JP6726503B2 - All-solid secondary battery and manufacturing method thereof - Google Patents
All-solid secondary battery and manufacturing method thereof Download PDFInfo
- Publication number
- JP6726503B2 JP6726503B2 JP2016069858A JP2016069858A JP6726503B2 JP 6726503 B2 JP6726503 B2 JP 6726503B2 JP 2016069858 A JP2016069858 A JP 2016069858A JP 2016069858 A JP2016069858 A JP 2016069858A JP 6726503 B2 JP6726503 B2 JP 6726503B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating member
- electrode layer
- solid
- solid electrolyte
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 239000007787 solid Substances 0.000 title claims description 21
- 239000007784 solid electrolyte Substances 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 19
- 238000003825 pressing Methods 0.000 claims description 18
- 239000010410 layer Substances 0.000 description 131
- 230000002093 peripheral effect Effects 0.000 description 17
- 239000012790 adhesive layer Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- 229910052744 lithium Inorganic materials 0.000 description 12
- 239000000843 powder Substances 0.000 description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910018091 Li 2 S Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910003480 inorganic solid Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000002390 adhesive tape Substances 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000002241 glass-ceramic Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- -1 P y O 1-z N 2 Chemical class 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910018111 Li 2 S-B 2 S 3 Inorganic materials 0.000 description 1
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 description 1
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910009290 Li2S-GeS2-P2S5 Inorganic materials 0.000 description 1
- 229910009324 Li2S-SiS2-Li3PO4 Inorganic materials 0.000 description 1
- 229910009318 Li2S-SiS2-LiI Inorganic materials 0.000 description 1
- 229910009328 Li2S-SiS2—Li3PO4 Inorganic materials 0.000 description 1
- 229910009110 Li2S—GeS2—P2S5 Inorganic materials 0.000 description 1
- 229910009130 Li2S—GeS2—ZnS Inorganic materials 0.000 description 1
- 229910007295 Li2S—SiS2—Li3PO4 Inorganic materials 0.000 description 1
- 229910007289 Li2S—SiS2—LiI Inorganic materials 0.000 description 1
- 229910010199 LiAl Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910013391 LizN Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910019942 S—Ge Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical compound [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
本発明は、全固体二次電池およびその製造方法に関する。 The present invention relates to an all solid state secondary battery and a method for manufacturing the same.
通常、全固体二次電池は、正極層と負極層との間に固体電解質層が配置されるとともに、これら各電極層の外面にそれぞれ集電体が配置されたものである。ところで、このような全固体二次電池の製造方法としては、粉体材料を帯電させつつ搬送用ガスと共に基材に吹き付け、静電気力により付着させて成膜することにより、電池の各構成層を形成し、その後、これら各構成層よりなる積層体を押圧(加圧)することにより電池を製造する方法がある(例えば特許文献1)。 Usually, in an all-solid secondary battery, a solid electrolyte layer is arranged between a positive electrode layer and a negative electrode layer, and a current collector is arranged on the outer surface of each of these electrode layers. By the way, as a method for manufacturing such an all-solid-state secondary battery, each of the constituent layers of the battery is formed by spraying a powder material onto a base material together with a carrier gas while charging and depositing the film by electrostatic force. There is a method of forming a battery, and then pressing (pressurizing) a laminate composed of these constituent layers to manufacture a battery (for example, Patent Document 1).
この方法によれば、均一な厚さの粉体からなる構成層が形成されるので、加圧成型時すなわち押圧時にその押圧力が全体に均一に掛かることになり、性能が良い全固体二次電池が得られる。 According to this method, since a constituent layer made of powder having a uniform thickness is formed, the pressing force is uniformly applied to the whole during pressure molding, that is, at the time of pressing. A battery is obtained.
しかし、上述したような製造方法で得られた全固体二次電池においても、内部短絡が発生していた。
この内部短絡の原因を検討した結果、その原因は、押圧時に加えられた力による粉体からなる構成層(以下、粉体層と称す)に作用する主応力およびこの主応力にて生じるせん断応力に起因するものと判明した。すなわち、粉体層に垂直に力が掛かると垂直方向に最大主応力が発生するとともに、横方向にも最小主応力が発生し、これら両主応力により斜め方向のせん断応力が発生する。言い換えれば、せん断力が働くことになる。
However, an internal short circuit also occurred in the all-solid-state secondary battery obtained by the manufacturing method as described above.
As a result of examining the cause of this internal short circuit, the cause was the principal stress acting on the constituent layer (hereinafter referred to as the powder layer) made of powder by the force applied at the time of pressing and the shear stress caused by this principal stress. It turned out to be due to. That is, when a vertical force is applied to the powder layer, the maximum principal stress is generated in the vertical direction and the minimum principal stress is generated in the lateral direction, and the shear stress in the diagonal direction is generated by these both principal stresses. In other words, shearing force will work.
ところで、粉体層は所定厚さで積層されており、その中央部は押圧より押し固められるが、その周縁部は傾斜面となり薄くなっている。このため、せん断力により、粉体層の周縁部が崩壊し、内部短絡に繋がっていた。 By the way, the powder layers are laminated with a predetermined thickness, and the central portion thereof is pressed and solidified, but the peripheral portion thereof becomes an inclined surface and is thin. Therefore, due to the shearing force, the peripheral portion of the powder layer collapsed, leading to an internal short circuit.
そこで、本発明は、押圧により発生する内部短絡を抑制し得る全固体二次電池およびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an all solid state secondary battery capable of suppressing an internal short circuit caused by pressing and a manufacturing method thereof.
本発明に係る全固体二次電池は、一対の集電体の間に、第1の電極層、固体電解質層および第2の電極層からなる積層体、並びにこの積層体の周囲に配置されて上記両電極層同士を絶縁する板状の絶縁部材を具備する全固体二次電池であって、
上記絶縁部材の内縁が第1の電極層の外縁に接触または2mm以下の隙間を生じ、
上記絶縁部材が、板状部と、当該絶縁部材の内縁より離れた外側部分に、当該板状部よりも厚い帯状の突状部とを有するものであり、
且つ上記固体電解質層の外縁が上記突状部より少なくとも内側の絶縁部材の表面を覆うとともに当該突状部に接触するようにしたものである。
The all-solid secondary battery according to the present invention is arranged between a pair of current collectors, a laminated body including a first electrode layer, a solid electrolyte layer and a second electrode layer, and arranged around the laminated body. An all-solid secondary battery comprising a plate-shaped insulating member that insulates both electrode layers from each other,
The inner edge of the insulating member contacts the outer edge of the first electrode layer or creates a gap of 2 mm or less,
The insulating member has a plate-shaped portion and a strip-shaped protruding portion that is thicker than the plate-shaped portion at an outer portion apart from the inner edge of the insulating member,
Further, the outer edge of the solid electrolyte layer covers at least the surface of the insulating member on the inner side of the protrusion and contacts the protrusion .
また、本発明に係る全固体二次電池の製造方法は、一対の集電体の間に、第1の電極層、固体電解質層および第2の電極層からなる積層体、並びにこの積層体の周囲に配置されて上記両電極層同士を絶縁する板状の絶縁部材を具備する全固体二次電池の製造方法であって、
上記絶縁部材が、板状部と、第1の電極層を案内し得る開口部と、当該開口部の内縁より離れた外側部分に当該板状部よりも厚い帯状の突状部とを有するものであり、
一方の集電体の表面に、上記絶縁部材を接着する工程と、
この工程で接着された絶縁部材の開口部内に、上記絶縁部材の内縁が第1の電極層の外縁に接触または2mm以下の隙間を生ずるように第1の電極層を配置する工程と、
この工程で配置された第1の電極層の表面および上記突状部よりも少なくとも内側の絶縁部材の表面に固体電解質層を配置するとともに当該突状部に接触させる工程と、
この工程で配置された固体電解質層の上面に第2の電極層を配置して積層体を得る工程と、
この工程で得られた積層体の上面に、他方の集電体を配置した後、押圧する工程とを具備する製造方法である。
In addition, the method for manufacturing an all-solid-state secondary battery according to the present invention includes a laminated body including a first electrode layer, a solid electrolyte layer and a second electrode layer between a pair of current collectors, and a laminated body including the laminated body. A method for manufacturing an all-solid-state secondary battery provided with a plate-shaped insulating member which is arranged in the periphery and insulates the two electrode layers from each other,
The insulating member has a plate-shaped portion, an opening that can guide the first electrode layer, and a strip-shaped protruding portion that is thicker than the plate-shaped portion at an outer portion apart from an inner edge of the opening. And
The surface of one of the current collector, a step of bonding the insulating member,
Arranging the first electrode layer in the opening of the insulating member bonded in this step so that the inner edge of the insulating member contacts the outer edge of the first electrode layer or forms a gap of 2 mm or less ;
Arranging a solid electrolyte layer on the surface of the first electrode layer arranged in this step and on the surface of the insulating member at least inside the protruding portion and contacting the protruding portion ,
Arranging the second electrode layer on the upper surface of the solid electrolyte layer arranged in this step to obtain a laminate,
It is a manufacturing method including a step of arranging the other current collector on the upper surface of the laminate obtained in this step and then pressing.
本発明の全固体二次電池およびその製造方法によれば、絶縁部材の内縁が第1の電極層の外縁に接触または近接されるとともに、当該絶縁部材の内縁より離れた外側部分に、その板状部よりも厚い帯状の突状部を設けたので、第1の電極層の外縁が絶縁部材に接触または近接するとともに少なくとも固体電解質層の外縁が突状部に接触した状態となるため、電池の押圧時に、その周縁部に生じるせん断崩壊を防止することができ、さらに第1の電極層の外周側面を固体電解質層で覆う代わりに絶縁部材の内縁を第1の電極層の外縁に接触または近接させることで、電池の押圧時に、第1の電極層の外周側面の固体電解質の厚みが薄くなることによる段差部を軽減することができるので、内部短絡が発生するのを防止し得る。 According to the all-solid-state secondary battery and the method for manufacturing the same of the present invention, the inner edge of the insulating member is brought into contact with or close to the outer edge of the first electrode layer, and the plate is formed on the outer portion apart from the inner edge of the insulating member. Since the strip-shaped projecting portion that is thicker than the projecting portion is provided, the outer edge of the first electrode layer contacts or approaches the insulating member and at least the outer edge of the solid electrolyte layer contacts the projecting portion. It is possible to prevent shear collapse that occurs at the periphery of the first electrode layer when pressing, and instead of covering the outer peripheral side surface of the first electrode layer with the solid electrolyte layer, contact the inner edge of the insulating member with the outer edge of the first electrode layer or By making them close to each other, it is possible to reduce the step portion due to the thin thickness of the solid electrolyte on the outer peripheral side surface of the first electrode layer when pressing the battery, and thus it is possible to prevent the occurrence of an internal short circuit.
以下、本発明の実施の形態に係る全固体二次電池およびその製造方法について、図面に基づき説明する。
まず、全固体二次電池の構成について説明する。
Hereinafter, an all-solid-state secondary battery according to an embodiment of the present invention and a method for manufacturing the same will be described with reference to the drawings.
First, the configuration of the all solid state secondary battery will be described.
この全固体二次電池を簡単に説明すると、一対の集電体の間に、第1の電極層、固体電解質層および第2の電極層からなる積層体、並びにこの積層体の周囲に配置されて上記両電極層同士を絶縁する板状の絶縁部材を具備する全固体二次電池であって、上記絶縁部材の内縁が第1の電極層の外縁に接触または近接されるとともに、当該絶縁部材の内縁より離れた外側部分に、その板状部よりも厚い帯状の突状部を有し、且つ上記固体電解質層の外縁が上記突状部より少なくとも内側の絶縁部材の表面を覆うようにしたものである。 This all-solid-state secondary battery will be briefly described. A laminated body composed of a first electrode layer, a solid electrolyte layer and a second electrode layer is disposed between a pair of current collectors, and the laminated body is arranged around the laminated body. And a plate-shaped insulating member that insulates the two electrode layers from each other, wherein the inner edge of the insulating member is in contact with or close to the outer edge of the first electrode layer, and the insulating member is A strip-shaped protrusion that is thicker than the plate-shaped portion on the outer portion away from the inner edge, and the outer edge of the solid electrolyte layer covers at least the surface of the insulating member inside the protrusion. It is a thing.
以下、図1に基づき、全固体二次電池について詳しく説明する。
この全固体二次電池1は、一対の集電体、すなわち正極集電体11と負極集電体21との間に、正極層(第1の電極層の一例)12、固体電解質層32および負極層(第2の電極層の一例)22が順番に積層されてなる積層体X、並びにこの積層体Xの周囲に配置されるとともに少なくとも固体電解質層32と接触して正極層12と負極層22とを電気的に絶縁する板状の絶縁部材41が配置された全固体二次電池であって、上記絶縁部材41の板状部41aの中央に形成された開口部41dの内周面が正極層12の外周面(外周側面)に接触されるとともに、この開口部41dの内周面より所定距離はなれた板状部41aの外側部分に、所定幅でもって板状部41aよりも厚くされた帯状の突状部41bが設けられ、且つ上記正極層12の表面に積層される固体電解質層32を、その外周が上記突状部41bより少なくとも内側の板状部41aの表面すなわち内縁部を覆うような大きさにしたものである。なお、以下、板状部41aの内縁部に41cを付して説明する。
Hereinafter, the all solid state secondary battery will be described in detail with reference to FIG.
This all-solid-state secondary battery 1 includes a positive electrode layer (an example of a first electrode layer) 12, a
また、絶縁部材41と正極集電体11および負極集電体21とは、下部接着層51および上部接着層52を介して接着されている。上記絶縁部材41としては、例えばPETフィルムなどの高分子材料でできた絶縁シートが用いられる。したがって、シート状の絶縁部材と言えるとともに、板状部をシート部と言うことができる。なお、上記各接着層51,52としては、両面接着テープなどの感圧接着材が用いられる。
The
勿論、上記絶縁部材41の開口部41dには積層体Xが配置されることになる。また、突状部41bの厚さは、例えば正極層12と固体電解質層32との合計厚さより厚く(高く)されている。
Of course, the laminated body X is arranged in the opening 41d of the insulating
なお、正極層12および負極層22としては、粉末の電極合材が用いられるとともに、固体電解質層32についても、粉末のものが用いられる。そして、電極合材については、電極活物質と固体電解質との混合物が用いられるが、場合によっては、電極活物質だけの場合もある。
A powder electrode mixture is used as the
ここで、全固体二次電池1の形状および大きさについて説明すると、平面視形状が正方形(円形または多角形であってもよい)にされるとともに、その一辺の長さは30〜300mmの範囲で、また厚さは50〜500μmの範囲とするのが適正である。したがって、積層体Xの平面視形状が正方形であるとともに、積層体Xの正極層12および固体電解質層32を案内するための開口部41dの平面視形状も正方形にされている。
Here, the shape and size of the all-solid secondary battery 1 will be described. The shape in plan view is square (may be circular or polygonal), and the length of one side thereof is in the range of 30 to 300 mm. It is proper that the thickness is in the range of 50 to 500 μm. Therefore, the planar view shape of the laminated body X is also square, and the planar view shape of the
図1においては、全固体二次電池を水平面に載置した状態で且つ正極側を下方に、負極側を上方に配置したものとして示しているが、勿論、負極側を下方に、正極側を上方に配置したものでもよい。 In FIG. 1, the all-solid-state secondary battery is placed on a horizontal surface, and the positive electrode side is located below and the negative electrode side is located above. However, of course, the negative electrode side is located below and the positive electrode side is located below. It may be arranged above.
なお、全固体二次電池の主要部分の構成材料については、製造方法を説明した後に、纏めて説明する。
以下、全固体二次電池の製造方法について、図2〜図8に基づき、詳しく説明する。
The constituent materials of the main part of the all-solid-state secondary battery will be described collectively after the manufacturing method is described.
Hereinafter, a method for manufacturing the all-solid secondary battery will be described in detail with reference to FIGS.
図2に示すように、正極集電体11の表面に、正極層12を案内し得る開口部41dを有するとともにこの開口部41dより所定距離はなれた外側の突状部41bが板状部41aよりも厚くされた絶縁部材41を、下部接着層51を介して接着する。上記所定距離は固体電解質層32の面積をどれだけ安全を見て大きくするかで決まる値で、成膜面積が小さい程、コンパクトになり、原料も少なくなって軽量化に繋がる。すなわち、所定距離については、0.1〜5mmの範囲が好ましく、0.5〜5mmの範囲がより好ましい。また、突状部41bの幅については、材質の強度や部材の製造のし易さなどにもよるが、0.5〜20mmの範囲が好ましく、1.0〜20mmの範囲がより好ましい。さらに、突状部41bの高さについては、高すぎると突状部41bで押圧が不十分になる可能性があるため、押圧後の積層体(正極層、固体電解質層、負極層)Xの厚さよりも低い方が望ましく、50〜500μmの範囲が好ましい。
As shown in FIG. 2, the surface of the positive electrode
なお、ここでは、厚くされた突状部41bを、板状の主絶縁部材41Aの内周寄りの上面に、所定幅の帯状の副絶縁部材41Bが接着層53を介して接着されたものとして説明する。
In addition, here, it is assumed that the thickened protruding
次に、図3に示すように、この絶縁部材41、すなわち主絶縁部材41Aに設けられた開口部41dの内方の正極集電体11の表面に正極層12を配置する。
次に、図4に示すように、この正極層12の上面に固体電解質層32を所定厚さでもって配置する。この場合、固体電解質層32の外周部は、例えば1mm幅の帯状の副絶縁部材41Bの上方を覆うように配置される。なお、正極層12の上方の固体電解質層32の表面高さは、突状部41b(副絶縁部材41B)の表面と同一またはそれよりも少し低くされている。
Next, as shown in FIG. 3, the
Next, as shown in FIG. 4, the
次に、図5に示すように、固体電解質層32の上面に負極層22を所定厚さでもって配置して、積層体Xを得る。
次に、図6および図7に示すように、負極層22の上面に、周囲に上部接着層52が取り付けられた負極集電体21を配置するとともに空気を吸引しながら5000Pa程度の低圧力でもって仮押圧(仮プレス)して、上部接着層52により、負極集電体21を絶縁部材41の上面に接着する。
Next, as shown in FIG. 5, the
Next, as shown in FIGS. 6 and 7, the negative electrode
次に、図8に示すように、内部の空気を吸引した状態で、10ton/cm2程度の高圧力でもって本押圧(本プレス)を行う。
なお、負極集電体21を上方から押圧する際には、負極集電体21と押圧部材(図示せず)との間には、弾性部材、例えばゴム板などが配置される。
Next, as shown in FIG. 8, main pressing (main pressing) is performed with a high pressure of about 10 ton/cm 2 in a state where air inside is sucked.
When the negative electrode
そして、最後に、両集電体11,21間に積層体Xが配置されてなる電池を一対のステンレス板で挟んだ後、電気取り出し用タブリードが備えられたラミネートフィルムで挟み、真空下で、周囲を熱融着することによりラミネートパックを行う。
Then, finally, after sandwiching the battery in which the laminate X is arranged between the
これにより、単体の全固体二次電池が得られる。通常、全固体二次電池は、単体の電池が、複数個、直列に積層されるか、または並列に配置されることにより構成される。
上記製造方法の主要部分を、工程形式で記載すると、以下のようになる。
As a result, a single all-solid secondary battery can be obtained. Usually, an all-solid secondary battery is constructed by stacking a plurality of single batteries in series or arranging them in parallel.
The main parts of the above manufacturing method are described below in process form.
すなわち、この製造方法は、一対の集電体の間に、正極層(第1の電極層)、固体電解質層および負極層(第2の電極層)からなる積層体、並びにこの積層体の周囲に配置されて上記両電極層同士を絶縁する板状の絶縁部材を具備する全固体二次電池の製造方法であって、正極集電体(一方の集電体)の表面に、正極層を案内し得る開口部を有し(開口部を有するように)且つ当該開口部の内縁より所定距離はなれた外側部分に所定幅でもってその板状部よりも厚い帯状の突状部が設けられた(突状部を有するように)絶縁部材を接着する工程と、この工程で接着された絶縁部材の開口部内に正極層を配置する工程と、この工程で配置された正極層の表面および上記突状部よりも少なくとも内側の絶縁部材の表面に固体電解質層を配置する工程と、この工程で配置された固体電解質層の上面に負極層を配置して積層体を得る工程と、この工程で得られた積層体の上面に、負極集電体(他方の集電体)を配置した後、押圧する工程とを備えた方法である。 That is, this manufacturing method includes a laminate including a positive electrode layer (first electrode layer), a solid electrolyte layer, and a negative electrode layer (second electrode layer) between a pair of current collectors, and the periphery of the laminate. A method for manufacturing an all-solid-state secondary battery, which comprises a plate-shaped insulating member for insulating the two electrode layers from each other, wherein a positive electrode layer is provided on the surface of the positive electrode current collector (one current collector). A strip-shaped protrusion having a predetermined width and having a predetermined width was provided at an outer portion having a guideable opening (so as to have the opening) and a predetermined distance from the inner edge of the opening. The step of adhering the insulating member (so as to have the protruding portion), the step of disposing the positive electrode layer in the opening of the insulating member adhered in this step, the surface of the positive electrode layer disposed in this step and the protrusion The step of arranging the solid electrolyte layer on the surface of the insulating member at least on the inner side of the cylindrical portion, the step of arranging the negative electrode layer on the upper surface of the solid electrolyte layer arranged in this step to obtain a laminate, and the step obtained The step of arranging the negative electrode current collector (the other current collector) on the upper surface of the obtained laminated body, and then pressing the same.
上記全固体二次電池1の主要構成部材の材料について説明する。
正極集電体11および負極集電体21としては、銅(Cu)、マグネシウム(Mg)、ステンレス鋼、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、リチウム(Li)、錫(Sn)またはこれらの合金等から成る薄板状体、箔状体が用いられる。ここで、薄板状体および箔状体は、その厚さが5μm〜100μmの範囲内のものである。本実施の形態においては、正極集電体11としてはアルミニウム箔、負極集電体21としては銅箔が用いられる。さらに、各集電体11,21は、粉末の積層体Xとの密着性向上の観点から、その表面に粗化処理が施されたものであることが好ましい。粗化処理とは、エッチングなどで表面粗さを大きくする処理である。本実施の形態においては、正極集電体11には、エッチング処理されたアルミニウム箔(エッチドアルミ箔とも言う)が用いられる。また、負極集電体21には、エッチング処理された銅箔(粗化銅箔とも言う)が用いられるが、エッチング処理がされない銅箔を用いてもよい。また、絶縁部材41(41A,41B)には、PETフィルムなどの高分子材料でできた絶縁シートが用いられる。
The materials of the main constituent members of the all-solid secondary battery 1 will be described.
As the positive electrode
このようにエッチング処理が施された集電体を用いることによって、全固体二次電池を製造する際の押圧で、エッチングによりできた孔部が潰され、電極層すなわち正極層12および負極層22の表面に喰い付きやすくなり、集電体とこれら電極層とが一体化されやすくなる。
By using the current collector that has been subjected to the etching treatment as described above, the holes formed by the etching are crushed by the pressure during the production of the all-solid secondary battery, and the electrode layers, that is, the
また、電極層は、電子の授受を行うために粒子間に電子伝導パスを確保する電極活物質とイオン伝導性を有する固体電解質とを所定の割合で混合した混合材から成る層である。このように電極活物質にリチウムイオン伝導性を有する固体電解質を混合することにより、電子伝導性に加えてイオン伝導性を付与し、粒子間にイオン伝導パスを確保することができる。 The electrode layer is a layer made of a mixture material in which an electrode active material that secures an electron conduction path between particles to transfer electrons and a solid electrolyte having ion conductivity are mixed at a predetermined ratio. By thus mixing the electrode active material with the solid electrolyte having lithium ion conductivity, it is possible to impart ion conductivity in addition to electron conductivity and secure an ion conduction path between particles.
正極層12に適した正極活物質としては、リチウムイオンの挿入離脱が可能なものであればよく、特に限定されない。例えば、正極活物質としては、リチウム・ニッケル複合酸化物(LiNixM1−xO2、ただしMはCo、Al、Mn、V、Cr、Mg、Ca、Ti、Zr、Nb、MoおよびWのうち少なくとも1つの元素)、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)などの層状酸化物、オリビン構造を持つリン酸鉄リチウム(LiFePO4)、スピネル構造を持つマンガン酸リチウム(LiMn2O4、Li2MnO3、LiMO2)などの固溶体やそれらの混合物、さらに硫黄(S)、硫化リチウム(Li2S)などの硫化物などを用いることもできる。本実施の形態においては、正極活物質として、リチウム・ニッケル・コバルト・アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05O2、以下NCA系複合酸化物と称する)が用いられる。
The positive electrode active material suitable for the
一方、負極層22に適した負極活物質としては、例えば天然黒鉛、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素などの炭素材料や、固体電解質と合材化される合金系材料が用いられる。合金系材料としては、例えば、リチウム合金(LiAl,LiZn,Li3Bi,Li3Cd,Li3Sb,Li4Si,Li4.4Pb,Li4.4Sn,Li0.17C,LiC6など)や、チタン酸リチウム(Li4Ti5O12)、Znなどの金属酸化物などが挙げられる。本実施の形態においては、負極活物質として、天然・人造などの黒鉛が用いられる。
On the other hand, as the negative electrode active material suitable for the
また、正極活物質および負極活物質の表面に、ジルコニア(ZrO2)、アルミナ(Al2O3)、チタン酸リチウム(Li4Ti5O12)、ニオブ酸リチウム(Li4NbO3)、炭素(C)などをそれぞれコーティングしたものを電極活物質として使用することができる。 In addition, zirconia (ZrO 2 ), alumina (Al 2 O 3 ), lithium titanate (Li 4 Ti 5 O 12 ), lithium niobate (Li 4 NbO 3 ), carbon are formed on the surfaces of the positive electrode active material and the negative electrode active material. Those coated with (C) or the like can be used as the electrode active material.
固体電解質は、有機系のポリマー電解質(有機固体電解質とも言う)、無機系の無機固体電解質などに大別されるが、固体電解質として、いずれを用いても構わない。また、無機固体電解質は、酸化物系の材料および硫化物系の材料に大別されるが、いずれを用いても構わない。さらに、無機固体電解質においては、結晶性または非晶質のもののうちから適宜選択することができる。すなわち、固体電解質は、有機化合物、無機化合物またはこれらの混合物から成る材料から適宜選択することができる。具体的には、固体電解質として用いることのできる材料としては、例えば、Li2−SiO2、Li2−SiO2−P2O5などのリチウム含有金属酸化物(金属は一種以上)、LixPyO1−zN2などのリチウム含有金属窒化物、Li2S−P2S5系、Li2S−SiS2系、Li2S−B2S3系、Li2S−GeS2系、Li2S−SiS2−LiI系、Li2S−SiS2−Li3PO4系、Li2S−Ge2S2系、Li2S−GeS2−P2S5系、Li2S−GeS2−ZnS系などのリチウム含有硫化物系ガラス、およびPEO(ポリエチレンオキシド)、PVDF(ポリフッ化ビニリデン)、リン酸リチウム(Li3PO4)、リチウムチタン酸化物などのリチウム含有遷移金属酸化物が挙げられる。なお、本実施の形態においては、固体電解質として、高いイオン伝導性を有する硫化物系ガラスをベースとした硫化物系無機固体電解質のうち、Li2S−P2S5系ガラスが用いられる。また、固体電解質層32に適した固体電解質は、正極層12および負極層22で用いられる固体電解質と同一または異なるものであってもよい。
The solid electrolyte is roughly classified into an organic polymer electrolyte (also referred to as an organic solid electrolyte), an inorganic inorganic solid electrolyte, and the like, but any solid electrolyte may be used. Inorganic solid electrolytes are roughly classified into oxide-based materials and sulfide-based materials, but either may be used. Furthermore, the inorganic solid electrolyte can be appropriately selected from crystalline and amorphous ones. That is, the solid electrolyte can be appropriately selected from materials composed of organic compounds, inorganic compounds, or mixtures thereof. Specifically, examples of the material that can be used as the solid electrolyte include lithium-containing metal oxides (one or more kinds of metal) such as Li 2 —SiO 2 , Li 2 —SiO 2 —P 2 O 5 , and Li x. lithium-containing metal nitride such as P y O 1-z N 2 , Li 2 S-P 2 S 5 based, Li 2 S-SiS 2 system, Li 2 S-B 2 S 3 system, Li 2 S-GeS 2 system, Li 2 S-SiS 2 -LiI system, Li 2 S-SiS 2 -Li 3 PO 4 based, Li 2 S-Ge 2 S 2 system, Li 2 S-GeS 2 -P 2 S 5 based, Li 2 S-GeS 2 -ZnS-based lithium-containing sulfide-based glass such as, and PEO (polyethylene oxide), PVDF (polyvinylidene fluoride), lithium phosphate (Li 3 PO 4), lithium-containing transition metal, such as lithium titanium oxide An oxide is mentioned. In the present embodiment, Li 2 S-P 2 S 5 based glass is used as the solid electrolyte among the sulfide based inorganic solid electrolytes based on sulfide based glass having high ion conductivity. The solid electrolyte suitable for the
上記実施の形態においては、接着層として、取扱いの容易さから両面接着テープなどの感圧接着材が用いたが、液体、固体などの接着剤を用いてもよい。
また、上記実施の形態においては、絶縁部材41の内縁を正極層12の外縁に接触させるように説明したが、製造誤差により、絶縁部材41の内縁と正極層12との間に、例えば2mm以下の隙間が生じる場合がある。すなわち、絶縁部材41の内縁が正極層12の外縁に近接する場合もある。
In the above-described embodiment, a pressure-sensitive adhesive material such as a double-sided adhesive tape is used as the adhesive layer for easy handling, but an adhesive agent such as liquid or solid may be used.
Further, in the above embodiment, the inner edge of the insulating
上記全固体二次電池およびその製造方法によると、絶縁部材の内縁が正極層(第1の電極層)の外縁に接触または近接されるとともに、当該絶縁部材の内縁より離れた外側部分に、その板状部よりも厚い帯状の突状部を設けたので、正極層の外縁が絶縁部材に接触または近接するとともに少なくとも固体電解質層の外縁が突状部に接触して、それぞれ保持された状態となるため、押圧時に周縁部に生じる積層体の崩壊を防止し得るとともに、正極層の外周側面を固体電解質層で覆う代わりに、絶縁部材の内縁を正極層の外縁に接触または近接させることで、やはり、電池の押圧時に、正極層の外周側面の固体電解質層の厚みが薄くなることによる段差部を軽減することができるので、より確実に、内部短絡が発生するのを防止することができる。 According to the all-solid-state secondary battery and the manufacturing method thereof, the inner edge of the insulating member is brought into contact with or close to the outer edge of the positive electrode layer (first electrode layer), and the outer edge of the insulating member is separated from the inner edge thereof. Since the strip-shaped protrusions that are thicker than the plate-shaped portion are provided, the outer edge of the positive electrode layer contacts or approaches the insulating member and at least the outer edge of the solid electrolyte layer contacts the protrusions, and the state is held respectively. Therefore, it is possible to prevent the collapse of the laminate that occurs in the peripheral portion at the time of pressing, and instead of covering the outer peripheral side surface of the positive electrode layer with the solid electrolyte layer, by bringing the inner edge of the insulating member into contact with or close to the outer edge of the positive electrode layer, Again, when the battery is pressed, the stepped portion due to the thin thickness of the solid electrolyte layer on the outer peripheral side surface of the positive electrode layer can be reduced, so that an internal short circuit can be more reliably prevented from occurring.
詳しく説明すると、絶縁部材41における積層体Xとの接触部である突状部41bを、外側の板状部41aよりも厚くしたので、電池の押圧時にその周縁部に生じるせん断力による崩壊を防止することができ、したがって内部短絡(電気的短絡)が発生するのを防止することができる。すなわち、絶縁部材41における突状部41bが、積層体Xが押圧された際に生じるせん断崩壊を防止し得る崩壊防止ブロックとして機能することになる。
More specifically, since the protruding
例えば、正極層12、固体電解質層32および負極層22を単に積層するだけであれば、中央部分が最も厚くなるとともに周縁部が薄くなる。この状態で、高圧力でもって押圧しても周縁部には力があまり作用しないので、この周縁部では粉体同士の固着が不十分となって、衝撃や集電体の変形により層構造が破壊され易くなるが、このような事態を回避することができる。
For example, if the
さらに、絶縁部材41の突状部41bよりも内側に内縁部41cを設けて正極層12の周囲を固体電解質層32で覆った際に生じる段差部を無くすことにより、段差緩和機能(段差緩和領域)が具備されている。例えば、図9に示すように、突状部41bの内側に、正極層12の外周面に接触する内縁部が設けられていない場合、正極層12を覆う固体電解質層32には、破線にて示すように、肩部つまり段差部が生じるため、積層体Xの押圧時にこの肩部が崩れて、短絡が発生し易くなってしまう。このような事態を回避することができる。
Further, by providing an
ここで、実際に製造した全固体二次電池を充放電させた際の結果について説明する。
この全固体二次電池においては、正極集電体11として、厚さ20μmの粗化処理されたアルミ箔(エッチドアルミニウム)を用いるとともに、負極集電体21として、厚さ18μmの銅箔を用いた。また、絶縁部材41としては、厚さ50μmのPETフィルム(ポリエチレンテレフタレートフィルム)を用いた。また、下部接着層51および上部接着層52としては、厚さ30μmで幅が2mmの感圧接着フィルム(両面接着テープ)を用いるとともに、突状部41bの接着層53としては、同じもので幅が1mmのものを用いた。
Here, the result of charging and discharging the actually manufactured all-solid-state secondary battery will be described.
In this all-solid secondary battery, a roughened aluminum foil (etched aluminum) having a thickness of 20 μm is used as the positive electrode
さらに、正極層12として、正極活物質であるNCA系複合酸化物と、固体電解質としてLi2S(80mol%)−P2S5(20mol%)からなるガラスセラミックとを、7:3の割合で混合したものを用いた。負極層22としては、負極活物質である黒鉛粉末と、固体電解質であるLi2S(80mol%)−P2S5(20mol%)からなるガラスセラミックとを、6:4の割合で混合したものを用いた。固体電解質層32における固体電解質としては、Li2S(80mol%)−P2S5(20mol%)からなるガラスセラミックを用いた。
Further, as the
また、各構成部材の所定厚さについては、本押圧後において、正極層12の厚さが約70μm、負極層22の厚さが約100μm、固体電解質層32の厚さが約70μmとなるように、例えば静電スクリーン塗布法により塗布した。
Regarding the predetermined thickness of each component, after the main pressing, the thickness of the
上記得られた電池を、一辺が70mmの正方形で厚さ0.3mmの一対のステンレス板で挟んだ後、電気取り出し用タブリードが備えられたラミネートフィルムで挟み、真空下で、周囲を熱融着してラミネートパックを施し、そして、100MPaの圧力でもって、例えば30秒間プレス(本プレス)して、全固体二次電池1を作製した。 The battery thus obtained was sandwiched between a pair of stainless steel plates each having a side of 70 mm and a thickness of 0.3 mm, and then sandwiched by a laminate film provided with tab leads for electrical extraction, and the surroundings were heat-sealed under vacuum. Then, the laminate pack was applied, and then pressed (main press) with a pressure of 100 MPa, for example, for 30 seconds to produce an all solid state secondary battery 1.
この全固体二次電池1を、例えば4個作製するとともに、それぞれ、0.1C、4〜2Vで充放電させたところ、全て、異常なく充放電を行うことができた。
ところで、上記実施の形態においては、積層体の周囲に配置される絶縁部材の一部を帯状の突出部として説明したが、例えば図10に示すように、図6で示した負極集電体21側に、帯状の副絶縁部材41Bの外側に沿って配置し得る環状の外側絶縁部材42を、上部接着層52を介して接着させておき、そして押圧時に(矢印aで示す)、この外側絶縁部材42を、接着層54を介して、絶縁部材41の板状部41A(41a)の上面に接着させるようにしたものでもよい。言い換えると、絶縁部材41,42の全体の厚さを、押圧後における積層体Xの固体電解質層32の下面より上方の位置となるように厚くしてもよい。
For example, four all-solid-state secondary batteries 1 were produced and charged and discharged at 0.1 C and 4 to 2 V, respectively, and all were able to be charged and discharged without abnormality.
By the way, in the said embodiment, although a part of insulating member arrange|positioned around a laminated body was demonstrated as a strip|belt-shaped protrusion, for example, as shown in FIG. 10, the
X 積層体
1 全固体二次電池
11 正極集電体
12 正極層
21 負極集電体
22 負極層
32 固体電解質層
41 絶縁部材
41a 板状部
41b 突状部
41c 内縁部
41d 開口部
41A 主絶縁部材
41B 副絶縁部材
51 下部接着層
52 上部接着層
53 接着層
X Laminated body 1 All-solid-state
Claims (2)
上記絶縁部材の内縁が第1の電極層の外縁に接触または2mm以下の隙間を生じ、
上記絶縁部材が、板状部と、当該絶縁部材の内縁より離れた外側部分に、当該板状部よりも厚い帯状の突状部とを有するものであり、
且つ上記固体電解質層の外縁が上記突状部より少なくとも内側の絶縁部材の表面を覆うとともに当該突状部に接触するようにしたことを特徴とする全固体二次電池。 Between the pair of current collectors, a laminated body composed of the first electrode layer, the solid electrolyte layer and the second electrode layer, and a plate-shaped body arranged around the laminated body to insulate the two electrode layers from each other. An all-solid-state secondary battery including an insulating member,
The inner edge of the insulating member contacts the outer edge of the first electrode layer or creates a gap of 2 mm or less,
The insulating member has a plate-shaped portion and a strip-shaped protruding portion that is thicker than the plate-shaped portion at an outer portion apart from the inner edge of the insulating member,
An all-solid secondary battery , wherein the outer edge of the solid electrolyte layer covers at least the surface of the insulating member inside the protrusion and contacts the protrusion .
上記絶縁部材が、板状部と、第1の電極層を案内し得る開口部と、当該開口部の内縁より離れた外側部分に当該板状部よりも厚い帯状の突状部とを有するものであり、
一方の集電体の表面に、上記絶縁部材を接着する工程と、
この工程で接着された絶縁部材の開口部内に、上記絶縁部材の内縁が第1の電極層の外縁に接触または2mm以下の隙間を生ずるように第1の電極層を配置する工程と、
この工程で配置された第1の電極層の表面および上記突状部よりも少なくとも内側の絶縁部材の表面に固体電解質層を配置するとともに当該突状部に接触させる工程と、
この工程で配置された固体電解質層の上面に第2の電極層を配置して積層体を得る工程と、
この工程で得られた積層体の上面に、他方の集電体を配置した後、押圧する工程とを具備したことを特徴とする全固体二次電池の製造方法。 Between the pair of current collectors, a laminated body composed of the first electrode layer, the solid electrolyte layer and the second electrode layer, and a plate-shaped body arranged around the laminated body to insulate the two electrode layers from each other. A method for manufacturing an all-solid secondary battery including an insulating member, comprising:
The insulating member has a plate-shaped portion, an opening that can guide the first electrode layer, and a strip-shaped protruding portion that is thicker than the plate-shaped portion at an outer portion apart from an inner edge of the opening. And
The surface of one of the current collector, a step of bonding the insulating member,
Arranging the first electrode layer in the opening of the insulating member bonded in this step so that the inner edge of the insulating member contacts the outer edge of the first electrode layer or forms a gap of 2 mm or less ;
Arranging a solid electrolyte layer on the surface of the first electrode layer arranged in this step and on the surface of the insulating member at least inside the protruding portion and contacting the protruding portion ,
Arranging the second electrode layer on the upper surface of the solid electrolyte layer arranged in this step to obtain a laminate,
The upper surface of the laminate obtained in this step, after placing the other current collector, the production method of the all-solid secondary battery, characterized by comprising the step of pressing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016069858A JP6726503B2 (en) | 2016-03-31 | 2016-03-31 | All-solid secondary battery and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016069858A JP6726503B2 (en) | 2016-03-31 | 2016-03-31 | All-solid secondary battery and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017183120A JP2017183120A (en) | 2017-10-05 |
JP6726503B2 true JP6726503B2 (en) | 2020-07-22 |
Family
ID=60007538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016069858A Active JP6726503B2 (en) | 2016-03-31 | 2016-03-31 | All-solid secondary battery and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6726503B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11296378B2 (en) * | 2018-05-23 | 2022-04-05 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
CN112385069A (en) * | 2018-07-13 | 2021-02-19 | 日立造船株式会社 | Manufacturing equipment of all-solid-state secondary battery |
CN113557624A (en) * | 2019-09-17 | 2021-10-26 | 松下知识产权经营株式会社 | Battery with a battery cell |
CN117795721A (en) * | 2021-08-12 | 2024-03-29 | Tdk株式会社 | All-solid battery |
CN118056311A (en) * | 2021-10-05 | 2024-05-17 | 日产自动车株式会社 | All-solid-state battery and method for manufacturing all-solid-state battery |
WO2024013560A1 (en) * | 2022-07-13 | 2024-01-18 | 日産自動車株式会社 | All-solid-state battery |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3937422B2 (en) * | 2000-03-23 | 2007-06-27 | ソニー株式会社 | Lithium ion battery and manufacturing method thereof |
JP2006179241A (en) * | 2004-12-21 | 2006-07-06 | Matsushita Electric Ind Co Ltd | Solid battery |
KR101577881B1 (en) * | 2011-05-27 | 2015-12-15 | 도요타 지도샤(주) | Bipolar all-solid-state battery |
JP6066574B2 (en) * | 2012-03-05 | 2017-01-25 | 日立造船株式会社 | Manufacturing method of all-solid-state secondary battery |
JP6095472B2 (en) * | 2013-05-13 | 2017-03-15 | 日立造船株式会社 | All-solid battery manufacturing method and all-solid battery manufacturing apparatus |
JP6608188B2 (en) * | 2015-06-23 | 2019-11-20 | 日立造船株式会社 | All-solid secondary battery and manufacturing method thereof |
-
2016
- 2016-03-31 JP JP2016069858A patent/JP6726503B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017183120A (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6608188B2 (en) | All-solid secondary battery and manufacturing method thereof | |
JP6726503B2 (en) | All-solid secondary battery and manufacturing method thereof | |
US9601745B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6576072B2 (en) | Manufacturing method of all-solid-state secondary battery | |
US20180337422A1 (en) | Battery | |
JP7162109B2 (en) | Method for manufacturing all-solid secondary battery | |
JP6324296B2 (en) | All solid state secondary battery | |
JP2019192610A (en) | All-solid battery | |
WO2017187494A1 (en) | All-solid-state secondary battery | |
JP6095472B2 (en) | All-solid battery manufacturing method and all-solid battery manufacturing apparatus | |
WO2020013295A1 (en) | Installation for manufacturing all-solid secondary battery | |
JP2020013729A (en) | Manufacturing method of series-stacked all-solid-state battery | |
CN110114931B (en) | Method and apparatus for manufacturing all-solid-state battery | |
JP2015032495A (en) | Manufacturing method of solid-state battery | |
JP2019207871A (en) | battery | |
JP7133316B2 (en) | All-solid secondary battery and manufacturing method thereof | |
JP2007335158A (en) | Secondary battery and battery pack | |
WO2018163775A1 (en) | Secondary battery production method | |
JP2020030961A (en) | Manufacturing method for layered type battery | |
US20240120552A1 (en) | Sulfide Solid-State Battery, Printed Circuit Board with Sulfide Solid-State Battery, and Manufacturing Method of Sulfide Solid-State Battery | |
US20230317965A1 (en) | Electrode laminate and secondary battery | |
JP2022139307A (en) | Solid-state battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6726503 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |