. 5 (b) shows a magnification of × 50000.

도면을 참조하면, 유와중합된 수지 외부에 표면에 MWCNT-MPTMS가 노출된 것을 확인하였다. Referring to the drawings, it was confirmed that MWCNT-MPTMS was exposed on the surface of the resin polymerized with oil.

표 1은 본 발명의 실시예에 따른 도전성 점착제의 물성을 분석한 결과를 나타낸 것이다. Table 1 shows the results of analyzing the physical properties of the conductive pressure-sensitive adhesive according to the embodiment of the present invention.

MWCNT-MPTMS 함량 (wt%)MWCNT-MPTMS content (wt%) 00 0.10.1 0.30.3 0.50.5 점도(viscosity;cP)Viscosity (cP) 600600 22002200 67006700 1300013000 초기점착력(Rolling Ball Tack, mm)Initial adhesion (Rolling Ball Tack, mm) 200200 5858 6060 6262 박리강도(Peel strength; gf)Peel strength (g f ) 295295 420420 730730 850850 전기전도도(Electrical Conductivity; S/m)Electrical Conductivity (S / m) -- 8.7×10-5 8.7 x 10 -5 7.5×10-4 7.5 × 10 -4 3.8×10-4 3.8 × 10 -4

상기 표1에서 점도는 S64 스핀들을 사용하여 20 rpm으로 측정하였다. 본 발명의 실시예에 따라 제조된 도전체(MWCNT-MPTMS)가 0.5 wt%로 포함된 경우에 점도가 크게 증가하는 것을 확인하였다. In Table 1, the viscosity was measured at 20 rpm using an S64 spindle. It was confirmed that the viscosity increased greatly when the conductor (MWCNT-MPTMS) prepared according to the embodiment of the present invention was contained at 0.5 wt%.

감압점착제로써 점착성(tack)을 실험하기 위해 PSA 테스트를 실시하였다.The PSA test was conducted to test the tack as a pressure sensitive adhesive.

50 ㎛ 두께의 PET필름에 25 ㎛로 도전성 점착제를 증착하고, 140℃에서 3 분간 건조하였다. KS T1028 규정에 따라 점착성을 실험하였다. A conductive pressure-sensitive adhesive was deposited to a thickness of 25 占 퐉 on a 50 占 퐉 thick PET film and dried at 140 占 폚 for 3 minutes. The adhesive properties were tested according to KS T1028.

상기 점착성을 나타내는 초기점착력(Rolling Ball Tack) 정도가 MWCNT-MPTMS를 0.5 중량%로 함유하는 경우 62 mm로 나타나 감압점착제에 적당한 것으로 나타났으며, 접착 후 떼어내는 힘(Peel strength)이 580 gf로 확인되어 점착성이 증가된 것으로 확인되었다. The initial adhesive strength represents the viscous (Rolling Ball Tack) about the case of containing the MWCNT-MPTMS to 0.5% by weight was found to be indicated by the 62 mm suitable for pressure-sensitive adhesive power (Peel strength) that removed after the adhesive is 580 g f And it was confirmed that the adhesiveness was increased.

전기전도성을 확인한 결과 MWCNT-MPTMS의 함량에 따라 3.8×10-4 S/m까지 증가하는 것을 확인하여 제조된 MWCNT-MPTMS 함량이 고분자 수지의 전도성에 영향을 미치는 것을 확인하였다.
It was confirmed that the electrical conductivity increased to 3.8 × 10 -4 S / m depending on the content of MWCNT-MPTMS, and it was confirmed that the MWCNT-MPTMS content affects the conductivity of the polymer resin.

이상에서 살펴본 바와 같이 본 발명에 따른 도전성 점착제 제조방법에 의하면 탄소나노튜브를 개질하고 실란커플링제를 사용하여 실란화반응으로 도전체를 제조할 수 있다. 상기 도전체는 탄소나노튜브에 실란커플링제가 결합함으로써, 도전성 점착제 내부의 수지 사이에서 가교역할을 수행하여, 도전성 점착제의 물성을 크게 증가시킬 수 있다.
As described above, according to the method for producing a conductive pressure-sensitive adhesive according to the present invention, a conductor can be prepared by modifying carbon nanotubes and using a silane coupling agent. The conductive material bonds the carbon nanotubes with the silane coupling agent, thereby performing crosslinking between the resins in the conductive pressure-sensitive adhesive, thereby greatly increasing the physical properties of the conductive pressure-sensitive adhesive.

본 발명은 한정된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
While the invention has been described with reference to a limited number of embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

Claims (9)

탄소나노튜브를 3 : 1의 부피비로 혼합한 황산(H2SO4)과 질산(HNO3)의 혼산으로 전처리하여 표면에 카르복시기(-COOH)를 형성하는 단계(제1단계);
상기 전처리된 탄소나노튜브를 디메틸설폭사이드(dimethylsulfoxide) 및 싸이오닐클로라이드(SOCl2)를 투입한 후 교반하는 단계; 및 상기 교반단계 이후 디메틸폼아마이드(dimethylformamide) 및 1,4-부탄디올(1,4-butandiol)을 투입하여 교반시켜 전처리된 탄소나노튜브의 표면을 하이드록시기(-OH)로 치환하는 단계(제2단계);
3-메타아크릴록시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane) 100 중량부에 대하여 에탄올 1500 내지 2000 중량부 및 하이드로퀴논(hydroquinone) 75 내지 100 중량부로 첨가하고 교반하여, 3-메타아크릴록시프로필트리메톡시실란을 가수분해 하는 단계(제3단계);
상기 표면이 치환된 탄소나노튜브 100 중량부에 대해, 상기 가수분해된 3-메타아크릴록시프로필트리메톡시실란을 4350 내지 4650 중량부로 혼합하여 도전체인 탄소나노튜브-3-메타아크릴록시프로필트리메톡시실란을 제조하는 단계(제4단계); 및 단량체인 2-에틸헥실아크릴레이트(2-ethylhexyl acrylate), 부틸아크릴레이트(Butyl acrylate), 메틸 메타크릴레이트(Methyl methacrylate), 및 아크릴릭 애시드(Acrylic acid)와 유화제인 폴리에틸렌 글리콜 터트-옥틸페닐 에테르(Polyethylene glycol tert-octylphenyl ether) 및 소디움도데실설페이트(Sodium dodecyl sulfate)에 상기 탄소나노튜브-3-메타아크릴록시프로필트리메톡시실란을 첨가하고 유화중합하여 도전성 점착제를 제조하는 단계(제5단계)를 포함하며, 상기 도전성 점착제는, 탄소나노튜브-3-메타아크릴록시프로필트리메톡시실란을 0.5 중량%로 포함하는 도전성 점착제 제조방법.
(A first step) of forming a carboxy group (-COOH) on the surface by pretreating carbon nanotubes with a mixed ratio of sulfuric acid (H 2 SO 4 ) and nitric acid (HNO 3 ) mixed at a volume ratio of 3: 1;
Adding dimethylsulfoxide and thionyl chloride (SOCl 2 ) to the pretreated carbon nanotubes followed by stirring; And after the stirring step, dimethylformamide and 1,4-butanediol are added and stirred to replace the surface of the pre-treated carbon nanotubes with a hydroxyl group (-OH) 2);
1,500 parts by weight of ethanol and 75-100 parts by weight of hydroquinone are added to 100 parts by weight of 3-methacryloxypropyltrimethoxysilane and the mixture is stirred to obtain 3-methacryloxypropyltrimethoxysilane (3-methacryloxypropyltrimethoxysilane) Hydroxysiloxane (step 3);
The hydrolyzed 3-methacryloxypropyltrimethoxysilane was mixed in an amount of 4350 to 4650 parts by weight with respect to 100 parts by weight of the surface-substituted carbon nanotubes to prepare a carbon nanotube-3-methacryloxypropyltrimethoxysilane (Step 4); And 2-ethylhexyl acrylate, butyl acrylate, methyl methacrylate, and acrylic acid, which are monomers, and polyethylene glycol-octylphenyl ether as an emulsifier Adding the carbon nanotube-3-methacryloxypropyltrimethoxysilane to polyethylene glycol tert-octylphenyl ether and sodium dodecyl sulfate and emulsifying and polymerizing to prepare a conductive pressure-sensitive adhesive (fifth step ), And the conductive pressure-sensitive adhesive comprises 0.5 wt% of carbon nanotube-3-methacryloxypropyltrimethoxysilane.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 청구항 1에 있어서, 상기 제5단계는, 단량체 100중량부에 대해 유화제 1.65 내지 2 중량부 및 탄소나노튜브-3-메타아크릴록시프로필트리메톡시실란을 0.1 내지 0.5 중량부로 혼합하고 유화중합하는 것을 특징으로 하는 도전성 점착제 제조방법. [4] The method of claim 1, wherein the fifth step comprises mixing 1.65 to 2 parts by weight of an emulsifier and 0.1 to 0.5 parts by weight of carbon nanotube-3-methacryloxypropyltrimethoxysilane with respect to 100 parts by weight of the monomer, followed by emulsion polymerization By weight of the conductive adhesive agent. 삭제delete
KR1020140172863A 2014-12-04 2014-12-04 Preparing method of adhesive having conductive materials KR101644710B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140172863A KR101644710B1 (en) 2014-12-04 2014-12-04 Preparing method of adhesive having conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140172863A KR101644710B1 (en) 2014-12-04 2014-12-04 Preparing method of adhesive having conductive materials

Publications (2)

Publication Number Publication Date
KR20160068052A KR20160068052A (en) 2016-06-15
KR101644710B1 true KR101644710B1 (en) 2016-08-11

Family

ID=56134813

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140172863A KR101644710B1 (en) 2014-12-04 2014-12-04 Preparing method of adhesive having conductive materials

Country Status (1)

Country Link
KR (1) KR101644710B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694105B1 (en) * 2016-07-22 2017-01-09 김경호 Zinc conductive adhesive tape and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100551134B1 (en) 1999-03-09 2006-02-10 주식회사 새 한 Method for the preparation of the diffused reflection film with high hardness
KR101157515B1 (en) * 2009-06-19 2012-06-20 중앙대학교 산학협력단 Conductive adhesive and connection method between terminal employing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296803B1 (en) * 2011-09-26 2013-08-14 한국전기연구원 Manufacturing method of pressure sensitive adhesive with electrical conductivity and the material
KR20140137554A (en) * 2013-05-23 2014-12-03 동우 화인켐 주식회사 Adhesive composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100551134B1 (en) 1999-03-09 2006-02-10 주식회사 새 한 Method for the preparation of the diffused reflection film with high hardness
KR101157515B1 (en) * 2009-06-19 2012-06-20 중앙대학교 산학협력단 Conductive adhesive and connection method between terminal employing the same

Also Published As

Publication number Publication date
KR20160068052A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
Zheng et al. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion
US20110133134A1 (en) Crosslinkable and Crosslinked Compositions of Olefin Polymers and Graphene Sheets
Liu et al. Ultralow-carbon nanotube-toughened epoxy: the critical role of a double-layer interface
TW201802828A (en) Electrically conductive composition
JP6011532B2 (en) Composition
CN104086748A (en) Modified epoxy acrylate, photoresistor composition and preparation method thereof, transparent photoresistor
CN102017816A (en) Circuit connecting material, film-like adhesive, adhesive reel, and circuit connecting structural body
JP2014152080A (en) Active energy ray-curable nanocarbon dispersion, method for manufacturing the same, and active energy ray-curable coating agent using the same
TW201217491A (en) Anisotropic conductive material and process for production thereof, and mounting body and process for production thereof
JP6176431B2 (en) Active energy ray-curable coating composition and coating agent
Aakyiir et al. 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors
JP2019001918A (en) Conductive coating liquid composition and method for coating the same
CN113462274A (en) Preparation method of modified heat-conducting filler required by carbon nano tube modified coating
Wu et al. Mechanical and electrochemical properties of UV-curable nanocellulose/urushiol epoxy acrylate anti-corrosive composite coatings
Jiang et al. Synthesis and characterization of nanostructured copolymer-grafted multiwalled carbon nanotube composite thermoplastic elastomers toward unique morphology and strongly enhanced mechanical properties
CN104603191B (en) Thermoplastic polymer combined with carbon nano material and preparation method thereof
Yang et al. Design and properties of fluoroelastomer composites via incorporation of MWCNTs with varied modification
KR101644710B1 (en) Preparing method of adhesive having conductive materials
JP2007237580A (en) Surface protective film, method for producing the film, and laminate comprising the film
Afolabi et al. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application
Yan et al. Effect of graphene oxide with different exfoliation levels on the mechanical properties of epoxy nanocomposites
Wu et al. A liquid‐like multiwalled carbon nanotube derivative and its epoxy nanocomposites
JP6246242B2 (en) Insulation-coated carbon fiber, method for producing insulation-coated carbon fiber, carbon fiber-containing composition, and heat conductive sheet
Wang et al. Modification of nanocellulose via atom transfer radical polymerization and its reinforcing effect in waterborne UV-curable resin
JP2010235377A (en) Carbon nanotube dispersion

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant