JP6726503B2 - All-solid secondary battery and manufacturing method thereof - Google Patents

All-solid secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP6726503B2
JP6726503B2 JP2016069858A JP2016069858A JP6726503B2 JP 6726503 B2 JP6726503 B2 JP 6726503B2 JP 2016069858 A JP2016069858 A JP 2016069858A JP 2016069858 A JP2016069858 A JP 2016069858A JP 6726503 B2 JP6726503 B2 JP 6726503B2
Authority
JP
Japan
Prior art keywords
insulating member
electrode layer
solid
solid electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016069858A
Other languages
Japanese (ja)
Other versions
JP2017183120A (en
Inventor
岳弘 清水
岳弘 清水
英之 福井
英之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2016069858A priority Critical patent/JP6726503B2/en
Publication of JP2017183120A publication Critical patent/JP2017183120A/en
Application granted granted Critical
Publication of JP6726503B2 publication Critical patent/JP6726503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、全固体二次電池およびその製造方法に関する。 The present invention relates to an all solid state secondary battery and a method for manufacturing the same.

通常、全固体二次電池は、正極層と負極層との間に固体電解質層が配置されるとともに、これら各電極層の外面にそれぞれ集電体が配置されたものである。ところで、このような全固体二次電池の製造方法としては、粉体材料を帯電させつつ搬送用ガスと共に基材に吹き付け、静電気力により付着させて成膜することにより、電池の各構成層を形成し、その後、これら各構成層よりなる積層体を押圧(加圧)することにより電池を製造する方法がある(例えば特許文献1)。 Usually, in an all-solid secondary battery, a solid electrolyte layer is arranged between a positive electrode layer and a negative electrode layer, and a current collector is arranged on the outer surface of each of these electrode layers. By the way, as a method for manufacturing such an all-solid-state secondary battery, each of the constituent layers of the battery is formed by spraying a powder material onto a base material together with a carrier gas while charging and depositing the film by electrostatic force. There is a method of forming a battery, and then pressing (pressurizing) a laminate composed of these constituent layers to manufacture a battery (for example, Patent Document 1).

この方法によれば、均一な厚さの粉体からなる構成層が形成されるので、加圧成型時すなわち押圧時にその押圧力が全体に均一に掛かることになり、性能が良い全固体二次電池が得られる。 According to this method, since a constituent layer made of powder having a uniform thickness is formed, the pressing force is uniformly applied to the whole during pressure molding, that is, at the time of pressing. A battery is obtained.

特開2010−282803号公報JP, 2010-228803, A

しかし、上述したような製造方法で得られた全固体二次電池においても、内部短絡が発生していた。
この内部短絡の原因を検討した結果、その原因は、押圧時に加えられた力による粉体からなる構成層(以下、粉体層と称す)に作用する主応力およびこの主応力にて生じるせん断応力に起因するものと判明した。すなわち、粉体層に垂直に力が掛かると垂直方向に最大主応力が発生するとともに、横方向にも最小主応力が発生し、これら両主応力により斜め方向のせん断応力が発生する。言い換えれば、せん断力が働くことになる。
However, an internal short circuit also occurred in the all-solid-state secondary battery obtained by the manufacturing method as described above.
As a result of examining the cause of this internal short circuit, the cause was the principal stress acting on the constituent layer (hereinafter referred to as the powder layer) made of powder by the force applied at the time of pressing and the shear stress caused by this principal stress. It turned out to be due to. That is, when a vertical force is applied to the powder layer, the maximum principal stress is generated in the vertical direction and the minimum principal stress is generated in the lateral direction, and the shear stress in the diagonal direction is generated by these both principal stresses. In other words, shearing force will work.

ところで、粉体層は所定厚さで積層されており、その中央部は押圧より押し固められるが、その周縁部は傾斜面となり薄くなっている。このため、せん断力により、粉体層の周縁部が崩壊し、内部短絡に繋がっていた。 By the way, the powder layers are laminated with a predetermined thickness, and the central portion thereof is pressed and solidified, but the peripheral portion thereof becomes an inclined surface and is thin. Therefore, due to the shearing force, the peripheral portion of the powder layer collapsed, leading to an internal short circuit.

そこで、本発明は、押圧により発生する内部短絡を抑制し得る全固体二次電池およびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an all solid state secondary battery capable of suppressing an internal short circuit caused by pressing and a manufacturing method thereof.

本発明に係る全固体二次電池は、一対の集電体の間に、第1の電極層、固体電解質層および第2の電極層からなる積層体、並びにこの積層体の周囲に配置されて上記両電極層同士を絶縁する板状の絶縁部材を具備する全固体二次電池であって、
上記絶縁部材の内縁が第1の電極層の外縁に接触または2mm以下の隙間を生じ、
上記絶縁部材が、板状部と、当該絶縁部材の内縁より離れた外側部分に、当該板状部よりも厚い帯状の突状部とを有するものであり、
且つ上記固体電解質層の外縁が上記突状部より少なくとも内側の絶縁部材の表面を覆うとともに当該突状部に接触するようにしたものである。
The all-solid secondary battery according to the present invention is arranged between a pair of current collectors, a laminated body including a first electrode layer, a solid electrolyte layer and a second electrode layer, and arranged around the laminated body. An all-solid secondary battery comprising a plate-shaped insulating member that insulates both electrode layers from each other,
The inner edge of the insulating member contacts the outer edge of the first electrode layer or creates a gap of 2 mm or less,
The insulating member has a plate-shaped portion and a strip-shaped protruding portion that is thicker than the plate-shaped portion at an outer portion apart from the inner edge of the insulating member,
Further, the outer edge of the solid electrolyte layer covers at least the surface of the insulating member on the inner side of the protrusion and contacts the protrusion .

また、本発明に係る全固体二次電池の製造方法は、一対の集電体の間に、第1の電極層、固体電解質層および第2の電極層からなる積層体、並びにこの積層体の周囲に配置されて上記両電極層同士を絶縁する板状の絶縁部材を具備する全固体二次電池の製造方法であって、
上記絶縁部材が、板状部と、第1の電極層を案内し得る開口部と、当該開口部の内縁より離れた外側部分に当該板状部よりも厚い帯状の突状部とを有するものであり、
一方の集電体の表面に、上記絶縁部材を接着する工程と、
この工程で接着された絶縁部材の開口部内に、上記絶縁部材の内縁が第1の電極層の外縁に接触または2mm以下の隙間を生ずるように第1の電極層を配置する工程と、
この工程で配置された第1の電極層の表面および上記突状部よりも少なくとも内側の絶縁部材の表面に固体電解質層を配置するとともに当該突状部に接触させる工程と、
この工程で配置された固体電解質層の上面に第2の電極層を配置して積層体を得る工程と、
この工程で得られた積層体の上面に、他方の集電体を配置した後、押圧する工程とを具備する製造方法である。
In addition, the method for manufacturing an all-solid-state secondary battery according to the present invention includes a laminated body including a first electrode layer, a solid electrolyte layer and a second electrode layer between a pair of current collectors, and a laminated body including the laminated body. A method for manufacturing an all-solid-state secondary battery provided with a plate-shaped insulating member which is arranged in the periphery and insulates the two electrode layers from each other,
The insulating member has a plate-shaped portion, an opening that can guide the first electrode layer, and a strip-shaped protruding portion that is thicker than the plate-shaped portion at an outer portion apart from an inner edge of the opening. And
The surface of one of the current collector, a step of bonding the insulating member,
Arranging the first electrode layer in the opening of the insulating member bonded in this step so that the inner edge of the insulating member contacts the outer edge of the first electrode layer or forms a gap of 2 mm or less ;
Arranging a solid electrolyte layer on the surface of the first electrode layer arranged in this step and on the surface of the insulating member at least inside the protruding portion and contacting the protruding portion ,
Arranging the second electrode layer on the upper surface of the solid electrolyte layer arranged in this step to obtain a laminate,
It is a manufacturing method including a step of arranging the other current collector on the upper surface of the laminate obtained in this step and then pressing.

本発明の全固体二次電池およびその製造方法によれば、絶縁部材の内縁が第1の電極層の外縁に接触または近接されるとともに、当該絶縁部材の内縁より離れた外側部分に、その板状部よりも厚い帯状の突状部を設けたので、第1の電極層の外縁が絶縁部材に接触または近接するとともに少なくとも固体電解質層の外縁が突状部に接触した状態となるため、電池の押圧時に、その周縁部に生じるせん断崩壊を防止することができ、さらに第1の電極層の外周側面を固体電解質層で覆う代わりに絶縁部材の内縁を第1の電極層の外縁に接触または近接させることで、電池の押圧時に、第1の電極層の外周側面の固体電解質の厚みが薄くなることによる段差部を軽減することができるので、内部短絡が発生するのを防止し得る。 According to the all-solid-state secondary battery and the method for manufacturing the same of the present invention, the inner edge of the insulating member is brought into contact with or close to the outer edge of the first electrode layer, and the plate is formed on the outer portion apart from the inner edge of the insulating member. Since the strip-shaped projecting portion that is thicker than the projecting portion is provided, the outer edge of the first electrode layer contacts or approaches the insulating member and at least the outer edge of the solid electrolyte layer contacts the projecting portion. It is possible to prevent shear collapse that occurs at the periphery of the first electrode layer when pressing, and instead of covering the outer peripheral side surface of the first electrode layer with the solid electrolyte layer, contact the inner edge of the insulating member with the outer edge of the first electrode layer or By making them close to each other, it is possible to reduce the step portion due to the thin thickness of the solid electrolyte on the outer peripheral side surface of the first electrode layer when pressing the battery, and thus it is possible to prevent the occurrence of an internal short circuit.

本発明の実施の形態に係る全固体二次電池の断面図である。1 is a cross-sectional view of an all solid state secondary battery according to an embodiment of the present invention. 同全固体二次電池の製造方法を説明する断面図である。FIG. 6 is a cross-sectional view illustrating the method for manufacturing the same all-solid-state secondary battery. 同全固体二次電池の製造方法を説明する断面図である。FIG. 6 is a cross-sectional view illustrating the method for manufacturing the same all-solid-state secondary battery. 同全固体二次電池の製造方法を説明する断面図である。FIG. 6 is a cross-sectional view illustrating the method for manufacturing the same all-solid-state secondary battery. 同全固体二次電池の製造方法を説明する断面図である。FIG. 6 is a cross-sectional view illustrating the method for manufacturing the same all-solid-state secondary battery. 同全固体二次電池の製造方法を説明する断面図である。FIG. 6 is a cross-sectional view illustrating the method for manufacturing the same all-solid-state secondary battery. 同全固体二次電池の製造方法を説明する断面図である。FIG. 6 is a cross-sectional view illustrating the method for manufacturing the same all-solid-state secondary battery. 同全固体二次電池の製造方法を説明する断面図である。FIG. 6 is a cross-sectional view illustrating the method for manufacturing the same all-solid-state secondary battery. 同全固体二次電池における段差緩和機能を説明する要部断面図である。FIG. 4 is a cross-sectional view of an essential part for explaining a step reducing function in the all-solid-state secondary battery. 本発明の変形例を示す全固体二次電池の要部断面図である。It is a principal part sectional drawing of the all-solid-state secondary battery which shows the modification of this invention.

以下、本発明の実施の形態に係る全固体二次電池およびその製造方法について、図面に基づき説明する。
まず、全固体二次電池の構成について説明する。
Hereinafter, an all-solid-state secondary battery according to an embodiment of the present invention and a method for manufacturing the same will be described with reference to the drawings.
First, the configuration of the all solid state secondary battery will be described.

この全固体二次電池を簡単に説明すると、一対の集電体の間に、第1の電極層、固体電解質層および第2の電極層からなる積層体、並びにこの積層体の周囲に配置されて上記両電極層同士を絶縁する板状の絶縁部材を具備する全固体二次電池であって、上記絶縁部材の内縁が第1の電極層の外縁に接触または近接されるとともに、当該絶縁部材の内縁より離れた外側部分に、その板状部よりも厚い帯状の突状部を有し、且つ上記固体電解質層の外縁が上記突状部より少なくとも内側の絶縁部材の表面を覆うようにしたものである。 This all-solid-state secondary battery will be briefly described. A laminated body composed of a first electrode layer, a solid electrolyte layer and a second electrode layer is disposed between a pair of current collectors, and the laminated body is arranged around the laminated body. And a plate-shaped insulating member that insulates the two electrode layers from each other, wherein the inner edge of the insulating member is in contact with or close to the outer edge of the first electrode layer, and the insulating member is A strip-shaped protrusion that is thicker than the plate-shaped portion on the outer portion away from the inner edge, and the outer edge of the solid electrolyte layer covers at least the surface of the insulating member inside the protrusion. It is a thing.

以下、図1に基づき、全固体二次電池について詳しく説明する。
この全固体二次電池1は、一対の集電体、すなわち正極集電体11と負極集電体21との間に、正極層(第1の電極層の一例)12、固体電解質層32および負極層(第2の電極層の一例)22が順番に積層されてなる積層体X、並びにこの積層体Xの周囲に配置されるとともに少なくとも固体電解質層32と接触して正極層12と負極層22とを電気的に絶縁する板状の絶縁部材41が配置された全固体二次電池であって、上記絶縁部材41の板状部41aの中央に形成された開口部41dの内周面が正極層12の外周面(外周側面)に接触されるとともに、この開口部41dの内周面より所定距離はなれた板状部41aの外側部分に、所定幅でもって板状部41aよりも厚くされた帯状の突状部41bが設けられ、且つ上記正極層12の表面に積層される固体電解質層32を、その外周が上記突状部41bより少なくとも内側の板状部41aの表面すなわち内縁部を覆うような大きさにしたものである。なお、以下、板状部41aの内縁部に41cを付して説明する。
Hereinafter, the all solid state secondary battery will be described in detail with reference to FIG.
This all-solid-state secondary battery 1 includes a positive electrode layer (an example of a first electrode layer) 12, a solid electrolyte layer 32, and a solid electrolyte layer 32 between a pair of current collectors, that is, a positive electrode current collector 11 and a negative electrode current collector 21. A laminated body X in which a negative electrode layer (an example of a second electrode layer) 22 is laminated in order, and a positive electrode layer 12 and a negative electrode layer which are arranged around the laminated body X and are in contact with at least the solid electrolyte layer 32. 22 is an all-solid-state secondary battery in which a plate-shaped insulating member 41 that electrically insulates the battery 22 is arranged, and an inner peripheral surface of an opening 41d formed in the center of the plate-shaped portion 41a of the insulating member 41 has While being in contact with the outer peripheral surface (outer peripheral side surface) of the positive electrode layer 12 and being thicker than the plate-shaped portion 41a with a predetermined width, the outer portion of the plate-shaped portion 41a separated from the inner peripheral surface of the opening 41d by a predetermined distance. The solid electrolyte layer 32 is provided on the surface of the positive electrode layer 12, and the outer periphery of the solid electrolyte layer 32 is at least the inner surface of the plate-like portion 41a inside the projecting portion 41b. It is sized to cover. In the following description, 41c is attached to the inner edge portion of the plate-shaped portion 41a.

また、絶縁部材41と正極集電体11および負極集電体21とは、下部接着層51および上部接着層52を介して接着されている。上記絶縁部材41としては、例えばPETフィルムなどの高分子材料でできた絶縁シートが用いられる。したがって、シート状の絶縁部材と言えるとともに、板状部をシート部と言うことができる。なお、上記各接着層51,52としては、両面接着テープなどの感圧接着材が用いられる。 The insulating member 41 and the positive electrode current collector 11 and the negative electrode current collector 21 are adhered to each other via the lower adhesive layer 51 and the upper adhesive layer 52. As the insulating member 41, for example, an insulating sheet made of a polymer material such as a PET film is used. Therefore, it can be said that the plate-shaped portion is the sheet portion, as well as the sheet-shaped insulating member. A pressure-sensitive adhesive such as a double-sided adhesive tape is used as each of the adhesive layers 51 and 52.

勿論、上記絶縁部材41の開口部41dには積層体Xが配置されることになる。また、突状部41bの厚さは、例えば正極層12と固体電解質層32との合計厚さより厚く(高く)されている。 Of course, the laminated body X is arranged in the opening 41d of the insulating member 41. The thickness of the protrusion 41b is thicker (higher) than the total thickness of the positive electrode layer 12 and the solid electrolyte layer 32, for example.

なお、正極層12および負極層22としては、粉末の電極合材が用いられるとともに、固体電解質層32についても、粉末のものが用いられる。そして、電極合材については、電極活物質と固体電解質との混合物が用いられるが、場合によっては、電極活物質だけの場合もある。 A powder electrode mixture is used as the positive electrode layer 12 and the negative electrode layer 22, and a powder material is also used as the solid electrolyte layer 32. As the electrode mixture, a mixture of an electrode active material and a solid electrolyte is used, but in some cases, only the electrode active material may be used.

ここで、全固体二次電池1の形状および大きさについて説明すると、平面視形状が正方形(円形または多角形であってもよい)にされるとともに、その一辺の長さは30〜300mmの範囲で、また厚さは50〜500μmの範囲とするのが適正である。したがって、積層体Xの平面視形状が正方形であるとともに、積層体Xの正極層12および固体電解質層32を案内するための開口部41dの平面視形状も正方形にされている。 Here, the shape and size of the all-solid secondary battery 1 will be described. The shape in plan view is square (may be circular or polygonal), and the length of one side thereof is in the range of 30 to 300 mm. It is proper that the thickness is in the range of 50 to 500 μm. Therefore, the planar view shape of the laminated body X is also square, and the planar view shape of the opening 41d for guiding the positive electrode layer 12 and the solid electrolyte layer 32 of the laminated body X is also square.

図1においては、全固体二次電池を水平面に載置した状態で且つ正極側を下方に、負極側を上方に配置したものとして示しているが、勿論、負極側を下方に、正極側を上方に配置したものでもよい。 In FIG. 1, the all-solid-state secondary battery is placed on a horizontal surface, and the positive electrode side is located below and the negative electrode side is located above. However, of course, the negative electrode side is located below and the positive electrode side is located below. It may be arranged above.

なお、全固体二次電池の主要部分の構成材料については、製造方法を説明した後に、纏めて説明する。
以下、全固体二次電池の製造方法について、図2〜図8に基づき、詳しく説明する。
The constituent materials of the main part of the all-solid-state secondary battery will be described collectively after the manufacturing method is described.
Hereinafter, a method for manufacturing the all-solid secondary battery will be described in detail with reference to FIGS.

図2に示すように、正極集電体11の表面に、正極層12を案内し得る開口部41dを有するとともにこの開口部41dより所定距離はなれた外側の突状部41bが板状部41aよりも厚くされた絶縁部材41を、下部接着層51を介して接着する。上記所定距離は固体電解質層32の面積をどれだけ安全を見て大きくするかで決まる値で、成膜面積が小さい程、コンパクトになり、原料も少なくなって軽量化に繋がる。すなわち、所定距離については、0.1〜5mmの範囲が好ましく、0.5〜5mmの範囲がより好ましい。また、突状部41bの幅については、材質の強度や部材の製造のし易さなどにもよるが、0.5〜20mmの範囲が好ましく、1.0〜20mmの範囲がより好ましい。さらに、突状部41bの高さについては、高すぎると突状部41bで押圧が不十分になる可能性があるため、押圧後の積層体(正極層、固体電解質層、負極層)Xの厚さよりも低い方が望ましく、50〜500μmの範囲が好ましい。 As shown in FIG. 2, the surface of the positive electrode current collector 11 has an opening 41d capable of guiding the positive electrode layer 12, and an outer protruding portion 41b separated from the opening 41d by a predetermined distance is formed from the plate-shaped portion 41a. The thickened insulating member 41 is adhered via the lower adhesive layer 51. The predetermined distance is a value determined by how much the area of the solid electrolyte layer 32 is increased in view of safety, and the smaller the film formation area, the more compact and less raw material the lighter the weight. That is, the predetermined distance is preferably in the range of 0.1 to 5 mm, more preferably in the range of 0.5 to 5 mm. Further, the width of the protruding portion 41b is preferably in the range of 0.5 to 20 mm, more preferably in the range of 1.0 to 20 mm, depending on the strength of the material and the easiness of manufacturing the member. Further, regarding the height of the protrusions 41b, if the protrusions 41b are too high, the protrusion 41b may not be sufficiently pressed, so that the laminated body (the positive electrode layer, the solid electrolyte layer, the negative electrode layer) X after the pressure is pressed. It is desirable that the thickness is smaller than the thickness, and the range of 50 to 500 μm is preferable.

なお、ここでは、厚くされた突状部41bを、板状の主絶縁部材41Aの内周寄りの上面に、所定幅の帯状の副絶縁部材41Bが接着層53を介して接着されたものとして説明する。 In addition, here, it is assumed that the thickened protruding portion 41b is bonded to the upper surface of the plate-shaped main insulating member 41A close to the inner periphery with the band-shaped sub-insulating member 41B having a predetermined width via the adhesive layer 53. explain.

次に、図3に示すように、この絶縁部材41、すなわち主絶縁部材41Aに設けられた開口部41dの内方の正極集電体11の表面に正極層12を配置する。
次に、図4に示すように、この正極層12の上面に固体電解質層32を所定厚さでもって配置する。この場合、固体電解質層32の外周部は、例えば1mm幅の帯状の副絶縁部材41Bの上方を覆うように配置される。なお、正極層12の上方の固体電解質層32の表面高さは、突状部41b(副絶縁部材41B)の表面と同一またはそれよりも少し低くされている。
Next, as shown in FIG. 3, the positive electrode layer 12 is disposed on the surface of the positive electrode current collector 11 inside the opening 41d provided in the insulating member 41, that is, the main insulating member 41A.
Next, as shown in FIG. 4, the solid electrolyte layer 32 is arranged on the upper surface of the positive electrode layer 12 with a predetermined thickness. In this case, the outer peripheral portion of the solid electrolyte layer 32 is arranged so as to cover above the band-shaped sub-insulating member 41B having a width of 1 mm, for example. The surface height of the solid electrolyte layer 32 above the positive electrode layer 12 is the same as or slightly lower than the surface of the protrusion 41b (sub-insulating member 41B).

次に、図5に示すように、固体電解質層32の上面に負極層22を所定厚さでもって配置して、積層体Xを得る。
次に、図6および図7に示すように、負極層22の上面に、周囲に上部接着層52が取り付けられた負極集電体21を配置するとともに空気を吸引しながら5000Pa程度の低圧力でもって仮押圧(仮プレス)して、上部接着層52により、負極集電体21を絶縁部材41の上面に接着する。
Next, as shown in FIG. 5, the negative electrode layer 22 is arranged on the upper surface of the solid electrolyte layer 32 with a predetermined thickness to obtain a laminated body X.
Next, as shown in FIGS. 6 and 7, the negative electrode current collector 21 around which the upper adhesive layer 52 is attached is arranged on the upper surface of the negative electrode layer 22 and air is sucked in at a low pressure of about 5000 Pa. Then, temporary pressing (temporary pressing) is performed, and the negative electrode current collector 21 is bonded to the upper surface of the insulating member 41 by the upper adhesive layer 52.

次に、図8に示すように、内部の空気を吸引した状態で、10ton/cm程度の高圧力でもって本押圧(本プレス)を行う。
なお、負極集電体21を上方から押圧する際には、負極集電体21と押圧部材(図示せず)との間には、弾性部材、例えばゴム板などが配置される。
Next, as shown in FIG. 8, main pressing (main pressing) is performed with a high pressure of about 10 ton/cm 2 in a state where air inside is sucked.
When the negative electrode current collector 21 is pressed from above, an elastic member such as a rubber plate is arranged between the negative electrode current collector 21 and the pressing member (not shown).

そして、最後に、両集電体11,21間に積層体Xが配置されてなる電池を一対のステンレス板で挟んだ後、電気取り出し用タブリードが備えられたラミネートフィルムで挟み、真空下で、周囲を熱融着することによりラミネートパックを行う。 Then, finally, after sandwiching the battery in which the laminate X is arranged between the current collectors 11 and 21 with a pair of stainless plates, it is sandwiched with a laminate film provided with a tab lead for electrical extraction, and under vacuum, A laminate pack is performed by heat-sealing the periphery.

これにより、単体の全固体二次電池が得られる。通常、全固体二次電池は、単体の電池が、複数個、直列に積層されるか、または並列に配置されることにより構成される。
上記製造方法の主要部分を、工程形式で記載すると、以下のようになる。
As a result, a single all-solid secondary battery can be obtained. Usually, an all-solid secondary battery is constructed by stacking a plurality of single batteries in series or arranging them in parallel.
The main parts of the above manufacturing method are described below in process form.

すなわち、この製造方法は、一対の集電体の間に、正極層(第1の電極層)、固体電解質層および負極層(第2の電極層)からなる積層体、並びにこの積層体の周囲に配置されて上記両電極層同士を絶縁する板状の絶縁部材を具備する全固体二次電池の製造方法であって、正極集電体(一方の集電体)の表面に、正極層を案内し得る開口部を有し(開口部を有するように)且つ当該開口部の内縁より所定距離はなれた外側部分に所定幅でもってその板状部よりも厚い帯状の突状部が設けられた(突状部を有するように)絶縁部材を接着する工程と、この工程で接着された絶縁部材の開口部内に正極層を配置する工程と、この工程で配置された正極層の表面および上記突状部よりも少なくとも内側の絶縁部材の表面に固体電解質層を配置する工程と、この工程で配置された固体電解質層の上面に負極層を配置して積層体を得る工程と、この工程で得られた積層体の上面に、負極集電体(他方の集電体)を配置した後、押圧する工程とを備えた方法である。 That is, this manufacturing method includes a laminate including a positive electrode layer (first electrode layer), a solid electrolyte layer, and a negative electrode layer (second electrode layer) between a pair of current collectors, and the periphery of the laminate. A method for manufacturing an all-solid-state secondary battery, which comprises a plate-shaped insulating member for insulating the two electrode layers from each other, wherein a positive electrode layer is provided on the surface of the positive electrode current collector (one current collector). A strip-shaped protrusion having a predetermined width and having a predetermined width was provided at an outer portion having a guideable opening (so as to have the opening) and a predetermined distance from the inner edge of the opening. The step of adhering the insulating member (so as to have the protruding portion), the step of disposing the positive electrode layer in the opening of the insulating member adhered in this step, the surface of the positive electrode layer disposed in this step and the protrusion The step of arranging the solid electrolyte layer on the surface of the insulating member at least on the inner side of the cylindrical portion, the step of arranging the negative electrode layer on the upper surface of the solid electrolyte layer arranged in this step to obtain a laminate, and the step obtained The step of arranging the negative electrode current collector (the other current collector) on the upper surface of the obtained laminated body, and then pressing the same.

上記全固体二次電池1の主要構成部材の材料について説明する。
正極集電体11および負極集電体21としては、銅(Cu)、マグネシウム(Mg)、ステンレス鋼、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、リチウム(Li)、錫(Sn)またはこれらの合金等から成る薄板状体、箔状体が用いられる。ここで、薄板状体および箔状体は、その厚さが5μm〜100μmの範囲内のものである。本実施の形態においては、正極集電体11としてはアルミニウム箔、負極集電体21としては銅箔が用いられる。さらに、各集電体11,21は、粉末の積層体Xとの密着性向上の観点から、その表面に粗化処理が施されたものであることが好ましい。粗化処理とは、エッチングなどで表面粗さを大きくする処理である。本実施の形態においては、正極集電体11には、エッチング処理されたアルミニウム箔(エッチドアルミ箔とも言う)が用いられる。また、負極集電体21には、エッチング処理された銅箔(粗化銅箔とも言う)が用いられるが、エッチング処理がされない銅箔を用いてもよい。また、絶縁部材41(41A,41B)には、PETフィルムなどの高分子材料でできた絶縁シートが用いられる。
The materials of the main constituent members of the all-solid secondary battery 1 will be described.
As the positive electrode current collector 11 and the negative electrode current collector 21, copper (Cu), magnesium (Mg), stainless steel, titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn). ), aluminum (Al), germanium (Ge), indium (In), lithium (Li), tin (Sn), alloys thereof, or the like, or a thin plate-like body or a foil-like body is used. Here, the thin plate-shaped body and the foil-shaped body have a thickness within a range of 5 μm to 100 μm. In the present embodiment, an aluminum foil is used as the positive electrode current collector 11 and a copper foil is used as the negative electrode current collector 21. Furthermore, it is preferable that the surface of each of the current collectors 11 and 21 is subjected to a roughening treatment from the viewpoint of improving the adhesion to the powder laminate X. The roughening treatment is a treatment for increasing the surface roughness by etching or the like. In the present embodiment, as the positive electrode current collector 11, an etched aluminum foil (also referred to as an etched aluminum foil) is used. Further, as the negative electrode current collector 21, an etched copper foil (also referred to as a roughened copper foil) is used, but a copper foil that is not etched may be used. An insulating sheet made of a polymer material such as a PET film is used as the insulating member 41 (41A, 41B).

このようにエッチング処理が施された集電体を用いることによって、全固体二次電池を製造する際の押圧で、エッチングによりできた孔部が潰され、電極層すなわち正極層12および負極層22の表面に喰い付きやすくなり、集電体とこれら電極層とが一体化されやすくなる。 By using the current collector that has been subjected to the etching treatment as described above, the holes formed by the etching are crushed by the pressure during the production of the all-solid secondary battery, and the electrode layers, that is, the positive electrode layer 12 and the negative electrode layer 22. It becomes easy to bite on the surface of, and the current collector and these electrode layers are easily integrated.

また、電極層は、電子の授受を行うために粒子間に電子伝導パスを確保する電極活物質とイオン伝導性を有する固体電解質とを所定の割合で混合した混合材から成る層である。このように電極活物質にリチウムイオン伝導性を有する固体電解質を混合することにより、電子伝導性に加えてイオン伝導性を付与し、粒子間にイオン伝導パスを確保することができる。 The electrode layer is a layer made of a mixture material in which an electrode active material that secures an electron conduction path between particles to transfer electrons and a solid electrolyte having ion conductivity are mixed at a predetermined ratio. By thus mixing the electrode active material with the solid electrolyte having lithium ion conductivity, it is possible to impart ion conductivity in addition to electron conductivity and secure an ion conduction path between particles.

正極層12に適した正極活物質としては、リチウムイオンの挿入離脱が可能なものであればよく、特に限定されない。例えば、正極活物質としては、リチウム・ニッケル複合酸化物(LiNi1−x、ただしMはCo、Al、Mn、V、Cr、Mg、Ca、Ti、Zr、Nb、MoおよびWのうち少なくとも1つの元素)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)などの層状酸化物、オリビン構造を持つリン酸鉄リチウム(LiFePO)、スピネル構造を持つマンガン酸リチウム(LiMn、LiMnO、LiMO)などの固溶体やそれらの混合物、さらに硫黄(S)、硫化リチウム(LiS)などの硫化物などを用いることもできる。本実施の形態においては、正極活物質として、リチウム・ニッケル・コバルト・アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05、以下NCA系複合酸化物と称する)が用いられる。 The positive electrode active material suitable for the positive electrode layer 12 is not particularly limited as long as it can insert and release lithium ions. For example, as the positive electrode active material, a lithium nickel composite oxide (LiNi x M 1-x O 2 , where M is Co, Al, Mn, V, Cr, Mg, Ca, Ti, Zr, Nb, Mo and W) is used. At least one element), layered oxides such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium iron phosphate having an olivine structure (LiFePO 4) ), a solid solution such as lithium manganate (LiMn 2 O 4 , Li 2 MnO 3 or LiMO 2 ) having a spinel structure, or a mixture thereof, and a sulfide such as sulfur (S) or lithium sulfide (Li 2 S). It can also be used. In the present embodiment, a lithium/nickel/cobalt/aluminum composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 , hereinafter referred to as NCA-based composite oxide) is used as the positive electrode active material. ..

一方、負極層22に適した負極活物質としては、例えば天然黒鉛、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素などの炭素材料や、固体電解質と合材化される合金系材料が用いられる。合金系材料としては、例えば、リチウム合金(LiAl,LiZn,LiBi,LiCd,LiSb,LiSi,Li4.4Pb,Li4.4Sn,Li0.17C,LiCなど)や、チタン酸リチウム(LiTi12)、Znなどの金属酸化物などが挙げられる。本実施の形態においては、負極活物質として、天然・人造などの黒鉛が用いられる。 On the other hand, as the negative electrode active material suitable for the negative electrode layer 22, for example, a carbon material such as natural graphite, artificial graphite, graphite carbon fiber, resin-fired carbon, or an alloy-based material that is mixed with a solid electrolyte is used. Examples of the alloy-based material include lithium alloys (LiAl, LiZn, Li 3 Bi, Li 3 Cd, Li 3 Sb, Li 4 Si, Li 4.4 Pb, Li 4.4 Sn, Li 0.17 C, LiC. 6, etc.), lithium titanate (Li 4 Ti 5 O 12 ), metal oxides such as Zn, and the like. In the present embodiment, natural or artificial graphite is used as the negative electrode active material.

また、正極活物質および負極活物質の表面に、ジルコニア(ZrO)、アルミナ(Al)、チタン酸リチウム(LiTi12)、ニオブ酸リチウム(LiNbO)、炭素(C)などをそれぞれコーティングしたものを電極活物質として使用することができる。 In addition, zirconia (ZrO 2 ), alumina (Al 2 O 3 ), lithium titanate (Li 4 Ti 5 O 12 ), lithium niobate (Li 4 NbO 3 ), carbon are formed on the surfaces of the positive electrode active material and the negative electrode active material. Those coated with (C) or the like can be used as the electrode active material.

固体電解質は、有機系のポリマー電解質(有機固体電解質とも言う)、無機系の無機固体電解質などに大別されるが、固体電解質として、いずれを用いても構わない。また、無機固体電解質は、酸化物系の材料および硫化物系の材料に大別されるが、いずれを用いても構わない。さらに、無機固体電解質においては、結晶性または非晶質のもののうちから適宜選択することができる。すなわち、固体電解質は、有機化合物、無機化合物またはこれらの混合物から成る材料から適宜選択することができる。具体的には、固体電解質として用いることのできる材料としては、例えば、Li−SiO、Li−SiO−Pなどのリチウム含有金属酸化物(金属は一種以上)、Li1−zなどのリチウム含有金属窒化物、LiS−P系、LiS−SiS系、LiS−B系、LiS−GeS系、LiS−SiS−LiI系、LiS−SiS−LiPO系、LiS−Ge系、LiS−GeS−P系、LiS−GeS−ZnS系などのリチウム含有硫化物系ガラス、およびPEO(ポリエチレンオキシド)、PVDF(ポリフッ化ビニリデン)、リン酸リチウム(LiPO)、リチウムチタン酸化物などのリチウム含有遷移金属酸化物が挙げられる。なお、本実施の形態においては、固体電解質として、高いイオン伝導性を有する硫化物系ガラスをベースとした硫化物系無機固体電解質のうち、LiS−P系ガラスが用いられる。また、固体電解質層32に適した固体電解質は、正極層12および負極層22で用いられる固体電解質と同一または異なるものであってもよい。 The solid electrolyte is roughly classified into an organic polymer electrolyte (also referred to as an organic solid electrolyte), an inorganic inorganic solid electrolyte, and the like, but any solid electrolyte may be used. Inorganic solid electrolytes are roughly classified into oxide-based materials and sulfide-based materials, but either may be used. Furthermore, the inorganic solid electrolyte can be appropriately selected from crystalline and amorphous ones. That is, the solid electrolyte can be appropriately selected from materials composed of organic compounds, inorganic compounds, or mixtures thereof. Specifically, examples of the material that can be used as the solid electrolyte include lithium-containing metal oxides (one or more kinds of metal) such as Li 2 —SiO 2 , Li 2 —SiO 2 —P 2 O 5 , and Li x. lithium-containing metal nitride such as P y O 1-z N 2 , Li 2 S-P 2 S 5 based, Li 2 S-SiS 2 system, Li 2 S-B 2 S 3 system, Li 2 S-GeS 2 system, Li 2 S-SiS 2 -LiI system, Li 2 S-SiS 2 -Li 3 PO 4 based, Li 2 S-Ge 2 S 2 system, Li 2 S-GeS 2 -P 2 S 5 based, Li 2 S-GeS 2 -ZnS-based lithium-containing sulfide-based glass such as, and PEO (polyethylene oxide), PVDF (polyvinylidene fluoride), lithium phosphate (Li 3 PO 4), lithium-containing transition metal, such as lithium titanium oxide An oxide is mentioned. In the present embodiment, Li 2 S-P 2 S 5 based glass is used as the solid electrolyte among the sulfide based inorganic solid electrolytes based on sulfide based glass having high ion conductivity. The solid electrolyte suitable for the solid electrolyte layer 32 may be the same as or different from the solid electrolytes used for the positive electrode layer 12 and the negative electrode layer 22.

上記実施の形態においては、接着層として、取扱いの容易さから両面接着テープなどの感圧接着材が用いたが、液体、固体などの接着剤を用いてもよい。
また、上記実施の形態においては、絶縁部材41の内縁を正極層12の外縁に接触させるように説明したが、製造誤差により、絶縁部材41の内縁と正極層12との間に、例えば2mm以下の隙間が生じる場合がある。すなわち、絶縁部材41の内縁が正極層12の外縁に近接する場合もある。
In the above-described embodiment, a pressure-sensitive adhesive material such as a double-sided adhesive tape is used as the adhesive layer for easy handling, but an adhesive agent such as liquid or solid may be used.
Further, in the above embodiment, the inner edge of the insulating member 41 was described as being in contact with the outer edge of the positive electrode layer 12, but due to manufacturing error, for example, 2 mm or less between the inner edge of the insulating member 41 and the positive electrode layer 12. Gaps may occur. That is, the inner edge of the insulating member 41 may be close to the outer edge of the positive electrode layer 12.

上記全固体二次電池およびその製造方法によると、絶縁部材の内縁が正極層(第1の電極層)の外縁に接触または近接されるとともに、当該絶縁部材の内縁より離れた外側部分に、その板状部よりも厚い帯状の突状部を設けたので、正極層の外縁が絶縁部材に接触または近接するとともに少なくとも固体電解質層の外縁が突状部に接触して、それぞれ保持された状態となるため、押圧時に周縁部に生じる積層体の崩壊を防止し得るとともに、正極層の外周側面を固体電解質層で覆う代わりに、絶縁部材の内縁を正極層の外縁に接触または近接させることで、やはり、電池の押圧時に、正極層の外周側面の固体電解質層の厚みが薄くなることによる段差部を軽減することができるので、より確実に、内部短絡が発生するのを防止することができる。 According to the all-solid-state secondary battery and the manufacturing method thereof, the inner edge of the insulating member is brought into contact with or close to the outer edge of the positive electrode layer (first electrode layer), and the outer edge of the insulating member is separated from the inner edge thereof. Since the strip-shaped protrusions that are thicker than the plate-shaped portion are provided, the outer edge of the positive electrode layer contacts or approaches the insulating member and at least the outer edge of the solid electrolyte layer contacts the protrusions, and the state is held respectively. Therefore, it is possible to prevent the collapse of the laminate that occurs in the peripheral portion at the time of pressing, and instead of covering the outer peripheral side surface of the positive electrode layer with the solid electrolyte layer, by bringing the inner edge of the insulating member into contact with or close to the outer edge of the positive electrode layer, Again, when the battery is pressed, the stepped portion due to the thin thickness of the solid electrolyte layer on the outer peripheral side surface of the positive electrode layer can be reduced, so that an internal short circuit can be more reliably prevented from occurring.

詳しく説明すると、絶縁部材41における積層体Xとの接触部である突状部41bを、外側の板状部41aよりも厚くしたので、電池の押圧時にその周縁部に生じるせん断力による崩壊を防止することができ、したがって内部短絡(電気的短絡)が発生するのを防止することができる。すなわち、絶縁部材41における突状部41bが、積層体Xが押圧された際に生じるせん断崩壊を防止し得る崩壊防止ブロックとして機能することになる。 More specifically, since the protruding portion 41b, which is a contact portion with the laminated body X in the insulating member 41, is made thicker than the outer plate-like portion 41a, collapse due to shearing force generated at the peripheral portion when the battery is pressed is prevented. Therefore, an internal short circuit (electrical short circuit) can be prevented from occurring. That is, the protruding portion 41b of the insulating member 41 functions as a collapse prevention block capable of preventing shear collapse that occurs when the laminated body X is pressed.

例えば、正極層12、固体電解質層32および負極層22を単に積層するだけであれば、中央部分が最も厚くなるとともに周縁部が薄くなる。この状態で、高圧力でもって押圧しても周縁部には力があまり作用しないので、この周縁部では粉体同士の固着が不十分となって、衝撃や集電体の変形により層構造が破壊され易くなるが、このような事態を回避することができる。 For example, if the positive electrode layer 12, the solid electrolyte layer 32, and the negative electrode layer 22 are simply laminated, the central portion becomes thickest and the peripheral portion becomes thin. In this state, even if pressed with high pressure, little force acts on the peripheral portion, so that the powder particles are not firmly fixed to each other at the peripheral portion, and the layer structure is formed by impact or deformation of the current collector. Although it is easily destroyed, such a situation can be avoided.

さらに、絶縁部材41の突状部41bよりも内側に内縁部41cを設けて正極層12の周囲を固体電解質層32で覆った際に生じる段差部を無くすことにより、段差緩和機能(段差緩和領域)が具備されている。例えば、図9に示すように、突状部41bの内側に、正極層12の外周面に接触する内縁部が設けられていない場合、正極層12を覆う固体電解質層32には、破線にて示すように、肩部つまり段差部が生じるため、積層体Xの押圧時にこの肩部が崩れて、短絡が発生し易くなってしまう。このような事態を回避することができる。 Further, by providing an inner edge portion 41c inside the protruding portion 41b of the insulating member 41 to eliminate a step portion generated when the periphery of the positive electrode layer 12 is covered with the solid electrolyte layer 32, a step reducing function (step reducing area) ) Is provided. For example, as shown in FIG. 9, when the inner edge portion that contacts the outer peripheral surface of the positive electrode layer 12 is not provided inside the protruding portion 41b, the solid electrolyte layer 32 that covers the positive electrode layer 12 is indicated by a broken line. As shown in the drawing, since a shoulder portion, that is, a step portion is generated, this shoulder portion collapses when the laminated body X is pressed, and a short circuit easily occurs. Such a situation can be avoided.

ここで、実際に製造した全固体二次電池を充放電させた際の結果について説明する。
この全固体二次電池においては、正極集電体11として、厚さ20μmの粗化処理されたアルミ箔(エッチドアルミニウム)を用いるとともに、負極集電体21として、厚さ18μmの銅箔を用いた。また、絶縁部材41としては、厚さ50μmのPETフィルム(ポリエチレンテレフタレートフィルム)を用いた。また、下部接着層51および上部接着層52としては、厚さ30μmで幅が2mmの感圧接着フィルム(両面接着テープ)を用いるとともに、突状部41bの接着層53としては、同じもので幅が1mmのものを用いた。
Here, the result of charging and discharging the actually manufactured all-solid-state secondary battery will be described.
In this all-solid secondary battery, a roughened aluminum foil (etched aluminum) having a thickness of 20 μm is used as the positive electrode current collector 11, and a copper foil having a thickness of 18 μm is used as the negative electrode current collector 21. Using. As the insulating member 41, a PET film (polyethylene terephthalate film) having a thickness of 50 μm was used. Further, as the lower adhesive layer 51 and the upper adhesive layer 52, a pressure-sensitive adhesive film (double-sided adhesive tape) having a thickness of 30 μm and a width of 2 mm is used, and the adhesive layer 53 of the protrusion 41b has the same width. Of 1 mm was used.

さらに、正極層12として、正極活物質であるNCA系複合酸化物と、固体電解質としてLiS(80mol%)−P(20mol%)からなるガラスセラミックとを、7:3の割合で混合したものを用いた。負極層22としては、負極活物質である黒鉛粉末と、固体電解質であるLiS(80mol%)−P(20mol%)からなるガラスセラミックとを、6:4の割合で混合したものを用いた。固体電解質層32における固体電解質としては、LiS(80mol%)−P(20mol%)からなるガラスセラミックを用いた。 Further, as the positive electrode layer 12, an NCA-based composite oxide that is a positive electrode active material and a glass ceramic made of Li 2 S (80 mol%)-P 2 S 5 (20 mol%) as a solid electrolyte were mixed at a ratio of 7:3. The mixture was used. As the negative electrode layer 22, graphite powder, which is a negative electrode active material, and a glass ceramic made of Li 2 S (80 mol %)-P 2 S 5 (20 mol %), which is a solid electrolyte, were mixed at a ratio of 6:4. I used one. As the solid electrolyte in the solid electrolyte layer 32, a glass ceramic made of Li 2 S (80 mol%)-P 2 S 5 (20 mol%) was used.

また、各構成部材の所定厚さについては、本押圧後において、正極層12の厚さが約70μm、負極層22の厚さが約100μm、固体電解質層32の厚さが約70μmとなるように、例えば静電スクリーン塗布法により塗布した。 Regarding the predetermined thickness of each component, after the main pressing, the thickness of the positive electrode layer 12 is about 70 μm, the thickness of the negative electrode layer 22 is about 100 μm, and the thickness of the solid electrolyte layer 32 is about 70 μm. Was applied by, for example, an electrostatic screen coating method.

上記得られた電池を、一辺が70mmの正方形で厚さ0.3mmの一対のステンレス板で挟んだ後、電気取り出し用タブリードが備えられたラミネートフィルムで挟み、真空下で、周囲を熱融着してラミネートパックを施し、そして、100MPaの圧力でもって、例えば30秒間プレス(本プレス)して、全固体二次電池1を作製した。 The battery thus obtained was sandwiched between a pair of stainless steel plates each having a side of 70 mm and a thickness of 0.3 mm, and then sandwiched by a laminate film provided with tab leads for electrical extraction, and the surroundings were heat-sealed under vacuum. Then, the laminate pack was applied, and then pressed (main press) with a pressure of 100 MPa, for example, for 30 seconds to produce an all solid state secondary battery 1.

この全固体二次電池1を、例えば4個作製するとともに、それぞれ、0.1C、4〜2Vで充放電させたところ、全て、異常なく充放電を行うことができた。
ところで、上記実施の形態においては、積層体の周囲に配置される絶縁部材の一部を帯状の突出部として説明したが、例えば図10に示すように、図6で示した負極集電体21側に、帯状の副絶縁部材41Bの外側に沿って配置し得る環状の外側絶縁部材42を、上部接着層52を介して接着させておき、そして押圧時に(矢印aで示す)、この外側絶縁部材42を、接着層54を介して、絶縁部材41の板状部41A(41a)の上面に接着させるようにしたものでもよい。言い換えると、絶縁部材41,42の全体の厚さを、押圧後における積層体Xの固体電解質層32の下面より上方の位置となるように厚くしてもよい。
For example, four all-solid-state secondary batteries 1 were produced and charged and discharged at 0.1 C and 4 to 2 V, respectively, and all were able to be charged and discharged without abnormality.
By the way, in the said embodiment, although a part of insulating member arrange|positioned around a laminated body was demonstrated as a strip|belt-shaped protrusion, for example, as shown in FIG. 10, the negative electrode collector 21 shown in FIG. On the side, a ring-shaped outer insulating member 42 that can be arranged along the outer side of the band-shaped sub-insulating member 41B is adhered via an upper adhesive layer 52, and when pressed (indicated by arrow a), this outer insulating member The member 42 may be adhered to the upper surface of the plate-shaped portion 41A (41a) of the insulating member 41 via the adhesive layer 54. In other words, the total thickness of the insulating members 41, 42 may be increased so as to be located above the lower surface of the solid electrolyte layer 32 of the laminated body X after pressing.

X 積層体
1 全固体二次電池
11 正極集電体
12 正極層
21 負極集電体
22 負極層
32 固体電解質層
41 絶縁部材
41a 板状部
41b 突状部
41c 内縁部
41d 開口部
41A 主絶縁部材
41B 副絶縁部材
51 下部接着層
52 上部接着層
53 接着層
X Laminated body 1 All-solid-state secondary battery 11 Positive electrode collector 12 Positive electrode layer 21 Negative electrode collector 22 Negative electrode layer 32 Solid electrolyte layer 41 Insulating member 41a Plate part 41b Projecting part 41c Inner edge part 41d Opening part 41A Main insulating member 41B Sub-insulating member 51 Lower adhesive layer 52 Upper adhesive layer 53 Adhesive layer

Claims (2)

一対の集電体の間に、第1の電極層、固体電解質層および第2の電極層からなる積層体、並びにこの積層体の周囲に配置されて上記両電極層同士を絶縁する板状の絶縁部材を具備する全固体二次電池であって、
上記絶縁部材の内縁が第1の電極層の外縁に接触または2mm以下の隙間を生じ、
上記絶縁部材が、板状部と、当該絶縁部材の内縁より離れた外側部分に、当該板状部よりも厚い帯状の突状部とを有するものであり、
且つ上記固体電解質層の外縁が上記突状部より少なくとも内側の絶縁部材の表面を覆うとともに当該突状部に接触するようにしたことを特徴とする全固体二次電池。
Between the pair of current collectors, a laminated body composed of the first electrode layer, the solid electrolyte layer and the second electrode layer, and a plate-shaped body arranged around the laminated body to insulate the two electrode layers from each other. An all-solid-state secondary battery including an insulating member,
The inner edge of the insulating member contacts the outer edge of the first electrode layer or creates a gap of 2 mm or less,
The insulating member has a plate-shaped portion and a strip-shaped protruding portion that is thicker than the plate-shaped portion at an outer portion apart from the inner edge of the insulating member,
An all-solid secondary battery , wherein the outer edge of the solid electrolyte layer covers at least the surface of the insulating member inside the protrusion and contacts the protrusion .
一対の集電体の間に、第1の電極層、固体電解質層および第2の電極層からなる積層体、並びにこの積層体の周囲に配置されて上記両電極層同士を絶縁する板状の絶縁部材を具備する全固体二次電池の製造方法であって、
上記絶縁部材が、板状部と、第1の電極層を案内し得る開口部と、当該開口部の内縁より離れた外側部分に当該板状部よりも厚い帯状の突状部とを有するものであり、
一方の集電体の表面に、上記絶縁部材を接着する工程と、
この工程で接着された絶縁部材の開口部内に、上記絶縁部材の内縁が第1の電極層の外縁に接触または2mm以下の隙間を生ずるように第1の電極層を配置する工程と、
この工程で配置された第1の電極層の表面および上記突状部よりも少なくとも内側の絶縁部材の表面に固体電解質層を配置するとともに当該突状部に接触させる工程と、
この工程で配置された固体電解質層の上面に第2の電極層を配置して積層体を得る工程と、
この工程で得られた積層体の上面に、他方の集電体を配置した後、押圧する工程とを具備したことを特徴とする全固体二次電池の製造方法。
Between the pair of current collectors, a laminated body composed of the first electrode layer, the solid electrolyte layer and the second electrode layer, and a plate-shaped body arranged around the laminated body to insulate the two electrode layers from each other. A method for manufacturing an all-solid secondary battery including an insulating member, comprising:
The insulating member has a plate-shaped portion, an opening that can guide the first electrode layer, and a strip-shaped protruding portion that is thicker than the plate-shaped portion at an outer portion apart from an inner edge of the opening. And
The surface of one of the current collector, a step of bonding the insulating member,
Arranging the first electrode layer in the opening of the insulating member bonded in this step so that the inner edge of the insulating member contacts the outer edge of the first electrode layer or forms a gap of 2 mm or less ;
Arranging a solid electrolyte layer on the surface of the first electrode layer arranged in this step and on the surface of the insulating member at least inside the protruding portion and contacting the protruding portion ,
Arranging the second electrode layer on the upper surface of the solid electrolyte layer arranged in this step to obtain a laminate,
The upper surface of the laminate obtained in this step, after placing the other current collector, the production method of the all-solid secondary battery, characterized by comprising the step of pressing.
JP2016069858A 2016-03-31 2016-03-31 All-solid secondary battery and manufacturing method thereof Active JP6726503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069858A JP6726503B2 (en) 2016-03-31 2016-03-31 All-solid secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069858A JP6726503B2 (en) 2016-03-31 2016-03-31 All-solid secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017183120A JP2017183120A (en) 2017-10-05
JP6726503B2 true JP6726503B2 (en) 2020-07-22

Family

ID=60007538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069858A Active JP6726503B2 (en) 2016-03-31 2016-03-31 All-solid secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6726503B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296378B2 (en) * 2018-05-23 2022-04-05 Panasonic Intellectual Property Management Co., Ltd. Battery
CN112385069A (en) * 2018-07-13 2021-02-19 日立造船株式会社 Manufacturing equipment of all-solid-state secondary battery
CN113557624A (en) * 2019-09-17 2021-10-26 松下知识产权经营株式会社 Battery with a battery cell
CN117795721A (en) * 2021-08-12 2024-03-29 Tdk株式会社 All-solid battery
CN118056311A (en) * 2021-10-05 2024-05-17 日产自动车株式会社 All-solid-state battery and method for manufacturing all-solid-state battery
WO2024013560A1 (en) * 2022-07-13 2024-01-18 日産自動車株式会社 All-solid-state battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3937422B2 (en) * 2000-03-23 2007-06-27 ソニー株式会社 Lithium ion battery and manufacturing method thereof
JP2006179241A (en) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd Solid battery
KR101577881B1 (en) * 2011-05-27 2015-12-15 도요타 지도샤(주) Bipolar all-solid-state battery
JP6066574B2 (en) * 2012-03-05 2017-01-25 日立造船株式会社 Manufacturing method of all-solid-state secondary battery
JP6095472B2 (en) * 2013-05-13 2017-03-15 日立造船株式会社 All-solid battery manufacturing method and all-solid battery manufacturing apparatus
JP6608188B2 (en) * 2015-06-23 2019-11-20 日立造船株式会社 All-solid secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017183120A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6608188B2 (en) All-solid secondary battery and manufacturing method thereof
JP6726503B2 (en) All-solid secondary battery and manufacturing method thereof
US9601745B2 (en) Non-aqueous electrolyte secondary battery
JP6576072B2 (en) Manufacturing method of all-solid-state secondary battery
US20180337422A1 (en) Battery
JP7162109B2 (en) Method for manufacturing all-solid secondary battery
JP6324296B2 (en) All solid state secondary battery
JP2019192610A (en) All-solid battery
WO2017187494A1 (en) All-solid-state secondary battery
JP6095472B2 (en) All-solid battery manufacturing method and all-solid battery manufacturing apparatus
WO2020013295A1 (en) Installation for manufacturing all-solid secondary battery
JP2020013729A (en) Manufacturing method of series-stacked all-solid-state battery
CN110114931B (en) Method and apparatus for manufacturing all-solid-state battery
JP2015032495A (en) Manufacturing method of solid-state battery
JP2019207871A (en) battery
JP7133316B2 (en) All-solid secondary battery and manufacturing method thereof
JP2007335158A (en) Secondary battery and battery pack
WO2018163775A1 (en) Secondary battery production method
JP2020030961A (en) Manufacturing method for layered type battery
US20240120552A1 (en) Sulfide Solid-State Battery, Printed Circuit Board with Sulfide Solid-State Battery, and Manufacturing Method of Sulfide Solid-State Battery
US20230317965A1 (en) Electrode laminate and secondary battery
JP2022139307A (en) Solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R150 Certificate of patent or registration of utility model

Ref document number: 6726503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250