JP2010235377A - Carbon nanotube dispersion - Google Patents

Carbon nanotube dispersion Download PDF

Info

Publication number
JP2010235377A
JP2010235377A JP2009084471A JP2009084471A JP2010235377A JP 2010235377 A JP2010235377 A JP 2010235377A JP 2009084471 A JP2009084471 A JP 2009084471A JP 2009084471 A JP2009084471 A JP 2009084471A JP 2010235377 A JP2010235377 A JP 2010235377A
Authority
JP
Japan
Prior art keywords
cnt
fluorine
based dispersant
carbon nanotube
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009084471A
Other languages
Japanese (ja)
Inventor
Koichi Iwata
宏一 瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2009084471A priority Critical patent/JP2010235377A/en
Publication of JP2010235377A publication Critical patent/JP2010235377A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon nanotube dispersion which has dispersion stability even in high concentration of carbon nanotube and is easily produced (prepared) and to provide a conductive member on which a coating film of the carbon nanotube dispersion is formed. <P>SOLUTION: In the carbon nanotube dispersion, in which the carbon nanotube, and a nonionic fluorine-based dispersant having perfluoroalkenyl group or the nonionic fluorine-based dispersant and an ampholytic fluorine-based dispersant having a perfluoroalkenyl group are contained in a single solvent of only water or a mixed solvent of a water-soluble organic solvent with water, and the carbon nanotubes are uniformly dispersed. The long term dispersion stability is improved by the nonionic fluorine-based dispersant or the same and the ampholytic fluorine-based dispersant. The carbon nanotube dispersant is adjusted in a simple manner by adding the carbon nanotubes and the fluorine-based dispersant to the solvent and irradiating with ultrasonic wave. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、導電性塗膜などを形成する場合に使用されるカーボンナノチューブ分散液に関し、特に、長期の分散安定性の向上を図ったカーボンナノチューブ分散液に関する。   The present invention relates to a carbon nanotube dispersion used for forming a conductive coating film and the like, and more particularly, to a carbon nanotube dispersion with improved long-term dispersion stability.

近年、導電性塗膜の形成や導電性フィルムの製造などに使用されるカーボンナノチューブ分散液の研究が行われるようになってきた。カーボンナノチューブ(以下「CNT」と略記する)は、隣接するCNT間のファンデルワールス力による凝集が起こり易く、複数本のCNTからなる強固なバンドル構造が形成されて更にバンドル同士の凝集拡大化が進行すると言われている。   In recent years, research has been conducted on carbon nanotube dispersions used in the formation of conductive coatings and the production of conductive films. Carbon nanotubes (hereinafter abbreviated as “CNT”) are likely to aggregate due to van der Waals forces between adjacent CNTs, and a strong bundle structure composed of a plurality of CNTs is formed to further increase the aggregation between bundles. It is said to progress.

長期の分散性向上の方策としては、CNT凝集体を両性分散剤分子を含む溶媒中で混合、超音波処理を行い、CNTを分散させてペーストを製造する方法(特許文献1)や、親媒性主鎖と分子両末端に含フッ素基を有するフッ素重合体をCNTと共存させ、水又は有機溶媒中で72時間攪拌してCNTを分散させる方法(特許文献2)も知られている。   As a measure for improving long-term dispersibility, a method of producing a paste by mixing CNT aggregates in a solvent containing amphoteric dispersant molecules, performing ultrasonic treatment, and dispersing CNTs (Patent Document 1), There is also known a method (Patent Document 2) in which a fluoropolymer having a fluorinated group at both molecular ends and coexisting main chain is coexistent with CNTs and stirred for 72 hours in water or an organic solvent.

国際公開第05/110594号International Publication No. 05/110594 特開2004−261713号公報JP 2004-261713 A

CNTの分散方法は、いくつか提案されているが、CNTを有機溶媒や水系溶媒に懸濁させただけのCNT分散液や低分子の界面活性剤(分散剤)を添加したものは、CNTが、高濃度になると長期の分散安定性が得られず、数時間以内にCNTの凝集物が発生するという問題がある。CNTが低濃度であっても、長時間塗工の際には、使用中のCNT分散液に凝集物が発生することから、塗工工程の間に分散処理(たとえば、超音波照射)を常に行わなければならないことになる。しかも、低濃度のカーボンナノチューブ分散液を基材上に塗布して表面抵抗率10Ω/□以下の外観良好な導電性塗膜を得ることは非常に困難であるし、バーコーターやロールコーターで多数回塗工する必要があるため、工程費が増大するという問題もある。 Several CNT dispersion methods have been proposed, but CNT dispersions obtained by simply suspending CNTs in organic solvents or aqueous solvents and low molecular surfactants (dispersants) are added. When the concentration is high, long-term dispersion stability cannot be obtained, and there is a problem that CNT aggregates are generated within several hours. Even when the concentration of CNTs is low, agglomerates are generated in the CNT dispersion during use for a long period of time, so dispersion treatment (for example, ultrasonic irradiation) is always performed during the coating process. Will have to be done. Moreover, it is very difficult to obtain a conductive coating film having a surface resistivity of 10 3 Ω / □ or less by applying a low-concentration carbon nanotube dispersion on a substrate, and a bar coater or roll coater. In addition, there is a problem that the process cost increases because it is necessary to apply the coating many times.

特許文献1のようにカーボンナノチューブの一部に両性分散剤を付着させ、CNTを分散させる方法は、両性分散剤の他に粘度調製剤やイオン性物質など数種の助剤を加えたり、不要物質を除去する工程など、処理が複雑であるという問題がある。しかも、両性分散剤分子が、低分子量なので、分散安定化のためには、添加量を増やす必要があるため、表面抵抗率の小さい導電体を得ることができず、また、光線透過率が低下すると予想される。   The method of adhering an amphoteric dispersant to a part of the carbon nanotubes and dispersing CNT as in Patent Document 1 adds several kinds of auxiliary agents such as a viscosity modifier and an ionic substance in addition to the amphoteric dispersant, and is unnecessary. There is a problem that processing is complicated, such as a process of removing a substance. In addition, since the amphoteric dispersant molecules have a low molecular weight, it is necessary to increase the amount added to stabilize the dispersion, so it is not possible to obtain a conductor having a low surface resistivity, and the light transmittance is reduced. That is expected.

また、特許文献2のようにフッ素重合体をCNTと共存させ、水又は有機溶媒中で72時間攪拌して分散させる方法は、長時間の攪拌を必要とするため、簡便な方法とは言い難いものである。また分散剤の合成方法が複雑であると共に長期安定性について開示がされていない。   In addition, the method of coexisting a fluoropolymer with CNTs as in Patent Document 2 and stirring and dispersing in water or an organic solvent for 72 hours is difficult to say because it requires long-time stirring. Is. Further, the synthesis method of the dispersant is complicated and long-term stability is not disclosed.

本発明は上記事情の下になされたもので、その解決しようとする課題は、少ない塗工回数で導電性塗膜を形成できるようになること、そしてCNTの濃度を高くしても長期の分散安定性が良好であり、しかも、簡便に製造(調製)することができるCNT分散液を提供すること、並びに、このCNT分散液の塗膜を形成した導電性部材(EMIシールド、透明電極等)を提供することにある。   The present invention has been made under the circumstances described above, and the problem to be solved is that a conductive coating film can be formed with a small number of coating times, and long-term dispersion can be achieved even if the CNT concentration is increased. Providing a CNT dispersion that has good stability and can be easily manufactured (prepared), and a conductive member (EMI shield, transparent electrode, etc.) on which a coating film of the CNT dispersion is formed Is to provide.

上記課題を解決するため、第一の発明に係るCNT分散液は、水のみの単独溶媒、又は、水と水溶性有機溶媒との混合溶媒に、CNTと、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤とが含有され、CNTが分散していることを特徴とするものである。   In order to solve the above problems, the CNT dispersion liquid according to the first invention is a nonionic solvent having a perfluoroalkenyl group and CNT in a single solvent of water alone or a mixed solvent of water and a water-soluble organic solvent. Fluorine-based dispersant is contained, and CNT is dispersed.

そして、第二の発明に係るCNT分散液は、水のみの単独溶媒、又は、水と水溶性有機溶媒との混合溶媒に、CNTと、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤と、パーフルオロアルケニル基を有する両性のフッ素系分散剤とが含有され、CNTが分散していることを特徴とするものである。ここに「両性」とは、カチオン性及びアニオン性の双方の性質を有することを意味する。   The CNT dispersion according to the second aspect of the present invention includes a single solvent of water alone or a mixed solvent of water and a water-soluble organic solvent, CNT, and a nonionic fluorine-based dispersant having a perfluoroalkenyl group. And an amphoteric fluorine-based dispersant having a perfluoroalkenyl group, and CNTs are dispersed. Here, “amphoteric” means having both cationic and anionic properties.

また、本発明に係る導電性部材は、基材の表面に、上記のCNT分散液の塗膜が形成されていることを特徴とするものである。   In addition, the conductive member according to the present invention is characterized in that a coating film of the CNT dispersion liquid is formed on the surface of a base material.

第一の発明に係るCNT分散液のように、水のみの単独溶媒、又は、水と水溶性有機溶媒との混合溶媒に、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤と、CNTが含有されていると、CNTに親和性のある上記分散剤の疎水性ユニットがCNT表面に吸着し、次に、超音波照射によって大きなCNTバンドルの凝集をほぐし、安定なC−F結合で構成された嵩高いパーフルオロアルケニル基を有するフッ素系分散剤の立体障害効果を利用してCNTバンドル同士の距離を離していくことで効率的に分散させることができる。それに加え、前記フッ素系分散剤の化学構造として不飽和結合(二重結合)をもったパーフルオロアルケニル基と親水性ユニットを有するため、極性が高い上記の単独又は混合溶媒との間の相互作用(溶媒和)で、前記フッ素系分散剤が次々とCNT間に侵入することによってCNTが分散する。分散剤の立体障害と静電反発によって剥がされたCNTは、近づくことができず、CNTの再凝集が抑制されるので、CNT濃度が高くても長期の分散安定性を向上させることができる。従って、このCNT分散液は、後述の実験データによって裏付けられるように、CNT濃度を450ppm未満(360ppm)まで高くしても、長期の分散安定性が良好であり、一回の塗工(バーコーターWet24μm)で表面抵抗率が10〜10Ω/□程度の導電性の塗膜を形成することができる。CNTの濃度は更に高めることが可能であり、CNTに対するノニオン性のフッ素系分散剤の濃度比率が0.5〜45の範囲となるように分散剤を調製すれば、長期の分散安定性が良好なCNT分散液を得ることができる。 As in the CNT dispersion according to the first invention, a nonionic fluorine-based dispersant having a perfluoroalkenyl group and a CNT in a single solvent of water alone or a mixed solvent of water and a water-soluble organic solvent If contained, the hydrophobic unit of the above-mentioned dispersant having affinity for CNT is adsorbed on the CNT surface, and then agglomeration of large CNT bundles is loosened by ultrasonic irradiation to form stable C—F bonds. It is possible to efficiently disperse the CNT bundles by using the steric hindrance effect of the fluorine-based dispersant having a bulky perfluoroalkenyl group. In addition, it has a perfluoroalkenyl group having an unsaturated bond (double bond) as a chemical structure of the fluorine-based dispersant and a hydrophilic unit, so that it interacts with the above-mentioned single or mixed solvent having high polarity. In the (solvation), the fluorinated dispersant penetrates between the CNTs one after another, so that the CNTs are dispersed. The CNT peeled off due to the steric hindrance and electrostatic repulsion of the dispersant cannot be approached, and the reaggregation of CNT is suppressed, so that long-term dispersion stability can be improved even if the CNT concentration is high. Therefore, this CNT dispersion has good long-term dispersion stability even when the CNT concentration is increased to less than 450 ppm (360 ppm), as evidenced by experimental data described later. Wet 24 μm) can form a conductive coating film having a surface resistivity of about 10 3 to 10 5 Ω / □. The concentration of CNT can be further increased, and long-term dispersion stability is good if the dispersant is prepared so that the concentration ratio of the nonionic fluorine-based dispersant to CNT is in the range of 0.5 to 45 CNT dispersion can be obtained.

また、第二の発明に係るCNT分散液のように、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤と、パーフルオロアルケニル基を有する両性のフッ素系分散剤とを併用し、これらの分散剤をCNTと共に単独又は混合溶媒に含有させたものは、ノニオン性のフッ素系分散剤の前記作用に加えて、両性のフッ素系分散剤がCNT表面に吸着し、また、ノニオン性分散剤と共にCNTの表面を覆うことで、CNTの親水性と表面電位が増加し、それに伴い静電反発の作用が第一の発明に係るCNT分散液より強められるため、CNT濃度を更に大幅に高くしても、良好な分散安定性を発揮することができる。従って、このCNT分散液は、後述の実験データによって裏付けられるように、CNT濃度を1170ppmと高くしても、CNTに対するノニオン性と両性のフッ素系分散剤の合計濃度の比率を1.7(合計濃度2000ppm)〜2.6(合計濃度3000ppm)にすれば、長期の分散安定性が良好であり、一回の塗工(バーコーターWet24μm)で、表面抵抗率が10〜104Ω/□程度の導電性の塗膜を形成することができる。CNTの濃度は更に高めることが可能であり、CNTに対するノニオン性のフッ素系分散剤の濃度比率を0.5〜45の範囲として適度の両性のフッ素系分散液を併用して調製すれば、長期の分散安定性の良好なCNTの高濃度分散液を得ることができる。 Further, as in the CNT dispersion according to the second invention, a nonionic fluorine-based dispersant having a perfluoroalkenyl group and an amphoteric fluorine-based dispersant having a perfluoroalkenyl group are used in combination. In addition to the above-mentioned action of the nonionic fluorine-based dispersant, the amphoteric fluorine-based dispersant is adsorbed on the surface of the CNT, and the CNT together with the nonionic dispersant By covering the surface of CNTs, the hydrophilicity and surface potential of CNTs increase, and the action of electrostatic repulsion is strengthened accordingly, compared with the CNT dispersion liquid according to the first invention. Good dispersion stability can be exhibited. Accordingly, as confirmed by the experimental data described later, this CNT dispersion has a ratio of the total concentration of nonionic and amphoteric fluorine-based dispersants to CNT of 1.7 (total) even if the CNT concentration is increased to 1170 ppm. If the concentration is 2000 ppm) to 2.6 (total concentration 3000 ppm), the long-term dispersion stability is good, and the surface resistivity is 10 3 to 10 4 Ω / □ with a single coating (bar coater Wet 24 μm). A conductive coating film having a degree of conductivity can be formed. The concentration of CNTs can be further increased. If the concentration ratio of the nonionic fluorine-based dispersant to CNTs is in the range of 0.5 to 45 and prepared in combination with an appropriate amphoteric fluorine-based dispersion, long-term It is possible to obtain a high-concentration dispersion of CNTs having good dispersion stability.

しかも、これらのCNT分散液は、後述するように、単独又は混合溶媒に、CNTと、ノニオン性のフッ素系分散剤、又は、ノニオン性のフッ素系分散剤と両性のフッ素系分散剤を加えて、超音波を数十分照射するだけで短時間のうちに製造できるため、製造が極めて簡便であり、量産に適する。また、ビーズミルやホモミキサーといった一般的かつ量産に適した混合装置の利用も可能である。   In addition, as described later, these CNT dispersions are obtained by adding CNT and a nonionic fluorine-based dispersant, or a nonionic fluorine-based dispersant and an amphoteric fluorine-based dispersant to a single solvent or a mixed solvent. Since it can be produced in a short time by irradiating several tens of ultrasonic waves, the production is very simple and suitable for mass production. Also, it is possible to use a general mixing apparatus suitable for mass production, such as a bead mill or a homomixer.

また、本発明の導電性部材は、後述するように、バーコーターやロールコーターを用いて、CNT濃度の高い上記CNT分散液を基材表面に一回塗工または数回塗工するだけで製造でき、基材表面の塗膜の表面抵抗率が102〜105Ω/□と低く、塗工後にCNTの凝集による外観不良を生じる心配もない。従ってこの導電性部材は、タッチパネル電極、EMIシールドその他の用途に有用なものである。 In addition, the conductive member of the present invention is manufactured by applying the above CNT dispersion having a high CNT concentration once or several times to the substrate surface using a bar coater or a roll coater, as will be described later. The surface resistivity of the coating film on the surface of the substrate is as low as 10 2 to 10 5 Ω / □, and there is no fear of appearance failure due to CNT aggregation after coating. Therefore, this conductive member is useful for touch panel electrodes, EMI shields, and other uses.

本発明のCNT分散液に含有されるノニオン性のフッ素系分散剤の構造イメージを示した模式図である。It is the schematic diagram which showed the structure image of the nonionic fluorine-type dispersing agent contained in the CNT dispersion liquid of this invention.

第一の発明に係るCNT分散液(以下、CNT分散液Aと記す)は、前述したように、水のみの単独溶媒、又は、水と水溶性有機溶媒との混合溶媒に、CNTと、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤を加え、CNTを分散させたものであって、単独溶媒の水及び混合溶媒中の水は、イオン交換水または、蒸留水、水道水などが使用される。   As described above, the CNT dispersion liquid according to the first invention (hereinafter referred to as the CNT dispersion liquid A) is obtained by adding CNT and a permeate to a single solvent of water alone or a mixed solvent of water and a water-soluble organic solvent. CNT is dispersed by adding a nonionic fluorine-based dispersant having a fluoroalkenyl group, and water in a single solvent and water in a mixed solvent are ion-exchanged water, distilled water, tap water, etc. Is done.

また、混合溶媒中の水溶性有機溶媒は、水に5重量%以上溶解し、且つ、誘電率が6以上である極性の高い有機溶媒、例えばメタノール、エタノール、1−プロパノール、イソプロパノール(IPA)、1−ブタノール、1−メトキシ−2−プロパノール(PGM)、N−メチルピロリドン、アセトニトリルなどの、誘電率が6〜40程度の有機溶媒が好ましく使用される。これらの水溶性有機溶媒は、水に対して一種又は二種以上混合される。   In addition, the water-soluble organic solvent in the mixed solvent is a highly polar organic solvent having a dielectric constant of 6 or more, such as methanol, ethanol, 1-propanol, isopropanol (IPA), dissolved in water by 5% by weight or more. An organic solvent having a dielectric constant of about 6 to 40, such as 1-butanol, 1-methoxy-2-propanol (PGM), N-methylpyrrolidone and acetonitrile, is preferably used. These water-soluble organic solvents are used singly or in combination with water.

混合溶媒は、水の重量比[水の重量/(水の重量+水溶性有機溶媒の重量)]が0.1〜0.99となるように調製することが好ましく、水の重量比が0.1よりも小さくなると、有機溶媒単体に近くなり、溶媒の極性(誘電率)が低下して溶媒和の作用が弱くなることで、CNT間の静電反発力が弱まり、CNT分散液Aの分散安定性の低下を招く恐れが生じる。一方、水の重量比が0.99よりも多くなると、実質的に水のみの単独溶媒と変わらないので、水単体系の結果に準ずる。   The mixed solvent is preferably prepared so that the weight ratio of water [weight of water / (weight of water + weight of water-soluble organic solvent)] is 0.1 to 0.99, and the weight ratio of water is 0. When smaller than 0.1, it becomes close to a single organic solvent, and the polarity (dielectric constant) of the solvent is lowered and the action of solvation is weakened. As a result, the electrostatic repulsion between CNTs is weakened. There is a risk that the dispersion stability may be lowered. On the other hand, if the weight ratio of water is greater than 0.99, it is substantially the same as that of a single solvent containing only water, and therefore conforms to the result of a single water system.

上記の単独又は混合溶媒に分散させるCNTは、中心軸線の周りに単独の円筒状のカーボン壁を備えた単層CNT、或は、中心軸線の周りに直径が異なる複数の円筒状のカーボン壁を同心的に備えた多層CNTのいずれであってもよいが、分散安定性などの観点から、前者の単層CNTが好ましく使用される。そのなかでも、直径が0.5〜3nm(なかんずく1〜2nm)の単層CNTが好ましく使用される。   The CNT dispersed in the above single or mixed solvent is a single-walled CNT having a single cylindrical carbon wall around the central axis, or a plurality of cylindrical carbon walls having different diameters around the central axis. Any of the multi-walled CNTs provided concentrically may be used, but the former single-walled CNT is preferably used from the viewpoint of dispersion stability. Among them, single-walled CNTs having a diameter of 0.5 to 3 nm (particularly 1 to 2 nm) are preferably used.

また、上記の単独又は混合溶媒に添加する分散剤は、パーフルオロアルケニル基を有する分子量の大きいフッ素系分散剤であって、具体的には、下記の構造式(1)で示されるパーフルオロアルケニル基を有するアクリル系モノマーと、ポリオキシエチレンなどの親水性基を有するアクリル系モノマーとの共重合体からなる分散剤が使用される。このフッ素系分散剤は、図1にその構造イメージを模式的に示すように、アクリル共重合体の主鎖1に、パーフルオロアルケニル基2を有する側鎖3と、親水性基の側鎖4が付いたものであって、その重量平均分子量(Mw)が5,000〜30,000と高分子量のものが好ましく使用される。   Further, the dispersant added to the above-mentioned alone or mixed solvent is a fluorine-based dispersant having a perfluoroalkenyl group and a large molecular weight, and specifically, perfluoroalkenyl represented by the following structural formula (1). A dispersant comprising a copolymer of an acrylic monomer having a group and an acrylic monomer having a hydrophilic group such as polyoxyethylene is used. As schematically shown in FIG. 1, the fluorine-based dispersant has a main chain 1 of an acrylic copolymer, a side chain 3 having a perfluoroalkenyl group 2 and a side chain 4 of a hydrophilic group. And having a weight average molecular weight (Mw) of 5,000 to 30,000 and a high molecular weight is preferably used.

Figure 2010235377
Figure 2010235377

このようなパーフルオロアルケニル基を有するノニオン性のフッ素系分散剤の代表例としては、フタージェント730FM(Mw:10,000、側鎖の約25%がパーフルオロアルケニル基)、フタージェント710FL(Mw:30,000、側鎖の約50%がパーフルオロアルケニル基)、フタージェント730FS(Mw:5,000、側鎖の約25%がパーフルオロアルケニル基)[いずれも(株)ネオス製のノニオン性のフッ素系分散剤の品番]を挙げることができる。   Representative examples of such nonionic fluorine-based dispersants having a perfluoroalkenyl group include PF 730FM (Mw: 10,000, about 25% of the side chain is a PF alkenyl group), FT 710FL (Mw : 30,000, about 50% of the side chain is a perfluoroalkenyl group), and 730 FS of gentent (Mw: 5,000, about 25% of the side chain is a perfluoroalkenyl group) [Nonion manufactured by Neos Co., Ltd. Product number of the functional fluorine-based dispersant].

上記のパーフルオロアルケニル基を有するノニオン性のフッ素系分散剤とCNTを上記の単独又は混合溶媒に添加し、超音波を数十分照射して超音波振動を与えると、重量平均分子量(Mw)が5,000〜30,000と高分子で嵩高いパーフルオロアルケニル基と親水性基を有するフッ素系分散剤の疎水性ユニットが、疎水性のCNT表面に吸着することで、吸着された後のCNT外表面の親水性が増し、より分散剤のCNTバンドル間への吸着を促進する。そして、嵩高いパーフルオロアルケニル基の立体障害効果によって、CNTがほぐれていき、CNTの分散が効率的に進行する。また、極性溶媒中で二重結合のあるパーフルオロアルケニル基は、電子吸引性誘起効果が大きく負に帯電するため、近傍のCNTバンドル相互間で斥力が働き、CNTバンドル間の再凝集が抑制される。更に、CNT間に嵩高いフッ素系分散剤と溶媒分子が新たなCNTに侵入することにより、均一分散に至り、更なる分散剤の立体障害効果と静電反発により、その良分散状態が長期間維持されるのである。CNT凝集力に打ち勝つのに必要な分散剤を濃度調整することにより、CNT濃度が高くても良好な分散安定性を有するCNT分散液Aを得ることができる。   When a nonionic fluorine-based dispersant having a perfluoroalkenyl group and CNT are added to the above-mentioned alone or a mixed solvent and irradiated with ultrasonic waves for several tens of minutes to give ultrasonic vibrations, the weight average molecular weight (Mw) Is a 5,000-30,000 high molecular weight, bulky perfluoroalkenyl group and hydrophilic group of a fluorine-based dispersant having a hydrophilic group adsorbed on the surface of the hydrophobic CNT. The hydrophilicity of the outer surface of the CNT is increased, and the adsorption of the dispersant between the CNT bundles is further promoted. Then, due to the steric hindrance effect of the bulky perfluoroalkenyl group, the CNTs are loosened and the dispersion of the CNTs proceeds efficiently. In addition, the perfluoroalkenyl group having a double bond in a polar solvent has a large electron-attracting effect and is negatively charged. Therefore, a repulsive force acts between neighboring CNT bundles, and reaggregation between CNT bundles is suppressed. The Furthermore, bulky fluorine-based dispersants and solvent molecules enter the new CNT between the CNTs, leading to uniform dispersion. Due to the steric hindrance effect and electrostatic repulsion of the further dispersant, the good dispersion state is maintained for a long time. It is maintained. By adjusting the concentration of the dispersant necessary to overcome the CNT cohesive force, a CNT dispersion A having good dispersion stability can be obtained even when the CNT concentration is high.

ノニオン性のフッ素系分散剤の濃度は、CNT濃度が90〜360ppmの範囲であれば、45ppm以上、4000ppm以下に調整すると、後述の実験データによって裏付けられるように、長期の分散安定性が良好なCNT分散液Aを得ることができる。特に、CNT濃度を45ppm以上、360ppm以下とした場合は、ノニオン性のフッ素系分散剤の濃度を45ppm以上、1000ppm以下とし、CNTに対するフッ素系分散剤の比率を少なくして良好な分散安定性を有する高濃度のCNT分散液Aを得ることができ、しかも、このCNT分散液AをバーコーターでWet24μ塗工して形成される塗膜は、フッ素系分散剤の比率が少ない分だけ、全光線透過率が88%以上と高く、表面抵抗率が10〜10Ω/□程度の導電性の塗膜となる。 If the concentration of the nonionic fluorine-based dispersant is in the range of 90 to 360 ppm in the CNT concentration range, adjusting to 45 ppm or more and 4000 ppm or less provides good long-term dispersion stability as supported by experimental data described later. A CNT dispersion A can be obtained. In particular, when the CNT concentration is 45 ppm or more and 360 ppm or less, the concentration of the nonionic fluorine-based dispersant is 45 ppm or more and 1000 ppm or less, and the ratio of the fluorine-based dispersant to the CNT is reduced to achieve good dispersion stability. In addition, the coating film formed by applying Wet 24 μm of this CNT dispersion liquid A with a bar coater can reduce the total amount of light by the amount of the fluorine-based dispersant. The transmittance is as high as 88% or more, and the conductive film has a surface resistivity of about 10 3 to 10 6 Ω / □.

ここに「長期の分散安定性」とは、調製されたCNT分散液Aを室温で1日以上静置しても、0.3mm以上のCNT凝集塊が生じないことを意味する。   Here, “long-term dispersion stability” means that even when the prepared CNT dispersion A is allowed to stand at room temperature for 1 day or longer, CNT aggregates of 0.3 mm or longer are not generated.

CNTに対するノニオン性のフッ素系分散剤の濃度比率[ノニオン性のフッ素系分散剤の濃度/CNTの濃度]は、0.5〜45の広い範囲で変えることができる。濃度比率が0.5より小さくなると、CNT分散液Aの分散安定性の低下が生じ、濃度比率が45を超えると、CNT分散液Aによって形成される塗膜の表面抵抗率が相対的に上昇し、かつ、全光線透過率も低くなるため、上記のように0.5〜45の比率範囲とすることが好ましい。   The concentration ratio of the nonionic fluorine-based dispersant to the CNT [concentration of nonionic fluorine-based dispersant / CNT concentration] can be varied in a wide range of 0.5 to 45. When the concentration ratio is smaller than 0.5, the dispersion stability of the CNT dispersion A is lowered. When the concentration ratio exceeds 45, the surface resistivity of the coating film formed by the CNT dispersion A is relatively increased. And since the total light transmittance also becomes low, it is preferable to set it as the ratio range of 0.5-45 as mentioned above.

また、ノニオン性の非フッ素系分散剤、例えば、ポリオキシエチレン−ポリオキシプロピレンブロックコポリマー、ポリエチレングリコール、ゼラチンなどを使用しても、長期の分散安定性の良いCNT分散液を得ることは困難である。   In addition, it is difficult to obtain a CNT dispersion having a long-term dispersion stability even when a nonionic non-fluorine dispersant such as polyoxyethylene-polyoxypropylene block copolymer, polyethylene glycol, gelatin or the like is used. is there.

第二の発明に係るCNT分散液(以下、CNT分散液Bと記す)は、単独又は混合溶媒に、CNTと、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤と、パーフルオロアルケニル基を有する両性のフッ素系分散剤を添加して、超音波照射によりCNTを分散させたものであって、単独又は混合溶媒、CNT、ノニオン性のフッ素系分散剤は、いずれも前記CNT分散液Aに用いたものと同じものが使用される。   The CNT dispersion liquid (hereinafter referred to as CNT dispersion liquid B) according to the second invention comprises CNT, a nonionic fluorine-based dispersant having a perfluoroalkenyl group, and a perfluoroalkenyl group in a single or mixed solvent. An amphoteric fluorine-based dispersant having CNTs dispersed therein by ultrasonic irradiation, either alone or in a mixed solvent, CNT, or nonionic fluorine-based dispersant is added to the CNT dispersion A. The same one used is used.

そして、このCNT分散液Bにおいて、ノニオン性のフッ素系分散剤と併用される、パーフルオロアルケニル基を有する両性のフッ素系分散剤としては、下記の構造式(2)に示されるパーフルオロアルケニルベタインなどが好ましく使用される。両性のフッ素系分散剤の代表例としては、(株)ネオス製のフタージェント400PR(Mw:639)[(株)ネオス製の両性フッ素系分散剤の品番]を挙げることができる。   In the CNT dispersion B, the amphoteric fluorine-based dispersant having a perfluoroalkenyl group used in combination with the nonionic fluorine-based dispersant is a perfluoroalkenyl betaine represented by the following structural formula (2). Etc. are preferably used. As a typical example of the amphoteric fluorine-based dispersant, there can be mentioned Footage 400PR (Mw: 639) manufactured by Neos Co., Ltd. [Product number of amphoteric fluorine-based dispersant manufactured by Neos Co., Ltd.].

Figure 2010235377
Figure 2010235377

上記のような両性のフッ素系分散剤をノニオン性のフッ素系分散剤と併用すると、ノニオン性のフッ素系分散剤の前記作用に加えて、両性のフッ素系分散剤がノニオン性の分散剤と共にCNTの表面を覆うことで、CNT外表面の親水性と表面電位が一層増加し、より分散剤のCNTバンドルへの吸着を促進する。そして嵩高いパーフルオロアルケニル基の立体障害効果によって、CNTがほぐれていき、CNTの分散が効率的に進行する。また、極性溶媒中でパーフルオロアルケニル基は電子吸引性誘起効果が大きく、それに伴い負に帯電するため、近傍のCNTバンドル相互間で斥力の作用が前記CNT分散液Aよりも強められるため、CNTバンドル間およびCNT間でより、凝集しにくくなり、このCNT分散液Bは、均一分散性と長期の分散安定性を発揮することができる。また、上記のノニオン性と両性の双方のフッ素系分散剤の合計濃度を調整することによって、CNT濃度を更に高めても良好な長期の分散安定性を有するCNT分散液Bを得ることができる。   When the amphoteric fluorine dispersant as described above is used in combination with the nonionic fluorine dispersant, the amphoteric fluorine dispersant is added to the CNT together with the nonionic dispersant in addition to the above-mentioned action of the nonionic fluorine dispersant. By covering the surface, the hydrophilicity and surface potential of the outer surface of the CNT are further increased, and the adsorption of the dispersant to the CNT bundle is further promoted. Then, due to the steric hindrance effect of the bulky perfluoroalkenyl group, the CNT is loosened, and the dispersion of the CNT proceeds efficiently. In addition, perfluoroalkenyl groups in polar solvents have a large electron-attracting-inducing effect and are negatively charged accordingly, so that the repulsive action between neighboring CNT bundles is stronger than that of the CNT dispersion A, so that CNT Aggregation is less likely to occur between bundles and between CNTs, and this CNT dispersion B can exhibit uniform dispersibility and long-term dispersion stability. Further, by adjusting the total concentration of both the nonionic and amphoteric fluorine-based dispersants, a CNT dispersion B having good long-term dispersion stability can be obtained even if the CNT concentration is further increased.

例えば、CNTの濃度が190ppm以上、1350ppm未満の範囲では、ノニオン性と両性の双方のフッ素系分散剤の合計濃度を、90ppm以上、5000ppm以下の範囲内で調整すると、長期分散安定性が良好なCNT分散液Bを得ることができる。このようなCNT濃度の高いCNT分散液Bは、ロールコーター等での一回の塗工(Wet24μ)で表面抵抗率が10〜10Ω/□程度の良好な導電性塗膜を形成できるので、極めて有用である。 For example, when the concentration of CNTs is in the range of 190 ppm or more and less than 1350 ppm, the total concentration of both nonionic and amphoteric fluorine-based dispersants is adjusted in the range of 90 ppm to 5000 ppm, and long-term dispersion stability is good. A CNT dispersion B can be obtained. Such a CNT dispersion B having a high CNT concentration can form a good conductive coating film having a surface resistivity of about 10 3 to 10 4 Ω / □ by a single coating (Wet 24 μ) using a roll coater or the like. So it is extremely useful.

両性のフッ素系分散剤の濃度(ppm)は、ノニオン性のフッ素系分散剤の濃度(ppm)の1/2以下とすることが好ましい。両性のフッ素系分散剤として使用される前記構造式(2)のパーフルオロアルケニルベタインは、高分子物であるノニオン性のフッ素系分散剤に比べると分子量がはるかに小さく、立体障害効果が小さいので、単独では、多量必要である。また、両性のフッ素系分散剤をノニオン性のフッ素系分散剤の濃度の1/2を超える濃度で併用すると、CNT分散液の分散安定性が却って低下する不都合を生じる。これらの理由は、両性のフッ素系分散剤は低分子でCNT表面に親水性を付与することができるものの、嵩高いパーフルオロアルケニル基を1個しかもっておらず、CNT凝集を防止するパーフルオロアルケニル基による立体障害の効果を奏するには、多量の添加が必要となる。だが、前記両性のフッ素系分散剤は非導電性であるので、CNTの導電性能低下につながる。また、低分子物質なのでCNTとの吸着面積も部分的となり、吸着面からの脱離が考えられることから、CNTの長期の分散安定性が維持できなくなる懸念がある。ノニオン性のフッ素系分散剤に対する両性のフッ素系分散剤の好ましい濃度比率[両性のフッ素系分散剤の濃度/ノニオン性のフッ素系分散剤の濃度]は、0.1〜0.5の範囲であり、この範囲であると、後述の実験データで裏付けられるように、長期の分散安定性の良好なCNT分散液Bを得ることができる。   The concentration (ppm) of the amphoteric fluorine-based dispersant is preferably ½ or less of the concentration (ppm) of the nonionic fluorine-based dispersant. The perfluoroalkenyl betaine of the structural formula (2) used as an amphoteric fluorine-based dispersant has a molecular weight much smaller than that of a nonionic fluorine-based dispersant, which is a polymer, and has a small steric hindrance effect. Alone, a large amount is necessary. Further, when the amphoteric fluorine-based dispersant is used in combination at a concentration exceeding 1/2 of the concentration of the nonionic fluorine-based dispersant, there arises a disadvantage that the dispersion stability of the CNT dispersion is decreased. These reasons are that although the amphoteric fluorine-based dispersant has a low molecular weight and can impart hydrophilicity to the CNT surface, it has only one bulky perfluoroalkenyl group and prevents CNT aggregation. In order to achieve the effect of steric hindrance due to the group, a large amount of addition is required. However, since the amphoteric fluorine-based dispersant is non-conductive, the conductive performance of the CNT is reduced. In addition, since it is a low molecular weight substance, the adsorption area with the CNT becomes partial, and desorption from the adsorption surface can be considered, so there is a concern that the long-term dispersion stability of the CNT cannot be maintained. The preferred concentration ratio of the amphoteric fluorine-based dispersant to the nonionic fluorine-based dispersant [the concentration of the amphoteric fluorine-based dispersant / the concentration of the nonionic fluorine-based dispersant] is in the range of 0.1 to 0.5. In this range, a CNT dispersion B having good long-term dispersion stability can be obtained as supported by experimental data described later.

また、CNTに対するノニオン性及び両性の双方のフッ素系分散剤の濃度比率[(ノニオン性のフッ素系分散剤の濃度+両性のフッ素系分散剤の濃度)/CNTの濃度]は、広い範囲で変えることができるが、0.5〜45の濃度比率とすることが好ましい。   Also, the concentration ratio of both nonionic and amphoteric fluorine-based dispersants to CNT [(concentration of nonionic fluorine-based dispersant + concentration of amphoteric fluorine-based dispersant) / CNT concentration] varies within a wide range. The concentration ratio is preferably 0.5 to 45.

尚、両性の分散剤として、3−(N,N−ジメチルステアリルアンモニオ)プロパンスルホネートなどの非フッ素系の分散剤を使用する場合は、CNT濃度が450ppmでCNTに対する分散剤の濃度比率が2.6であっても長期の分散安定性の良いCNT分散液を得ることは困難である。更に、両性のフッ素系分散剤のみを使用した場合も、CNT濃度を大幅に下げなければ分散安定性等の良好なCNT分散液を得ることは困難である。   In addition, when a non-fluorine type dispersant such as 3- (N, N-dimethylstearylammonio) propanesulfonate is used as the amphoteric dispersant, the concentration ratio of the dispersant to CNT is 2 when the CNT concentration is 450 ppm. .6, it is difficult to obtain a CNT dispersion with good long-term dispersion stability. Furthermore, even when only the amphoteric fluorine-based dispersant is used, it is difficult to obtain a CNT dispersion having good dispersion stability or the like unless the CNT concentration is significantly reduced.

以上のCNT分散液A又はBは、単独溶媒又は混合溶媒に、CNTとノニオン性のフッ素系分散剤を前記の濃度比率となるように添加するか、又は、CNTとノニオン性のフッ素系分散剤及び両性のフッ素系分散剤の合計を前記の濃度比率となるように添加し、超音波照射機を用いて冷却しながら超音波を数十分程度照射するだけで、簡便に製造することができる。また、ビーズミルやホモミキサーといった一般的かつ量産に適した混合装置の利用も可能である。   The above CNT dispersion A or B is added to a single solvent or a mixed solvent so that CNT and a nonionic fluorine-based dispersant are in the above-mentioned concentration ratio, or CNT and nonionic fluorine-based dispersant. And the amphoteric fluorine-based dispersant is added so as to have the above-mentioned concentration ratio, and can be produced simply by irradiating with ultrasonic waves for several tens of minutes while cooling using an ultrasonic irradiator. . Also, it is possible to use a general mixing apparatus suitable for mass production, such as a bead mill or a homomixer.

本発明の導電性部材は、基材の表面に前記のCNT分散液A又はBの塗膜を形成したものであって、その代表的な実施形態は、基材として透明な合成樹脂フィルムを使用し、その表面に前記のCNT分散液A又はBをバーコーターやロールコーターを用いて塗工、乾燥することにより、導電性の塗膜を形成して得られる導電性フィルムである。また、精密塗工法であるダイコーターや3次元形状に使用されるスプレー塗工、その他スピンコーティングやフローコーティングでも製造可能である。   The conductive member of the present invention is obtained by forming a coating film of the CNT dispersion A or B on the surface of a base material, and a typical embodiment uses a transparent synthetic resin film as the base material. And it is the electroconductive film obtained by forming the electroconductive coating film by coating the said CNT dispersion liquid A or B on the surface using a bar coater or a roll coater, and drying. It can also be manufactured by die coating, which is a precision coating method, spray coating used for three-dimensional shapes, and other spin coating and flow coating.

基材の合成樹脂フィルムとしては、透明性に優れ、塗工性の良好なPETやアクリル樹脂フィルムなどが特に好ましく使用される。また、塗膜の厚さは特に制限されない。CNT分散液A又はBの塗工は、CNT分散液A又はBのCNT濃度が高い場合、一回塗工(バーコーターWet24μm)だけで表面抵抗率等の性能発現には、充分であるが、特に表面抵抗率が低い(102Ω/□以下)良導電性のフィルムを得る場合は、複数回塗工することで容易に達成される。 As the base synthetic resin film, PET or acrylic resin film having excellent transparency and good coatability is particularly preferably used. Further, the thickness of the coating film is not particularly limited. When the CNT dispersion A or B has a high CNT concentration, the coating of the CNT dispersion A or B is sufficient for performance expression such as surface resistivity only by one coating (bar coater Wet 24 μm). In particular, when a highly conductive film having a low surface resistivity (10 2 Ω / □ or less) is obtained, it can be easily achieved by coating a plurality of times.

このようにして得られた導電性フィルムの塗膜は、CNTが多少曲がりながら互いに絡み合って凝集することなく、単純に交差した状態で均一に分散してそれぞれの交点で接触しており、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤、又は、ノニオン性のフッ素系分散剤と両性のフッ素系分散剤がCNT間に混在している。従って、この塗膜は、透明性が良好でCNTの凝集による外観不良を生じる心配がなく、CNT相互の接触によって導電性を発現し、後述の実験データに示すように、CNT濃度が150ppm以上、1170ppm以下のCNT分散液で塗膜を形成した場合には、バーコーターWet24μmの一回塗工で表面抵抗率が105Ω/□以下の良好なフィルムが得られる。更に、このCNT分散液には、機能付与のため、バインダー、光安定剤、UV吸収剤、熱安定剤、着色剤、補強剤、可塑剤など任意に添加しても構わない。 The coating film of the conductive film obtained in this way was not even entangled and agglomerated with each other while the CNTs were slightly bent, and was uniformly dispersed in a crossed state and contacted at each intersection point. A nonionic fluorine-based dispersant having an alkenyl group, or a nonionic fluorine-based dispersant and an amphoteric fluorine-based dispersant are mixed between CNTs. Therefore, this coating film has good transparency and no fear of appearance failure due to aggregation of CNTs, expresses conductivity by mutual contact of CNTs, and as shown in the experimental data described later, the CNT concentration is 150 ppm or more, When a coating film is formed with a CNT dispersion of 1170 ppm or less, a good film having a surface resistivity of 10 5 Ω / □ or less can be obtained by a single coating of a bar coater Wet 24 μm. Furthermore, a binder, a light stabilizer, a UV absorber, a heat stabilizer, a colorant, a reinforcing agent, a plasticizer, and the like may be optionally added to the CNT dispersion for imparting functions.

本発明の導電性部材は、上記の導電性フィルムに限定されるものではなく、基材としてガラス体や無機物又は合成樹脂成形体としてPET、ポリカーボネート、ナイロンなど平滑な基材(フィルム、板など)であっても良いし、凹凸面や3次元的な曲面や段差を持つ形状であっても、繊維状物や織物又は球状物であっても差し支えない。これら基材を使用し、その表面に前記のCNT分散液A又はBを塗工して塗膜を形成することにより、種々の用途に適合可能な導電性部材となし得るものであることは言うまでもない。   The conductive member of the present invention is not limited to the above-mentioned conductive film, and a smooth base material (film, plate, etc.) such as PET, polycarbonate, nylon as a glass body or inorganic material or synthetic resin molding as a base material It may be an uneven surface, a three-dimensional curved surface, a shape having a step, a fibrous material, a woven fabric, or a spherical material. It goes without saying that by using these base materials and coating the CNT dispersion A or B on the surface to form a coating film, it is possible to form a conductive member suitable for various applications. Yes.

次に、本発明に係るCNT分散液の性能評価試験について説明する。   Next, the performance evaluation test of the CNT dispersion according to the present invention will be described.

[CNT分散液Aの性能評価試験]
下記の表1に示す混合溶媒に、文献Chmical Physics Letters 323(2000) P580−585に基づいて合成した直径1.3〜1.8nmの単層CNTと、表1に示すパーフルオロアルケニル基を有するノニオン性のフッ素系分散剤(フタージェント730FM、フタージェント710FL、フタージェント730FS)とを、表1に示す濃度となるように添加し、超音波照射機US200[IKA(株)製]を用いて、冷却しながら46W(24kHz)で超音波を30分照射することにより、サンプル番号1〜8のCNT分散液を調製した。
[Performance evaluation test of CNT dispersion A]
The mixed solvent shown in Table 1 below has a single-wall CNT having a diameter of 1.3 to 1.8 nm synthesized based on the document Chemical Physics Letters 323 (2000) P580-585, and a perfluoroalkenyl group shown in Table 1. Nonionic fluorine-based dispersants (aftergent 730FM, aftergent 710FL, and aftergent 730FS) were added so as to have the concentrations shown in Table 1, and an ultrasonic irradiator US200 [manufactured by IKA Corporation] was used. The CNT dispersion liquids of sample numbers 1 to 8 were prepared by irradiating with ultrasonic waves at 46 W (24 kHz) for 30 minutes while cooling.

(長期の分散安定性の評価)
それぞれのCNT分散液のサンプル1〜8を室温で1日静置し、5mlスクリュー管に各サンプルを1〜2mlとって、500ルクス以上の照度の部屋で視力0.7以上の条件で約30cm離して凝集塊の有無を目視観察することによって、長期の分散安定性を調べ、直径0.3mm以上のCNTの凝集塊が見られないものを〇と評価し、直径0.3mm以上のCNTの凝集塊が見られたものを×と評価した。その結果を下記の表1に示す。尚、サンプル2については1年静置し、サンプル5については八カ月静置して、長期の分散安定性を評価した。
(Evaluation of long-term dispersion stability)
Samples 1 to 8 of each CNT dispersion liquid are allowed to stand at room temperature for 1 day, and 1 to 2 ml of each sample is taken in a 5 ml screw tube. The long-term dispersion stability was examined by visually observing the presence or absence of agglomerates and evaluated as ◯ when no agglomerates of CNTs having a diameter of 0.3 mm or more were observed, and CNTs having a diameter of 0.3 mm or more were evaluated. The thing in which the aggregate was seen was evaluated as x. The results are shown in Table 1 below. Sample 2 was allowed to stand for 1 year, and sample 5 was allowed to stand for 8 months to evaluate long-term dispersion stability.

(CNT分散液の塗膜の性能評価)
それぞれのCNT分散液のサンプル1〜8を、厚さ100μmのアクリルフィルムの表面に、バーコーターKC3[RK Print-Coat Instruments Ltd製]でWet24μmの厚さに塗工し、70℃で10分乾燥させて、導電性の塗膜を形成した。そして、この塗膜形成フィルムの全光線透過率とヘーズを、直読ヘーズコンピューターHGM2−DP[スガ試験機(株)製]で測定し、更に、表面抵抗率をロレスタGP[三菱化学(株)製]で測定した。また、この塗膜形成フィルムの外観を肉眼で観察し、CNTの凝集塊が見られなかったものを外観良好(〇)とし、凝集塊が見られたものを外観不良(×)として、外観の良否を判断した。これらの結果を下記の表1に示す。
(Performance evaluation of coating film of CNT dispersion)
Samples 1 to 8 of each CNT dispersion were applied to the surface of an acrylic film having a thickness of 100 μm with a bar coater KC3 (manufactured by RK Print-Coat Instruments Ltd) to a thickness of 24 μm, and dried at 70 ° C. for 10 minutes. Thus, a conductive coating film was formed. Then, the total light transmittance and haze of this coating film-forming film were measured with a direct reading haze computer HGM2-DP [manufactured by Suga Test Instruments Co., Ltd.], and the surface resistivity was further measured by Loresta GP [manufactured by Mitsubishi Chemical Corporation]. ] And measured. In addition, the appearance of this coating film-forming film was observed with the naked eye, and when the aggregate of CNT was not seen, the appearance was good (◯), and when the aggregate was seen, the appearance was poor (×). Judged the quality. These results are shown in Table 1 below.

比較のために、下記の表1に示すように、分散剤を含有しないCNT分散液の比較サンプル1と、パーフルオロアルケニル基を有するフッ素系分散剤以外のノニオン性の分散剤(ポリオキシエチレン−ポリオキシプロピレンブロックコポリマー、ポリエチレングリコール、ゼラチン)を添加したCNT分散液の比較サンプル2〜5を調製し、上記と同様にして性能評価を行った。その結果を下記の表1に示す。   For comparison, as shown in Table 1 below, as shown in Table 1, a comparative sample 1 of a CNT dispersion containing no dispersant and a nonionic dispersant (polyoxyethylene-) other than a fluorine-based dispersant having a perfluoroalkenyl group Comparative samples 2 to 5 of CNT dispersions added with polyoxypropylene block copolymer, polyethylene glycol, gelatin) were prepared, and performance evaluation was performed in the same manner as described above. The results are shown in Table 1 below.

更に、下記の表2に示すように、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤(フタージェント730FM)を含有させたCNT分散液のサンプルであって、CNT濃度と混合溶媒の組成を一定にしてフッ素系分散剤の濃度を変化させたサンプル9〜12(但し、サンプル10は表1のサンプル2と同じ)、フッ素系分散剤の濃度とCNT濃度を一定にして混合溶媒中の水の重量比を変化させたサンプル13〜19、フッ素系分散剤の濃度を一定にしCNT濃度を90ppmにして混合溶媒中の有機溶媒を変更したサンプル20〜27を調製し、各サンプルについて前記と同様にして長期の分散安定性を評価した。その結果を下記の表2に示す。   Furthermore, as shown in Table 2 below, a sample of a CNT dispersion containing a nonionic fluorine-based dispersant having a perfluoroalkenyl group (Furgent 730FM), wherein the CNT concentration and the composition of the mixed solvent are Samples 9 to 12 in which the concentration of the fluorinated dispersant was changed to be constant (sample 10 is the same as sample 2 in Table 1), and the concentration of the fluorinated dispersant and the CNT concentration were made constant and water in the mixed solvent. Samples 19 to 19 with different weight ratios of the above were prepared, and samples 20 to 27 were prepared by changing the organic solvent in the mixed solvent by setting the concentration of the fluorinated dispersant constant and the CNT concentration to 90 ppm. Thus, long-term dispersion stability was evaluated. The results are shown in Table 2 below.

Figure 2010235377
Figure 2010235377

Figure 2010235377
Figure 2010235377

表1のサンプル1〜8、及び、表2のサンプル9〜12から、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤を45ppm以上、4000ppm以下の濃度(CNTに対する分散剤の濃度比率は0.5〜45)で含有したCNT分散液Aは、長期の分散安定性が良好であることが分かる。また、CNT分散液AによってバーコーターWet24μで一回塗工により、塗膜を形成したフィルムの全光線透過率は88.5%以上と高く、ヘーズは2.5%以下で透明性が良好である。そして、表面抵抗率も10〜10Ω/□の範囲のものが得られる。また、フィルム外観も凝集が無く、良好である。
しかしながら、サンプル6のようにCNT濃度が450ppm以上になると、ノニオン性のフッ素系分散剤のみを1000ppm含有したCNT分散液Aでは、長期の分散安定性は不良となる。
From Samples 1 to 8 in Table 1 and Samples 9 to 12 in Table 2, the concentration of nonionic fluorine-based dispersant having a perfluoroalkenyl group is 45 ppm or more and 4000 ppm or less (the concentration ratio of the dispersant to CNT is 0). It can be seen that the CNT dispersion A contained in .5-45) has good long-term dispersion stability. In addition, the total light transmittance of the film on which the coating film was formed by coating once with Bar Coater Wet 24μ with CNT dispersion A was as high as 88.5%, haze was 2.5% or less, and transparency was good. is there. A surface resistivity of 10 3 to 10 6 Ω / □ is obtained. Also, the film appearance is good with no aggregation.
However, when the CNT concentration is 450 ppm or more as in Sample 6, the long-term dispersion stability is poor in the CNT dispersion A containing only 1000 ppm of the nonionic fluorine-based dispersant.

これに対し、非フッ素系分散剤のみを含有した比較サンプル2〜5は、いずれも長期の分散安定性が不良である。そして、塗膜を形成したフィルムの表面抵抗率は、サンプル2を除いて、1011Ω/□程度と帯電防止性の範囲であり、比較サンプル2のみが10Ω/□程度と僅かに制電性を示すに過ぎない。一方、分散剤を含有しない比較サンプル1は、長期の分散安定性が悪い。 On the other hand, Comparative Samples 2 to 5 containing only the non-fluorine dispersant have poor long-term dispersion stability. The surface resistivity of the film on which the coating film was formed, excluding Sample 2, was about 10 11 Ω / □, which was in the range of antistatic properties, and only Comparative Sample 2 was only about 10 6 Ω / □. It only shows electricity. On the other hand, Comparative Sample 1 containing no dispersant has poor long-term dispersion stability.

以上のことから総合的に判断すると、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤を含有した本発明のCNT分散剤Aは、透明な導電性塗膜を形成するための分散安定性の良好なインク(分散液、塗液など)として如何に有用であるかが分かる。   Judging comprehensively from the above, the CNT dispersant A of the present invention containing a nonionic fluorine-based dispersant having a perfluoroalkenyl group has a dispersion stability for forming a transparent conductive coating film. It can be seen how useful as a good ink (dispersion liquid, coating liquid, etc.).

また、表2のサンプル13〜18から、混合溶媒中の水の重量比が0であるCNT分散液Aは、長期の分散安定性が不良であるが、水の重量比を0.1以上、1未満(0.88以下)に調整したCNT分散液Aは、いずれも長期の分散安定性が良好であることが分かる。このことから、水の重量比を0.1〜0.99に調整した本発明のCNT分散液Aは、長期の分散安定性が良好であると推定できる。また、サンプル19から、水のみの単独溶媒を用いた本発明のCNT分散液Aも、長期の分散安定性が良いことが分かる。   In addition, from Samples 13 to 18 in Table 2, the CNT dispersion A in which the weight ratio of water in the mixed solvent is 0 is poor in long-term dispersion stability, but the weight ratio of water is 0.1 or more, It can be seen that all of the CNT dispersions A adjusted to less than 1 (0.88 or less) have good long-term dispersion stability. From this, it can be estimated that the CNT dispersion A of the present invention in which the weight ratio of water is adjusted to 0.1 to 0.99 has good long-term dispersion stability. Moreover, it can be seen from Sample 19 that the long-term dispersion stability of the CNT dispersion A of the present invention using a single solvent of only water is also good.

更に、表2のサンプル20〜27に示すように、混合溶媒中の有機溶媒の種類をエタノール以外のメタノール、イソプロパノール(IPA)、N−メチルピロリドン、アセトニトリルなどの誘電率εが6以上の極性の高い有機溶媒に変更したCNT分散液Aも、長期の分散安定性が良好であり、このことから、誘電率εが6以上の有機溶媒と水との混合溶媒がCNT分散液Aの溶媒として好適なものであることが分かる。   Furthermore, as shown in Samples 20 to 27 in Table 2, the type of organic solvent in the mixed solvent is polar other than ethanol, such as methanol, isopropanol (IPA), N-methylpyrrolidone, acetonitrile, etc. The CNT dispersion A changed to a high organic solvent also has good long-term dispersion stability. Therefore, a mixed solvent of an organic solvent having a dielectric constant ε of 6 or more and water is suitable as the solvent for the CNT dispersion A. You can see that

[CNT分散液Bの性能評価試験]
下記の表3に示す混合溶媒に、前記の直径1.3〜1.8nmの単層CNTと、表3に示すパーフルオロアルケニル基を有するノニオン性のフッ素系分散剤(フタージェント710FL)と、表3に示すパーフルオロアルケニル基を有する両性のフッ素系分散剤(フタージェント400PR)とを、表3に示す濃度となるように添加し、超音波照射機US200[IKA(株)製]を用いて冷却しながら46W(24kHz)で超音波を30分照射することにより、サンプル番号28〜35のCNT分散液Bを調製した。
[Performance evaluation test of CNT dispersion B]
In the mixed solvent shown in Table 3 below, single-walled CNTs having a diameter of 1.3 to 1.8 nm, and a nonionic fluorine-based dispersant having a perfluoroalkenyl group shown in Table 3 (Furgent 710FL), An amphoteric fluorine-based dispersant having a perfluoroalkenyl group shown in Table 3 (Furgent 400PR) was added so as to have a concentration shown in Table 3, and an ultrasonic irradiator US200 [manufactured by IKA Corporation] was used. Then, CNT dispersion B of sample numbers 28 to 35 was prepared by irradiating with ultrasonic waves at 46 W (24 kHz) for 30 minutes while cooling.

それぞれのCNT分散液Bのサンプルについて、前記のCNT分散液Aのサンプルの場合と同様にして、長期の分散安定性、塗膜形成フィルムの全光線透過率、ヘーズ、表面抵抗率を測定すると共に、フィルム外観の良否を判断し、その結果を下記の表3に示した。   For each CNT dispersion B sample, the long-term dispersion stability, the total light transmittance, haze, and surface resistivity of the coating film-forming film were measured in the same manner as the CNT dispersion A sample. The film appearance was judged as good or bad, and the results are shown in Table 3 below.

比較のために、分散剤として、表3に示すノニオン性のフタージェント710FLと両性の3−(N,N−ジメチルステアリルアンモニオ)プロパンスルホネートを併用して含有させた比較サンプル6、及び、両性のフタージェント400PRのみを含有させた比較サンプル7〜10を調製し、これらの比較サンプルについて前記と同様にして分散安定性を調べると共に、比較サンプル10については前記と同様にして塗膜形成フィルムの全光線透過率、ヘーズ、表面抵抗率を測定した。そして、これらの比較サンプル6〜10の塗膜形成フィルムの外観の良否も同様に調べた。それらの結果を、下記の表3に示す。   For comparison, as a dispersant, comparative sample 6 containing both nonionic footage 710FL shown in Table 3 and amphoteric 3- (N, N-dimethylstearylammonio) propanesulfonate, and amphoteric Comparative Samples 7 to 10 containing only the above-mentioned Basegent 400PR were prepared, and the dispersion stability of these comparative samples was examined in the same manner as described above. Total light transmittance, haze, and surface resistivity were measured. And the quality of the external appearance of the coating film formation film of these comparative samples 6-10 was investigated similarly. The results are shown in Table 3 below.

Figure 2010235377
Figure 2010235377

表3のCNT分散液Bのサンプル28〜35(バーコーターWet24μ1回塗工)から、ノニオン性のフッ素系分散剤と両性のフッ素系分散剤との合計濃度を1150ppm以上、3000ppm以下としたCNT分散液Bは、CNT濃度が191ppm以上、1350ppm未満(1170ppm以下)と前記のCNT分散液Aより遥かに高くても、長期の分散安定性が良好であることが分かる。その塗膜の透明性は良好であり、表面抵抗率も10〜104Ω/□の性能を得ることができる。即ち、これらのCNT分散液BをバーコーターWet24μで一回塗工して形成した塗膜形成フィルムの表面抵抗率は、9.1×10Ω/□以下、全光線透過率は78.6%以上、ヘーズは3.2%以下であり、フィルム外観も良好である。更に、例えばCNT濃度1170ppm、ノニオン性フッ素系分散剤1500ppmと両性分散剤濃度500ppmを混合したサンプル34のCNT分散液Bを、アクリルフィルム上にバーコーターWet24μで3回塗工すると、表面抵抗率2.2×10Ω/□、全光線透過率72%、ヘーズ3.6%の導電性塗膜形成フィルムが得られ、このフィルムは外観も良好である。以上のCNT分散液Bは、ロールコーターや精密塗工用ダイコーター、その他スピンコーティングやフローコーティングでも製造可能である。 CNT dispersion in which the total concentration of the nonionic fluorine-based dispersant and the amphoteric fluorine-based dispersant was 1150 ppm or more and 3000 ppm or less from the samples 28 to 35 (bar coater Wet 24 μ1 coating) of the CNT dispersion B shown in Table 3 It can be seen that the liquid B has good long-term dispersion stability even when the CNT concentration is 191 ppm or more and less than 1350 ppm (1170 ppm or less), which is much higher than the CNT dispersion A. The transparency of the coating film is good, and a surface resistivity of 10 2 to 10 4 Ω / □ can be obtained. That is, the surface resistivity of the film-forming film formed by coating these CNT dispersions B once with a bar coater Wet 24μ is 9.1 × 10 4 Ω / □ or less, and the total light transmittance is 78.6. %, Haze is 3.2% or less, and the film appearance is also good. Furthermore, for example, when the CNT dispersion B of Sample 34 in which a CNT concentration of 1170 ppm, a nonionic fluorine-based dispersant 1500 ppm and an amphoteric dispersant concentration 500 ppm is mixed is applied to an acrylic film three times with a bar coater Wet 24 μ, surface resistivity 2 A conductive film-forming film having a size of 2 × 10 2 Ω / □, a total light transmittance of 72%, and a haze of 3.6% is obtained, and this film has a good appearance. The above CNT dispersion B can be produced by a roll coater, a die coater for precision coating, other spin coating or flow coating.

これに対し、ノニオン性のフッ素系分散剤と両性の非フッ素系分散剤を併用した比較サンプル6は、分散安定性は不良である。また、両性フッ素系分散剤のみを含有させた比較サンプル7〜10は、CNT濃度が45ppmと低ければ長期の分散安定性が良好であるが、それ以下の濃度比率では、長期分散安定性が不良である。CNT濃度が191ppmと比較的高く、CNTに対する両性のフッ素系分散剤の濃度比率が3.9と比較的高い比較サンプル10は、その塗膜を形成したフィルムの全光線透過率が高く、ヘーズが低く、表面抵抗率10Ω/□程度と導電性も比較的に良かったが、外観が不良である。 On the other hand, the comparative sample 6 using both the nonionic fluorine-based dispersant and the amphoteric non-fluorine-based dispersant has poor dispersion stability. In addition, Comparative Samples 7 to 10 containing only the amphoteric fluorine-based dispersant have good long-term dispersion stability when the CNT concentration is as low as 45 ppm. However, long-term dispersion stability is poor at a concentration ratio lower than that. It is. The comparative sample 10 having a relatively high CNT concentration of 191 ppm and a relatively high concentration ratio of the amphoteric fluorine-based dispersant to CNT of 3.9 has a high total light transmittance of the film on which the coating film is formed, and haze is high. The surface resistivity was about 10 4 Ω / □ and the conductivity was relatively good, but the appearance was poor.

以上のことから総合的に判断すると、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤と、パーフルオロアルケニル基を有する両性のフッ素系分散剤を併用し、分散安定性を損なうことなくCNT濃度を高く調整した本発明のCNT分散液Bは、透明な良導電性の塗膜を形成するための長期の分散安定性が良好な高品質の分散液(インク)として極めて有用なものであることが分かる。   Judging from the above, the CNT concentration without impairing dispersion stability by using a nonionic fluorine-based dispersant having a perfluoroalkenyl group and an amphoteric fluorine-based dispersant having a perfluoroalkenyl group in combination. The CNT dispersion B of the present invention with a high adjusted value is extremely useful as a high-quality dispersion (ink) with good long-term dispersion stability for forming a transparent and highly conductive coating film. I understand.

1 アクリル共重合体の主鎖
2 パーフルオロアルケニル基
3 パーフルオロアルケニル基を有する側鎖
4 親水性基の側鎖
1 Main chain of acrylic copolymer 2 Perfluoroalkenyl group 3 Side chain having perfluoroalkenyl group 4 Side chain of hydrophilic group

Claims (10)

水のみの単独溶媒、又は、水と水溶性有機溶媒との混合溶媒に、カーボンナノチューブと、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤とが含有され、カーボンナノチューブが分散していることを特徴とする、カーボンナノチューブ分散液。   Carbon nanotubes and nonionic fluorine-based dispersant having a perfluoroalkenyl group are contained in a single solvent of water alone or a mixed solvent of water and a water-soluble organic solvent, and the carbon nanotubes are dispersed. A carbon nanotube dispersion characterized by. 水のみの単独溶媒、又は、水と水溶性有機溶媒との混合溶媒に、カーボンナノチューブと、パーフルオロアルケニル基を有するノニオン性のフッ素系分散剤と、パーフルオロアルケニル基を有する両性のフッ素系分散剤とが含有され、カーボンナノチューブが分散していることを特徴とする、カーボンナノチューブ分散液。   A single solvent of water alone or a mixed solvent of water and a water-soluble organic solvent, a carbon nanotube, a nonionic fluorine-based dispersant having a perfluoroalkenyl group, and an amphoteric fluorine-based dispersion having a perfluoroalkenyl group A carbon nanotube dispersion liquid containing an agent and having carbon nanotubes dispersed therein. ノニオン性のフッ素系分散剤が、パーフルオロアルケニル基を有するアクリル系モノマーと、親水性基を有するアクリル系モノマーとの共重合体からなるものであることを特徴とする、請求項1又は請求項2に記載のカーボンナノチューブ分散液。   The nonionic fluorine-based dispersant is made of a copolymer of an acrylic monomer having a perfluoroalkenyl group and an acrylic monomer having a hydrophilic group. The carbon nanotube dispersion liquid according to 2. パーフルオロアルケニル基が下記構造式(1)に示されるものであることを特徴とする、請求項1ないし請求項3のいずれかに記載のカーボンナノチューブ分散液。
Figure 2010235377
The carbon nanotube dispersion liquid according to any one of claims 1 to 3, wherein the perfluoroalkenyl group is represented by the following structural formula (1).
Figure 2010235377
両性のフッ素系分散剤が下記構造式(2)に示されるパーフルオロアルケニルベタインであることを特徴とする、請求項2に記載のカーボンナノチューブ分散液。
Figure 2010235377
The carbon nanotube dispersion liquid according to claim 2, wherein the amphoteric fluorine-based dispersant is a perfluoroalkenyl betaine represented by the following structural formula (2).
Figure 2010235377
カーボンナノチューブに対するノニオン性のフッ素系分散剤の濃度比率[ノニオン性のフッ素系分散剤の濃度/カーボンナノチューブの濃度]が、0.5〜45であることを特徴とする、請求項1に記載のカーボンナノチューブ分散液。   The concentration ratio of the nonionic fluorine-based dispersant to the carbon nanotube [concentration of nonionic fluorine-based dispersant / carbon nanotube concentration] is 0.5 to 45, according to claim 1. Carbon nanotube dispersion. ノニオン性のフッ素系分散剤に対する両性のフッ素系分散剤の濃度比率[両性のフッ素系分散剤の濃度/ノニオン性のフッ素系分散剤の濃度]が、0.1〜0.5の範囲であることを特徴とする、請求項2に記載のカーボンナノチューブ分散液。   The concentration ratio of the amphoteric fluorine-based dispersant to the nonionic fluorine-based dispersant [the concentration of the amphoteric fluorine-based dispersant / the concentration of the nonionic fluorine-based dispersant] is in the range of 0.1 to 0.5. The carbon nanotube dispersion liquid according to claim 2, wherein 混合溶媒中の水の重量比[水の重量/(水の重量+水溶性有機溶媒の重量)]が、0.1〜0.99であることを特徴とする、請求項1又は請求項2に記載のカーボンナノチューブ分散液。   The weight ratio of water in the mixed solvent [weight of water / (weight of water + weight of water-soluble organic solvent)] is from 0.1 to 0.99. The carbon nanotube dispersion liquid described in 1. 混合溶媒中の水溶性有機溶媒が、6以上の誘電率を有するメタノール、エタノール、1−プロパノール、イソプロパノール、1−ブタノール、1−メトキシ−2−プロパノール、N−メチルピロリドン、アセトニトリルよりなる群から選ばれたいずれか一種又は二種以上の有機溶媒であることを特徴とする、請求項1又は請求項2に記載のカーボンナノチューブ分散液。   The water-soluble organic solvent in the mixed solvent is selected from the group consisting of methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 1-methoxy-2-propanol, N-methylpyrrolidone, acetonitrile having a dielectric constant of 6 or more. The carbon nanotube dispersion liquid according to claim 1, which is any one kind or two or more kinds of organic solvents. 基材の表面に、請求項1ないし請求項9のいずれかに記載のカーボンナノチューブ分散液の塗膜が形成されていることを特徴とする導電性部材。   A conductive member, wherein a coating film of the carbon nanotube dispersion liquid according to any one of claims 1 to 9 is formed on a surface of a base material.
JP2009084471A 2009-03-31 2009-03-31 Carbon nanotube dispersion Pending JP2010235377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084471A JP2010235377A (en) 2009-03-31 2009-03-31 Carbon nanotube dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084471A JP2010235377A (en) 2009-03-31 2009-03-31 Carbon nanotube dispersion

Publications (1)

Publication Number Publication Date
JP2010235377A true JP2010235377A (en) 2010-10-21

Family

ID=43090086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084471A Pending JP2010235377A (en) 2009-03-31 2009-03-31 Carbon nanotube dispersion

Country Status (1)

Country Link
JP (1) JP2010235377A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070908A (en) * 2009-09-25 2011-04-07 Mikuni Color Ltd Conductive material dispersion liquid, electrode paste, and conductive material coating active substance
JP2013100206A (en) * 2011-11-09 2013-05-23 Hitachi Chemical Co Ltd Carbon nanotube dispersion liquid and method for producing carbon nanotube dispersion liquid
JP2014084255A (en) * 2012-10-24 2014-05-12 Hokkaido Univ Carbon nanotube thin film, transparent electrode and electrode for lithography
CN113912876A (en) * 2021-11-03 2022-01-11 江西铜业技术研究院有限公司 Carbon nanotube mother solution for modified acrylic resin and preparation method thereof
WO2023248980A1 (en) * 2022-06-21 2023-12-28 東洋インキScホールディングス株式会社 Carbon nanotube dispersed liquid, electrode mixture slurry, electrode film, and secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070908A (en) * 2009-09-25 2011-04-07 Mikuni Color Ltd Conductive material dispersion liquid, electrode paste, and conductive material coating active substance
JP2013100206A (en) * 2011-11-09 2013-05-23 Hitachi Chemical Co Ltd Carbon nanotube dispersion liquid and method for producing carbon nanotube dispersion liquid
JP2014084255A (en) * 2012-10-24 2014-05-12 Hokkaido Univ Carbon nanotube thin film, transparent electrode and electrode for lithography
CN113912876A (en) * 2021-11-03 2022-01-11 江西铜业技术研究院有限公司 Carbon nanotube mother solution for modified acrylic resin and preparation method thereof
WO2023248980A1 (en) * 2022-06-21 2023-12-28 東洋インキScホールディングス株式会社 Carbon nanotube dispersed liquid, electrode mixture slurry, electrode film, and secondary battery

Similar Documents

Publication Publication Date Title
Lou et al. Synthesis of pyrene-containing polymers and noncovalent sidewall functionalization of multiwalled carbon nanotubes
Narayan et al. Surfactant mediated liquid phase exfoliation of graphene
Bose et al. Phase separation as a tool to control dispersion of multiwall carbon nanotubes in polymeric blends
Hamedi et al. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes
Jin et al. Carbon nanotube-adsorbed polystyrene and poly (methyl methacrylate) microspheres
Madni et al. Mixed surfactant system for stable suspension of multiwalled carbon nanotubes
KR101601988B1 (en) Method for producing carbon nanotube-containing conductor
Park et al. High electrical conductivity and transparency in deoxycholate-stabilized carbon nanotube thin films
Park et al. Graphene oxide sheets chemically cross-linked by polyallylamine
JP6291473B2 (en) Mixtures, methods, and compositions for conductive materials
Wang et al. Facile approach to fabricate waterborne polyaniline nanocomposites with environmental benignity and high physical properties
JP7301881B2 (en) CARBON NANOTUBE DISPERSION AND METHOD FOR MANUFACTURING SAME
WO2014002885A1 (en) Dispersion liquid of carbon nanotube-containing composition and conductive molded body
JP5683256B2 (en) Method for producing silver nanowires
JP2010509428A (en) Carbon nanotube composition and transparent conductive film
JP2010235377A (en) Carbon nanotube dispersion
Xing et al. Poly (vinylidene fluoride) nanocomposites with simultaneous organic nanodomains and inorganic nanoparticles
CN101730917A (en) Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
Sun et al. Regulated dielectric loss of polymer composites from coating carbon nanotubes with a cross-linked silsesquioxane shell through free-radical polymerization
Liu et al. One-step preparation of oxygen/fluorine dual functional MWCNTs with good water dispersibility by the initiation of fluorine gas
JP2007056125A (en) Curing composition comprising carbon nano-tube and composite having cured coated film thereof
JP6859083B2 (en) Conductive film and method for manufacturing conductive film
Fraser et al. Large-scale production of PMMA/SWCNT composites based on SWCNT modified with PMMA
TW201840758A (en) Method for manufacturing silver nanowire ink and silver nanowire ink and transparent conductive coating film
Zheng et al. Flexible silver nanowire transparent conductive films prepared by an electrostatic adsorption self-assembly process