KR101634858B1 - Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and use thereof - Google Patents

Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and use thereof Download PDF

Info

Publication number
KR101634858B1
KR101634858B1 KR1020140054315A KR20140054315A KR101634858B1 KR 101634858 B1 KR101634858 B1 KR 101634858B1 KR 1020140054315 A KR1020140054315 A KR 1020140054315A KR 20140054315 A KR20140054315 A KR 20140054315A KR 101634858 B1 KR101634858 B1 KR 101634858B1
Authority
KR
South Korea
Prior art keywords
ala
leu
gly
val
ile
Prior art date
Application number
KR1020140054315A
Other languages
Korean (ko)
Other versions
KR20140133457A (en
Inventor
최인걸
김경헌
이세영
윤은주
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of KR20140133457A publication Critical patent/KR20140133457A/en
Application granted granted Critical
Publication of KR101634858B1 publication Critical patent/KR101634858B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Abstract

본 발명은 3,6-안하이드로-L-갈락토오스를 대사하는 재조합 미생물 및 이의 용도에 관한 것으로, 보다 상세하게는 3,6-AHG의 대사 경로에 관여하는 효소 군을 발현하는 재조합 미생물로부터 에탄올을 제조할 수 있다. The present invention relates to a recombinant microorganism metabolizing 3,6-anhydro-L-galactose and a use thereof. More particularly, the present invention relates to a recombinant microorganism expressing 3,6-AHG, Can be manufactured.

Description

3,6―안하이드로―L―갈락토오스를 대사하는 재조합 미생물 및 이의 용도{Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and use thereof}Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and its use {Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and use thereof}

본 발명은 비발효성당인 3,6-안하이드로-L-갈락토오스를 대사하는 재조합 미생물과 이의 용도에 관한 것이다.
The present invention relates to a recombinant microorganism metabolizing non-fermental sugar, 3,6-anhydro-L-galactose, and its use.

석유자원의 고갈에 따른 에너지 안보 위기에 따라 전 세계적으로 화석연료를 대체하는 에너지 자원을 개발하기 위한 노력이 이루어지고 있다. 이러한 노력의 일환으로 화석원료를 바이오매스로 대체하여 지속 가능한 탄소경제로 전환하고 기존의 화학공정을 친환경적인 바이오공정으로 대체하여 바이오연료 및 바이오화학소재를 개발하는 연구가 이루어지고 있다. 이는 전후방산업의 패러다임을 전환할 수 있는 새로운 산업 군으로 온실가스 및 폐기물 발생을 저감할 수 있다는 장점이 있다.Efforts are underway to develop energy resources that replace fossil fuels worldwide due to the energy security crisis resulting from the depletion of petroleum resources. As part of these efforts, research is underway to replace fossil raw materials with biomass to convert to a sustainable carbon economy, and replace existing chemical processes with eco-friendly bioprocesses to develop biofuels and biochemical materials. This is a new industrial group that can change the paradigm of front-end industry and has the advantage of reducing greenhouse gas and waste generation.

바이오연료를 생산하기 위한 바이오매스로는 옥수수와 사탕수수와 같은 1세대 당질계 바이오매스에서 목질계 유래의 2세대 바이오매스로 전환되었으며 최근에는 3세대인 해조류 유래 바이오매스가 각광을 받고 있다.Biomass to produce biofuels has been transformed from first-generation carbohydrate biomass, such as corn and sugar cane, to second-generation biomass derived from woody biomass. Recently, third-generation biomass derived from seaweeds is in the spotlight.

해조류 바이오매스 중에서 우뭇가사리와 같은 홍조류는 녹조류와 갈조류에 비해 탄수화물 함량이 많은 것으로 알려져 있으며, 홍조류를 구성하는 주요 다당체인 아가로오스는 3,6-안하이드로-L-갈락토오스와 D-갈락토오스의 중합체이다. 이 중에서 D-갈락토오스는 미생물이 쉽게 이용할 수 있는 발효성 단당으로서 화학적 또는 효소적 처리 방법을 사용하여 홍조류 바이오매스를 가수분해하여 생산한 D-갈락토오스를 미생물로 발효하여 바이오 에탄올을 생산하는 연구가 많이 진행되어왔다. 최근에는 아가로오스를 분해하는 미생물인 사카로파거스 데그라단스(Saccharophagus degradans) 2-40, 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica) T6c에서 3,6-안하이드로-L-갈락토오스를 전환하는 효소를 규명하였다(PCT/KR2012/000607). 뿐만 아니라 비발효성 희귀당으로 알려진 3,6-안하이드로-L-갈락토오스를 탄소원으로 대사할 수 있는 미생물인 비브리오 속(Vibrio sp.) EJY3의 유전체 서열이 밝혀짐에 따라 이 균주가 갖고 있는 3,6-안하이드로-L-갈락토오스 대사 관련 유전자 및 유전자의 기능 또한 밝혀지고 있다. Among seaweed biomass, red algae such as mugwort are known to have a higher carbohydrate content than green algae and brown algae. Agarose, a major polysaccharide constituting red algae, is a polymer of 3,6-anhydro-L-galactose and D-galactose . Among them, D-galactose is a fermentable monosaccharide that can be easily used by microorganisms, and many studies have been carried out to produce bioethanol by fermenting D-galactose produced by hydrolysis of red algae biomass using a chemical or enzymatic treatment method as a microorganism It has been progressed. Recently, a microorganism that degrades agarose Saccharophagus ( Saccharophagus) degradans) 2-40, pseudo Alteromonas Atlantica (Pseudoalteromonas atlantica ) An enzyme that converts 3,6-anhydro-L-galactose at T6c has been identified (PCT / KR2012 / 000607). In addition, as the genome sequence of Vibrio sp. EJY3, a microorganism capable of metabolizing 3,6-anhydro-L-galactose, known as the non-inactivated rare saccharide, was identified, The function of 6-anhydro-L-galactose metabolism-related genes and genes has also been revealed.

본 발명자들은 3,6-안하이드로-L-갈락토오스의 제조방법과 이의 기능성에 대한 연구들을 보고한바 있다(Yun EJ, et al . Process Biochem . (2011) 46(1):88-93. Yun EJ, et al . Appl . Microbiol . Biotechnol. (2013) 97(7) 2961-70). 예컨대, 3,6-안하이드로-L-갈락토오스의 환원 말단은 쉽게 수화가 되는 특성이 있는데 이로 인하여 보습 기능성을 나타내었다. 또한 미백 및 항산화 기능성이 밝혀졌고, 뿐만 아니라 대장암 예방 효과를 가진 것으로 나타났다(Yun EJ, et al . Appl . Microbiol. Biotechnol . (2013) 97(7) 2961-70).The present inventors have reported studies on the production method of 3,6-anhydro-L-galactose and its functionality (Yun EJ , et al . Process Biochem . (2011) 46 (1): 88-93. Yun EJ , et al . Appl . Microbiol . Biotechnol. (2013) 97 (7) 2961-70). For example, the reducing end of 3,6-anhydro-L-galactose has a property of being easily hydrated, thereby exhibiting a moisturizing function. In addition, whitening and antioxidant functionalities have been identified and have been shown to have a preventive effect on colon cancer (Yun EJ , et al . Appl . Microbiol. Biotechnol . (2013) 97 (7) 2961-70).

그러나 3,6-안하이드로-L-갈락토오스는 일반적으로 미생물이 이용하지 못하는 비발효성 단당으로 알려져 있어 홍조류 바이오매스의 약 60% 이상이 탄수화물로 구성되어 있음에도 바이오연료의 생산 수율이 낮은 주된 원인으로 작용한다.
However, 3,6-anhydro-L-galactose is generally known to be a non-bioactive monosaccharide that is not available to microorganisms. Even though about 60% of red algae biomass is composed of carbohydrates, production yield of biofuel is low do.

대한민국 공개특허 제2012-0085364호Korean Patent Publication No. 2012-0085364 PCT/KR2012/000607PCT / KR2012 / 000607

Michel G et al. Appl. Microbiol. Biotechnol. (2006) 71(1):23-33 Michel G et al. Appl. Microbiol. Biotechnol. (2006) 71 (1): 23-33 Roh H, et al. J. Bacteriol. (2012) 194(10):2773-2774 Roh H, et al. J. Bacteriol. (2012) 194 (10): 2773-2774

본 발명의 목적은 3,6-안하이드로-L-갈락토오스의 대사 경로에 관여하는 효소 군의 재조합 벡터, 상기 재조합 벡터로 형질전환된 재조합 미생물 및 상기 재조합 미생물로부터 에탄올을 제조하는 방법을 제공하는 것이다.
It is an object of the present invention to provide a recombinant vector of an enzyme group involved in the metabolic pathway of 3,6-anhydro-L-galactose, a recombinant microorganism transformed with the recombinant vector, and a method of producing ethanol from the recombinant microorganism .

상기 목적을 달성하기 위하여, 본 발명은 3,6-안하이드로-L-갈락토오스 디하이드로게나제(3,6-anhydro-L-galactose dehydrogenase)를 코딩하는 유전자; 3,6-안하이드로갈락토닉산 시클로이성질화효소(3,6-anhydrogalactonic acid cycloisomerase)를 코딩하는 유전자; 2-케토-3-데옥시-갈락토닉산 인산화효소(2-keto-3-deoxy-galactonic acid kinase)를 코딩하는 유전자; 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제(2-keto-3-deoxy-phosphogalactonic acid aldolase)를 코딩하는 유전자를 포함하는 에탄올 제조용 재조합 벡터를 제공한다.In order to accomplish the above object, the present invention provides a gene encoding 3,6-anhydro-L-galactose dehydrogenase (3,6-anhydro-L-galactose dehydrogenase) A gene encoding 3,6-anhydrogalactonic acid cycloisomerase (3,6-anhydrogalactonic acid cycloisomerase); A gene encoding 2-keto-3-deoxy-galactonic acid kinase; And a gene encoding 2-keto-3-deoxy-phosphogalactonic acid aldolase. The present invention also provides a recombinant vector for ethanol production comprising the gene encoding 2-keto-3-deoxy-phosphogalactonic acid aldolase.

본 발명은 또한 3,6-안하이드로-L-갈락토오스 디하이드로게나제(3,6-anhydro-L-galactose dehydrogenase)를 코딩하는 유전자; 3,6-안하이드로갈락토닉산 시클로이성질화효소(3,6-anhydrogalactonic acid cycloisomerase)를 코딩하는 유전자; 2-케토-3-데옥시-갈락토닉산 인산화효소(2-keto-3-deoxy-galactonic acid kinase)를 코딩하는 유전자; 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제(2-keto-3-deoxy-phosphogalactonic acid aldolase)를 코딩하는 유전자로 형질전환된 에탄올 제조용 재조합 미생물을 제공한다.The present invention also relates to a gene encoding 3,6-anhydro-L-galactose dehydrogenase (3,6-anhydro-L-galactose dehydrogenase); A gene encoding 3,6-anhydrogalactonic acid cycloisomerase (3,6-anhydrogalactonic acid cycloisomerase); A gene encoding 2-keto-3-deoxy-galactonic acid kinase; And a recombinant microorganism for producing ethanol transformed with a gene encoding 2-keto-3-deoxy-phosphogalactonic acid aldolase (2-keto-3-deoxy-phosphogalactonic acid aldolase).

본 발명은 또한 본 발명에 따른 재조합 미생물을 탄소원으로 갈락토오스 및 3,6-안하이드로-L-갈락토오스로 이루어진 군으로부터 선택된 하나 이상을 사용하여 발효시키는 단계를 포함하는 에탄올의 제조방법을 제공한다.The present invention also provides a method for producing ethanol comprising fermenting the recombinant microorganism according to the present invention as a carbon source using at least one selected from the group consisting of galactose and 3,6-anhydro-L-galactose.

본 발명은 또한 본 발명에 따른 재조합 미생물의 배양액 또는 균주 추출액을 갈락토오스 및 3,6-안하이드로-L-갈락토오스로 이루어진 군으로부터 선택된 하나 이상의 기질과 반응시켜 피루브산을 제조하는 단계; 및 상기 피루브산을 알코올 발효시키는 단계를 포함하는 에탄올의 제조방법을 제공한다.
The present invention also relates to a method for producing pyruvic acid by reacting a culture broth or strain extract of a recombinant microorganism according to the present invention with at least one substrate selected from the group consisting of galactose and 3,6-anhydro-L-galactose; And fermenting the pyruvic acid with alcohol.

본 발명은 3,6-안하이드로-L-갈락토오스의 대사 경로에 관여하는 효소 군을 발현하는 재조합 미생물로부터 에탄올을 제조하는 방법을 제공하는 효과가 있다. The present invention provides a method for producing ethanol from a recombinant microorganism expressing an enzyme group involved in the metabolic pathway of 3,6-anhydro-L-galactose.

따라서, 홍조류 바이오매스를 이용한 고부가 가치의 물질을 생산할 때 생산 수율을 높일 수 있는 핵심 기술로 제공될 수 있다.
Therefore, it can be provided as a core technology for increasing production yield when producing high value-added materials using red algae biomass.

도 1은 본 발명의 3,6-안하이드로-L-갈락토오스 디하이드로게나제 또는 3,6-안하이드로갈락토닉산 시클로이성질화효소를 발현하는 재조합 미생물에서 분리 정제된 효소의 효소 반응산물에 대한 GC-TOF MS로 분석한 결과를 도시한 것으로, A는 기질로 사용한 3,6-안하이드로-L-갈락토오스의 피크, B는 3,6-안하이드로-L-갈락토오스 디하이드로게나제의 반응산물인 3,6-안하이드로갈락토닉산의 피크, C는 3,6-안하이드로갈락토닉산 시클로이성질화효소의 반응산물인 2-케토-3-데옥시-갈락토닉산의 피크를 나타낸다.
도 2는 본 발명의 3,6-안하이드로-L-갈락토오스 디하이드로게나제를 발현하는 재조합 미생물에서 분리 정제된 3,6-안하이드로-L-갈락토오스 디하이드로게나제의 효소 반응산물에 대한 2차원 NMR 분석 결과를 나타낸 것으로, A는 2차원 Heteronuclear single quantum coherence spectroscopy (HSQC) NMR 분석 결과이고, B는 2차원 Heteronuclear Multible Bond Correlation (HMBC) NMR 분석결과이다.
도 3은 본 발명의 3,6-안하이드로갈락토닉산 시클로이성질화효소를 발현하는 재조합 미생물에서 분리 정제된 3,6-안하이드로갈락토닉산 시클로이성질화효소의 효소 반응산물에 대한 GC-TOF MS 분석 및 2차원 NMR 분석 결과로, A는 2-케토-3-데옥시-글루콘산 표준물질의 GC-TOF MS의 매스 스펙트럼 분석 결과, B는 3,6-안하이드로갈락토닉산 시클로이성질화효소의 효소 반응산물의 1차원 수소 NMR 분석 결과, C는 3,6-안하이드로갈락토닉산 시클로이성질화효소의 효소 반응산물의 2차원 HMBC NMR 분석 결과, D는 3,6-안하이드로갈락토닉산 시클로이성질화효소의 효소 반응산물의 2차원 HMBC NMR의 분석 결과를 나타낸 것이다.
도 4는 탄소원으로 3,6-안하이드로-L-갈락토오스를 사용한 본 발명의 3,6-안하이드로-L-갈락토오스 디하이드로게나제 및 3,6-안하이드로갈락토닉산 시클로이성질화효소를 각각 또는 동시에 발현하는 재조합 미생물의 생장 실험 결과이다.
도 5는 탄소원으로 3,6-안하이드로-L-갈락토오스(a), 갈락토오스(b), 또는, 3,6-안하이드로-L-갈락토오스 및 갈락토오스를 함유한 아가로오스 가수분해물(c)을 사용한 본 발명의 3,6-안하이드로-L-갈락토오스 디하이드로게나제 및 3,6-안하이드로갈락토닉산 시클로이성질화효소를 각각 또는 동시에 발현하는 재조합 미생물의 호기 조건에서의 생장 실험 결과이다.
도 6은 GC-FID를 이용한 에탄올의 정량 분석 곡선을 나타낸 것이다.
도 7은 본 발명의 3,6-안하이드로-L-갈락토오스 디하이드로게나제 및 3,6-안하이드로갈락토닉산 시클로이성질화효소를 각각 또는 동시에 발현하는 재조합 미생물의 발효 조건에서 생장 실험 결과(a), 기질 소비량 측정 결과(b), 발효에 의해 생성된 에탄올의 정량 분석 결과(c)이다.
도 8은 본 발명의 3,6-안하이드로-L-갈락토오스 디하이드로게나제, 3,6-안하이드로갈락토닉산 시클로이성질화효소, 2-케토-3-데옥시-갈락토닉산 인산화효소 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제를 동시에 발현하는 재조합 미생물의 탄소원에 따른 생장 실험 결과이다.
도 9는 본 발명의 3,6-안하이드로-L-갈락토오스 디하이드로게나제, 3,6-안하이드로갈락토닉산 시클로이성질화효소, 2-케토-3-데옥시-갈락토닉산 인산화효소 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제를 동시에 발현하는 재조합 미생물의 발효 조건에서 생장 실험 결과이다.
도 10은 본 발명의 3,6-안하이드로-L-갈락토오스 디하이드로게나제, 3,6-안하이드로갈락토닉산 시클로이성질화효소, 2-케토-3-데옥시-갈락토닉산 인산화효소 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제를 동시에 발현하는 재조합 미생물의 발효에 의해 생성된 에탄올의 정량 분석 결과이다.
Brief Description of the Drawings Fig. 1 is a graph showing the results of the enzymatic reaction products of the enzymes isolated and purified from recombinant microorganisms expressing 3,6-anhydro-L-galactose dehydrogenase of the present invention or 3,6-anhydrogalactonic acid cyclo- GC-TOF MS, wherein A is a peak of 3,6-anhydro-L-galactose used as a substrate, B is a reaction product of 3,6-anhydro-L-galactose dehydrogenase Anhydrogalactonic acid, and C represents the peak of 2-keto-3-deoxy-galactonic acid, which is the reaction product of 3,6-anhydrogalactonic acid cyclase nitrification enzyme.
2 is a graph showing the results of an enzyme reaction of 3,6-anhydro-L-galactose dehydrogenase isolated and purified from a recombinant microorganism expressing 3,6-anhydro-L-galactose dehydrogenase of the present invention A is the result of 2-dimensional Heteronuclear single quantum coherence spectroscopy (HSQC) NMR analysis, and B is the result of 2-dimensional Heteronuclear Multibond Bond Correlation (HMBC) NMR analysis.
FIG. 3 is a graph showing the activity of the 3,6-anhydrogalactonic acid cyclase nitrase isolated and purified from the recombinant microorganism expressing the 3,6-anhydrogalactonic acid cyclase nitrase of the present invention by GC-TOF As a result of MS analysis and two-dimensional NMR analysis, A was a mass spectral analysis of GC-TOF MS of 2-keto-3-deoxy-gluconic acid standard material, and B was 3,6- anhydrogalactonic acid cyclic nitration As a result of the one-dimensional hydrogen NMR analysis of the enzyme reaction product of the enzyme, the result of the 2-dimensional HMBC NMR analysis of the enzyme reaction product of 3,6-anhydrogalactonic acid cyclase nitrification enzyme C showed that D was 3,6-anhydrogalactone 2-dimensional HMBC NMR analysis of the enzyme reaction product of the acid cyclase nitrase.
Fig. 4 is a graph showing the results obtained by measuring the activity of the 3,6-anhydro-L-galactose dehydrogenase of the present invention using 3,6-anhydro-L-galactose as the carbon source and the 3,6-anhydrogalactonic acid cyclo- Or concurrently expressing recombinant microorganisms.
Fig. 5 is a graph showing the results of the measurement of the agarose hydrolyzate (c) containing 3,6-anhydro-L-galactose (a), galactose (b), or 3,6-anhydro-L- galactose and galactose as a carbon source Anhydro-L-galactose dehydrogenase and 3,6-anhydrogalactonic acid cyclase nitrase of the present invention, respectively, or at the same time, under aerobic conditions of the recombinant microorganism.
Fig. 6 shows a quantitative analysis curve of ethanol using GC-FID.
FIG. 7 is a graph showing the results of the growth experiments of the recombinant microorganism expressing the 3,6-anhydro-L-galactose dehydrogenase and the 3,6-anhydrogalactonic acid cyclase nitrase of the present invention, respectively a), the substrate consumption measurement result (b), and the quantitative analysis result of ethanol produced by fermentation (c).
FIG. 8 is a graph showing the activity of the 3,6-anhydro-L-galactose dehydrogenase of the present invention, 3,6-anhydrogalactonic acid cyclase nitricase, 2-keto- 2-keto-3-deoxy-phosphogalactonic acid aldolase at the same time, according to the carbon source of the recombinant microorganism.
9 is a graph showing the activity of the 3,6-anhydro-L-galactose dehydrogenase of the present invention, 3,6-anhydrogalactonic acid cyclo-isomerizing enzyme, 2-keto- 2-keto-3-deoxy-phosphogalactonic acid aldolase in the fermentation conditions of the recombinant microorganism.
Fig. 10 is a graph showing the activity of the 3,6-anhydro-L-galactose dehydrogenase of the present invention, 3,6-anhydrogalactonic acid cyclase nitricase, 2-keto-3-deoxy- 2-keto-3-deoxy-phosphogalactonic acid aldolase at the same time as the recombinant microorganism.

이하 본 발명의 구성을 구체적으로 설명한다.Hereinafter, the structure of the present invention will be described in detail.

본 발명은 3,6-안하이드로-L-갈락토오스 디하이드로게나제(3,6-anhydro-L-galactose dehydrogenase)를 코딩하는 유전자; 3,6-안하이드로갈락토닉산 시클로이성질화효소(3,6-anhydrogalactonic acid cycloisomerase)를 코딩하는 유전자; 2-케토-3-데옥시-갈락토닉산 인산화효소(2-keto-3-deoxy-galactonic acid kinase)를 코딩하는 유전자; 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제(2-keto-3-deoxy-phosphogalactonic acid aldolase)를 코딩하는 유전자를 포함하는 에탄올 제조용 재조합 벡터에 관한 것이다. The present invention relates to a gene encoding 3,6-anhydro-L-galactose dehydrogenase (3,6-anhydro-L-galactose dehydrogenase) A gene encoding 3,6-anhydrogalactonic acid cycloisomerase (3,6-anhydrogalactonic acid cycloisomerase); A gene encoding 2-keto-3-deoxy-galactonic acid kinase; And a gene encoding 2-keto-3-deoxy-phosphogalactonic acid aldolase. The present invention also relates to a recombinant vector for producing ethanol, which comprises a gene coding for 2-keto-3-deoxy-phosphogalactonic acid aldolase.

본 발명의 에탄올 제조용 재조합 벡터는 갈락토오스 및/또는 3,6-안하이드로-L-갈락토오스(이하, '3,6-AHG'라 함)를 기질로 하여 최종 산물로 에탄올을 제조할 수 있는 것을 특징으로 한다. 보다 구체적으로, 상기 재조합 벡터는 3,6-AHG를 대사하는 3,6-안하이드로-L-갈락토오스 데히드로게나제를 코딩하는 유전자, 상기 3,6-안하이드로-L-갈락토오스 데히드로게나제에 의해 생산되는 3,6-안하이드로갈락토닉산의 환 구조를 개환시키면서 이성질화하여 2-케토-3-데옥시-갈락토닉산으로 전환하는 3,6-안하이드로갈락토닉산 시클로이성질화효소, 상기 2-케토-3-데옥시-갈락토닉산을 2-케토-3-데옥시-포스포갈락토닉산으로 인산화시키는 2-케토-3-데옥시-갈락토닉산 인산화효소, 및 상기 2-케토-3-데옥시-포스포갈락토닉산을 피루브산으로 분해시키는 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제를 코딩하는 유전자군을 포함하고 있다. 상기 피루브산은 알코올 발효의 출발물질로 이용되어 발효를 거쳐 최종적으로 에탄올을 생성하는 것이다.The recombinant vector for ethanol production of the present invention is characterized in that ethanol can be produced as a final product using galactose and / or 3,6-anhydro-L-galactose (hereinafter referred to as '3,6-AHG') as a substrate . More specifically, the recombinant vector comprises a gene encoding 3,6-anhydro-L-galactose dehydrogenase which metabolizes 3,6-AHG, a gene encoding 3,6-anhydro-L-galactose dehydrogenase Anhydrogalactonic acid cyclic nitrification enzyme which is isomerized and converted to 2-keto-3-deoxy-galactonic acid by ring-opening the ring structure of 3,6-anhydrogalactonic acid produced by 3-anhydrogalactonic acid Keto-3-deoxy-galactonic acid phosphorylase which phosphorylates the 2-keto-3-deoxy-galactonic acid with 2-keto-3-deoxy-phosphogalactonic acid, -Keto-3-deoxy-phosphogalactonic acid aldolase which degrades keto-3-deoxy-phosphogalactonic acid with pyruvic acid. The pyruvic acid is used as a starting material of alcohol fermentation and fermented to finally produce ethanol.

상기 3,6-안하이드로-L-갈락토오스 디하이드로게나제는 3,6-AHG를 3,6-안하이드로갈락토닉산으로 전환하는 효소로, 비브리오 속(Vibrio sp.) EJY3, 사카로파거스 데그라단스(Saccharophagus degradans) 2-40, 또는 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica ) T6c 등의 유래인 것일 수 있고, 예를 들어, 비브리오 속(Vibrio sp.) EJY3 유래의 SEQ ID NO: 1의 염기서열 및 SEQ ID NO: 2의 아미노산 서열로 표시될 수 있다.The 3,6-anhydro-L-galactose dehydrogenase is an enzyme that converts 3,6-AHG to 3,6-anhydrogalactonic acid. Vibrio sp. EJY3, Saccharophagus degradans) 2-40, or pseudo Alteromonas Atlantica (Pseudoalteromonas atlantica ) T6c, and may be represented by, for example, the nucleotide sequence of SEQ ID NO: 1 from Vibrio sp. EJY3 and the amino acid sequence of SEQ ID NO: 2.

상기 3,6-안하이드로갈락토닉산 시클로이성질화효소는 3,6-안하이드로갈락토닉산의 환 구조를 개환시키면서 이성질화하여 2-케토-3-데옥시-갈락토닉산으로 전환하는 효소로, 비브리오 속(Vibrio sp.) EJY3, 사카로파거스 데그라단스(Saccharophagus degradans) 2-40, 또는 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica ) T6c 등의 유래인 것일 수 있고, 보다 구체적으로, 사카로파거스 데그라단스(Saccharophagus degradans) 2-40 유래의 SEQ ID NO: 3의 염기서열(아미노산 서열: SEQ ID NO: 4), 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica ) T6c 유래의 SEQ ID NO: 5의 염기서열(아미노산 서열: SEQ ID NO: 6), 비브리오 속(Vibrio sp.) EJY3 유래의 SEQ ID NO: 7의 염기서열(아미노산 서열: SEQ ID NO: 8) 중 어느 하나로 표시될 수 있다.The 3,6-anhydrogalactonic acid cyclase nitricase is an enzyme which is isomerized by ring-opening the 3,6-anhydrogalactonic acid ring to convert it to 2-keto-3-deoxy-galactonic acid , Vibrio sp. EJY3, Saccharophagus ( Saccharophagus) degradans) 2-40, or pseudo Alteromonas Atlantica (Pseudoalteromonas which can be derived from such atlantica) T6c, more specifically, Saccharomyces par Guus de Gras Tansu (Saccharophagus degradans) of 2-40-derived SEQ ID NO: 3 of the sequence (amino acid sequence: SEQ ID NO: 4), Pseudomonas Alteromonas Atlantica (Pseudoalteromonas nucleotide sequence of the 5 (amino acid sequence:: atlantica) T6c derived from the SEQ ID NO sequences of 7 (amino acid sequence:: SEQ ID NO: 6) , Vibrio genus (Vibrio sp) EJY3 Origin SEQ ID NO. SEQ ID NO: 8). ≪ / RTI >

본 발명자들은 AHG 대사효소 중 하나인 3,6-안하이드로-L-갈락토오스 디하이드로게나제와 클러스터를 이루는 유전자들을 유전공학 기법을 사용하여 각각의 단백질들의 획득하고 효소반응을 실시한 결과, 3,6-안하이드로갈락토닉산(이하 'AHGA'라 함)으로부터 화학양론의 변화없이 선형의 2-케토-3-데옥시-갈락토닉산을 생성하는 3,6-안하이드로 갈락토닉산 시클로이성질화효소를 최초로 동정하였다.The present inventors obtained genes for clustering with 3,6-anhydro-L-galactose dehydrogenase, one of the AHG metabolizing enzymes, by using genetic engineering techniques, and performed enzymatic reactions. As a result, Anhydrogalactonic acid cyclic nitrile synthase which produces linear 2-keto-3-deoxy-galactonic acid without changing stoichiometry from anhydrogalactonic acid (hereinafter referred to as " AHGA & For the first time.

따라서, 본 발명은 SEQ ID NOS: 4, 6 또는 8의 아미노산 서열 중 어느 하나로 표시되는 3,6-안하이드로갈락토닉산 시클로이성질화효소(3,6-anhydrogalactonic acid cycloisomerase)을 포함하는 2-케토-3-데옥시-갈락토닉산 생산용 조성물을 또한 제공한다.Accordingly, the present invention provides a method for producing 2-keto-3-anhydrogalactonic acid which comprises 3,6-anhydrogalactonic acid cycloisomerase represented by any one of the amino acid sequences of SEQ ID NOS: 4, -3-deoxy-galactonic acid. ≪ / RTI >

또한, 본 발명은 SEQ ID NOS: 4, 6 또는 8의 아미노산 서열 중 어느 하나로 표시되는 3,6-안하이드로갈락토닉산 시클로이성질화효소(3,6-anhydrogalactonic acid cycloisomerase), 상기 3,6-안하이드로갈락토닉산 시클로이성질화효소를 생산하는 미생물 또는 상기 미생물의 배양산물을 3,6-안하이드로갈락토닉산과 반응시켜 2-케토-3-데옥시-갈락토닉산을 생산하는 방법을 제공한다.The present invention also relates to a 3,6-anhydrogalactonic acid cycloisomerase represented by any one of the amino acid sequences of SEQ ID NOS: 4, 6 or 8, the 3,6- A method for producing 2-keto-3-deoxy-galactonic acid by reacting a microorganism producing an anhydrogalactonic acid cyclo-isomerizing enzyme or a culture product of the microorganism with 3,6-anhydrogalactonic acid .

상기 2-케토-3-데옥시-갈락토닉산 인산화효소는 2-케토-3-데옥시-갈락토닉산을 2-케토-3-데옥시-포스포갈락토닉산으로 인산화시키는 효소로, 비브리오 속(Vibrio sp.) EJY3, 사카로파거스 데그라단스(Saccharophagus degradans) 2-40, 또는 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica ) T6c 등의 유래인 것일 수 있고, SEQ ID NO: 9의 염기서열 및 SEQ ID NO: 10의 아미노산 서열로 표시될 수 있다.The 2-keto-3-deoxy-galactonic acid kinase is an enzyme which phosphorylates 2-keto-3-deoxy-galactonic acid with 2-keto-3-deoxy-phosphogalactonic acid, Vibrio sp. EJY3, Saccharophagus ( Saccharophagus) degradans) 2-40, or pseudo Alteromonas Atlantica (Pseudoalteromonas atlantica ) T6c, and the like, and may be represented by the nucleotide sequence of SEQ ID NO: 9 and the amino acid sequence of SEQ ID NO: 10.

상기 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제는 2-케토-3-데옥시-포스포갈락토닉산을 피루브산으로 분해시키는 효소로, 비브리오 속(Vibrio sp.) EJY3, 사카로파거스 데그라단스(Saccharophagus degradans) 2-40, 또는 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica ) T6c 등의 유래인 것일 수 있고, SEQ ID NO: 11의 염기서열 및 SEQ ID NO: 12의 아미노산 서열로 표시될 수 있다.The 2-keto-3-deoxy-phosphogalactonic acid aldolase is an enzyme which decomposes 2-keto-3-deoxy-phosphogalactonic acid into pyruvic acid. Vibrio sp. EJY3, Saccharophagus ( Saccharophagus) degradans) 2-40, or pseudo Alteromonas Atlantica (Pseudoalteromonas atlantica ) T6c, and the like, and may be represented by the nucleotide sequence of SEQ ID NO: 11 and the amino acid sequence of SEQ ID NO: 12.

상술한 유전자들은 효소의 물리 화학적 활성을 갖고 하나 이상의 아미노산이 결실, 치환, 삽입 및/또는 부가된 단백질을 코딩하는 폴리뉴클레오티드를 포함한다. 예컨대, SEQ ID NO: 1, 3, 5, 7, 9 또는 11에 기재된 어느 하나의 뉴클레오티드를 포함하고, 효소의 물리 화학적 특성을 갖는 단백질을 코딩하는 폴리뉴클레오티드에 엄격한 조건 하에서 혼성화하는 폴리뉴클레오티드도 포함한다. '엄격한 조건하에서 혼성화하는 폴리뉴클레오티드' 라 함은, 예컨대 설명서에 기술된 조건하(0.5×SSC를 포함하는 일차 세척 완충액으로 42℃에서 세척)에서 ECL 직접 핵산 표지화 및 검출 시스템(Amersham Pharmacia Biotech)을 이용하여, 효소 단백질로부터 임의적으로 선택된 적어도 20, 바람직하게는 적어도 30의 연속적 잔기(예를 들어, 40, 60 또는 100 연속 잔기)의 서열을 포함하는 하나 이상의 프로브 DNAs에 혼성화하는 폴리뉴클레오티드를 말한다. 본 발명의 폴리뉴클레오티드는 분리된 폴리뉴클레오티드를 포함한다. '분리된 뉴클레오티드'라 함은 천연적으로 발생하는 폴리뉴클레오티드에 비해 상이한 형태로 존재하는 폴리뉴클레오티드를 말한다. 예를 들어, 다른 생물체의 게놈에 통합된 벡터 및 폴리뉴클레오티드는 상기 분리된 폴리뉴클레오티드에 포함된다. 또한, 상기 분리된 폴리뉴클레오티드는 cDNA, PCR 산물, 또는 제한 단편으로서 얻어진 폴리뉴클레오티드를 포함한다. 또한, 융합 단백질을 코딩하는 폴리뉴클레오티드의 부분으로서 사용되는 폴리뉴클레오티드는 '분리된 폴리뉴클레오티드'에 또한 포함된다.The above-mentioned genes include polynucleotides having a physicochemical activity of an enzyme and encoding a protein in which one or more amino acids are deleted, substituted, inserted and / or added. For example, polynucleotides that contain any one of the nucleotides described in SEQ ID NO: 1, 3, 5, 7, 9 or 11 and that hybridize under stringent conditions to a polynucleotide encoding a protein having the physicochemical properties of the enzyme do. "Polynucleotide hybridizing under stringent conditions" refers to a polynucleotide that hybridizes under ECL direct nucleic acid labeling and detection system (Amersham Pharmacia Biotech), for example, under conditions described in the manual (washing at 42 ° C with primary wash buffer containing 0.5 x SSC) Refers to a polynucleotide that hybridizes to one or more probe DNAs comprising a sequence of at least 20, preferably at least 30 contiguous residues (e. G., 40, 60, or 100 contiguous residues) optionally selected from the enzyme protein. Polynucleotides of the invention include isolated polynucleotides. &Quot; Isolated nucleotide " refers to a polynucleotide that exists in a different form than naturally occurring polynucleotides. For example, vectors and polynucleotides incorporated into the genome of another organism are included in the isolated polynucleotide. In addition, the isolated polynucleotide includes a cDNA, a PCR product, or a polynucleotide obtained as a restriction fragment. In addition, the polynucleotide used as part of the polynucleotide encoding the fusion protein is also included in the " isolated polynucleotide ".

상술한 본 발명의 효소들을 코딩하는 폴리뉴클레오티드는 예를 들어, 하기 방법에 의해 분리할 수 있다: SEQ ID NO: 1, 3, 5, 7, 9 또는 11의 뉴클레오티드 서열에 기초한 각각의 PCR 프라이머를 설계하고, 주형(template)으로서 효소-생산 균주 유래의 염색체 DNA나 cDNA 라이브러리를 이용한 PCR을 수행하여 본 발명의 DNA를 얻는다.Polynucleotides encoding the above-described enzymes of the present invention can be isolated, for example, by the following method: [0158] Each PCR primer based on the nucleotide sequence of SEQ ID NO: 1, 3, 5, 7, And PCR is performed using a chromosomal DNA or cDNA library derived from an enzyme-producing strain as a template to obtain the DNA of the present invention.

또한, 본 발명의 폴리뉴클레오티드는 프로브로서 얻어진 DNA 단편을 이용하여, 콜로니 혼성화, 플라크 혼성화 등으로, (a) 효소-생산 균주에서 유래된 염색체 DNA의 제한효소 단편을 파지나 플라스미드에 도입하고 상기 파지나 벡터로 대장균 세포를 형질전환하여 얻어진 라이브러리, 또는 (b) cDNA 라이브러리에 대한 스크리닝을 수행함으로써 제조할 수 있다.The polynucleotide of the present invention can be obtained by introducing a restriction enzyme fragment of a chromosomal DNA derived from an enzyme-producing strain into a fibrin or plasmid using a DNA fragment obtained as a probe, by colony hybridization or plaque hybridization, A library obtained by transforming Escherichia coli cells with gDNA vector, or (b) screening against a cDNA library.

택일적으로, 본 발명의 폴리뉴클레오티드는 PCR로 얻어진 DNA 단편의 뉴클레오티드 서열을 분석; 알려진 DNA 서열의 외부에 가닥(strand)을 신장하기 위해 분석된 서열에 기초한 PCR 프라이머의 설계; 및 적절한 제한효소로 효소-생산 균주의 염색체 DNA의 소화 및 주형으로서 상기 DNA를 이용하는 자가환화 반응(self-cyclizing reaction)에 의한 역-PCR을 수행함으로써 얻어질 수 있다(Genetics, 120, 621-623 (1988)). 또한, 본 발명의 폴리뉴클레오티드는 RACE 방법으로 얻어질 수 있다(Rapid Amplification of cDNA End, 'PCR Jikken Manual (Manual for PCR experiments)', 25-33, HBJ Publishing Bureau). Alternatively, the polynucleotide of the present invention can be used to analyze the nucleotide sequence of a DNA fragment obtained by PCR; Design of PCR primers based on sequence analyzed to elongate strands outside known DNA sequences; And digestion of the chromosomal DNA of the enzyme-producing strain with appropriate restriction enzymes and reverse PCR by self-cyclizing reaction using the DNA as a template ( Genetics , 120, 621-623 (1988)). The polynucleotides of the present invention can also be obtained by the RACE method (Rapid Amplification of cDNA End, 'PCR Jikken Manual (Manual for PCR experiments)', 25-33, HBJ Publishing Bureau).

상기 방법으로 클로닝된 게놈 DNA 및 cDNA에 더하여, 본 발명의 폴리뉴클레오티드는 합성된 DNAs를 포함한다.In addition to the genomic DNA and cDNA cloned by the above method, the polynucleotide of the present invention includes synthesized DNAs.

본 발명에서 "재조합 벡터"란 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다. 상기 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 또는 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 발현벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며, 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주세포를 선택하기 위한 선택마커를 포함하고, 복제가능한 발현벡터인 경우 복제 기원을 포함한다.The term "recombinant vector" as used herein refers to a gene construct containing an essential regulatory element operatively linked to the expression of a gene insert, which is capable of expressing a desired protein in a suitable host cell. Such vectors include, but are not limited to, a plasmid vector, a cosmid vector, a bacteriophage vector or a viral vector. Suitable expression vectors include signal sequence or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoter, operator, initiation codon, termination codon, polyadenylation signal and enhancer, and may be prepared in various ways depending on the purpose. The promoter of the vector may be constitutive or inducible. Further, the expression vector includes a selection marker for selecting a host cell containing the vector, and includes a replication origin in the case of a replicable expression vector.

본 발명의 재조합 벡터는 바람직하게는 일반적인 대장균 균주 발현용 벡터에 상술한 효소 코딩 핵산을 각각 또는 함께 삽입함으로써 제조될 수 있다. 상기 대장균 균주 발현용 벡터는 일반적으로 사용할 수 있는 모든 대장균주 발현용 벡터가 제한 없이 사용될 수 있다.
The recombinant vector of the present invention can be preferably prepared by inserting the above-mentioned enzyme-encoding nucleic acid separately or together into a vector for expression of a common E. coli strain. The Escherichia coli strain expression vector may be any commonly used Escherichia coli vector for expression.

본 발명은 또한 3,6-안하이드로-L-갈락토오스 디하이드로게나제(3,6-anhydro-L-galactose dehydrogenase)를 코딩하는 유전자; 3,6-안하이드로갈락토닉산 시클로이성질화효소(3,6-anhydrogalactonic acid cycloisomerase)를 코딩하는 유전자; 2-케토-3-데옥시-갈락토닉산 인산화효소(2-keto-3-deoxy-galactonic acid kinase)를 코딩하는 유전자; 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제(2-keto-3-deoxy-phosphogalactonic acid aldolase)를 코딩하는 유전자로 형질전환된 에탄올 제조용 재조합 미생물에 관한 것이다. The present invention also relates to a gene encoding 3,6-anhydro-L-galactose dehydrogenase (3,6-anhydro-L-galactose dehydrogenase); A gene encoding 3,6-anhydrogalactonic acid cycloisomerase (3,6-anhydrogalactonic acid cycloisomerase); A gene encoding 2-keto-3-deoxy-galactonic acid kinase; And a recombinant microorganism for producing ethanol transformed with a gene encoding 2-keto-3-deoxy-phosphogalactonic acid aldolase.

상기 형질전환은 핵산을 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 숙주세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기충격유전자전달법(electroporation), 원형질 융합, 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 실리콘 카바이드 섬유 이용한 교반, 아그로박테리아 매개된 형질전환, PEG, 덱스트란 설페이트, 리포펙타민 등이 포함되나 이로 제한되지 않는다. Such transformation includes any method of introducing the nucleic acid into an organism, cell, tissue or organ, and can be carried out by selecting a suitable standard technique depending on the host cell as is known in the art. Such methods include electroporation, protoplast fusion, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, agitation with silicon carbide fibers, Agrobacterium mediated transformation, PEG, dextran sulfate, Pectamine, and the like.

또한, 숙주세포에 따라서 단백질의 발현량과 수식 등이 다르게 나타나므로, 목적에 가장 적합한 숙주세포를 선택하여 사용하면 된다.In addition, since the expression amount of the protein and the expression are different depending on the host cell, the host cell most suitable for the purpose may be selected and used.

숙주세포로는 대장균(Escherichia coli), 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스(Streptomyces), 슈도모나스(Pseudomonas), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스(Staphylococcus)와 같은 원핵생물이 있으나 이에 제한되는 것은 아니다. 또한, 진균(예를 들어, 아스퍼질러스(Aspergillus)), 효모(예를 들어, 피치아 파스토리스(Pichia pastoris), 사카로마이세스 세르비시애(Saccharomyces cerevisiae), 쉬조사카로마세스(Schizosaccharomyces), 뉴로스포라 크라사(Neurospora crassa))등의 진핵생물이 사용될 수 있으나, 이에 제한하는 것은 아니다. 상기 형질전환체는 상기 유전자들을 포함하는 재조합 벡터를 임의의 숙주세포에 도입시킴으로써 용이하게 제조될 수 있다. Examples of host cells include Escherichia coli), Bacillus subtilis (Bacillus subtilis), Streptomyces (Streptomyces), Pseudomonas (Pseudomonas), Proteus Mira Billy's (Proteus but are not limited to, prokaryotes such as mirabilis or Staphylococcus . In addition, fungi (e.g., Aspergillus ), yeast (e.g., Pichia pastoris), Mai access to the Yasaka Auxerre Vichy kids (Saccharomyces cerevisiae), investigating car break in Rome Seth (Schizosaccharomyces), Castello La Neuro Chrysler Corporation (Neurospora crassa ) may be used, but the present invention is not limited thereto. The transformant can be easily prepared by introducing a recombinant vector containing the genes into an arbitrary host cell.

보다 구체적으로, 3,6-안하이드로-L-갈락토오스 디하이드로게나제를 코딩하는 유전자를 포함하는 재조합 벡터; 3,6-안하이드로갈락토닉산 시클로이성질화효소를 코딩하는 유전자를 포함하는 재조합 벡터; 2-케토-3-데옥시-갈락토닉산 인산화효소를 코딩하는 유전자를 포함하는 재조합 벡터; 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환될 수 있다. More specifically, a recombinant vector comprising a gene encoding 3,6-anhydro-L-galactose dehydrogenase; A recombinant vector comprising a gene encoding a 3,6-anhydrogalactonic acid cyclo-isomerase; A recombinant vector comprising a gene encoding 2-keto-3-deoxy-galactonic acid phosphorylase; And a gene encoding 2-keto-3-deoxy-phosphogalactonic acid aldolase.

또는, 3,6-안하이드로-L-갈락토오스 디하이드로게나제를 코딩하는 유전자 및 3,6-안하이드로갈락토닉산 시클로이성질화효소를 코딩하는 유전자를 포함하는 재조합 벡터; 2-케토-3-데옥시-갈락토닉산 인산화효소를 코딩하는 유전자를 포함하는 재조합 벡터; 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환될 수 있다. Or a recombinant vector comprising a gene encoding a 3,6-anhydro-L-galactose dehydrogenase and a gene encoding a 3,6-anhydrogalactonic acid cycloheteridase; A recombinant vector comprising a gene encoding 2-keto-3-deoxy-galactonic acid phosphorylase; And a gene encoding 2-keto-3-deoxy-phosphogalactonic acid aldolase.

또는, 3,6-안하이드로-L-갈락토오스 디하이드로게나제를 코딩하는 유전자, 3,6-안하이드로갈락토닉산 시클로이성질화효소를 코딩하는 유전자, 2-케토-3-데옥시-갈락토닉산 인산화효소를 코딩하는 유전자 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환될 수 있다.Or a gene encoding 3,6-anhydro-L-galactose dehydrogenase, a gene encoding 3,6-anhydrogalactonic acid cyclo-isomerizing enzyme, a 2-keto-3-deoxy-galactonic A gene encoding an acid phosphorylase and a gene encoding a 2-keto-3-deoxy-phosphogalactonic acid aldolase.

본 발명에 따른 재조합 미생물은 발효 균주일 수 있다.
The recombinant microorganism according to the present invention may be a fermentation strain.

본 발명은 또한 본 발명에 따른 재조합 미생물을 탄소원으로 갈락토오스 및 3,6-안하이드로-L-갈락토오스로 이루어진 군으로부터 선택된 하나 이상을 사용하여 발효시키는 단계를 포함하는 에탄올의 제조방법에 관한 것이다. The present invention also relates to a process for producing ethanol comprising fermenting the recombinant microorganism according to the present invention with a carbon source using at least one selected from the group consisting of galactose and 3,6-anhydro-L-galactose.

본 발명에 따른 재조합 미생물은 알코올 발효의 출발물질인 피루브산을 생산할 수 있어 3,6-AHG를 대사할 수 있는 효소들로부터 탄소원으로 갈락토오스 및/또는 3,6-AHG를 사용하여 발효 조건에서 에탄올을 생성할 수 있다.The recombinant microorganism according to the present invention can produce pyruvic acid, which is a starting material of alcohol fermentation, and can produce ethanol from fermentation conditions using galactose and / or 3,6-AHG as a carbon source from enzymes capable of metabolizing 3,6-AHG Can be generated.

상기 발효 시 유도물질로 아라비노스를 사용할 수 있다.
Arabinose may be used as an inducer in the fermentation.

본 발명은 또한 본 발명에 따른 재조합 미생물의 배양액 또는 균주 추출액을 갈락토오스 및 3,6-안하이드로-L-갈락토오스로 이루어진 군으로부터 선택된 하나 이상의 기질과 반응시켜 피루브산을 제조하는 단계; 및 상기 피루브산을 알코올 발효시키는 단계를 포함하는 에탄올의 제조방법에 관한 것이다.The present invention also relates to a method for producing pyruvic acid by reacting a culture broth or strain extract of a recombinant microorganism according to the present invention with at least one substrate selected from the group consisting of galactose and 3,6-anhydro-L-galactose; And fermenting the pyruvic acid with alcohol.

본 발명에 따른 재조합 미생물은 3,6-AHG를 대사할 수 있는 효소 군을 발현할 수 있고, 상기 재조합 미생물의 배양액 또는 균주 추출액에는 이러한 효소 군이 포함되어 있어 갈락토오스 및/또는 3,6-AHG를 기질로 제공하여 반응시킬 경우 피루브산을 생산할 수 있다. 상기 피루브산은 알코올 발효의 출발물질로 발효 조건에서 에탄올을 생산할 수 있다.The recombinant microorganism according to the present invention can express an enzyme group capable of metabolizing 3,6-AHG, and the culture solution or strain extract of the recombinant microorganism contains such an enzyme group, and galactose and / or 3,6-AHG Is provided as a substrate to produce pyruvic acid. The pyruvic acid is a starting material for alcohol fermentation and can produce ethanol under fermentation conditions.

이하, 본 발명을 실시예를 통해 상세히 설명한다. 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. The following examples illustrate the invention and are not intended to limit the scope of the invention.

<실시예 1> 3,6-안하이드로-L-갈락토오스 디하이드로게나제 재조합 미생물의 제조Example 1 Preparation of 3,6-anhydro-L-galactose dehydrogenase recombinant microorganism

비브리오 속(Vibrio sp.) EJY3 유래 3,6-안하이드로-L-갈락토오스 디하이드로게나제를 클로닝하였다. 이를 위해, 3,6-안하이드로-L-갈락토오스 디하이드로게나제 코딩 유전자(ORF Names: VEJY3_09240)에 대한 염기서열 정보를 기반으로 다음과 같은 프라이머 세트를 제작하였다.A 3,6-anhydro-L-galactose dehydrogenase derived from Vibrio sp. EJY3 was cloned. For this purpose, the following primer sets were prepared based on the nucleotide sequence information on the 3,6-anhydro-L-galactose dehydrogenase-coding gene (ORF Names: VEJY3_09240).

정방향 프라이머 1: 5'-gaaggagatataaggatgaaacgttaccaaatgtacgttg-3'(SEQ ID NO: 13)Forward primer 1: 5'-gaaggagatataaggatgaaacgttaccaaatgtacgttg-3 '(SEQ ID NO: 13)

역방향 프라이머 2: 5'-atgatggtgatggtggtcgaaattcacatagaatgtcttc-3'(SEQ ID NO: 14)Reverse primer 2: 5'-atgatggtgatggtggtcgaaattcacatagaatgtcttc-3 '(SEQ ID NO: 14)

중합효소연쇄반응을 통해 증폭된 각각의 효소 유전자는 pBAD (Invitrogen, Product no. V440-01 벡터와 아미노 말단에 6개의 히스티딘 잔기가 부가된 변형된 pET21α (이하 pJL) 벡터에 클로닝한 다음 발현용 대장균인 대장균(E. coli) BL21 (DB3)에 형질전환하여 발현시켰다. 이때 사용한 중합효소연쇄반응 조건은 다음과 같다. 1) 초기 변성 조건(Initial denaturation): 97℃, 30초, 2) 어닐링 조건: 35 사이클: 97℃, 10초 - 57℃, 1분 - 72℃, 2분, 3) 최종 연장 조건(final extension): 72℃, 5분.Each of the enzyme genes amplified by polymerase chain reaction was cloned into pBAD (Invitrogen, Product no. V440-01 vector and modified pET21a (hereinafter referred to as pJL) vector to which 6 histidine residues were added at the amino terminus, . E. coli was expressed by transforming the (E. coli) BL21 (DB3) the PCR conditions used are as follows: 1) initial denaturation conditions (initial denaturation):. 97 ℃ , 30 seconds, 2) annealing conditions : 35 cycles: 97 ° C, 10 seconds - 57 ° C, 1 minute - 72 ° C, 2 minutes, 3) final extension: 72 ° C, 5 minutes.

pBAD 벡터에 클로닝한 3,6-안하이드로-L-갈락토오스 디하이드로게나제는 유도제로 0.2%(w/v) 아라비노스를 이용하여 16℃, 200rpm 조건에서 18시간 동안 발현을 유도하였다. 대장균(E. coli) BL21에서 과발현 시킨 효소는 His-trap 컬럼을 사용하여 정제하였다. The 3,6-anhydro-L-galactose dehydrogenase cloned into the pBAD vector was induced to express for 18 hours at 16 ° C and 200 rpm using 0.2% (w / v) arabinose as an inducer. The enzyme over-expressed in E. coli BL21 was purified using a His-trap column.

상기 정제된 3,6-안하이드로-L-갈락토오스 디하이드로게나제 200㎍을 10mM의 3,6-AHG 및 1.5mM의 NADP 보조인자와 함께 20mM Tris-HCl(pH 7.4)에서 30℃에서 1시간 동안 반응시키고, 반응산물은 GC-TOF MS(gas chromatography-time of flight mass spectrometry)로 분석하고, 2차원 NMR(nuclear magnetic resonance) 분석을 통해 화학 구조를 규명하였다.200 μg of the purified 3,6-anhydro-L-galactose dehydrogenase was incubated in 20 mM Tris-HCl (pH 7.4) together with 10 mM 3,6-AHG and 1.5 mM NADP cofactor at 30 ° C. for 1 hour The reaction products were analyzed by GC-TOF MS (gas chromatography-time of flight mass spectrometry), and the chemical structure was determined by two-dimensional NMR (nuclear magnetic resonance) analysis.

상기 GC-TOF MS 분석을 위해 건조시킨 효소 반응산물에 유도체화 반응을 실시하였다. 40mg/mL의 메톡시아민 하이드로클로라이드(methoxyamine hydrochloride)를 피리딘(Sigma-Aldrich, St. Louis, MO)에 녹인 용액에 5㎕ 넣어준 후 30℃에서 90분간 반응시켰다. 그 후 45㎕의 N-메틸-N-트리메틸실릴트리플루오로아세타마이드(N-methyl-N-trimethylsilyltrifluoroacetamide, Fluka, Buchs, Switzerland)를 넣고 37℃에서 30분간 반응시켰다. 유도체화 시킨 샘플은 Agilent 7890 A GC(Agilent Technologies, Wilmington, DE) coupled to a Pegasus HT TOF MS(LECO, St. Joseph, MI)를 사용하여 분석하였다. RTX-5Sil MS 컬럼(30m×0.25mm, 0.25-㎛ film thickness; Restek, Bellefonte, PA)을 사용하였으며 1㎕의 샘플을 비분할 모드(splitless mode)로 주입(injection)하였다. 오븐 온도는 처음에 50℃에서 1분간 머무름 시간을 주었고, 그 후에 20℃/min의 속도로 330℃까지 승온시킨 후 5분간 머무름 시간을 주었다. 이온 소스(Ion source) 온도는 250℃였고, 트랜스퍼 라인(transfer line)의 온도는 280℃였다. 매스 스펙트럼(Mass spectra)의 스캔 범위는 85-500 m/z였다.For the GC-TOF MS analysis, the enzyme reaction product dried was subjected to derivatization reaction. Methoxyamine hydrochloride (40 mg / mL) was dissolved in pyridine (Sigma-Aldrich, St. Louis, Mo.), and 5 μl of the solution was reacted at 30 ° C. for 90 minutes. Then 45㎕ of N - methyl - N - trimethylsilyl trifluoroacetate Loa theta polyimide into the (N -methyl- N -trimethylsilyltrifluoroacetamide, Fluka, Buchs, Switzerland) was reacted with 37 ℃ 30 minutes. The derivatized samples were analyzed using an Agilent 7890 A GC (Agilent Technologies, Wilmington, DE) coupled to a Pegasus HT TOF MS (LECO, St. Joseph, MI). RTX-5Sil MS column (30 mx 0.25 mm, 0.25-mu m film thickness; Restek, Bellefonte, PA) was used and 1 μl sample was injected in a splitless mode. The oven temperature was initially given a retention time of 1 minute at 50 占 폚, and thereafter the temperature was raised to 330 占 폚 at a rate of 20 占 폚 / min and a retention time of 5 minutes was given. The ion source temperature was 250 占 폚 and the transfer line temperature was 280 占 폚. The scan range of the mass spectra was 85-500 m / z.

반응산물은 Sephadex G-10 컬럼을 사용하여 정제하였다. 즉, 2mg의 각각의 정제된 반응산물은 Bruker Avance II 900 MHz NMR spectrometer를 사용하여 13C NMR, 1H-13C HSQC NMR 및 1H-13C HMBC NMR 분석을 통해 화학구조를 규명하였으며 이때 사용한 내부 표준물질(internal standard)은 3-(트리메틸실릴)-프로피오닉-2,2,3,3,-d4애시드(3-(trimethylsilyl)-propionic-2,2,3,3-d4acid)로 하였다. The reaction product was purified using a Sephadex G-10 column. That is, 2 mg of each of the purified reaction products was characterized by 13 C NMR, 1 H- 13 C HSQC NMR and 1 H- 13 C HMBC NMR analysis using a Bruker Avance II 900 MHz NMR spectrometer, internal standard (internal standard) is 3- (trimethylsilyl) -propionic -2,2,3,3, -d 4 acid (3- (trimethylsilyl) -propionic-2,2,3,3 -d 4 acid ).

도 1A는 기질로 사용한 3,6-AHG이며, 도 1B는 3,6-안하이드로-L-갈락토오스 디하이드로게나아제와의 효소 반응 결과 반응산물로 3,6-안하이드로갈락토닉산이 생성됨을 나타낸 것이다. 1A is a 3,6-AHG used as a substrate, and FIG. 1B shows that 3,6-anhydrogalactonic acid is produced as a reaction product by an enzymatic reaction with 3,6-anhydro-L-galactose dehydrogenase will be.

도 2는 3,6-안하이드로-L-갈락토오스 디하이드로게나제의 반응산물의 NMR 분석 결과로, 1번 탄소와 1번 수소의 상관 스팟이 나타나지 않아 3,6-AHG의 알데히드기가 3,6-안하이드로-L-갈락토오스 디하이드로게나제의 효소 반응에 의해 전환되었음을 알 수 있었고(도 2A), 3번 탄소와 6번 수소간의 상관(correlation)이 나타나는 것으로 보아 3,6-안하이드로 결합은 그대로 유지가 된 채로 1번 탄소의 스팟이 180 PPM 부근에서 나타났으므로, 3,6-AHG의 알데히드기가 카르복실기로 산화된 것을 볼 수 있었다(도 2B). FIG. 2 shows the result of NMR analysis of the reaction product of 3,6-anhydro-L-galactose dehydrogenase. As a result, the correlation spots between the first carbon and the first hydrogen did not appear and the aldehyde groups of 3,6- -A-anhydro-L-galactose dehydrogenase (FIG. 2A), and the correlation between the 3-carbon and the 6-hydrogen is shown. As a result, the 3,6- Since the spot of carbon number 1 appeared near 180 PPM, the aldehyde group of 3,6-AHG was oxidized to a carboxyl group (FIG. 2B).

따라서 3,6-안하이드로-L-갈락토오스 디하이드로게나제의 효소 반응 산물은 3,6-안하이드로갈락토닉산임을 알 수 있다.
Therefore, the enzyme reaction product of 3,6-anhydro-L-galactose dehydrogenase is 3,6-anhydrogalactonic acid.

<실시예 2> 3,6-안하이드로갈락토닉산 시클로이성질화효소 재조합 미생물의 제조Example 2: Preparation of 3,6-anhydrogalactonic acid cyclase nitrifying enzyme recombinant microorganism

사카로파거스 데그라단스(Saccharophagus degradans) 2-40, 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica ) T6c, 비브리오속(Vibrio) EJY3 유래의 3,6-안하이드로-L-갈락토오스 디하이드로게나제를 클로닝하였다. 이를 위해, 사카로파거스 데그라단스(Saccharophagus degradans) 2-40, 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica ) T6c, 비브리오속(Vibrio) EJY3 유전체 서열로부터 얻어진 ACI 유전자 서열(유럽분자생물학연구소 (EMBL) 염기서열데이터베이스 식별번호: 각각 CP000282, 1152nt와 CP000388, 1137nt 그리고 CP003241, 1089nt)에 대한 정보를 기반으로 다음과 같은 프라이머 세트를 제작하였다. Saccharophagus ( Saccharophagus) degradans) 2-40, pseudo Alteromonas Atlantica (Pseudoalteromonas atlantica) was cloned T6c, in Vibrio (Vibrio) 3,6- anhydro-D-galactose dehydrogenase -L- EJY3 of origin. To this end, Saccharophagus degradans) 2-40, pseudo Alteromonas Atlantica (Pseudoalteromonas based on information for each CP000282, 1152nt and CP000388, 1137nt, and CP003241, 1089nt): atlantica) T6c , Vibrio genus (Vibrio) EJY3 ACI gene sequence (European Molecular Biology Laboratory obtained from the genome sequence (EMBL) nucleotide sequence database identification number The following primer sets were prepared.

1) Sde1) Sde

정방향 프라이머 1: 5'- gaaggagatataaggatgaaaattcataacatgaaaaattttatcaa-3' (47mer: SEQ ID NO: 15)Forward primer 1: 5'- gaaggagatataaggatgaaaattcataacatgaaaaattttatcaa-3 '(47mer: SEQ ID NO: 15)

역방향 프라이머 2: 5'- atgatggtgatggtgtcattcagcaaaatacactgtcttc -3' (40mer: SEQ ID NO: 16)Reverse primer 2: 5'-atgatggtgatggtgtcattcagcaaaatacactgtcttc -3 '(40 mer: SEQ ID NO: 16)

2) Patl2) Patl

정방향 프라이머 1: 5'- gaaggagatataaggatgatgagtgtcattaccaaactagaca-3' (43mer: SEQ ID NO: 17)Forward primer 1: 5'-gaaggagatataaggatgatgagtgtcattaccaaactagaca-3 '(43mer: SEQ ID NO: 17)

역방향 프라이머 2: 5'- atgatggtgatggtgagaatgtttaactaaatagggaagaag-3' (42mer: SEQ ID NO: 18)Reverse primer 2: 5'-atgatggtgatggtgagaatgtttaactaaatagggaagaag-3 '(42mer: SEQ ID NO: 18)

3) Vejy33) Vejy3

정방향 프라이머 1: 5'- gaaggagatataaggatgaaaacaacaatcaaagacatcaaaa-3' (43mer: SEQ ID NO: 19)Forward primer 1: 5'- gaaggagatataaggatgaaaacaacaatcaaagacatcaaaa-3 '(43mer: SEQ ID NO: 19)

역방향 프라이머 2: 5'- atgatggtgatggtgcacttcgtactgagcaattttgt-3' (38mer: SEQ ID NO: 20)Reverse primer 2: 5'- atgatggtgatggtgcacttcgtactgagcaattttgt-3 '(38mer: SEQ ID NO: 20)

각각 해당하는 유전체 DNA을 주형으로 PCR을 통해 각각의 유전자를 증폭하였다. 증폭된 sdeACI, patlACI, vejy3ACI DNA의 N-말단 부분은 모두 정제를 위해 6개의 히스티딘 잔기를 암호화하는 유전자 서열을 포함한 변형된 pET21a (이하 pJL)벡터에 LIC (Ligation Independent Cloning) 방법을 사용하여 클로닝한 후, 발현용 대장균인 E. coli BL21(DE3) 균주에 형질전환하였다. 이때 사용한 중합효소연쇄반응 조건은 다음과 같다. 1) 초기 변성 조건(Initial denaturation): 97℃, 30초, 2) 어닐링 조건: 35 사이클: 97℃, 10초 - 57℃, 1분 - 72℃, 2분, 3) 최종 연장 조건(final extension): 72℃, 5분.Each gene was amplified by PCR using the corresponding genomic DNA as a template. The N-terminal part of the amplified sde ACI, patl ACI, and vejy3 ACI DNA all had a Ligation Independent Cloning (LIC) method to the modified pET 21a ( pJL ) vector containing the gene sequence encoding 6 histidine residues for purification And then transformed into Escherichia coli E. coli BL21 (DE3) for expression. The polymerase chain reaction conditions used were as follows. 1) Initial denaturation: 97 ° C for 30 seconds, 2) annealing conditions: 35 cycles: 97 ° C, 10 seconds - 57 ° C, 1 minute - 72 ° C, 2 minutes, 3) final extension ): 72 占 폚, 5 minutes.

sdeACI, patlACI, vejy3ACI 각각의 유전자가 포함된 재조합 플라스미드를 E. coli BL21 (DE3)에 형질전환한 대장균을 50mg/L의 엠피실린 항생제가 들어있는 Luria-bertani 배지에 접종하고 37℃에서 OD600=0.5~1.0될 때까지 진탕배양하였다. 그 후에 0.5mM/L의 농도로 isopropyl-β-D-thiogalactopranoside(IPTG)를 사용하여 16℃에서 24시간 동안 발현을 유도하였다. 배양액을 4000rpm에서 15분 동안 원심분리하여 20mM Tris-HCl, pH 8.0 완충용액에 현탁한 균체를 초음파 파쇄기를 사용하여 균체로부터 조추출액을 만들었다. 조추출액은 4℃에서 15000rpm으로 40~60분 동안 원심분리하여 조효소액과 침전물로 분리하였다. 조효소액은 0.45㎛ 여과지로 여과한 후, 단계적으로 친화성 크로마토그래피, 이온 교환 크로마토그래피, 그리고 겔 여과 크로마토그래피를 사용하여 단백질을 정제하였다. Escherichia coli transformed into E. coli BL21 (DE3) was inoculated with recombinant plasmids containing sdeACI, patlACI, and vejy3ACI genes, respectively, in Luria-bertani medium containing 50 mg / L of ampicillin antibiotics and OD 600 = And cultured with shaking until the ratio became 0.5 to 1.0. After that, expression was induced at 16 ° C for 24 hours using isopropyl-β-D-thiogalactopranoside (IPTG) at a concentration of 0.5 mM / L. The culture broth was centrifuged at 4000 rpm for 15 minutes and suspended in 20 mM Tris-HCl, pH 8.0 buffer to make a crude extract from the cells using an ultrasonic crusher. The crude extract was centrifuged at 15,000 rpm for 40 to 60 minutes at 4 ° C to separate crude enzyme solution and precipitate. The crude enzyme solution was filtered through a 0.45 μm filter paper, and proteins were purified stepwise by affinity chromatography, ion exchange chromatography, and gel filtration chromatography.

10% SDS-PAGE 분석 결과, 대략 42 kDa 크기의 효소를 얻을 수 있다(미도시됨).10% SDS-PAGE analysis results in an enzyme of approximately 42 kDa size (not shown).

정제한 3,6-안하이드로갈락토닉산 시클로이성질화효소(vejy3ACI) 25㎍을 상기 실시예 1에서 얻은 반응산물과 30℃에서 1시간 동안 반응시켰다. 반응산물은 GC-TOF MS로 분석하고, 2차원 NMR 분석을 통해 화학 구조를 규명하였으며, Sephadex G-10 컬럼을 사용하여 정제를 하였다. 분석 및 정제방법은 상기 실시예 1과 동일하게 실시하였다. 표준물질로, 2-케토-3-데옥시-글루콘산(Sigma, Product no. 12271)을 사용하였다.25 μg of the purified 3,6-anhydrogalactonic acid cyclase nitrating enzyme (vejy3ACI) was reacted with the reaction product obtained in Example 1 at 30 ° C for 1 hour. The reaction product was analyzed by GC-TOF MS, the chemical structure was identified by two-dimensional NMR analysis, and purification was carried out using Sephadex G-10 column. The analysis and purification were carried out in the same manner as in Example 1 above. As a standard substance, 2-keto-3-deoxy-gluconic acid (Sigma, Product No. 12271) was used.

도 1C에 나타난 바와 같이, 반응산물이 2-케토-3-데옥시-갈락토닉산임을 확인하였다. As shown in Fig. 1C, the reaction product was confirmed to be 2-keto-3-deoxy-galactonic acid.

도 3은 3,6-안하이드로갈락토닉산 시클로이성질화효소(vejy3ACI)의 반응산물의 NMR 분석 결과로, 2-케토-3-데옥시-글루콘산(2-keto-3-deoxy-gluconic acid) 표준물질의 매스 스펙트럼과 도 1C의 3,6-안하이드로갈락토닉산 시클로이성질화효소의 효소 반응산물의 매스 스펙트럼이 일치하는 것으로 보아 3,6-안하이드로갈락토닉산 시클로이성질화효소의 효소 반응산물은 2-케토-3-데옥시-글루콘산과 같은 분자량과 2차원 구조를 갖고 있는 물질임을 알 수 있었다(도 3A). 또한, 1번 탄소의 카르복실기와 2번 탄소의 헤미케탈기(hemi-ketal structure)의 피크가 나타났고(도 3B), 1번 탄소와 6번 수소간의 상관 스팟(correlation spot)이 나타나지 않은 것으로 보아 1번 탄소의 카르복실기는 그대로 있음을 알 수 있다(도 3C). 또한 3번 탄소와 6번 탄소의 상관 스팟(correlation spot)이 나타나지 않은 것으로 보아 3,6-안하이드로 결합은 열린 것을 알 수 있으며, 2번 탄소와 6번 수소간의 상관 스팟이 나타났고(도 3D), 뿐만 아니라 3,6-안하이드로갈락토닉산에서 나타난 카르복실산(13C 180 PPM) 시그널이 그대로 남아 있으므로 1번 탄소의 카르복실산은 그대로 유지되어 3,6-안하이드로갈락토닉산 시클로이성질화효소의 효소 반응산물은 2-케토-3-데옥시-갈락토닉산임을 알 수 있었다.
3 shows the results of NMR analysis of the reaction product of 3,6-anhydrogalactonic acid cyclase nitricase (vejy3ACI). As a result of NMR analysis, 2-keto-3-deoxy-gluconic acid ) Mass spectrometry of the reference material and the mass spectrum of the enzyme reaction product of the 3,6-anhydrogalactonic acid cyclase nitricase of Figure 1C are identical, it is concluded that the enzyme of 3,6-anhydrogalactonic acid cyclase nitrase The reaction product was found to be a substance having a molecular weight and a two-dimensional structure such as 2-keto-3-deoxy-gluconic acid (Fig. 3A). In addition, a peak of the hemi-ketal structure of the carboxyl group of No. 1 carbon and No. 2 carbon was shown (FIG. 3B), and no correlation spot between No. 1 carbon and No. 6 hydrogen appeared The carboxyl group of the first carbon is still present (FIG. 3C). In addition, no correlation spot between the 3-carbon and the 6-carbon was observed, indicating that the 3,6-anhydro bond was opened, and the correlation spot between the 2-carbon and the 6-hydrogen appeared (FIG. 3D ), As well as the carboxylic acid ( 13 C 180 PPM) signal present in 3,6-anhydrogalactonic acid remained intact, so that the carboxylic acid of carbon number 1 remained intact and the 3,6-anhydrogalactonic acid cyclic The enzymatic reaction product of nitrification enzyme was found to be 2-keto-3-deoxy-galactonic acid.

<실시예 3> 3,6-안하이드로-L-갈락토오스 디하이드로게나제 및 3,6-안하이드로갈락토닉산 시클로이성질화효소의 재조합 미생물의 제조Example 3: Preparation of recombinant microorganisms of 3,6-anhydro-L-galactose dehydrogenase and 3,6-anhydrogalactonic acid cyclo-isomerase

재조합 대장균의 생장 실험을 위해 비브리오 속(Vibrio sp.) EJY3 유래 3,6-안하이드로-L-갈락토오스 디하이드로게나제 및 3,6-안하이드로갈락토닉산 시클로이성질화효소는 각각 또는 2개의 효소 코딩 유전자를 동시에 pBAD 벡터에 클로닝 하여 대장균(E. coli) K12 MG1655에 형질전환 시켰다. 이때 사용한 프라이머 정보는 다음과 같다:In order to test the growth of recombinant E. coli, 3,6-anhydro-L-galactose dehydrogenase derived from Vibrio sp. EJY3 and 3,6-anhydrogalactonic acid cyclic isomerase were each treated with two enzymes The coding gene was cloned into a pBAD vector at the same time to produce E. coli . K12 MG1655. The primer information used at this time is as follows:

1. 효소 1. Enzyme 각각을Each 클로닝한Cloned 경우 Occation

1.1. 3,6-안하이드로-L-갈락토오스 디하이드로게나제 코딩 유전자(ORF Names: VEJY3_09240)1.1. 3,6-anhydro-L-galactose dehydrogenase coding gene (ORF Names: VEJY3_09240)

정방향 프라이머 1: 5'-gaaggagatataaggatgaaacgttaccaaatgtacgttg-3'(SEQ ID NO: 13)Forward primer 1: 5'-gaaggagatataaggatgaaacgttaccaaatgtacgttg-3 '(SEQ ID NO: 13)

역방향 프라이머 2: 5'-atgatggtgatggtggtcgaaattcacatagaatgtcttc-3'(SEQ ID NO: 14)Reverse primer 2: 5'-atgatggtgatggtggtcgaaattcacatagaatgtcttc-3 '(SEQ ID NO: 14)

1.2. 3,6-안하이드로갈락토닉산 시클로이성질화효소 코딩 유전자(ORF Names: VEJY3_09370)1.2. 3,6-anhydrogalactonic acid cyclase nitricase coding gene (ORF Names: VEJY3_09370)

정방향 프라이머 1: 5'-gcgctcgagatgaaaacaacaatcaaagacatcaaaac-3'(Tm:61.9, XhoI) (SEQ ID NO: 21)Forward primer 1: 5'-gcgctcgagatgaaaacaacaatcaaagacatcaaaac-3 '(Tm: 61.9, Xho I) (SEQ ID NO: 21)

역방향 프라이머 2: 5'-gcgtacgtacacttcgtactgagcaattttgtc-3'(Tm:61.8, SnabI) (SEQ ID NO: 22)
Reverse primer 2: 5'-gcgtacgtacacttcgtactgagcaattttgtc-3 '(Tm: 61.8, Snab I) (SEQ ID NO: 22)

2. 효소를 동시에 2. Enzyme at the same time 클로닝한Cloned 경우: 3,6- Case: 3,6- 안하이드로Anhydro -L-갈락토오스 -L-galactose 디하이드로게나제Dihydrogenase 코딩 유전자( Coding gene ( ORFORF NamesNames : : VEJY3VEJY3 _09240) 및 3,6-_09240) and 3,6- 안하이드로갈락토닉산Anhydrogalactonic acid 시클로Cyclo 이성질화효소 코딩 유전자(Isomerizing enzyme coding gene ( ORFORF NamesNames : : VEJY3VEJY3 _09370)_09370)

2.1. 3,6-안하이드로-L-갈락토오스 디하이드로게나제 코딩 유전자(VEJY3_09240)2.1. 3,6-anhydro-L-galactose dehydrogenase coding gene (VEJY3_09240)

정방향 프라이머 1: 5'-gcgctcgagatgaaacgttaccaaatgtacgttg-3'(XhoI) (SEQ ID NO: 23)Forward primer 1: 5'-gcgctcgagatgaaacgttaccaaatgtacgttg-3 '( Xho I) (SEQ ID NO: 23)

역방향 프라이머 2: 5'-gcgtctagattagtcgaaattcacatagaatgtct-3'(XbaI) (SEQ ID NO: 24)Reverse primer 2: 5'-gcgtctagattagtcgaaattcacatagaatgtct-3 '( Xba I) (SEQ ID NO: 24)

2.2. 3,6-안하이드로갈락토닉산 시클로이성질화효소 코딩 유전자(VEJY3_09370)2.2. 3,6-anhydrogalactonic acid cyclo-nitriding enzyme coding gene (VEJY3_09370)

정방향 프라이머 1: 5'-gcgtctagaatgaaaacaacaatcaaagacatcaaaac-3'(XbaI) (SEQ ID NO: 21)Forward primer 1: 5'-gcgtctagaatgaaaacaacaatcaaagacatcaaaac-3 '( Xba I) (SEQ ID NO: 21)

역방향 프라이머 2: 5'-gcgtacgtacacttcgtactgagcaattttgtc-3'(SnabI) (SEQ ID NO: 22)Reverse primer 2: 5'-gcgtacgtacacttcgtactgagcaattttgtc-3 '( Snab I) (SEQ ID NO: 22)

3,6-안하이드로-L-갈락토오스 디하이드로게나제 코딩 유전자(ORF Names: VEJY3_09240)와 3,6-안하이드로갈락토닉산 시클로이성질화효소 코딩 유전자(ORF Names: VEJY3_09370)를 동시에 pBAD에 클로닝 할 때에는 VEJY3_09240 프라이머 2의 XbaI 제한효소 자리와 VEJY3_09370 프라이머 1의 XbaI 제한효소자리가 라이게이션 반응 시 서로 연결되게 하였으며 연결된 VEJY3_09240와 VEJY3_09370 말단 자리의 XhoI와 SnabI 제한효소 자리가 pBAD 벡터와 연결되도록 하였다. The 3,6-anhydro-L-galactose dehydrogenase coding gene (ORF Names: VEJY3_09240) and the 3,6-anhydrogalactonic acid cyclase nitrase coding gene (ORF Names: VEJY3_09370) were simultaneously cloned into pBAD If so Xba I restriction enzyme spot and Xba I restriction enzyme spot ligation reaction upon was to be connected to each other are connected VEJY3_09240 and VEJY3_09370 Xho I and Snab I distal position restriction place of VEJY3_09370 primer 1 of VEJY3_09240 primer 2 is associated with the pBAD vector Respectively.

pBAD 벡터에 클로닝 하여 대장균(E. coli) K12 MG1655에 형질전환 시킨 각각의 효소들은 0.01%(w/v)의 아라비노스를 사용하여 발현시켰다. 각각의 효소 코딩 유전자가 들어있는 대장균(E. coli) K12 MG1655 균주는 변형한 M9 배지에서 배양하였다. M9 배지의 제조 방법은 다음과 같다. 5배 농축된 M9 염 용액을 만들기 위해 2.5g의 NaCl, 5g의 NH4Cl과 250mM의 Tris-HCl 완충용액(pH 7.4)를 1L의 물에 녹인 후에 멸균시켰다. 200mL의 5배 농축된 M9 염 용액에 2mL의 1M MgSO4, 0.1mL의 1M CaCl2, 20mL의 20%(w/v) 3,6-AHG와 20mL의 5%(w/v) YNB(yeast nitrogen base)를 넣은 후 멸균수로 총 부피가 1L가 되도록 첨가해 주었다. 재조합 대장균(E. coli) K12 MG1655 의 배양 조건은 30℃, 200rpm이었다. pBAD vector to obtain E. coli . Each of the enzymes transformed into K12 MG1655 was expressed using 0.01% (w / v) of Arabidopsis. E. coli containing each enzyme coding gene K12 MG1655 strain was cultured in modified M9 medium. The production method of M9 medium is as follows. To make 5-fold concentrated M9 salt solution, 2.5 g of NaCl, 5 g of NH 4 Cl and 250 mM of Tris-HCl buffer (pH 7.4) were dissolved in 1 L of water and sterilized. 2mL of a 5-fold concentrated M9 salt solution of 200mL 1M MgSO 4, 0.1mL of 1M CaCl 2, 20% (w / v) 3,6-AHG with 20mL 5% (w / v) YNB (yeast in 20mL of nitrogen base) was added and sterilized water was added so that the total volume became 1L. Recombinant E. coli The culture conditions of K12 MG1655 were 30 ° C and 200 rpm.

탄소원으로 1%(w/v)의 3,6-AHG를 사용하고, 유도물질로 0.01%(w/v)의 아라비노스를 사용하여 상기 재조합 미생물을 배양한 결과, 도 4에 나타난 바와 같이, 유전자가 없는 빈 벡터만 있는 조건에서는 재조합 대장균(E. coli) K12 MG1655가 전혀 생장하지 않았으며 각각의 효소 3,6-안하이드로-L-갈락토오스 디하이드로게나제와 3,6-안하이드로갈락토닉산 시클로이성질화효소를 발현하는 재조합 대장균은 약간 생장하였으며 3,6-안하이드로-L-갈락토오스 디하이드로게나제 및 3,6-안하이드로갈락토닉산 시클로이성질화효소를 동시에 발현하는 재조합 대장균은 가장 높은 생장을 보였다. As a result of culturing the recombinant microorganism using 1% (w / v) 3,6-AHG as a carbon source and 0.01% (w / v) arabinose as an inducer, In the absence of the gene-free empty vector, recombinant E. coli , K12 MG1655 did not grow at all and recombinant E. coli expressing the respective enzyme 3,6-anhydro-L-galactose dehydrogenase and 3,6-anhydrogalactonic acid cyclase nitrite was slightly grown, Recombinant E. coli expressing 6-anhydro-L-galactose dehydrogenase and 3,6-anhydrogalactonic acid cyclo-isomerase simultaneously exhibited the highest growth.

상기 재조합 미생물을 호기적인 조건에서 M9 배지에서 30℃에서 96시간 동안 배양한 후, 600 nm에서 흡광도를 측정하였다. 이때, 탄소원으로 20mL의 20%(w/v) 3,6-AHG, 3,6-AHG와 갈락토오스가 주로 함유된 아가로스 가수분해물을 사용하였다. 이때, 탄소원으로 3,6-AHG, 3,6-AHG와 갈락토오스가 주로 함유된 아가로오스 가수분해물을 사용하였다. The recombinant microorganism was cultured under aerobic conditions in M9 medium at 30 DEG C for 96 hours, and the absorbance at 600 nm was measured. At this time, 20 mL of 20% (w / v) 3,6-AHG, 3,6-AHG and agarose hydrolyzate mainly containing galactose were used as a carbon source. At this time, agarose hydrolyzate mainly containing 3,6-AHG, 3,6-AHG and galactose was used as a carbon source.

그 결과, AHG 탄소원에서 재조합 대장균 배양 시, 3,6-안하이드로-L-갈락토오스 디하이드로게나제 유전자와 3,6-안하이드로갈락토닉산 시클로이성질화효소 유전자를 재조합한 조건에서만 생장하는 것을 확인하였다(도 5a). 또한 갈락토오스 조건에서는 빈 벡터(empty vector)와 2개의 효소유전자를 넣은 조건에서 비슷한 생장 곡선을 나타내었으며(도 5b), AHG와 갈락토오스가 주로 함유되어 있는 아가로스 가수분해물 탄소원 조건에서는 27시간까지는 비슷한 생장곡선을 나타내다가 그 이후로는 2개의 효소유전자를 넣은 조건에서 추가적인 생장을 나타내었다(도 5c).As a result, it was confirmed that when the recombinant Escherichia coli was cultured in the AHG carbon source, only the 3,6-anhydro-L-galactose dehydrogenase gene and the 3,6-anhydrogalactonic acid cycloheteritinase gene were grown under the recombinant conditions (Fig. 5A). In addition, in the galactose condition, similar growth curves were obtained under the conditions of an empty vector and two enzyme genes (Fig. 5B). In the condition of the agarose hydrolyzate carbon source mainly containing AHG and galactose, (Fig. 5 (c)), and thereafter, two genes were added.

