KR101592812B1 - Secondary cell battery and a manufacturing method thereof - Google Patents

Secondary cell battery and a manufacturing method thereof Download PDF

Info

Publication number
KR101592812B1
KR101592812B1 KR1020150014972A KR20150014972A KR101592812B1 KR 101592812 B1 KR101592812 B1 KR 101592812B1 KR 1020150014972 A KR1020150014972 A KR 1020150014972A KR 20150014972 A KR20150014972 A KR 20150014972A KR 101592812 B1 KR101592812 B1 KR 101592812B1
Authority
KR
South Korea
Prior art keywords
electrode plate
solid electrolyte
negative electrode
hemispherical
lithium
Prior art date
Application number
KR1020150014972A
Other languages
Korean (ko)
Inventor
김경수
윤용섭
민홍석
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020150014972A priority Critical patent/KR101592812B1/en
Application granted granted Critical
Publication of KR101592812B1 publication Critical patent/KR101592812B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a secondary battery and a manufacturing method thereof. The secondary battery comprises: a negative electrode plate and a positive electrode plate which include lithium; and a solid electrolyte mounted between the negative electrode plate and the positive electrode plate. The provided secondary battery has improved contact properties of the negative electrode plate or the positive electrode plate including the solid electrolyte and the lithium metal due to an embossing structure by forming the embossing structure on a contact surface of the solid electrolyte and the negative electrode plate, and has an effect of inhibiting lithium dendrite growth when charging and discharging the secondary battery.

Description

2차 전지 및 그 제작방법{Secondary cell battery and a manufacturing method thereof}[0001] The present invention relates to a secondary battery and a manufacturing method thereof,

본 발명은 2차 전지 및 그 제작방법에 관한 것으로, 더욱 상세하게는, 리튬 화합물이 음극재료로 사용될 경우, 리튬의 결정성장에 따라 발생가능한 단락이 방지되는 2차 전지 및 그 제작방법을 제공하는 것이다.
The present invention relates to a secondary battery and a method of manufacturing the same, and more particularly, to a secondary battery in which a short circuit that can be caused by crystal growth of lithium is prevented when a lithium compound is used as a cathode material, will be.

방전 과정에서 리튬 이온이 음극에서 양극으로 이동하는 리튬 이차전지는 휴대용 전자기기의 전원으로 널리 이용되고 있다. 이러한 리튬 이차전지는 최근, 하이브리드 및 전기 자동차용 전원으로도 주목받고 있다.Lithium secondary batteries, in which lithium ions move from a cathode to an anode during a discharge process, are widely used as power sources for portable electronic devices. Such a lithium secondary battery has recently attracted attention as a power source for hybrid and electric vehicles.

현재, 리튬 이차전지에 널리 사용되는 전극 재료는, 리튬 이온을 저장할 수 있는 물질로서, 양극에는 리튬 전이금속 산화물계가 사용되고, 음극에는 흑연 등의 탄소계가 사용되고 있다.At present, an electrode material widely used for a lithium secondary battery is a material capable of storing lithium ions, a lithium transition metal oxide system is used for the anode, and a carbon system such as graphite is used for the anode.

한편, 하이브리드 또는 전기 자동차에 장착되는 리튬 이차전지는 차량 주행 거리를 증가시키기 위하여, 고용량화되어야 한다. 종래에 비하여 리튬을 더 많이 저장할 수 있는 음극 재료로서 리튬 금속이 주목받고 있다.On the other hand, a lithium secondary battery mounted in a hybrid or electric vehicle must be increased in capacity in order to increase the traveling distance of the vehicle. Lithium metal has attracted attention as a negative electrode material capable of storing more lithium than in the prior art.

그러나, 음극 재료로 사용된 리튬 금속은, 충방전 과정에서 부피 변화가 심하고, 도 1에 도시되 바와 같이, 충방전 과정에서, 리튬 금속(1) 표면에 리튬 결정(2)이 리튬 금속(1)과 90도를 이루는 수지상으로 성장하여 양극과 단락을 일으키는 등 안전성이 부족하였다.
However, the lithium metal used as the negative electrode material has a large volume change during charging and discharging. As shown in FIG. 1, in the charging and discharging process, the lithium crystal 2 is deposited on the surface of the lithium metal 1, ) And 90 degree dendritic growth, resulting in a short circuit with the anode and lack of safety.

대한민국 등록특허공보 제10-0669338호(2007.01.09.)Korean Registered Patent No. 10-0669338 (2007.01.09.)

이에 상기와 같은 점을 감안하여 발명된 본 발명의 목적은, 고체전해질과 리튬 금속 간의 접촉성을 향상시키고, 충방전 중에 리튬 금속의 수지상 성장을 억제하는 2차 전지 및 그 제작방법을 제공하는 것이다.
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a secondary battery which improves contact between a solid electrolyte and lithium metal and suppresses dendritic growth of lithium metal during charging and discharging, and a manufacturing method thereof .

위와 같은 목적을 달성하기 위한 본 발명의 2차 전지에 따르면, 리튬이 포함된 음극판과 양극판 및, 음극판 및 양극판 사이에 장착된 고체전해질을 포함하며, 고체전해질과 음극판의 접합면에 엠보구조가 형성될 수 있다.
According to an aspect of the present invention, there is provided a secondary battery comprising: a positive electrode plate including lithium, a positive electrode plate, and a solid electrolyte disposed between the negative electrode plate and the positive electrode plate, wherein an embossed structure is formed on a bonding surface of the solid electrolyte and the negative electrode plate .

위와 같은 목적을 달성하기 위한 본 발명의 2차 전지 제작방법에 따르면, 음극판과 양극판 사이에 개재되는 고체전해질에 반구형 홈이 규칙적으로 형성되는 홈 형성단계 및, 반구형 홈이 형성된 고체전해질의 일면에 음극판이 적층되는 적층단계를 포함한다.
According to another aspect of the present invention, there is provided a method of manufacturing a secondary battery, including: forming a hemispherical groove regularly in a solid electrolyte interposed between an anode plate and a cathode plate; And a laminating step of laminating the laminate.

위와 같은 본 발명의 2차 전지 및 그 제작방법에 따르면, 엠보구조에 의하여 고체전해질과 리튬 금속을 포함하는 음극판의 접촉성이 향상되고, 충방전 반응시, 음극판에 리튬 결정의 수지상 성장이 억제되는 효과가 있다.According to the secondary battery of the present invention and the method for fabricating the same, the contact between the solid electrolyte and the negative electrode including lithium metal is improved by the emboss structure, and the resinous growth of the lithium crystal on the negative electrode plate is suppressed It is effective.

또한, 리튬 금속과 고체전해질의 접촉성이 향상되므로, 리튬 이온 이차 전지의 에너지 밀도가 높아져 차량 이용 주행거리를 연장할 수 있는 효과가 있다.In addition, since the contact property between the lithium metal and the solid electrolyte is improved, the energy density of the lithium ion secondary battery is increased and the vehicle traveling distance can be extended.

또한, 리튬 결정의 수지상 성장이 억제되므로, 2차 전지의 안정성이 향상되고, 궁극적으로 2차 전지의 수명이 증대되는 효과가 있다.
Further, since the resinous growth of the lithium crystal is suppressed, the stability of the secondary battery is improved, and ultimately, the life of the secondary battery is increased.

도 1은 종래 리튬 금속재질의 음극판의 충전 전과 충전 후의 상태도,
도 2는 본 발명의 일실시예의 2차 전지의 요부 단면도,
도 3은 도 2의 2차 전지의 요부 사시도,
도 4는 본 발명의 일실시예의 2차 전지 제작방법의 절차도,
도 5는 도 4의 2차 전지 제작방법에 따른 제작 상태도이다.
Fig. 1 is a state before charging and after charging of a negative electrode plate of a conventional lithium metal material,
FIG. 2 is a cross-sectional view of a main portion of a secondary battery according to an embodiment of the present invention,
3 is a principal perspective view of the secondary battery of FIG. 2,
4 is a flow chart of a method for manufacturing a secondary battery according to an embodiment of the present invention,
5 is a view showing a manufacturing process according to the manufacturing method of the secondary battery of FIG.

본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2 내지 도 3에 도시된 바와 같이, 본 발명의 2차 전지는, 리튬이 포함된 음극판(110)과 양극판(120) 및, 음극판(110) 및 양극판(120) 사이에 장착된 고체전해질(200)을 포함하며, 고체전해질(200)과 음극판(110)의 접합면에 엠보구조(300)가 형성된다.2 to 3, the secondary battery of the present invention includes a negative electrode plate 110 including lithium, a positive electrode plate 120, and a solid electrolyte (not shown) mounted between the negative electrode plate 110 and the positive electrode plate 120 200, and an embossed structure 300 is formed on a bonding surface of the solid electrolyte 200 and the cathode plate 110.

음극판(110)에는, 고체전해질(200)을 향해 반구형 돌기가 규칙적으로 형성된다. 고체전해질(200)에는, 반구형 돌기가 안착되는 반구형 홈이 규칙적으로 형성된다. 엠보구조(300)는, 도 3에 도시된 바와 같이, 육방밀집구조(hexagonal closed packing; 벌집구조)를 형성한다. In the cathode plate 110, hemispherical projections are regularly formed toward the solid electrolyte 200. In the solid electrolyte (200), hemispherical grooves on which hemispherical projections are seated are regularly formed. The emboss structure 300, as shown in FIG. 3, forms a hexagonal closed packing (honeycomb structure).

본 발명의 일실시예에서, 음극판(110)은, 리튬(Li) 또는 리튬-금속 복합체(Li-M, M=Si, Sn, Al, In 등)로 제작되고, 양극판(120)은, 코발트산리튬(LiCoO2), Li(NixCoyMnz)O2, LiFePO4, LiMn2O4, LiNi0 .5Mn1 .5O4 또는 황(S) 화합물로 제작된다. 고체전해질(200)은, Li2S-P2S5 또는 Li10GeP2S12을 포함하는 황화물로 제작된다.In the embodiment of the present invention, the anode plate 110 is made of lithium (Li) or a lithium-metal composite (Li-M, M = Si, Sn, Al, In, is made from lithium (LiCoO2), Li (Ni x Co y Mn z) O 2, LiFePO 4, LiMn 2 O 4, LiNi 0 .5 Mn 1 .5 O 4 or sulfur (S) compound. The solid electrolyte 200 is made of a sulfide including Li 2 SP 2 S 5 or Li 10 GeP 2 S 12 .

위와 같이 구성되는 본 발명의 2차 전지는 도 4 내지 도 5에 도시된 바와 같은, 2차 전지 제작방법에 따라 제작된다.The secondary battery of the present invention configured as above is fabricated according to the secondary battery manufacturing method as shown in Figs. 4 to 5.

도 4 내지 도 5에 도시된 바와 같이, 본 발명의 2차 전지 제작방법은, 음극판(110)과 양극판(120) 사이에 개재되는 고체전해질(200)에 반구형 홈이 규칙적으로 형성되는 홈 형성단계(S100) 및, 반구형 홈이 형성된 고체전해질(200)의 일면에 음극판(110)이 적층되는 적층단계(S200)를 포함한다.4 to 5, a method of manufacturing a secondary battery according to the present invention includes forming a hemispherical groove regularly in a solid electrolyte 200 interposed between a cathode plate 110 and a cathode plate 120 (S100), and a laminating step (S200) in which the cathode plate (110) is laminated on one side of the solid electrolyte (200) having hemispherical grooves.

홈 형성단계(S100)는, 반구형 홈과 동일한 형상의 반구형 돌기가 형성된 형성틀(400)에 고체전해질(200) 분말이 도포되는 도포단계(S110) 및, 고체전해질(200) 분말이 압착되도록 형성틀(400)을 가압하는 가압단계(S120)를 포함한다(도 5의 a 참조). 반구형 돌기는 그 높이가 1마이크로미터 이하가 되도록 형성된다. 도 5의 b에 도시된 바와 같이, 적층단계(S200)에서, 음극판(110)이 고체전해질(200)을 향해 가압 된다.The groove forming step S100 includes a coating step S110 in which the powder of the solid electrolyte 200 is applied to the forming mold 400 having hemispherical projections having the same shape as that of the hemispherical grooves and the coating step S110 in which the powder of the solid electrolyte 200 is formed And a pressing step S120 for pressing the mold 400 (see Fig. 5A). The hemispherical protrusion is formed so that its height is 1 micrometer or less. As shown in FIG. 5B, in the stacking step S200, the negative electrode plate 110 is pressed toward the solid electrolyte 200.

위와 같은 본 발명의 2차 전지 제작방법을 통해 제작된 본 발명의 2차 전지는, 도 5의 c에 도시된 바와 같이, 고체전해질(200)에 형성된 반구형 홈의 형상에 따라 리튬 금속에 다수개의 돔이 규칙적으로 배열된 엠보구조(300)를 형성하게 된다. As shown in FIG. 5C, the secondary battery of the present invention manufactured through the above-described method for fabricating a secondary battery of the present invention has a structure in which a plurality of lithium metals are stacked in the shape of a hemispherical groove formed in the solid electrolyte 200 Thereby forming the embossed structure 300 in which the dome is regularly arranged.

엠보구조(300)는 조밀한 육방밀집구조(hexagonal closed packing) 형태를 이루게 된다. 이러한 엠보구조(300)에 의하여, 고체전해질(200)과 음극판(110)의 접촉면이 극대화되고 접촉성이 향상된다. The embossed structure 300 is in the form of a hexagonal closed packing. By this emboss structure 300, the contact surface between the solid electrolyte 200 and the cathode plate 110 is maximized and the contactability is improved.

접촉면이 극대화되므로, 고체전해질(200)과 음극판(110)의 접합부에 작용되는 응력이 최소화된다. 고체전해질(200)과 음극판(110)의 접합부에 작용하는 힘이 접촉면에 분산되므로, 접합부에서 발생되는 형태변형이 최소화된다. 즉, 음극판(110)의 부피 변화가 최소화된다.The contact surface is maximized, so that the stress acting on the junction between the solid electrolyte 200 and the cathode plate 110 is minimized. Since the force acting on the bonding portion between the solid electrolyte 200 and the cathode plate 110 is dispersed on the contact surface, the deformation caused in the bonding portion is minimized. That is, volume change of the cathode plate 110 is minimized.

이를 좀더 자세히 설명하면 다음과 같다. 음극판(110)이 고체전해질(200)에 형성된 반구형 홈을 향해 가압됨으로써, 반구형 홈에 삽입되는 다수개의 반구형 돌기가 형성된다. 이때, 음극판(110)은 탄성한도를 초과하게 된다. 이에 따라, 음극판(110)은 소성변형 상태가 되고, 외부 조건에 의한 부피 변화가 최소화된다. This will be described in more detail as follows. The cathode plate 110 is pressed toward the hemispherical groove formed in the solid electrolyte 200, thereby forming a plurality of hemispherical protrusions inserted into the hemispherical groove. At this time, the negative electrode plate 110 exceeds the elastic limit. Thus, the negative electrode plate 110 is in the plastic deformation state, and volume change due to external conditions is minimized.

또한, 반구형 홈과 반구형 돌기가 취합되고, 반구형 돌기가 6면에서 서로 접촉되는 육방밀집구조를 이루게 됨으로써, 고체전해질(200)과 음극판(110)의 접합부에 틈이 발생하지 않게 된다. 이에 따라서, 종래 리튬 금속을 음극판(110)으로 사용했을 때, 충방전시 리튬 금속에 형성되었던, 리튬 결정이 형성될 공간이 존재하지 않게 된다.In addition, the hemispherical grooves and the hemispherical protrusions are combined, and the hemispherical protrusions form a hexagonal close structure in which the hemispherical protrusions are in contact with each other at six surfaces, so that gaps are not generated at the junction between the solid electrolyte 200 and the cathode plate 110. Accordingly, when the conventional lithium metal is used for the cathode plate 110, there is no space for forming the lithium crystal, which is formed on the lithium metal during charging and discharging.

즉, 고체전해질(200) 및 음극판(110)의 접합이 견고해 질뿐만 아니라, 리튬 금속인 음극판(110)에 리튬 결정이 형성되지 않게 된다.That is, not only the bonding of the solid electrolyte 200 and the cathode plate 110 becomes strong, but also lithium crystals are not formed in the cathode plate 110, which is a lithium metal.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various changes and modifications may be made without departing from the scope of the appended claims.

110: 음극판 120: 양극판
200: 고체전해질 300: 엠보구조
400: 형성틀 S100: 홈 형성단계
S110: 도포단계 S120: 가압단계
S200: 적층단계
110: cathode plate 120: positive electrode plate
200: solid electrolyte 300: embossed structure
400: Forming frame S100: Forming step
S110: Application step S120: Pressurization step
S200: Stacking step

Claims (10)

리튬이 포함된 음극판과 양극판; 및
상기 음극판 및 상기 양극판 사이에 장착된 고체전해질을 포함하며,
상기 고체전해질과 상기 음극판의 접합면에 엠보구조가 형성되되;
상기 엠보구조는 육방밀집구조(hexagonal closed packing)로 이루어져, 상기 고체전해질과 상기 음극판의 접촉면 사이의 틈 발생을 방지하여 상기 고체전해질 및 상기 음극판의 접합이 견고해지고, 상기 음극판에 리튬 결정이 비형성되게 하는 것을 특징으로 하는 2차 전지.
A negative electrode plate and a positive electrode plate containing lithium; And
And a solid electrolyte mounted between the negative electrode plate and the positive electrode plate,
An embossed structure is formed on a bonding surface of the solid electrolyte and the negative electrode plate;
The embossed structure is formed by hexagonal closed packing to prevent the gap between the solid electrolyte and the negative electrode plate from being interposed between the solid electrolyte and the negative electrode plate, And the secondary battery.
제1항에 있어서,
상기 음극판에는,
상기 고체전해질을 향해 반구형 돌기가 규칙적으로 형성된 2차 전지.
The method according to claim 1,
In the negative electrode plate,
And a hemispherical protrusion is regularly formed toward the solid electrolyte.
제2항에 있어서,
상기 고체전해질에는,
상기 반구형 돌기가 안착되는 반구형 홈이 규칙적으로 형성된 2차 전지.
3. The method of claim 2,
In the solid electrolyte,
And a hemispherical groove on which the hemispherical protrusion is seated is regularly formed.
삭제delete 제1항에 있어서,
상기 음극판은, 리튬(Li) 또는 리튬-금속 복합체(Li-M, M=Si, Sn, Al, In 등)이고,
상기 양극판은, 코발트산리튬(LiCoO2), Li(NixCoyMnz)O2, LiFePO4, LiMn2O4, LiNi0.5Mn1.5O4 또는 황(S)을 포함하는 2차 전지.
The method according to claim 1,
The negative electrode plate is made of lithium (Li) or a lithium-metal composite (Li-M, M = Si, Sn, Al,
Wherein the positive electrode plate comprises lithium cobalt oxide (LiCoO 2), Li (Ni x Co y Mn z ) O 2 , LiFePO 4 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4, or sulfur (S).
제1항에 있어서,
상기 고체전해질은, Li2S-P2S5 또는 Li10GeP2S12을 포함하는 황화물인 2차 전지.
The method according to claim 1,
The solid electrolyte may be Li 2 SP 2 S 5 Or Li 10 GeP 2 S 12 .
음극판과 양극판 사이에 개재되는 고체전해질에 반구형 홈이 규칙적으로 형성되는 홈 형성단계; 및
상기 반구형 홈이 형성된 상기 고체전해질의 일면에 상기 음극판이 적층되되; 상기 고체전해질과 상기 음극판의 접합면이 육방밀집구조의 엠보구조로 이루어져 상기 고체전해질과 상기 음극판의 접촉면 사이의 틈 발생을 방지하여 상기 고체전해질 및 상기 음극판의 접합이 견고해지고, 상기 음극판에 리튬 결정이 비형성되게 하는 적층단계를 포함하는 2차 전지 제작방법.
A groove forming step in which a hemispherical groove is regularly formed in a solid electrolyte interposed between a cathode plate and a cathode plate; And
The negative electrode plate is stacked on one surface of the solid electrolyte on which the hemispherical grooves are formed; Wherein the solid electrolyte and the negative electrode plate are joined to each other to form a hexagonal close-packed structure so that a gap between the solid electrolyte and the negative electrode plate is prevented from forming a gap between the solid electrolyte and the negative electrode plate, And a step of forming the non-forming portion.
제7항에 있어서,
상기 홈 형성단계는,
상기 반구형 홈과 동일한 형상의 반구형 돌기가 형성된 형성틀에 상기 고체전해질 분말이 도포되는 도포단계; 및
상기 고체전해질 분말이 압착되도록 상기 형성틀을 가압하는 가압단계를 포함하는 2차 전지 제작방법.
8. The method of claim 7,
In the groove forming step,
A step of applying the solid electrolyte powder to a forming mold having hemispherical projections having the same shape as the hemispherical grooves; And
And pressurizing the forming die so as to compress the solid electrolyte powder.
제8항에 있어서,
상기 반구형 돌기의 높이가 1마이크로미터 이하로 형성된 2차 전지 제작방법.
9. The method of claim 8,
Wherein the height of the hemispherical protrusion is less than 1 micrometer.
제7항에 있어서,
상기 적층단계에서, 상기 음극판이 상기 고체전해질을 향해 가압되는 2차 전지 제작방법.
8. The method of claim 7,
Wherein in the laminating step, the negative electrode plate is pressed toward the solid electrolyte.
KR1020150014972A 2015-01-30 2015-01-30 Secondary cell battery and a manufacturing method thereof KR101592812B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150014972A KR101592812B1 (en) 2015-01-30 2015-01-30 Secondary cell battery and a manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150014972A KR101592812B1 (en) 2015-01-30 2015-01-30 Secondary cell battery and a manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR101592812B1 true KR101592812B1 (en) 2016-02-05

Family

ID=55353810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150014972A KR101592812B1 (en) 2015-01-30 2015-01-30 Secondary cell battery and a manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101592812B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214010A1 (en) * 2019-04-19 2020-10-22 주식회사 엘지화학 Electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270153A (en) * 2006-11-15 2008-11-06 Matsushita Electric Ind Co Ltd Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011258435A (en) * 2010-06-10 2011-12-22 Nissan Motor Co Ltd Electrode for battery, electrode for bipolar battery and bipolar battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270153A (en) * 2006-11-15 2008-11-06 Matsushita Electric Ind Co Ltd Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011258435A (en) * 2010-06-10 2011-12-22 Nissan Motor Co Ltd Electrode for battery, electrode for bipolar battery and bipolar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214010A1 (en) * 2019-04-19 2020-10-22 주식회사 엘지화학 Electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same

Similar Documents

Publication Publication Date Title
CN107683543B (en) All-solid-state secondary battery and method for manufacturing same
JP6249493B2 (en) Non-aqueous electrolyte secondary battery
JP4893254B2 (en) Lithium secondary battery manufacturing method and lithium secondary battery
KR102350322B1 (en) All-solid-state secondary battery
JP6576072B2 (en) Manufacturing method of all-solid-state secondary battery
US20200076002A1 (en) All-solid state secondary cell and production method for same
JP6726503B2 (en) All-solid secondary battery and manufacturing method thereof
JP2015162353A (en) Method for manufacturing all-solid battery
JP6324296B2 (en) All solid state secondary battery
JP2024075677A (en) battery
WO2017187494A1 (en) All-solid-state secondary battery
JP6647077B2 (en) All-solid secondary battery and method of manufacturing the same
CN110114931B (en) Method and apparatus for manufacturing all-solid-state battery
US11652242B2 (en) Solid-state battery electrolyte layers
JP6895761B2 (en) Manufacturing method of all-solid-state battery
KR101592812B1 (en) Secondary cell battery and a manufacturing method thereof
CN110419133B (en) Electrode assembly and method of manufacturing the same
CN112599718B (en) Laminated battery
KR20150133376A (en) Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery
CN113224376B (en) Solid-state battery
KR101238280B1 (en) Method of manufacturing cathode for litium secondary battery with high capacity and high power and litium secondary battery using the same
JP6937124B2 (en) Manufacturing method of all-solid-state secondary battery

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190130

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 5