또한, 상기 재조합 미생물을 미세호기조건(microaerobic)에서 에탄올 발효 실험을 진행하였다. 상기 재조합 미생물을 발효시켜 생성된 에탄올은 에탄올 표준물질 농도별로 GC-FID 분석을 실시하여 검정곡선을 나타내었다. 배양액을 원심분리 한 후(16,000rpm, 4℃, 5분), 상층액을 얻어 분석하였으며 분석 조건은 다음과 같았다. 주입구(Inlet)의 온도 250℃, split ration 20:1, 압력 11.567 psi, 전체 흐름 24mL/min, septum purge 흐름 3mL/min이었으며, 샘플 시료는 1㎕ 주입하였다. 오븐의 흐름은 1mL/min, 오븐 온도 조건은 처음에 40℃에서 3.5분간 머무른 후에 50℃/min의 속도로 150℃까지 승온 시킨 후 1분간 머무름 시간을 주었다. 그 후 20℃/min의 속도로 180℃까지 승온 시킨 후 2분간 머무름 시간을 주었으며 총 분석시간은 10.2분이었다. FID의 온도는 300℃였으며 수소 가스 흐름 40mL/min, 공기 흐름 350mL/min, 헬륨가스 흐름 15mL/min이었다. 도 6의 검정 곡선 결과 y=245.18x+12.24(y=피크 영역(peak area), x=에탄올 농도(ethanol concentration, g/L))의 수식을 얻을 수 있었으며 이를 바탕으로 에탄올 농도를 계산하였다.In addition, the recombinant microorganism was subjected to ethanol fermentation experiment under microaerobic conditions. The ethanol produced by the fermentation of the recombinant microorganism was subjected to GC-FID analysis according to ethanol standard concentration to give a calibration curve. After centrifuging the culture (16,000 rpm, 4 ° C, 5 minutes), the supernatant was analyzed and the analysis conditions were as follows. Inlet temperature was 250 ℃, split ratio 20: 1, pressure 11.567 psi, total flow 24 mL / min, septum purge flow 3 mL / min, and 1 ㎕ of sample was injected. The oven flow was 1 mL / min. The oven temperature condition was first maintained at 40 DEG C for 3.5 minutes, then heated to 150 DEG C at a rate of 50 DEG C / min, and then allowed to stand for 1 minute. Thereafter, the temperature was raised to 180 ° C at a rate of 20 ° C / min, followed by a retention time of 2 minutes, and a total analysis time was 10.2 minutes. The temperature of the FID was 300 占 폚, hydrogen gas flow 40 mL / min, air flow 350 mL / min, and helium gas flow 15 mL / min. As a result of the calibration curve of FIG. 6, the equation of y = 245.18x + 12.24 (y = peak area, x = ethanol concentration, g / L) was obtained.

미세호기조건에서의 세포밀도는 빈 벡터와 두 개의 효소유전자를 넣은 조건에서 모두 비슷하게 나타났으며(도 7a), 기질소비량을 측정한 결과, 갈락토오스의 소비량은 비슷하게 나타났지만, 갈락토오스를 모두 소비한 24시간 이후부터는 두 개의 효소유전자를 넣은 조건에서 AHG를 소비하는 것으로 나타났다(도 7b). 에탄올 생산은 두 개의 효소유전자를 넣은 조건에서 빈 벡터 조건보다 높게 나타났으며, 42시간에서는 빈 벡터 조건 대비 2개의 효소유전자를 넣은 조건에서 24% 높은 에탄올 농도를 나타내었다.
The cell density in the micro-expiratory condition was similar for both the empty vector and the two enzyme genes (Fig. 7a). As a result of measuring the substrate consumption, the consumption of galactose was similar, but the consumption of galactose From the time afterwards, it was found that AHG was consumed in the presence of two enzyme genes (Fig. 7B). Ethanol production was higher than that of the empty vector condition with two enzyme genes. At 42 hr, the ethanol concentration was 24% higher than the empty vector condition with 2 enzyme genes.

<실시예 4 > 3,6-AHG 대사 관련 효소 군의 재조합 미생물의 제조Example 4 Preparation of Recombinant Microorganisms of 3,6-AHG Metabolism Related Enzymes

3,6-AHG 대사에 관련된 효소, 즉, 3,6-안하이드로-L-갈락토오스 디하이드로게나제, 3,6-안하이드로갈락토닉산 시클로이성질화효소, 2-케토-3-데옥시-갈락토닉산 인산화효소 및 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제를 발효용 대장균(E. coli) KO11 FL 균주에 도입하였다. 이때 사용한 프라이머 정보는 다음과 같다:An enzymes involved in 3,6-AHG metabolism, namely, 3,6-anhydro-L-galactose dehydrogenase, 3,6-anhydrogalactonic acid cycloheteridase, 2-keto- Galactonic acid phosphorylase and 2-keto-3-deoxy-phosphogalactonic acid aldolase were introduced into E. coli KO11 FL strain for fermentation. The primer information used at this time is as follows:

1) 3,6-안하이드로-L-갈락토오스 디하이드로게나제 코딩 유전자(VEJY3_09240)1) 3,6-anhydro-L-galactose dehydrogenase coding gene (VEJY3_09240)

정방향 프라이머 1: 5'-gcgctcgagatgaaacgttaccaaatgtacgttg-3'(XhoI)(SEQ ID NO: 23)Forward primer 1: 5'-gcgctcgagatgaaacgttaccaaatgtacgttg-3 '( Xho I) (SEQ ID NO: 23)

역방향 프라이머 2: 5'-gcgtctagattagtcgaaattcacatagaatgtct-3'(XbaI)(SEQ ID NO: 24)Reverse primer 2: 5'-gcgtctagattagtcgaaattcacatagaatgtct-3 '( Xba I) (SEQ ID NO: 24)

2) 2-케토-3-데옥시-갈락토닉산 인산화효소 코딩 유전자 + 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제 코딩 유전자 + 3,6-안하이드로갈락토닉산 시클로이성질화효소 코딩 유전자(각각 VEJY3_09380 + VEJY3_09375 + VEJY3_09370)2) 2-keto-3-deoxy-galactonic acid phosphorylase coding gene + 2-keto-3-deoxy-phosphogalactonic acid aldolase coding gene + 3,6-anhydrogalactonic acid cyclic Nitric oxide coding genes (VEJY3_09380 + VEJY3_09375 + VEJY3_09370, respectively)

정방향 프라이머 1: 5'-gcgtctagaatgagtttggaaataaaacaagatacg-3'(XbaI)(SEQ ID NO: 21)Forward primer 1: 5'-gcgtctagaatgagtttggaaataaaacaagatacg-3 '( Xba I) (SEQ ID NO: 21)

역방향 프라이머 2: 5'-gcgtacgta cacttcgtactgagcaattttgtc-3'(SnabI)(SEQ ID NO: 22)Reverse primer 2: 5'-gcgtacgta cacttcgtactgagcaattttgtc-3 '( Snab I) (SEQ ID NO: 22)

3,6-안하이드로-L-갈락토오스 디하이드로게나제 코딩 유전자(ORF Names: VEJY3_09240)와 2-케토-3-데옥시-갈락토닉산 인산화효소 코딩 유전자 + 2-케토-3-데옥시-포스포갈락토닉산 알돌라아제 코딩 유전자 + 3,6-안하이드로갈락토닉산 시클로이성질화효소 코딩 유전자(각각 VEJY3_09380 + VEJY3_09375 + VEJY3_09370)를 동시에 pBAD에 클로닝 할 때에는 VEJY3_09240 프라이머 2의 XbaI 제한효소 자리와 VEJY3_09380 + VEJY3_09375 + VEJY3_09370 프라이머 1의 XbaI 제한효소 자리가 라이게이션 반응 시에 서로 연결되게 하였으며 연결된 VEJY3_09240와 VEJY3_09380 + VEJY3_09375 + VEJY3_09370 말단 자리의 XhoI와 SnabI 제한효소 자리가 pBAD 벡터와 연결되도록 하였다. 재조합 대장균(E. coli) KO11 FL 균주의 효소 발현 및 배양 방법은 상기 실시예 1 및 2의 재조합 대장균(E. coli) K12 MG1655에서 사용한 방법과 동일하게 하였다. 이때 배지의 탄소원으로 1%의 갈락토오스 또는 1% 갈락토오스 + 1% 3,6-AHG를 사용하였다. (ORF Names: VEJY3_09240) and the 2-keto-3-deoxy-galactonic acid phosphorylase coding gene + 2-keto-3-deoxy- When cloning of the phagalactonic acid aldolase coding gene + 3,6-anhydrogalactonic acid cyclase nitrase coding gene (VEJY3_09380 + VEJY3_09375 + VEJY3_09370, respectively) into pBAD simultaneously, the Xba I restriction site of VEJY3_09240 primer 2 VEJY3_09380 + VEJY3_09375 + VEJY3_09370 Xba I restriction of primer 1 enzyme spot Lai were to be connected to each other at the time of ligation reaction associated VEJY3_09240 and VEJY3_09380 + VEJY3_09375 + VEJY3_09370 end position of the Xho I and Snab I restriction enzyme spot was to be connected with the pBAD vector. Enzymes expression and culture of recombinant E. coli KO11 FL strains were performed in the same manner as in E. coli K12 MG1655 of Examples 1 and 2 above. At this time, 1% galactose or 1% galactose + 1% 3,6-AHG was used as the carbon source of the culture medium.

상기 재조합 미생물을 배양하여 생장 실험을 실시하였다. 배지 조성은 상술한 변형한 M9 배지를 사용하였으며, 탄소원으로 탄소원을 넣지 않은 조건(대조군), 유도물질 없이 1%(w/v)의 3,6-AHG만 넣은 조건, 유도물질인 0.01%(w/v)의 아라비노스만 있는 조건, 그리고 1%(w/v)의 3,6-AHG에 0.01%(w/v)의 아라비노스를 넣은 조건에서 배양하였다. The recombinant microorganism was cultured to conduct a growth experiment. The medium was prepared by using the modified M9 medium described above. The medium was prepared by adding 1% (w / v) of 3,6-AHG without carbon source to the carbon source (control group) (w / v) arabinose alone, and 0.01% (w / v) arabinose in 1% (w / v) 3,6-AHG.

도 8에 나타난 바와 같이, 1%(w/v)의 3,6-AHG에 0.01%(w/v)의 아라비노스를 넣은 조건에서만 세포 밀도의 증가를 관찰하였다. As shown in Fig. 8, an increase in cell density was observed only in the case of adding 1% (w / v) of 3,6-AHG and 0.01% (w / v) of arabinose.

상기 재조합 미생물을 아가로오스 분해산물인 갈락토오스와 3,6-AHG 혼합당 조건에서 발효를 실시하였다. 이때 배지의 탄소원으로는 1%(w/v)의 갈락토오스와 혼합당 (1%(w/v)의 갈락토오스 + 1%(w/v)의 3,6-AHG) 조건에서 발효를 시행하였으며 0.01%(w/v)의 아라비노스를 유도물질로 사용하였다. The recombinant microorganism was fermented under the conditions of galactose and 3,6-AHG mixed sugar, which are agarose degradation products. At this time, fermentation was carried out under the condition of 1% (w / v) galactose and mixed sugar (1% (w / v) galactose + 1% (w / v) 3,6-AHG) % (w / v) of arabinose was used as the inducer.

도 9에 나타난 바와 같이, 혼합당 조건에서 1%(w/v)의 갈락토오스만 넣어준 조건보다 세포밀도가 더 높게 나타났다.As shown in FIG. 9, the density of cells was higher than that of the case where only 1% (w / v) of galactose was added under mixed sugar conditions.

상기 재조합 미생물을 미세호기조건에서 상기 실시예 3의 방법과 동일하게 알코올 발효 실험을 진행하였다.The recombinant microorganism was subjected to an alcohol fermentation experiment in the same manner as in Example 3 under the condition of micro-expiration.

도 10에 나타난 바와 같이, 혼합당 발효 시 4.11 g/L의 에탄올을 생산하였고, 갈락토오스 발효 시에는 1.93 g/L의 에탄올을 생산하였다.
As shown in FIG. 10, 4.11 g / L of ethanol was produced during fermentation of mixed sugar and 1.93 g / L of ethanol was produced during fermentation of galactose.

<110> KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION <120> Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and use thereof <130> P14U13C0549 <150> 2013-0051134 <151> 2013-05-07 <160> 24 <170> KopatentIn 2.0 <210> 1 <211> 1443 <212> DNA <213> Vibrio sp. EJY3 <400> 1 atgaaacgtt accaaatgta cgttgacggc cagtggattg acgctgagaa cggcaaagtt 60 gatcaggtta ttaacccgtc aaccgaagaa gtgcttgctg agattcagga tggtgaccaa 120 gatgatgctg agcgcgtttt aagtgtggct aaacgtgcac aatctgactg gaaacgagtg 180 cccgcgcgtc aacgtgctga actgttgaga aagtttgctc aagaaatccg taataaccgt 240 gagcatcttg cagagttact cgtgagcgaa caaggcaaat tataccgagt tgcgttgggg 300 gaagtcgatg tagctgcatc ttttatcgaa tacgcctgtg actgggctcg tcagatggat 360 ggcgatattg ttcaatctga taatgtgaac gaacatatct ggattcaaaa aattcctcgt 420 ggtgtcgtgg tcgcgatcac tgcatggaat ttcccatttg cattagcagg tcgcaagata 480 ggaccagcac tggttgcggg taacactatt gttgttaaac caacctctga aactccgcta 540 gcaacgctag agttaggcta tattgctgaa aaagtaggta ttcctgcagg tgtactcaat 600 atagttaccg gtggtggagc aagcttaggt ggcgctttaa ctagtcaccg ttatacaaat 660 atggtcacta tgacaggttc aacacccgtt ggtcagcaga taatcaaagc atctgcgaat 720 aacatggctc acgttcaact agagctcggt ggtaaagcac cgttcatcgt aatggaagat 780 gctgatctgg agcaagctgc tgccgctgca ctacattcac gcttcgacaa ctgtggtcag 840 gtatgtacat gtaacgaacg tatgtatgtg cactctagtg tctacgatga attcatggcg 900 atctttatgg agaaagtcca aaatatcaaa gtgggtaatc ctatggatcc agaatctgat 960 atgggtccta aagtaaacaa acgagagctt gatcatatgg aagcattagt cgcgcaggca 1020 ttgaaagaag gcgcgcaact tttgcatggt ggcaagcgcc ttacggaggg tgagtttgga 1080 aagggcttct ggtttgaacc cacaatctta ggtaatgttc aacaatcaat gacgattgtt 1140 catgaagagg catttggtcc aattcttcct gttataaaat tcgacacttt tgaagaagtc 1200 attgattacg caaatgatag tgagtatggc ttggcaacta tgatttgtac gcgaaatatg 1260 aagtatgtac atcgcttaac tcacgagctt gaatgtggtg agatttatgt gaaccgtggt 1320 catggagaac agcatcaagg tttccataat ggatataaac tgagcggaac tggtggtgaa 1380 gatggaaaat atggcttcga acaatattta gagaagaaga cattctatgt gaatttcgac 1440 taa 1443 <210> 2 <211> 480 <212> PRT <213> Vibrio sp. EJY3 <400> 2 Met Lys Arg Tyr Gln Met Tyr Val Asp Gly Gln Trp Ile Asp Ala Glu 1 5 10 15 Asn Gly Lys Val Asp Gln Val Ile Asn Pro Ser Thr Glu Glu Val Leu 20 25 30 Ala Glu Ile Gln Asp Gly Asp Gln Asp Asp Ala Glu Arg Val Leu Ser 35 40 45 Val Ala Lys Arg Ala Gln Ser Asp Trp Lys Arg Val Pro Ala Arg Gln 50 55 60 Arg Ala Glu Leu Leu Arg Lys Phe Ala Gln Glu Ile Arg Asn Asn Arg 65 70 75 80 Glu His Leu Ala Glu Leu Leu Val Ser Glu Gln Gly Lys Leu Tyr Arg 85 90 95 Val Ala Leu Gly Glu Val Asp Val Ala Ala Ser Phe Ile Glu Tyr Ala 100 105 110 Cys Asp Trp Ala Arg Gln Met Asp Gly Asp Ile Val Gln Ser Asp Asn 115 120 125 Val Asn Glu His Ile Trp Ile Gln Lys Ile Pro Arg Gly Val Val Val 130 135 140 Ala Ile Thr Ala Trp Asn Phe Pro Phe Ala Leu Ala Gly Arg Lys Ile 145 150 155 160 Gly Pro Ala Leu Val Ala Gly Asn Thr Ile Val Val Lys Pro Thr Ser 165 170 175 Glu Thr Pro Leu Ala Thr Leu Glu Leu Gly Tyr Ile Ala Glu Lys Val 180 185 190 Gly Ile Pro Ala Gly Val Leu Asn Ile Val Thr Gly Gly Gly Ala Ser 195 200 205 Leu Gly Gly Ala Leu Thr Ser His Arg Tyr Thr Asn Met Val Thr Met 210 215 220 Thr Gly Ser Thr Pro Val Gly Gln Gln Ile Ile Lys Ala Ser Ala Asn 225 230 235 240 Asn Met Ala His Val Gln Leu Glu Leu Gly Gly Lys Ala Pro Phe Ile 245 250 255 Val Met Glu Asp Ala Asp Leu Glu Gln Ala Ala Ala Ala Ala Leu His 260 265 270 Ser Arg Phe Asp Asn Cys Gly Gln Val Cys Thr Cys Asn Glu Arg Met 275 280 285 Tyr Val His Ser Ser Val Tyr Asp Glu Phe Met Ala Ile Phe Met Glu 290 295 300 Lys Val Gln Asn Ile Lys Val Gly Asn Pro Met Asp Pro Glu Ser Asp 305 310 315 320 Met Gly Pro Lys Val Asn Lys Arg Glu Leu Asp His Met Glu Ala Leu 325 330 335 Val Ala Gln Ala Leu Lys Glu Gly Ala Gln Leu Leu His Gly Gly Lys 340 345 350 Arg Leu Thr Glu Gly Glu Phe Gly Lys Gly Phe Trp Phe Glu Pro Thr 355 360 365 Ile Leu Gly Asn Val Gln Gln Ser Met Thr Ile Val His Glu Glu Ala 370 375 380 Phe Gly Pro Ile Leu Pro Val Ile Lys Phe Asp Thr Phe Glu Glu Val 385 390 395 400 Ile Asp Tyr Ala Asn Asp Ser Glu Tyr Gly Leu Ala Thr Met Ile Cys 405 410 415 Thr Arg Asn Met Lys Tyr Val His Arg Leu Thr His Glu Leu Glu Cys 420 425 430 Gly Glu Ile Tyr Val Asn Arg Gly His Gly Glu Gln His Gln Gly Phe 435 440 445 His Asn Gly Tyr Lys Leu Ser Gly Thr Gly Gly Glu Asp Gly Lys Tyr 450 455 460 Gly Phe Glu Gln Tyr Leu Glu Lys Lys Thr Phe Tyr Val Asn Phe Asp 465 470 475 480 <210> 3 <211> 1152 <212> DNA <213> Saccharophagus degradans 2-40 <400> 3 atgagtaaat gcctgatgga aagtatagtg gaattagagt tgcctcaagg taacccaatt 60 aaaataaaat ccgtagcagt cgagcattac aaggttccgc tagctgaagt gttgtctgat 120 gcaaagcacg gggatcatac ctattttgag ctaatagtta gccgtatcac ttgccaaaat 180 ggtgtagaag gtgtgggtta tacctatacc ggtgggtccg gcggttcggc aatctattcg 240 ctattagtcg atgaaattaa gcctatgctt gttgggcggg acgccaccca aattctagcc 300 atatgggaag aaatttattg gcgcttacat tatgttgggc gcggtggttt agttagcttt 360 gctcagtcag cggttgatat tgcattgtgg gatattcgct gcaagttgtt ggggcaaccc 420 ctgtggaaag tggcgggcgg tttaagcaat aaaacacgct gctatgccgg cggtatagat 480 ttaaattttt cgcaagaaaa actattaagc aatatacaag gttatttaga cgcgggcttt 540 aatgctgtaa aaattaaagt tggcaaagat aatattaaag aagatattgc gcgtgtacgc 600 gcagtgcgag agttaattgg caaagatacc acatttatgg tggatgccaa ctactccatg 660 accaaagaaa aagccattcg ttttgctaac gccatagaag accaaaatat tacttggttt 720 gaagagccaa cattgccaga cgattaccaa ggctatgccg atatcgctca agcaatatca 780 atacccctag ctatgggtga aaacctacac actattcacg aatttaccta tgccgtgcaa 840 caagccaagc ttggtttttt gcagcccgat gcttctaata ttggtggtat tactggttgg 900 ttgaacgttg caagtttagc aaacgcacac aacttaccgg tgtgcagtca cggcatgcaa 960 gagttgcacg tttcacttat gtcgtctcag cccaatgcgg gttatttaga agttcactcc 1020 tttcctatcg accaatacac aacacaaccg ctagcaatgg aaaacggtta cgcactagca 1080 ccagatatag aaggcacggg tgttgtgttt gtcgatgaat tattacgtgg ccatttggct 1140 aaaaaatcct aa 1152 <210> 4 <211> 383 <212> PRT <213> Saccharophagus degradans 2-40 <400> 4 Met Ser Lys Cys Leu Met Glu Ser Ile Val Glu Leu Glu Leu Pro Gln 1 5 10 15 Gly Asn Pro Ile Lys Ile Lys Ser Val Ala Val Glu His Tyr Lys Val 20 25 30 Pro Leu Ala Glu Val Leu Ser Asp Ala Lys His Gly Asp His Thr Tyr 35 40 45 Phe Glu Leu Ile Val Ser Arg Ile Thr Cys Gln Asn Gly Val Glu Gly 50 55 60 Val Gly Tyr Thr Tyr Thr Gly Gly Ser Gly Gly Ser Ala Ile Tyr Ser 65 70 75 80 Leu Leu Val Asp Glu Ile Lys Pro Met Leu Val Gly Arg Asp Ala Thr 85 90 95 Gln Ile Leu Ala Ile Trp Glu Glu Ile Tyr Trp Arg Leu His Tyr Val 100 105 110 Gly Arg Gly Gly Leu Val Ser Phe Ala Gln Ser Ala Val Asp Ile Ala 115 120 125 Leu Trp Asp Ile Arg Cys Lys Leu Leu Gly Gln Pro Leu Trp Lys Val 130 135 140 Ala Gly Gly Leu Ser Asn Lys Thr Arg Cys Tyr Ala Gly Gly Ile Asp 145 150 155 160 Leu Asn Phe Ser Gln Glu Lys Leu Leu Ser Asn Ile Gln Gly Tyr Leu 165 170 175 Asp Ala Gly Phe Asn Ala Val Lys Ile Lys Val Gly Lys Asp Asn Ile 180 185 190 Lys Glu Asp Ile Ala Arg Val Arg Ala Val Arg Glu Leu Ile Gly Lys 195 200 205 Asp Thr Thr Phe Met Val Asp Ala Asn Tyr Ser Met Thr Lys Glu Lys 210 215 220 Ala Ile Arg Phe Ala Asn Ala Ile Glu Asp Gln Asn Ile Thr Trp Phe 225 230 235 240 Glu Glu Pro Thr Leu Pro Asp Asp Tyr Gln Gly Tyr Ala Asp Ile Ala 245 250 255 Gln Ala Ile Ser Ile Pro Leu Ala Met Gly Glu Asn Leu His Thr Ile 260 265 270 His Glu Phe Thr Tyr Ala Val Gln Gln Ala Lys Leu Gly Phe Leu Gln 275 280 285 Pro Asp Ala Ser Asn Ile Gly Gly Ile Thr Gly Trp Leu Asn Val Ala 290 295 300 Ser Leu Ala Asn Ala His Asn Leu Pro Val Cys Ser His Gly Met Gln 305 310 315 320 Glu Leu His Val Ser Leu Met Ser Ser Gln Pro Asn Ala Gly Tyr Leu 325 330 335 Glu Val His Ser Phe Pro Ile Asp Gln Tyr Thr Thr Gln Pro Leu Ala 340 345 350 Met Glu Asn Gly Tyr Ala Leu Ala Pro Asp Ile Glu Gly Thr Gly Val 355 360 365 Val Phe Val Asp Glu Leu Leu Arg Gly His Leu Ala Lys Lys Ser 370 375 380 <210> 5 <211> 1137 <212> DNA <213> Pseudoalteromonas atlantica T6c <400> 5 atgagtgtca ttaccaaact agacacacct gccatgaaca gttcacaaat tcagtcagtc 60 aatgttgagt tattcaacgt gccccttgac gaagtgttga acgatgctaa gcacggcgat 120 catacccact ttgagctgat cctatgcacc attacttgta ccgatggtac tcaaggcgtg 180 ggttatacct acacaggtgg taaaggtgga cgcgctatat actcactgct taatgacgaa 240 ctaaagcctt tcttgatggg taaagatgct agctgcatca atcatttatg ggaagaaatg 300 caatatcact tgcactatgt tggtcgtggc ggtttagtca gtttcgccat atccgcagtc 360 gatatcgccc tgtgggacat tcattgcaag gttcttaatc aacccttgtg gaaagtagct 420 gggggctgca gtgaccgcgt aaactgttat gcaggaggca ttgaccttaa tttttccact 480 gaaaaattgc tcggcaatat ccaaggctac ttagactgcg gctttgaagc ggtcaaaata 540 aaagtgggca aagaagatta tcgtgaagac gtggcccgcg tggcggctgt gcgcaacctg 600 attggtcctg atgcgatatt tatggtggat gcaaattatt cacttacagt caataaagcc 660 attaagtttg ctcaggcgat agagcagtat gatatcacct ggtttgaaga accgaccatt 720 cctgatgatt ttgccggttt tgctcacatt gccagcaaaa tcaatattcc gttggccatg 780 ggcgaaaacc tgcacactat ttacgaattc aaccaagcga taagccaagc caaacttggg 840 ttcttacaac ctgatgcatc gaatattggc ggtatcactg gttggctaac ggttgcccag 900 atgggctacg cgaacaactt acctatttgc agtcatggca tgcacgaatt acatgtatct 960 cttatggcat ctcagccaaa tgcgggttac ttggaagtac actcgtttcc cattgaccga 1020 tataccactc accctctgaa acttgaaaat ggcaaagccg ttgcgcccag tacacccggt 1080 gtaggcgtcg agttcaagac agagttactt cttccctatt tagttaaaca ttcttag 1137 <210> 6 <211> 378 <212> PRT <213> Pseudoalteromonas atlantica T6c <400> 6 Met Ser Val Ile Thr Lys Leu Asp Thr Pro Ala Met Asn Ser Ser Gln 1 5 10 15 Ile Gln Ser Val Asn Val Glu Leu Phe Asn Val Pro Leu Asp Glu Val 20 25 30 Leu Asn Asp Ala Lys His Gly Asp His Thr His Phe Glu Leu Ile Leu 35 40 45 Cys Thr Ile Thr Cys Thr Asp Gly Thr Gln Gly Val Gly Tyr Thr Tyr 50 55 60 Thr Gly Gly Lys Gly Gly Arg Ala Ile Tyr Ser Leu Leu Asn Asp Glu 65 70 75 80 Leu Lys Pro Phe Leu Met Gly Lys Asp Ala Ser Cys Ile Asn His Leu 85 90 95 Trp Glu Glu Met Gln Tyr His Leu His Tyr Val Gly Arg Gly Gly Leu 100 105 110 Val Ser Phe Ala Ile Ser Ala Val Asp Ile Ala Leu Trp Asp Ile His 115 120 125 Cys Lys Val Leu Asn Gln Pro Leu Trp Lys Val Ala Gly Gly Cys Ser 130 135 140 Asp Arg Val Asn Cys Tyr Ala Gly Gly Ile Asp Leu Asn Phe Ser Thr 145 150 155 160 Glu Lys Leu Leu Gly Asn Ile Gln Gly Tyr Leu Asp Cys Gly Phe Glu 165 170 175 Ala Val Lys Ile Lys Val Gly Lys Glu Asp Tyr Arg Glu Asp Val Ala 180 185 190 Arg Val Ala Ala Val Arg Asn Leu Ile Gly Pro Asp Ala Ile Phe Met 195 200 205 Val Asp Ala Asn Tyr Ser Leu Thr Val Asn Lys Ala Ile Lys Phe Ala 210 215 220 Gln Ala Ile Glu Gln Tyr Asp Ile Thr Trp Phe Glu Glu Pro Thr Ile 225 230 235 240 Pro Asp Asp Phe Ala Gly Phe Ala His Ile Ala Ser Lys Ile Asn Ile 245 250 255 Pro Leu Ala Met Gly Glu Asn Leu His Thr Ile Tyr Glu Phe Asn Gln 260 265 270 Ala Ile Ser Gln Ala Lys Leu Gly Phe Leu Gln Pro Asp Ala Ser Asn 275 280 285 Ile Gly Gly Ile Thr Gly Trp Leu Thr Val Ala Gln Met Gly Tyr Ala 290 295 300 Asn Asn Leu Pro Ile Cys Ser His Gly Met His Glu Leu His Val Ser 305 310 315 320 Leu Met Ala Ser Gln Pro Asn Ala Gly Tyr Leu Glu Val His Ser Phe 325 330 335 Pro Ile Asp Arg Tyr Thr Thr His Pro Leu Lys Leu Glu Asn Gly Lys 340 345 350 Ala Val Ala Pro Ser Thr Pro Gly Val Gly Val Glu Phe Lys Thr Glu 355 360 365 Leu Leu Leu Pro Tyr Leu Val Lys His Ser 370 375 <210> 7 <211> 1089 <212> DNA <213> Vibrio sp. EJY3 <400> 7 atgaaaacaa caatcaaaga catcaaaacg agactgttta agattccgtt aaaggaaatt 60 ttatctgatg caaaacatgg tgatcatgac cactttgagc tgatcactac aacggtcacg 120 ttagaagatg gttcgcaggg aaccggctat acttatactg gtggcaaagg cggttactcg 180 atcaaagcga tgctagagta tgatattcag cctgcgctaa tcggcaaaga cgcgacgcaa 240 attgaagaga tctatgactt tatggagtgg catattcact atgtcggtcg tggcggtatc 300 tctacatttg cgatgtctgc ggtagacatt gcgctttggg atctaaaagg taaacgagaa 360 ggcttgccgt tatggaaaat ggctggtgga aaaaacaata cctgtaaagc gtactgtggt 420 ggcattgacc ttcagtttcc acttgagaaa ttgctcaaca atatttgtgg ttatttagaa 480 agtggcttca atgccgttaa gatcaagatt ggtcgcgaaa atatgcaaga agatattgac 540 cgcattaagg cggttcgcga gctgattggg ccagatatca cctttatgat cgatgccaac 600 tattcgttga cagtagaaca agcgatcaaa ctgtcaaaag cggtagagca atatgacatc 660 acgtggtttg aagagccaac attgccagat gactacaaag gttttgctga gattgctgac 720 aatacagcga ttccgttggc catgggggaa aaccttcaca ccattcatga gtttggttat 780 gcaatggacc aagcaaagct tggctactgc caaccagatg cctcaaactg tggtggcatt 840 accggttggt tgaaagcggc ggacttgatt acagaacata atatcccagt gtgtactcac 900 ggtatgcaag agctacacgt aagtcttgtt tcagcgtttg atacaggttg gctagaggtg 960 cacagcttcc cgattgatga atacaccaag cgtcctttgg ttgtagaaaa cttccgcgct 1020 gtggcgtcca atgagccggg tatcggggtc gagttcgatt gggacaaaat tgctcagtac 1080 gaagtgtaa 1089 <210> 8 <211> 362 <212> PRT <213> Vibrio sp. EJY3 <400> 8 Met Lys Thr Thr Ile Lys Asp Ile Lys Thr Arg Leu Phe Lys Ile Pro 1 5 10 15 Leu Lys Glu Ile Leu Ser Asp Ala Lys His Gly Asp His Asp His Phe 20 25 30 Glu Leu Ile Thr Thr Thr Val Thr Leu Glu Asp Gly Ser Gln Gly Thr 35 40 45 Gly Tyr Thr Tyr Thr Gly Gly Lys Gly Gly Tyr Ser Ile Lys Ala Met 50 55 60 Leu Glu Tyr Asp Ile Gln Pro Ala Leu Ile Gly Lys Asp Ala Thr Gln 65 70 75 80 Ile Glu Glu Ile Tyr Asp Phe Met Glu Trp His Ile His Tyr Val Gly 85 90 95 Arg Gly Gly Ile Ser Thr Phe Ala Met Ser Ala Val Asp Ile Ala Leu 100 105 110 Trp Asp Leu Lys Gly Lys Arg Glu Gly Leu Pro Leu Trp Lys Met Ala 115 120 125 Gly Gly Lys Asn Asn Thr Cys Lys Ala Tyr Cys Gly Gly Ile Asp Leu 130 135 140 Gln Phe Pro Leu Glu Lys Leu Leu Asn Asn Ile Cys Gly Tyr Leu Glu 145 150 155 160 Ser Gly Phe Asn Ala Val Lys Ile Lys Ile Gly Arg Glu Asn Met Gln 165 170 175 Glu Asp Ile Asp Arg Ile Lys Ala Val Arg Glu Leu Ile Gly Pro Asp 180 185 190 Ile Thr Phe Met Ile Asp Ala Asn Tyr Ser Leu Thr Val Glu Gln Ala 195 200 205 Ile Lys Leu Ser Lys Ala Val Glu Gln Tyr Asp Ile Thr Trp Phe Glu 210 215 220 Glu Pro Thr Leu Pro Asp Asp Tyr Lys Gly Phe Ala Glu Ile Ala Asp 225 230 235 240 Asn Thr Ala Ile Pro Leu Ala Met Gly Glu Asn Leu His Thr Ile His 245 250 255 Glu Phe Gly Tyr Ala Met Asp Gln Ala Lys Leu Gly Tyr Cys Gln Pro 260 265 270 Asp Ala Ser Asn Cys Gly Gly Ile Thr Gly Trp Leu Lys Ala Ala Asp 275 280 285 Leu Ile Thr Glu His Asn Ile Pro Val Cys Thr His Gly Met Gln Glu 290 295 300 Leu His Val Ser Leu Val Ser Ala Phe Asp Thr Gly Trp Leu Glu Val 305 310 315 320 His Ser Phe Pro Ile Asp Glu Tyr Thr Lys Arg Pro Leu Val Val Glu 325 330 335 Asn Phe Arg Ala Val Ala Ser Asn Glu Pro Gly Ile Gly Val Glu Phe 340 345 350 Asp Trp Asp Lys Ile Ala Gln Tyr Glu Val 355 360 <210> 9 <211> 966 <212> DNA <213> Vibrio sp. EJY3 <400> 9 atgagtttgg aaataaaaca agatacggag tctagctata gcgatattct tagctttggt 60 gagccaatgt ttgagtttag ccaagttgga caagcaggtt caggccagcc tgatttcttg 120 agtggttttg gtggtgatgc ttcgaacttt gctatcgcag cagcaagaca aggcgcatca 180 gttggaatgt tgacacaact tggcgacgat gaattcggta agcgttttgt tgagctgtgg 240 gaacagcagg gtgttagcag ttcagctgtg tgtatactac caaataaagc aacgggcgtt 300 tattttatta cgcacgatga tgagggacac catttttctt tcttgcgtaa gaactctgcg 360 gccagtttaa tgacaccgca agacttacca tcagatgcga ttgccaatgc taagcttctt 420 catatcactg ctattactca ggcgattagt gattcaagtt gtgactcagt gtttgcagca 480 attgaaacag cgaaagcgca cggcactcaa gtgtcctatg acaccaactt gcgcttaaag 540 ctatggtcac tgcaacgcgc tcgcgccatc attaatgaaa ccgcgtcact agtcgatgtc 600 tgcttcccta gtattgacga agcacgcttg gtgactggcc ttgaacatgc tgacgatatc 660 atcgattttt acctaaaagc aggcgcgaaa gttgtcgtac ttaaacaggg tggtgacggt 720 gcgacagtgg ctaatgagca tattaggcat ttcatccttc cgcataaagt gacacctgtt 780 gatgcgaccg ctgctggtga ttcatttgca ggctcattct gtacgcatta tgtcaacgga 840 gagtctttag agcagtgtct tgcgtatgca aatgccaccg cgtctatcac gattactggt 900 tttggtgcag ttgccccttt accgacattt gagcaagtgc ttgagaaaat caacgaatct 960 aaatag 966 <210> 10 <211> 321 <212> PRT <213> Vibrio sp. EJY3 <400> 10 Met Ser Leu Glu Ile Lys Gln Asp Thr Glu Ser Ser Tyr Ser Asp Ile 1 5 10 15 Leu Ser Phe Gly Glu Pro Met Phe Glu Phe Ser Gln Val Gly Gln Ala 20 25 30 Gly Ser Gly Gln Pro Asp Phe Leu Ser Gly Phe Gly Gly Asp Ala Ser 35 40 45 Asn Phe Ala Ile Ala Ala Ala Arg Gln Gly Ala Ser Val Gly Met Leu 50 55 60 Thr Gln Leu Gly Asp Asp Glu Phe Gly Lys Arg Phe Val Glu Leu Trp 65 70 75 80 Glu Gln Gln Gly Val Ser Ser Ser Ala Val Cys Ile Leu Pro Asn Lys 85 90 95 Ala Thr Gly Val Tyr Phe Ile Thr His Asp Asp Glu Gly His His Phe 100 105 110 Ser Phe Leu Arg Lys Asn Ser Ala Ala Ser Leu Met Thr Pro Gln Asp 115 120 125 Leu Pro Ser Asp Ala Ile Ala Asn Ala Lys Leu Leu His Ile Thr Ala 130 135 140 Ile Thr Gln Ala Ile Ser Asp Ser Ser Cys Asp Ser Val Phe Ala Ala 145 150 155 160 Ile Glu Thr Ala Lys Ala His Gly Thr Gln Val Ser Tyr Asp Thr Asn 165 170 175 Leu Arg Leu Lys Leu Trp Ser Leu Gln Arg Ala Arg Ala Ile Ile Asn 180 185 190 Glu Thr Ala Ser Leu Val Asp Val Cys Phe Pro Ser Ile Asp Glu Ala 195 200 205 Arg Leu Val Thr Gly Leu Glu His Ala Asp Asp Ile Ile Asp Phe Tyr 210 215 220 Leu Lys Ala Gly Ala Lys Val Val Val Leu Lys Gln Gly Gly Asp Gly 225 230 235 240 Ala Thr Val Ala Asn Glu His Ile Arg His Phe Ile Leu Pro His Lys 245 250 255 Val Thr Pro Val Asp Ala Thr Ala Ala Gly Asp Ser Phe Ala Gly Ser 260 265 270 Phe Cys Thr His Tyr Val Asn Gly Glu Ser Leu Glu Gln Cys Leu Ala 275 280 285 Tyr Ala Asn Ala Thr Ala Ser Ile Thr Ile Thr Gly Phe Gly Ala Val 290 295 300 Ala Pro Leu Pro Thr Phe Glu Gln Val Leu Glu Lys Ile Asn Glu Ser 305 310 315 320 Lys <210> 11 <211> 621 <212> DNA <213> Vibrio sp. EJY3 <400> 11 atggatctca atcaacgttt agctaagctc aaagttgtgc ctgtgattgc tgtagataat 60 gcgcaagata ttttgccttt aggtaaggcg ctggtagaga atggtttacc agtcgcagaa 120 attacctttc gctctgacgc ggcgactgaa gccattcgtt tacttcgtac tacttatcca 180 gacatcttga ttggtgcggg tacggtattg aacgaagctc aagtaattga ggcaaaagag 240 gcgggtgctg actttattgt ttctccaggc ttgaacccaa tcacagtaaa agcatgtcaa 300 aaacataaaa taaccatcgt ccctggtgta aacagcccat cgttggttga gcaagctctt 360 gagcttggtg ttgatactgt taaatttttc ccagcagaag cgtcgggcgg tctagcgatg 420 ttgaagtcgt tgcttggccc ttatcaacaa atcaaagtga tgcctacagg tggtatcaat 480 caaaacaaca ttcatgatta tctggctctt cctgctgtac ttgcttgtgg tggtacgtgg 540 atggtggata aatcactggt acataaaggt gcttgggatg aaattggccg attggtcaga 600 gaaattgtcg ccgcagtata g 621 <210> 12 <211> 206 <212> PRT <213> Vibrio sp. EJY3 <400> 12 Met Asp Leu Asn Gln Arg Leu Ala Lys Leu Lys Val Val Pro Val Ile 1 5 10 15 Ala Val Asp Asn Ala Gln Asp Ile Leu Pro Leu Gly Lys Ala Leu Val 20 25 30 Glu Asn Gly Leu Pro Val Ala Glu Ile Thr Phe Arg Ser Asp Ala Ala 35 40 45 Thr Glu Ala Ile Arg Leu Leu Arg Thr Thr Tyr Pro Asp Ile Leu Ile 50 55 60 Gly Ala Gly Thr Val Leu Asn Glu Ala Gln Val Ile Glu Ala Lys Glu 65 70 75 80 Ala Gly Ala Asp Phe Ile Val Ser Pro Gly Leu Asn Pro Ile Thr Val 85 90 95 Lys Ala Cys Gln Lys His Lys Ile Thr Ile Val Pro Gly Val Asn Ser 100 105 110 Pro Ser Leu Val Glu Gln Ala Leu Glu Leu Gly Val Asp Thr Val Lys 115 120 125 Phe Phe Pro Ala Glu Ala Ser Gly Gly Leu Ala Met Leu Lys Ser Leu 130 135 140 Leu Gly Pro Tyr Gln Gln Ile Lys Val Met Pro Thr Gly Gly Ile Asn 145 150 155 160 Gln Asn Asn Ile His Asp Tyr Leu Ala Leu Pro Ala Val Leu Ala Cys 165 170 175 Gly Gly Thr Trp Met Val Asp Lys Ser Leu Val His Lys Gly Ala Trp 180 185 190 Asp Glu Ile Gly Arg Leu Val Arg Glu Ile Val Ala Ala Val 195 200 205 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Forward primer 1 for 3,6-anhydro-L-galactose dehydrogenase <400> 13 gaaggagata taaggatgaa acgttaccaa atgtacgttg 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer 2 for 3,6-anhydro-L-galactose dehydrogenase <400> 14 atgatggtga tggtggtcga aattcacata gaatgtcttc 40 <210> 15 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Forward primer 1 for SdeACI <400> 15 gaaggagata taaggatgaa aattcataac atgaaaaatt ttatcaa 47 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer 2 for SdeACI <400> 16 atgatggtga tggtgtcatt cagcaaaata cactgtcttc 40 <210> 17 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Forward primer 1 for Pat1ACI <400> 17 gaaggagata taaggatgat gagtgtcatt accaaactag aca 43 <210> 18 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer 2 for Pat1ACI <400> 18 atgatggtga tggtgagaat gtttaactaa atagggaaga ag 42 <210> 19 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Forward primer 1 for Vejy3ACI <400> 19 gaaggagata taaggatgaa aacaacaatc aaagacatca aaa 43 <210> 20 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer 2 for Vejy3ACI <400> 20 atgatggtga tggtgcactt cgtactgagc aattttgt 38 <210> 21 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Forward primer 1 for Vejy3ACI <400> 21 gcgctcgaga tgaaaacaac aatcaaagac atcaaaac 38 <210> 22 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer 2 for Vejy3ACI <400> 22 gcgtacgtac acttcgtact gagcaatttt gtc 33 <210> 23 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Forward primer 1 for 3,6-anhydro-L-galactose dehydrogenase <400> 23 gcgctcgaga tgaaacgtta ccaaatgtac gttg 34 <210> 24 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer 2 for 3,6-anhydro-L-galactose dehydrogenase <400> 24 gcgtctagat tagtcgaaat tcacatagaa tgtct 35 <110> KOREAN UNIVERSITY RESEARCH AND BUSINESS FOUNDATION <120> Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose          and use thereof <130> P14U13C0549 <150> 2013-0051134 <151> 2013-05-07 <160> 24 <170> Kopatentin 2.0 <210> 1 <211> 1443 <212> DNA <213> Vibrio sp. EJY3 <400> 1 atgaaacgtt accaaatgta cgttgacggc cagtggattg acgctgagaa cggcaaagtt 60 gatcaggtta ttaacccgtc aaccgaagaa gtgcttgctg agattcagga tggtgaccaa 120 gatgatgctg agcgcgtttt aagtgtggct aaacgtgcac aatctgactg gaaacgagtg 180 cccgcgcgtc aacgtgctga actgttgaga aagtttgctc aagaaatccg taataaccgt 240 gagcatcttg cagagttact cgtgagcgaa caaggcaaat tataccgagt tgcgttgggg 300 gaagtcgatg tagctgcatc ttttatcgaa tacgcctgtg actgggctcg tcagatggat 360 ggcgatattg ttcaatctga taatgtgaac gaacatatct ggattcaaaa aattcctcgt 420 ggtgtcgtgg tcgcgatcac tgcatggaat ttcccatttg cattagcagg tcgcaagata 480 ggaccagcac tggttgcggg taacactatt gttgttaaac caacctctga aactccgcta 540 gcaacgctag agttaggcta tattgctgaa aaagtaggta ttcctgcagg tgtactcaat 600 atagttaccg gtggtggagc aagcttaggt ggcgctttaa ctagtcaccg ttatacaaat 660 atggtcacta tgacaggttc aacacccgtt ggtcagcaga taatcaaagc atctgcgaat 720 aacatggctc acgttcaact agagctcggt ggtaaagcac cgttcatcgt aatggaagat 780 gctgatctgg agcaagctgc tgccgctgca ctacattcac gcttcgacaa ctgtggtcag 840 gtatgtacat gtaacgaacg tatgtatgtg cactctagtg tctacgatga attcatggcg 900 atctttatgg agaaagtcca aaatatcaaa gtgggtaatc ctatggatcc agaatctgat 960 atgggtccta aagtaaacaa acgagagctt gatcatatgg aagcattagt cgcgcaggca 1020 ttgaaagaag gcgcgcaact tttgcatggt ggcaagcgcc ttacggaggg tgagtttgga 1080 aagggcttct ggtttgaacc cacaatctta ggtaatgttc aacaatcaat gacgattgtt 1140 catgaagagg catttggtcc aattcttcct gttataaaat tcgacacttt tgaagaagtc 1200 attgattacg caaatgatag tgagtatggc ttggcaacta tgatttgtac gcgaaatatg 1260 aagtatgtac atcgcttaac tcacgagctt gaatgtggtg agatttatgt gaaccgtggt 1320 catggagaac agcatcaagg tttccataat ggatataaac tgagcggaac tggtggtgaa 1380 gatggaaaat atggcttcga acaatattta gagaagaaga cattctatgt gaatttcgac 1440 taa 1443 <210> 2 <211> 480 <212> PRT <213> Vibrio sp. EJY3 <400> 2 Met Lys Arg Tyr Gln Met Tyr Val Asp Gly Gln Trp Ile Asp Ala Glu   1 5 10 15 Asn Gly Lys Val Asp Gln Val Ile Asn Pro Ser Thr Glu Glu Val Leu              20 25 30 Ala Glu Ile Gln Asp Gly Asp Gln Asp Asp Ala Glu Arg Val Leu Ser          35 40 45 Val Ala Lys Arg Ala Gln Ser Asp Trp Lys Arg Val Val Ala Arg Gln      50 55 60 Arg Ala Glu Leu Leu Arg Lys Phe Ala Gln Glu Ile Arg Asn Asn Arg  65 70 75 80 Glu His Leu Ala Glu Leu Leu Val Ser Glu Gln Gly Lys Leu Tyr Arg                  85 90 95 Val Ala Leu Gly Glu Val Asp Val Ala Ala Ser Phe Ile Glu Tyr Ala             100 105 110 Cys Asp Trp Ala Arg Gln Met Asp Gly Asp Ile Val Gln Ser Asp Asn         115 120 125 Val Asn Glu His Ile Trp Ile Gln Lys Ile Pro Arg Gly Val Val Val     130 135 140 Ala Ile Thr Ala Trp Asn Phe Pro Phe Ala Leu Ala Gly Arg Lys Ile 145 150 155 160 Gly Pro Ala Leu Val Ala Gly Asn Thr Ile Val Val Lys Pro Thr Ser                 165 170 175 Glu Thr Pro Leu Ala Thr Leu Glu Leu Gly Tyr Ile Ala Glu Lys Val             180 185 190 Gly Ile Pro Ala Gly Val Leu Asn Ile Val Thr Gly Gly Gly Ala Ser         195 200 205 Leu Gly Gly Ala Leu Thr Ser His Arg Tyr Thr Asn Met Val Thr Met     210 215 220 Thr Gly Ser Thr Pro Val Gly Gln Gln Ile Ile Lys Ala Ser Ala Asn 225 230 235 240 Asn Met Ala His Val Gln Leu Glu Leu Gly Gly Lys Ala Pro Phe Ile                 245 250 255 Val Met Glu Asp Ala Asp Leu Glu Gln Ala Ala Ala Ala Leu His             260 265 270 Ser Arg Phe Asp Asn Cys Gly Gln Val Cys Thr Cys Asn Glu Arg Met         275 280 285 Tyr Val His Ser Ser Val Tyr Asp Glu Phe Met Ala Ile Phe Met Glu     290 295 300 Lys Val Gln Asn Ile Lys Val Gly Asn Pro Met Asp Pro Glu Ser Asp 305 310 315 320 Met Gly Pro Lys Val Asn Lys Arg Glu Leu Asp His Met Glu Ala Leu                 325 330 335 Val Ala Gln Ala Leu Lys Glu Gly Ala Gln Leu Leu His Gly Gly Lys             340 345 350 Arg Leu Thr Glu Gly Glu Phe Gly Lys Gly Phe Trp Phe Glu Pro Thr         355 360 365 Ile Leu Gly Asn Val Glu Gln Ser Met Thr Ile Val His Glu Glu Ala     370 375 380 Phe Gly Pro Ile Leu Pro Val Ile Lys Phe Asp Thr Phe Glu Glu Val 385 390 395 400 Ile Asp Tyr Ala Asn Asp Ser Glu Tyr Gly Leu Ala Thr Met Ile Cys                 405 410 415 Thr Arg Asn Met Lys Tyr Val His Arg Leu Thr His Glu Leu Glu Cys             420 425 430 Gly Ile Tyr Val Asn Arg Gly His Gly Glu Gln His Gln Gly Phe         435 440 445 His Asn Gly Tyr Lys Leu Ser Gly Thr Gly Gly Asp Gly Lys Tyr     450 455 460 Gly Phe Glu Gln Tyr Leu Glu Lys Lys Thr Phe Tyr Val Asn Phe Asp 465 470 475 480 <210> 3 <211> 1152 <212> DNA <213> Saccharophagus degradans 2-40 <400> 3 atgagtaaat gcctgatgga aagtatagtg gaattagagt tgcctcaagg taacccaatt 60 aaaataaaat ccgtagcagt cgagcattac aaggttccgc tagctgaagt gttgtctgat 120 gcaaagcacg gggatcatac ctattttgag ctaatagtta gccgtatcac ttgccaaaat 180 ggtgtagaag gtgtgggtta tacctatacc ggtgggtccg gcggttcggc aatctattcg 240 ctattagtcg atgaaattaa gcctatgctt gttgggcggg acgccaccca aattctagcc 300 atatgggaag aaatttattg gcgcttacat tatgttgggc gcggtggttt agttagcttt 360 gctcagtcag cggttgatat tgcattgtgg gatattcgct gcaagttgtt ggggcaaccc 420 ctgtggaaag tggcgggcgg tttaagcaat aaaacacgct gctatgccgg cggtatagat 480 ttaaattttt cgcaagaaaa actattaagc aatatacaag gttatttaga cgcgggcttt 540 aatgctgtaa aaattaaagt tggcaaagat aatattaaag aagatattgc gcgtgtacgc 600 gcagtgcgag agttaattgg caaagatacc acatttatgg tggatgccaa ctactccatg 660 accaaagaaa aagccattcg ttttgctaac gccatagaag accaaaatat tacttggttt 720 gaagagccaa cattgccaga cgattaccaa ggctatgccg atatcgctca agcaatatca 780 atacccctag ctatgggtga aaacctacac actattcacg aatttaccta tgccgtgcaa 840 caagccaagc ttggtttttt gcagcccgat gcttctaata ttggtggtat tactggttgg 900 ttgaacgttg caagtttagc aaacgcacac aacttaccgg tgtgcagtca cggcatgcaa 960 gagttgcacg tttcacttat gtcgtctcag cccaatgcgg gttatttaga agttcactcc 1020 tttcctatcg accaatacac aacacaaccg ctagcaatgg aaaacggtta cgcactagca 1080 ccagatatag aaggcacggg tgttgtgttt gtcgatgaat tattacgtgg ccatttggct 1140 aaaaaatcct aa 1152 <210> 4 <211> 383 <212> PRT <213> Saccharophagus degradans 2-40 <400> 4 Met Ser Lys Cys Leu Met Glu Ser Ile Val Glu Leu Glu Leu Pro Gln   1 5 10 15 Gly Asn Pro Ile Lys Ile Lys Ser Val Ala Val Glu His Tyr Lys Val              20 25 30 Pro Leu Ala Glu Val Leu Ser Asp Ala Lys His Gly Asp His Thr Tyr          35 40 45 Phe Glu Leu Ile Val Ser Arg Ile Thr Cys Gln Asn Gly Val Glu Gly      50 55 60 Val Gly Tyr Thr Tyr Thr Gly Gly Ser Gly Gly Ser Ala Ile Tyr Ser  65 70 75 80 Leu Leu Val Asp Glu Ile Lys Pro Met Leu Val Gly Arg Asp Ala Thr                  85 90 95 Gln Ile Leu Ala Ile Trp Glu Glu Ile Tyr Trp Arg Leu His Tyr Val             100 105 110 Gly Arg Gly Gly Leu Val Ser Phe Ala Gln Ser Ala Val Asp Ile Ala         115 120 125 Leu Trp Asp Ile Arg Cys Lys Leu Leu Gly Gln Pro Leu Trp Lys Val     130 135 140 Ala Gly Gly Leu Ser Asn Lys Thr Arg Cys Tyr Ala Gly Gly Ile Asp 145 150 155 160 Leu Asn Phe Ser Gln Glu Lys Leu Leu Ser Asn Ile Gln Gly Tyr Leu                 165 170 175 Asp Ala Gly Phe Asn Ala Val Lys Ile Lys Val Gly Lys Asp Asn Ile             180 185 190 Lys Glu Asp Ile Ala Arg Val Ala Val Arg Glu Leu Ile Gly Lys         195 200 205 Asp Thr Thr Phe Met Val Asp Ala Asn Tyr Ser Met Thr Lys Glu Lys     210 215 220 Ala Ile Arg Phe Ala Asn Ala Ile Glu Asp Gln Asn Ile Thr Trp Phe 225 230 235 240 Glu Glu Pro Thr Leu Pro Asp Asp Tyr Gln Gly Tyr Ala Asp Ile Ala                 245 250 255 Gln Ala Ile Ser Ile Pro Leu Ala Met Gly Glu Asn Leu His Thr Ile             260 265 270 His Glu Phe Thr Tyr Ala Val Gln Gln Ala Lys Leu Gly Phe Leu Gln         275 280 285 Pro Asp Ala Ser Asn Ile Gly Gly Ile Thr Gly Trp Leu Asn Val Ala     290 295 300 Ser Leu Ala Asn Ala His Asn Leu Pro Val Cys Ser His Gly Met Gln 305 310 315 320 Glu Leu His Val Ser Leu Met Ser Ser Gln Pro Asn Ala Gly Tyr Leu                 325 330 335 Glu Val His Ser Phe Pro Ile Asp Gln Tyr Thr Thr Gln Pro Leu Ala             340 345 350 Met Glu Asn Gly Tyr Ala Leu Ala Pro Asp Ile Glu Gly Thr Gly Val         355 360 365 Val Phe Val Asp Glu Leu Leu Arg Gly His Leu Ala Lys Lys Ser     370 375 380 <210> 5 <211> 1137 <212> DNA <213> Pseudoalteromonas atlantica T6c <400> 5 atgagtgtca ttaccaaact agacacacct gccatgaaca gttcacaaat tcagtcagtc 60 aatgttgagt tattcaacgt gccccttgac gaagtgttga acgatgctaa gcacggcgat 120 catacccact ttgagctgat cctatgcacc attacttgta ccgatggtac tcaaggcgtg 180 ggttatacct acacaggtgg taaaggtgga cgcgctatat actcactgct taatgacgaa 240 ctaaagcctt tcttgatggg taaagatgct agctgcatca atcatttatg ggaagaaatg 300 caatatcact tgcactatgt tggtcgtggc ggtttagtca gtttcgccat atccgcagtc 360 gatatcgccc tgtgggacat tcattgcaag gttcttaatc aacccttgtg gaaagtagct 420 gggggctgca gtgaccgcgt aaactgttat gcaggaggca ttgaccttaa tttttccact 480 gaaaaattgc tcggcaatat ccaaggctac ttagactgcg gctttgaagc ggtcaaaata 540 aaagtgggca aagaagatta tcgtgaagac gtggcccgcg tggcggctgt gcgcaacctg 600 attggtcctg atgcgatatt tatggtggat gcaaattatt cacttacagt caataaagcc 660 attaagtttg ctcaggcgat agagcagtat gatatcacct ggtttgaaga accgaccatt 720 cctgatgatt ttgccggttt tgctcacatt gccagcaaaa tcaatattcc gttggccatg 780 ggcgaaaacc tgcacactat ttacgaattc aaccaagcga taagccaagc caaacttggg 840 ttcttacaac ctgatgcatc gaatattggc ggtatcactg gttggctaac ggttgcccag 900 atgggctacg cgaacaactt acctatttgc agtcatggca tgcacgaatt acatgtatct 960 cttatggcat ctcagccaaa tgcgggttac ttggaagtac actcgtttcc cattgaccga 1020 tataccactc accctctgaa acttgaaaat ggcaaagccg ttgcgcccag tacacccggt 1080 gtaggcgtcg agttcaagac agagttactt cttccctatt tagttaaaca ttcttag 1137 <210> 6 <211> 378 <212> PRT <213> Pseudoalteromonas atlantica T6c <400> 6 Met Ser Val Ile Thr Lys Leu Asp Thr Pro Ala Met Asn Ser Ser Gln   1 5 10 15 Ile Gln Ser Val Asn Val Glu Leu Phe Asn Val Pro Leu Asp Glu Val              20 25 30 Leu Asn Asp Ala Lys His Gly Asp His Thr His Phe Glu Leu Ile Leu          35 40 45 Cys Thr Ile Thr Cys Thr Asp Gly Thr Gln Gly Val Gly Tyr Thr Tyr      50 55 60 Thr Gly Gly Lys Gly Gly Arg Ala Ile Tyr Ser Leu Leu Asn Asp Glu  65 70 75 80 Leu Lys Pro Phe Leu Met Gly Lys Asp Ala Ser Cys Ile Asn His Leu                  85 90 95 Trp Glu Glu Met Gln Tyr His Leu His Tyr Val Gly Arg Gly Gly Leu             100 105 110 Val Ser Phe Ala Ile Ser Ala Val Asp Ile Ala Leu Trp Asp Ile His         115 120 125 Cys Lys Val Leu Asn Gln Pro Leu Trp Lys Val Ala Gly Gly Cys Ser     130 135 140 Asp Arg Val Asn Cys Tyr Ala Gly Gly Ile Asp Leu Asn Phe Ser Thr 145 150 155 160 Glu Lys Leu Leu Gly Asn Ile Gln Gly Tyr Leu Asp Cys Gly Phe Glu                 165 170 175 Ala Val Lys Ile Lys Val Gly Lys Glu Asp Tyr Arg Glu Asp Val Ala             180 185 190 Arg Val Ala Ala Val Arg Asn Leu Ile Gly Pro Asp Ala Ile Phe Met         195 200 205 Val Asp Ala Asn Tyr Ser Leu Thr Val Asn Lys Ala Ile Lys Phe Ala     210 215 220 Gln Ala Ile Glu Gln Tyr Asp Ile Thr Trp Phe Glu Glu Pro Thr Ile 225 230 235 240 Pro Asp Phe Ala Gly Phe Ala His Ile Ala Ser Lys Ile Asn Ile                 245 250 255 Pro Leu Ala Met Gly Glu Asn Leu His Thr Ile Tyr Glu Phe Asn Gln             260 265 270 Ala Ile Ser Gln Ala Lys Leu Gly Phe Leu Gln Pro Asp Ala Ser Asn         275 280 285 Ile Gly Gly Ile Thr Gly Trp Leu Thr Val Ala Gln Met Gly Tyr Ala     290 295 300 Asn Asn Leu Pro Ile Cys Ser His Gly Met His Glu Leu His Val Ser 305 310 315 320 Leu Met Ala Ser Gln Pro Asn Ala Gly Tyr Leu Glu Val His Ser Phe                 325 330 335 Pro Ile Asp Arg Tyr Thr Thr His Pro Leu Lys Leu Glu Asn Gly Lys             340 345 350 Ala Val Ala Pro Ser Thr Pro Gly Val Gly Val Glu Phe Lys Thr Glu         355 360 365 Leu Leu Leu Pro Tyr Leu Val Lys His Ser     370 375 <210> 7 <211> 1089 <212> DNA <213> Vibrio sp. EJY3 <400> 7 atgaaaacaa caatcaaaga catcaaaacg agactgttta agattccgtt aaaggaaatt 60 ttatctgatg caaaacatgg tgatcatgac cactttgagc tgatcactac aacggtcacg 120 ttagaagatg gttcgcaggg aaccggctat acttatactg gtggcaaagg cggttactcg 180 atcaaagcga tgctagagta tgatattcag cctgcgctaa tcggcaaaga cgcgacgcaa 240 attgaagaga tctatgactt tatggagtgg catattcact atgtcggtcg tggcggtatc 300 tctacatttg cgatgtctgc ggtagacatt gcgctttggg atctaaaagg taaacgagaa 360 ggcttgccgt tatggaaaat ggctggtgga aaaaacaata cctgtaaagc gtactgtggt 420 ggcattgacc ttcagtttcc acttgagaaa ttgctcaaca atatttgtgg ttatttagaa 480 agtggcttca atgccgttaa gatcaagatt ggtcgcgaaa atatgcaaga agatattgac 540 cgcattaagg cggttcgcga gctgattggg ccagatatca cctttatgat cgatgccaac 600 tattcgttga cagtagaaca agcgatcaaa ctgtcaaaag cggtagagca atatgacatc 660 acgtggtttg aagagccaac attgccagat gactacaaag gttttgctga gattgctgac 720 aatacagcga ttccgttggc catgggggaa aaccttcaca ccattcatga gtttggttat 780 gcaatggacc aagcaaagct tggctactgc caaccagatg cctcaaactg tggtggcatt 840 accggttggt tgaaagcggc ggacttgatt acagaacata atatcccagt gtgtactcac 900 ggtatgcaag agctacacgt aagtcttgtt tcagcgtttg atacaggttg gctagaggtg 960 cacagcttcc cgattgatga atacaccaag cgtcctttgg ttgtagaaaa cttccgcgct 1020 gtggcgtcca atgagccggg tatcggggtc gagttcgatt gggacaaaat tgctcagtac 1080 gaagtgtaa 1089 <210> 8 <211> 362 <212> PRT <213> Vibrio sp. EJY3 <400> 8 Met Lys Thr Thr Ile Lys Asp Ile Lys Thr Arg Leu Phe Lys Ile Pro   1 5 10 15 Leu Lys Glu Ile Leu Ser Asp Ala Lys His Gly Asp His Asp His Phe              20 25 30 Glu Leu Ile Thr Thr Thr Val Thr Leu Glu Asp Gly Ser Gln Gly Thr          35 40 45 Gly Tyr Thr Tyr Thr Gly Gly Lys Gly Gly Tyr Ser Ile Lys Ala Met      50 55 60 Leu Glu Tyr Asp Ile Gln Pro Ala Leu Ile Gly Lys Asp Ala Thr Gln  65 70 75 80 Ile Glu Glu Ile Tyr Asp Phe Met Glu Trp His Ile His Tyr Val Gly                  85 90 95 Arg Gly Gly Ile Ser Thr Phe Ala Met Ser Ala Val Asp Ile Ala Leu             100 105 110 Trp Asp Leu Lys Gly Lys Arg Glu Gly Leu Pro Leu Trp Lys Met Ala         115 120 125 Gly Gly Lys Asn Asn Thr Cys Lys Ala Tyr Cys Gly Gly Ile Asp Leu     130 135 140 Gln Phe Pro Leu Glu Lys Leu Leu Asn Asn Ile Cys Gly Tyr Leu Glu 145 150 155 160 Ser Gly Phe Asn Ala Val Lys Ile Lys Ile Gly Arg Glu Asn Met Gln                 165 170 175 Glu Asp Ile Asp Arg Ile Lys Ala Val Arg Glu Leu Ile Gly Pro Asp             180 185 190 Ile Thr Phe Met Ile Asp Ala Asn Tyr Ser Leu Thr Val Glu Gln Ala         195 200 205 Ile Lys Leu Ser Lys Ala Val Glu Gln Tyr Asp Ile Thr Trp Phe Glu     210 215 220 Glu Pro Thr Leu Pro Asp Asp Tyr Lys Gly Phe Ala Glu Ile Ala Asp 225 230 235 240 Asn Thr Ala Ile Pro Leu Ala Met Gly Glu Asn Leu His Thr Ile His                 245 250 255 Glu Phe Gly Tyr Ala Met Asp Gln Ala Lys Leu Gly Tyr Cys Gln Pro             260 265 270 Asp Ala Ser Asn Cys Gly Gly Ile Thr Gly Trp Leu Lys Ala Ala Asp         275 280 285 Leu Ile Thr Glu His Asn Ile Pro Val Cys Thr His Gly Met Gln Glu     290 295 300 Leu His Val Ser Leu Val Ser Ala Phe Asp Thr Gly Trp Leu Glu Val 305 310 315 320 His Ser Phe Pro Ile Asp Glu Tyr Thr Lys Arg Pro Leu Val Val Glu                 325 330 335 Asn Phe Arg Ala Val Ala Ser Asn Glu Pro Gly Ile Gly Val Glu Phe             340 345 350 Asp Trp Asp Lys Ile Ala Gln Tyr Glu Val         355 360 <210> 9 <211> 966 <212> DNA <213> Vibrio sp. EJY3 <400> 9 atgagtttgg aaataaaaca agatacggag tctagctata gcgatattct tagctttggt 60 gagccaatgt ttgagtttag ccaagttgga caagcaggtt caggccagcc tgatttcttg 120 agtggttttg gtggtgatgc ttcgaacttt gctatcgcag cagcaagaca aggcgcatca 180 gttggaatgt tgacacaact tggcgacgat gaattcggta agcgttttgt tgagctgtgg 240 gaacagcagg gtgttagcag ttcagctgtg tgtatactac caaataaagc aacgggcgtt 300 tattttatta cgcacgatga tgagggacac catttttctt tcttgcgtaa gaactctgcg 360 gccagtttaa tgacaccgca agacttacca tcagatgcga ttgccaatgc taagcttctt 420 catatcactg ctattactca ggcgattagt gattcaagtt gtgactcagt gtttgcagca 480 attgaaacag cgaaagcgca cggcactcaa gtgtcctatg acaccaactt gcgcttaaag 540 ctatggtcac tgcaacgcgc tcgcgccatc attaatgaaa ccgcgtcact agtcgatgtc 600 tgcttcccta gtattgacga agcacgcttg gtgactggcc ttgaacatgc tgacgatatc 660 atcgattttt acctaaaagc aggcgcgaaa gttgtcgtac ttaaacaggg tggtgacggt 720 gcgacagtgg ctaatgagca tattaggcat ttcatccttc cgcataaagt gacacctgtt 780 gatgcgaccg ctgctggtga ttcatttgca ggctcattct gtacgcatta tgtcaacgga 840 gagtctttag agcagtgtct tgcgtatgca aatgccaccg cgtctatcac gattactggt 900 tttggtgcag ttgccccttt accgacattt gagcaagtgc ttgagaaaat caacgaatct 960 aaatag 966 <210> 10 <211> 321 <212> PRT <213> Vibrio sp. EJY3 <400> 10 Met Ser Leu Glu Ile Lys Gln Asp Thr Glu Ser Ser Tyr Ser Asp Ile   1 5 10 15 Leu Ser Phe Gly Glu Pro Met Phe Glu Phe Ser Gln Val Gly Gln Ala              20 25 30 Gly Ser Gly Gln Pro Asp Phe Leu Ser Gly Phe Gly Gly Asp Ala Ser          35 40 45 Asn Phe Ala Ile Ala Ala Ala Arg Gln Ala Ser Val Gly Met Leu      50 55 60 Thr Gln Leu Gly Asp Asp Glu Phe Gly Lys Arg Phe Val Glu Leu Trp  65 70 75 80 Glu Gln Gln Gly Val Ser Ser Ser Ala Val Cys Ile Leu Pro Asn Lys                  85 90 95 Ala Thr Gly Val Tyr Phe Ile Thr His Asp Asp Glu Gly His His Phe             100 105 110 Ser Phe Leu Arg Lys Asn Ser Ala Ala Ser Leu Met Thr Pro Gln Asp         115 120 125 Leu Pro Ser Asp Ala Ile Ala Asn Ala Lys Leu Leu His Ile Thr Ala     130 135 140 Ile Thr Gln Ala Ile Ser Asp Ser Ser Cys Asp Ser Val Phe Ala Ala 145 150 155 160 Ile Glu Thr Ala Lys Ala His Gly Thr Gln Val Ser Tyr Asp Thr Asn                 165 170 175 Leu Arg Leu Lys Leu Trp Ser Leu Gln Arg Ala Arg Ala Ile Ile Asn             180 185 190 Glu Thr Ala Ser Leu Val Asp Val Cys Phe Pro Ser Ile Asp Glu Ala         195 200 205 Arg Leu Val Thr Gly Leu Glu His Ala Asp Asp Ile Ile Asp Phe Tyr     210 215 220 Leu Lys Ala Gly Ala Lys Val Val Leu Lys Gln Gly Gly Asp Gly 225 230 235 240 Ala Thr Val Ala Asn Glu His Ile Arg His Phe Ile Leu Pro His Lys                 245 250 255 Val Thr Pro Val Asp Ala Thr Ala Ala Gly Asp Ser Phe Ala Gly Ser             260 265 270 Phe Cys Thr His Tyr Val Asn Gly Glu Ser Leu Glu Gln Cys Leu Ala         275 280 285 Tyr Ala Asn Ala Thr Ala Ser Ile Thr Ile Thr Gly Phe Gly Ala Val     290 295 300 Ala Pro Leu Pro Thr Phe Glu Gln Val Leu Glu Lys Ile Asn Glu Ser 305 310 315 320 Lys     <210> 11 <211> 621 <212> DNA <213> Vibrio sp. EJY3 <400> 11 atggatctca atcaacgttt agctaagctc aaagttgtgc ctgtgattgc tgtagataat 60 gcgcaagata ttttgccttt aggtaaggcg ctggtagaga atggtttacc agtcgcagaa 120 attacctttc gctctgacgc ggcgactgaa gccattcgtt tacttcgtac tacttatcca 180 gacatcttga ttggtgcggg tacggtattg aacgaagctc aagtaattga ggcaaaagag 240 gcgggtgctg actttattgt ttctccaggc ttgaacccaa tcacagtaaa agcatgtcaa 300 aaacataaaa taaccatcgt ccctggtgta aacagcccat cgttggttga gcaagctctt 360 gagcttggtg ttgatactgt taaatttttc ccagcagaag cgtcgggcgg tctagcgatg 420 ttgaagtcgt tgcttggccc ttatcaacaa atcaaagtga tgcctacagg tggtatcaat 480 caaaacaaca ttcatgatta tctggctctt cctgctgtac ttgcttgtgg tggtacgtgg 540 atggtggata aatcactggt acataaaggt gcttgggatg aaattggccg attggtcaga 600 gaaattgtcg ccgcagtata g 621 <210> 12 <211> 206 <212> PRT <213> Vibrio sp. EJY3 <400> 12 Met Asp Leu Asn Gln Arg Leu Ala Lys Leu Lys Val Val Pro Val Ile   1 5 10 15 Ala Val Asp Asn Ala Gln Asp Ile Leu Pro Leu Gly Lys Ala Leu Val              20 25 30 Glu Asn Gly Leu Pro Val Ala Glu Ile Thr Phe Arg Ser Asp Ala Ala          35 40 45 Thr Glu Ala Ile Arg Leu Leu Arg Thr Thr Tyr Pro Asp Ile Leu Ile      50 55 60 Gly Ala Gly Thr Val Leu Asn Glu Ala Gln Val Ile Glu Ala Lys Glu  65 70 75 80 Ala Gly Ala Asp Phe Ile Val Ser Pro Gly Leu Asn Pro Ile Thr Val                  85 90 95 Lys Ala Cys Gln Lys His Lys Ile Thr Ile Val Pro Gly Val Asn Ser             100 105 110 Pro Ser Leu Val Glu Gln Ala Leu Glu Leu Gly Val Asp Thr Val Lys         115 120 125 Phe Phe Pro Ala Glu Ala Ser Gly Gly Leu Ala Met Leu Lys Ser Leu     130 135 140 Leu Gly Pro Tyr Gln Gln Ile Lys Val Met Pro Thr Gly Gly Ile Asn 145 150 155 160 Gln Asn Asn Ile His Asp Tyr Leu Ala Leu Pro Ala Val Leu Ala Cys                 165 170 175 Gly Gly Thr Trp Met Val Asp Lys Ser Leu Val His Lys Gly Ala Trp             180 185 190 Asp Glu Ile Gly Arg Leu Val Arg Glu Ile Val Ala Ala Val         195 200 205 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> Forward primer 1 for 3,6-anhydro-L-galactose dehydrogenase <400> 13 gaaggagata taaggatgaa acgttaccaa atgtacgttg 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> Reverse primer 2 for 3,6-anhydro-L-galactose dehydrogenase <400> 14 atgatggtga tggtggtcga aattcacata gaatgtcttc 40 <210> 15 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Forward primer 1 for SdeACI <400> 15 gaaggagata taaggatgaa aattcataac atgaaaaatt ttatcaa 47 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer 2 for SdeACI <400> 16 atgatggtga tggtgtcatt cagcaaaata cactgtcttc 40 <210> 17 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Forward primer 1 for Pat1ACI <400> 17 gaaggagata taaggatgat gagtgtcatt accaaactag aca 43 <210> 18 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer 2 for Pat1ACI <400> 18 atgatggtga tggtgagaat gtttaactaa atagggaaga ag 42 <210> 19 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Forward primer 1 for Vejy3ACI <400> 19 gaaggagata taaggatgaa aacaacaatc aaagacatca aaa 43 <210> 20 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer 2 for Vejy3ACI <400> 20 atgatggtga tggtgcactt cgtactgagc aattttgt 38 <210> 21 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Forward primer 1 for Vejy3ACI <400> 21 gcgctcgaga tgaaaacaac aatcaaagac atcaaaac 38 <210> 22 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer 2 for Vejy3ACI <400> 22 gcgtacgtac acttcgtact gagcaatttt gtc 33 <210> 23 <211> 34 <212> DNA <213> Artificial Sequence <220> Forward primer 1 for 3,6-anhydro-L-galactose dehydrogenase <400> 23 gcgctcgaga tgaaacgtta ccaaatgtac gttg 34 <210> 24 <211> 35 <212> DNA <213> Artificial Sequence <220> Reverse primer 2 for 3,6-anhydro-L-galactose dehydrogenase <400> 24 gcgtctagat tagtcgaaat tcacatagaa tgtct 35

Claims (5)

SEQ ID NO: 8의 아미노산 서열로 표시되는 3,6-안하이드로갈락토닉산 시클로이성질화효소(3,6-anhydrogalactonic acid cycloisomerase)을 포함하는 2-케토-3-데옥시-갈락토닉산 생산용 조성물.
Keto-3-deoxy-galactonic acid containing 3,6-anhydrogalactonic acid cycloisomerase represented by the amino acid sequence of SEQ ID NO: 8 Composition.
제1항에 있어서,
3,6-안하이드로갈락토닉산 시클로이성질화효소는 3,6-안하이드로갈락토닉산의 환 구조를 개환시키면서 이성질화하여 2-케토-3-데옥시-갈락토닉산으로 전환하는 특성이 있는 2-케토-3-데옥시-갈락토닉산 생산용 조성물.
The method according to claim 1,
The 3,6-anhydrogalactonic acid cyclic nitrification enzyme is characterized in that it is isomerized while ring-opening the 3,6-anhydrogalactonic acid ring to convert it to 2-keto-3-deoxy-galactonic acid 2-keto-3-deoxy-galactonic acid.
제1항에 있어서,
3,6-안하이드로갈락토닉산 시클로이성질화효소는 SEQ ID NO: 7의 염기서열로 표시되는 유전자로부터 코딩되는 것인 2-케토-3-데옥시-갈락토닉산 생산용 조성물.
The method according to claim 1,
3,6-anhydrogalactonic acid cyclase nitricase is encoded from a gene represented by the nucleotide sequence of SEQ ID NO: 7. 2. A composition for producing 2-keto-3-deoxy-galactonic acid according to claim 1,
제1항에 있어서,
3,6-안하이드로갈락토닉산 시클로이성질화효소는 SEQ ID NO: 7의 염기서열로 표시되는 유전자가 삽입된 재조합벡터로 형질전환된 형질전환체의 배양산물에서 얻은 것인 2-케토-3-데옥시-갈락토닉산 생산용 조성물.
The method according to claim 1,
The 3,6-anhydrogalactonic acid cyclase nitrification enzyme is a 2-keto-3-anhydrogalactonic acid cyclic isomerase obtained from the culture product of the transformant transformed with the recombinant vector into which the gene represented by the nucleotide sequence of SEQ ID NO: -Deoxy-galactonic acid.
SEQ ID NO: 8의 아미노산 서열로 표시되는 3,6-안하이드로갈락토닉산 시클로이성질화효소(3,6-anhydrogalactonic acid cycloisomerase), 상기 3,6-안하이드로갈락토닉산 시클로이성질화효소를 생산하는 미생물 또는 상기 미생물의 배양산물을 3,6-안하이드로갈락토닉산과 반응시켜 2-케토-3-데옥시-갈락토닉산을 생산하는 방법.

3,6-anhydrogalactonic acid cycloisomerase represented by the amino acid sequence of SEQ ID NO: 8, the 3,6-anhydrogalactonic acid cyclic isomerase Or a culture product of the microorganism is reacted with 3,6-anhydrogalactonic acid to produce 2-keto-3-deoxy-galactonic acid.

KR1020140054315A 2013-05-07 2014-05-07 Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and use thereof KR101634858B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130051134 2013-05-07
KR20130051134 2013-05-07

Publications (2)

Publication Number Publication Date
KR20140133457A KR20140133457A (en) 2014-11-19
KR101634858B1 true KR101634858B1 (en) 2016-06-30

Family

ID=52454092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140054315A KR101634858B1 (en) 2013-05-07 2014-05-07 Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and use thereof

Country Status (1)

Country Link
KR (1) KR101634858B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120149092A1 (en) 2008-03-03 2012-06-14 Joule Unlimited Technologies, Inc. Ethanol Production in Microorganisms

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316084B1 (en) 2011-01-24 2013-11-13 고려대학교 산학협력단 A noble 3,6-anhydro-L-galactose dehydrogenase to convert 3,6-anhydro-L-galactose into 3,6-anhydrogalactonic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120149092A1 (en) 2008-03-03 2012-06-14 Joule Unlimited Technologies, Inc. Ethanol Production in Microorganisms

Also Published As

Publication number Publication date
KR20140133457A (en) 2014-11-19

Similar Documents

Publication Publication Date Title
KR101473918B1 (en) D-psicose 3-epimerase, manufacturing method thereof and manufacturing method of D-psicose using the same
Liebergesell et al. Cloning and nucleotide sequences of genes relevant for biosynthesis of poly (3‐hydroxybutyric acid) in Chromatium vinosum strain D
CN111647579B (en) Thermolabile exoinulase mutant MutQ23 delta 9 and preparation and application thereof
KR101576186B1 (en) Kluyveromyces marxianus deficient in the ethanol fermentation and use thereof
KR20150045447A (en) Recombinant microorganisms and uses therefor
KR20170121147A (en) Recombinant microorganisms exhibiting increased flux through a fermentation pathway
CN110117601B (en) Grifola frondosa glucan synthase, encoding gene and application thereof
CN111527211B (en) Microorganism producing mycosporine-like amino acid and method for producing mycosporine-like amino acid using the same
CN112292452A (en) Microorganism producing mycosporine-like amino acid and method for producing mycosporine-like amino acid using the same
JP2017534268A (en) Modified microorganisms and methods for the production of useful products
KR101316084B1 (en) A noble 3,6-anhydro-L-galactose dehydrogenase to convert 3,6-anhydro-L-galactose into 3,6-anhydrogalactonic acid
CN113502278B (en) Enzyme composition and application thereof in naringenin biosynthesis
EP1257638A1 (en) Bacterial isolates of the genus klebsiella, and an isomaltulose synthase gene isolated therefrom
CN110592035B (en) Carbonyl reductase mutant, recombinant expression vector and application of carbonyl reductase mutant in production of chiral alcohol
KR101561390B1 (en) Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and use thereof
JP2011067139A (en) Recombinant vector, transformant, and method for producing 2h-pyran-2-on-4,6-dicarboxylic acid
AU784466B2 (en) Cyclic depsipeptide synthases, genes thereof and mass production system of cyclic depsipeptide
KR101634858B1 (en) Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and use thereof
Jeong et al. Isolation of novel exo-type β-agarase from Gilvimarinus chinensis and high-level secretory production in Corynebacterium glutamicum
KR102193802B1 (en) A novel biological method for producing sugar alcohols from agar
CN110139934A (en) Hydroxypropanone- and its application are converted by methyl-glyoxal using new enzyme
US9340809B2 (en) Microbial conversion of sugar acids and means therein
CN109097315B (en) Genetically engineered bacterium for high-yield lipopeptide and construction method and application thereof
WO2005123921A1 (en) Novel glycerol dehydrogenase, gene therefor, and method of utilizing the same
CN112779235B (en) Method for synthesizing various flavonoid glycosides by biological catalysis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant