KR101580303B1 - Method for bonding alpha alumina and beta alumina - Google Patents

Method for bonding alpha alumina and beta alumina Download PDF

Info

Publication number
KR101580303B1
KR101580303B1 KR1020140072728A KR20140072728A KR101580303B1 KR 101580303 B1 KR101580303 B1 KR 101580303B1 KR 1020140072728 A KR1020140072728 A KR 1020140072728A KR 20140072728 A KR20140072728 A KR 20140072728A KR 101580303 B1 KR101580303 B1 KR 101580303B1
Authority
KR
South Korea
Prior art keywords
alumina
beta
alpha
bonding
bonding material
Prior art date
Application number
KR1020140072728A
Other languages
Korean (ko)
Inventor
최병현
지미정
안용태
장성필
설광희
범진형
양기덕
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020140072728A priority Critical patent/KR101580303B1/en
Application granted granted Critical
Publication of KR101580303B1 publication Critical patent/KR101580303B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining

Abstract

The present invention relates to a method for bonding alpha-alumina (alumina-α, α-Al2O3) and beta-alumina (alumina-β or β-Al2O3). The method can enhance the bonding strength of the alpha-alumina which is used as an insulation ring in a sodium-sulfur battery and the beta-alumina which is used as an insulator. According to the present invention, the method includes the steps of: (A) executing an acid treatment operation to wash surfaces of the alpha-alumina; (B) executing another acid treatment operation to form pores on surfaces of the beta-alumina; (C) arranging a glass bonding material, which is prepared by adding an RO-based additive to barium-borosilicate-based glass, between the alpha-alumina and the beta-alumina having the surfaces treated in advance and bonding the alpha-alumina and the beta-alumina in an oxidizing atmosphere.

Description

알파 알루미나와 베타 알루미나의 접합방법{METHOD FOR BONDING ALPHA ALUMINA AND BETA ALUMINA}[0001] METHOD FOR BONDING ALPHA ALUMINA AND BETA ALUMINA [0002]

본 발명은 나트륨-황 전지의 절연링으로 사용되는 알파-알루미나(α-Alumina,α-Al2O3)와 절연체로 사용되는 베타-알루미나(β-Alumina, β-Al2O3)의 접합강도를 향상시킬 수 있는 알파 알루미나와 베타 알루미나의 접합방법에 관한 것으로서, 보다 상세하게는 베타-알루미나의 표면처리를 통해 미세기공을 형성하고, 바륨-보로실리케이트(Barium-borosilicate) 기반의 유리에 RO계(R=K, Sr, Ca 등)의 첨가물을 첨가한 유리접합재를 알파-알루미나와 표면처리된 베타-알루미나 사이에 배치한 후, 산화분위기에서 알파-알루미나와 베타-알루미나를 접합하는 알파 알루미나와 베타 알루미나의 접합방법에 관한 것이다.
The present invention is sodium-alpha is used as a ring isolation of sulfur battery-alumina (α-Alumina, α-Al 2 O 3) , and beta is used as an insulator-alumina (β-Alumina, β-Al 2 O 3) bonding of More particularly, the present invention relates to a method of bonding alpha-alumina and beta-alumina capable of improving strength, and more particularly, to a method of bonding micropores of beta-alumina to a barium- borosilicate- The glass bonding material to which the additive of the system (R = K, Sr, Ca, etc.) is added is placed between the alpha-alumina and the surface-treated beta-alumina and then the alpha-alumina And a method of joining beta-alumina.

일반적으로, 나트륨-황 전지의 성능 및 안정성을 위해서는 절연링으로 사용되는 알파-알루미나와 절연체로 사용되는 베타-알루미나를 접합하기 위한 고품질의 접합재가 필수적이지만, 세라믹 간의 접합은 (1) 화학적 안정성, (2) 낮은 확산률, (3) 높은 녹는점과 같은 세라믹 고유의 성질 때문에 쉽지 않다. In general, for the performance and stability of sodium-sulfur batteries, a high-quality bonding material for bonding alpha-alumina used as an insulating ring and beta-alumina used as an insulator is essential, but the bonding between ceramics is required to (1) (2) low diffusion rate, and (3) high melting point.

따라서, 알파-알루미나 베타-알루미나의 접합을 실행하기 위해, 알파-알루미나와 베타-알루미나의 사이에 유리접합재를 이용하여 접합을 수행하게 된다. 알파-알루미나와 베타-알루미나 접합에 사용되는 유리접합재는 모재(Parent ceramics)와의 화학적 적합성을 갖고, 열팽창계수, 점성, 흐름성 및 용융특성을 넓은 범위에서 제어가 가능하며, 유리는 세라믹과의 접합력이 우수하다는 특징을 가지고 있다.Thus, in order to carry out the bonding of alpha-alumina beta-alumina, bonding is performed using a glass bonding material between alpha-alumina and beta-alumina. Glass bonding materials used for alpha-alumina and beta-alumina bonding have chemical compatibility with parent ceramics and can control the thermal expansion coefficient, viscosity, flowability and melting properties over a wide range. Glass can be bonded to ceramics Is superior.

유리접합재를 이용하여 알파-알루미나와 베타-알루미나의 접합을 수행함에 있어, 알파-알루미나 및 베타-알루미나의 표면처리를 통해 기공을 형성할 수 있고, 인위적으로 기공이 형성된 부분은 표면 에너지가 높은 상태이기 때문에 다른 원소와의 결합이 더 용이하게 된다. 또한, 추가적으로 생성된 기공은 접합과정에서 접합재의 침투경로가 되며, 이를 통하여 보다 많은 확산경로를 제공할 수 있다. In performing the bonding of alpha-alumina and beta-alumina using a glass bonding material, pores can be formed through surface treatment of alpha-alumina and beta-alumina, and artificially formed pores have high surface energy It becomes easier to combine with other elements. Additionally, the pores that are additionally created are the penetration paths of the bonding material during the bonding process, thereby providing more diffusion paths.

종래의 베타-알루미나의 표면처리 방법은 플라즈마처리(Plasma treatment) 또는 불활성기체를 이용한 임플란테이션(Implantation) 방법이 있지만, 이들은 진공 분위기에서 공정을 해야하기 때문에, 고가의 장비가 필요하다는 단점이 있다.
Conventional methods of surface treatment of beta-alumina include plasma treatment or implantation methods using an inert gas, but since they must be processed in a vacuum atmosphere, expensive equipment is required .

따라서, 본 발명의 목적은 베타-알루미나를 표면처리하여 미세기공을 형성하고, 바륨-보로실리케이트(Barium-borosilicate) 기반의 유리에 RO계(R=K, Sr, Ca 등)의 첨가물을 첨가한 유리접합재를 알파-알루미나와 표면처리된 베타-알루미나 사이에 배치한 후, 산화분위기에서 알파-알루미나와 베타-알루미나를 접합함으로써, 접합된 알파-알루미나와 베타-알루미나 사이의 접합강도를 향상시킬 수 있는 알파 알루미나와 베타 알루미나 접합방법을 제공하는 것이다.
Accordingly, an object of the present invention is to provide a process for producing a microporous membrane by surface-treating beta-alumina to form micropores and adding an RO-based additive (R = K, Sr, Ca, etc.) to a glass based on barium-borosilicate Alignment between the bonded alpha-alumina and beta-alumina can be improved by placing the glass bonding material between alpha-alumina and surface-treated beta-alumina and then bonding alpha-alumina and beta-alumina in an oxidizing atmosphere Lt; RTI ID = 0.0 > alumina < / RTI > and beta alumina.

상기와 같은 목적을 달성하기 위한, 본 발명에 따른 알파-알루미나와 베타-알루미나의 접합방법은 (A) 알파-알루미나의 표면을 인산(H3PO4)을 이용하여 표면을 세척하는 단계와, (B) 베타-알루미나의 표면에 기공을 형성하기 위해 산처리를 실시하는 단계, (C) 성형된 유리접합재를 이용하여 알파-알루미나와 금속조립재간에 접합을 위해 산화분위기에서 열처리접합을 수행하는 단계로 구성되는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of bonding alpha-alumina to beta-alumina, the method comprising: (A) washing the surface of alpha-alumina with phosphoric acid (H 3 PO 4 ) (B) conducting an acid treatment to form pores on the surface of the beta-alumina, (C) performing a heat treatment bond in an oxidizing atmosphere for bonding between the alpha-alumina and the metal assemblage using the shaped glass bonding material The method comprising the steps of:

본 발명에 따른 유리접합재는 바륨-보로실리케이트(Barium-borosilicate) 기반의 유리에 RO계(R=K, Sr, Ca등)의 첨가물을 포함하도록 설계되어, 열팽창계수 제어 및 접합온도 제어를 가능하게 한다. The glass bonding material according to the present invention is designed so as to include an additive of RO system (R = K, Sr, Ca, etc.) to glass of barium-borosilicate base so that thermal expansion coefficient control and junction temperature control are possible do.

상기 유리접합재의 열팽창계수의 값은 알파-알루미나와 베타-알루미나의 열팽창계수와 유사한 (8.0~9.0 10-6/)의 값을 갖는 것을 특징으로 한다.
The value of the thermal expansion coefficient of the glass bonding material has a value (8.0 to 9.0 10 -6 /) similar to the thermal expansion coefficient of alpha-alumina and beta-alumina.

이것에 의해, 본 발명에 따른 알파-알루미나와 베타-알루미나의 접합방법은 나트륨-황 전지의 구동환경에서 알파-알루미나와 베타-알루미나의 접합을 견고하게 유지시켜주고, 그 안전성을 향상시킬 수 있는 효과가 있다.
Accordingly, the method of joining alpha-alumina and beta-alumina according to the present invention can provide a method of joining alpha-alumina and beta-alumina firmly in a driving environment of a sodium-sulfur battery, It is effective.

도 1은 본 발명에 사용된 유리접합재의 조성 및 물리적 특성
도 2는 본 발명에 사용된 유리접합재의 내화학성 분석결과
도 3은 접합층의 단면을 보여주는 전자현미경 사진
도 4는 표면처리 시간에 따른 접합강도 측정결과
도 5는 설계된 접합재가 접합공정 이후 각각의 피접합층으로 침투한 것을 나타내는 뎁스 프로파일(depth profile)
1 shows the composition and physical properties of the glass bonding material used in the present invention
2 is a graph showing the results of chemical resistance analysis of the glass bonding material used in the present invention
3 is an electron micrograph showing the cross-section of the bonding layer
Fig. 4 is a graph showing the results of measurement of bonding strength
5 shows a depth profile showing that the designed bonding material has penetrated into the respective bonded layers after the bonding process,

본 발명에 따른 알파-알루미나와 베타-알루미나의 접합방법은, The method of joining alpha-alumina and beta-alumina according to the present invention comprises:

(A) 알파-알루미나의 표면을 세정하기 위해 산처리하는 단계와, (A) acid treating to clean the surface of alpha-alumina;

(B) 베타-알루미나의 표면에 기공을 형성하기 위해 산처리하는 단계와,(B) acid treatment to form pores on the surface of the beta-alumina,

(C) 바륨-보로실리케이트(Barium-borosilicate) 기반의 유리에 RO계(R=K, Sr, Ca 등)의 첨가물을 첨가한 유리접합재를 알파-알루미나와 표면처리된 베타-알루미나 사이에 배치한 후, 산화분위기에서 알파-알루미나와 베타-알루미나를 접합하는 단계로 구성된다.(C) A glass bonding material to which an additive of RO system (R = K, Sr, Ca, etc.) is added to glass based on barium-borosilicate is placed between alpha-alumina and surface-treated beta-alumina Followed by bonding alpha-alumina and beta-alumina in an oxidizing atmosphere.

(A) 알파-알루미나의 표면을 세정하기 위해 산처리하는 단계에서는 인산(H3PO4)을 이용하여 표면을 산처리하고, (B) 베타-알루미나의 표면을 산처리하는 단계에서는 황산(H2SO4)을 이용하여 표면을 산처리한다.(A) treating the surface with phosphoric acid (H 3 PO 4 ) in the step of acid treatment to clean the surface of the alpha-alumina, (B) in the step of acid-treating the surface of the beta-alumina with sulfuric acid 2 SO 4 ).

베타-알루미나의 표면 산처리는 베타-알루미나의 구성성분 중 하나인 Na2O를 부분적으로 제거함으로써, 표면에 기공을 형성할 수 있고, 인위적으로 기공이 형성된 부분은 표면에너지가 높은 상태이기 때문에 다른 원소와의 결합이 더 용이하게 된다. 또한 추가적으로 생성된 기공은 접합과정에서 유리접합재의 침투경로가 되며, 이를 통하여 보다 많은 확산경로를 제공할 수 있다.The surface acid treatment of beta-alumina can form pores on the surface by partially removing Na 2 O, which is one of the constituent components of beta-alumina, and the portion where pores are artificially formed has a high surface energy. The coupling with the element becomes easier. Additionally, the pores created additionally become the penetration path of the glass bonding material during the bonding process, thereby providing more diffusion paths.

본 발명에 따른 유리접합재의 조성 및 물리적 특성을 도 1에 도시하였다. The composition and physical properties of the glass bonding material according to the present invention are shown in Fig.

본 발명에 따른 유리접합재는 바륨-보로실리케이트(Barium-borosilicate) 기반의 유리에 RO계(R=K, Sr, Ca 등)의 첨가물을 포함하는 것을 특징으로 하며, 유리전이점은 600℃ 이하이고, 열팽창계수는 8.0~9.0 10-6/℃ 사이의 값을 갖는 것을 특징으로 한다. 또한, 본 발명에 따른 유리접합재의 내화학 특성을 도 2에서 확인할 수 있는데, 1 몰(mole)의 황산 수용액과 수산화나트륨 수용액에서 반응시킨 결과이다. 도 1을 참조하면, 본 발명에 따른 유리접합재는 수산화나트륨에 대해서는 완벽한 내화학성을 보이고 있었으며, 황산에 대해서는 1시간동안 반응시킨 결과 2%정도의 무게감량을 보이고 있다. The glass bonding material according to the present invention is characterized by containing an additive of RO system (R = K, Sr, Ca, etc.) in a glass based on barium-borosilicate, , And a coefficient of thermal expansion of 8.0 to 9.0 10 -6 / 캜. In addition, the chemical bonding properties of the glass bonding material according to the present invention can be seen in FIG. 2, which is the result of the reaction in an aqueous sulfuric acid solution and an aqueous sodium hydroxide solution. Referring to FIG. 1, the glass bonding material according to the present invention showed complete chemical resistance with respect to sodium hydroxide, and the reaction with sulfuric acid for 1 hour showed a weight loss of about 2%.

도 3은 본 발명에 따른 유리접합재를 이용하여, 알파-알루미나와 베타-알루미나의 접합이 완료된 시료의 단면을 촬영한 전자주사현미경의 사진을 도시하였다. FIG. 3 is a photograph of a cross section of a sample having completed the bonding of alpha-alumina and beta-alumina using the glass bonding material according to the present invention.

결과에 나타나듯이, 접합계면이 연속적으로 나타나며, 접합이 잘 이루어진 것을 확인할 수 있다. As shown in the results, the bonding interface appears continuously, and it can be confirmed that the bonding is well performed.

도 4는 표면 황산처리 시간에 따른 접합단면의 침투율을 분석한 결과를 도시하였다. 접합재의 침투근거를 확인하기 위해, XPS분석을 통하여, 접합재 중에서 가장 많은 성분을 차지하는 바륨(Ba)을 검출하는 것을 근거로 삼았다. 도 4에 나타난 것과 같이, 2시간까지는 베타-알루미나 내부에서 접합재의 침투를 확인할 수 있었지만, 3시간 이후부터는 접합재가 베타-알루미나의 내부로 거의 침투하지 못하는 것을 확인할 수 있었고, 결과적으로 장시간의 표면 황산처리는 접합강도의 특성을 오히려 떨어트린다는 것을 예측할 수 있다.FIG. 4 shows the results of analyzing the penetration rate of the bonded section according to the surface sulfuric acid treatment time. In order to confirm the basis of penetration of the bonding material, it was based on the detection of barium (Ba) occupying the most component in the bonding material through XPS analysis. As shown in FIG. 4, penetration of the bonding material in the beta-alumina was confirmed up to 2 hours, but it was confirmed that the bonding material could hardly penetrate into the inside of the beta-alumina after 3 hours. As a result, It can be predicted that the treatment rather deteriorates the characteristic of the bonding strength.

도 5는 표면의 황산처리 시간에 따른 알파-알루미나와의 베타-알루미나의 접합강도를 도시하고 있다. 황산 표면처리는 전체적으로 2시간 이하의 시간동안 진행될 경우 표면처리를 하지 않았을 때보다 접합강도가 향상되는 결과를 보였다. 특히 10분 내외의 짧은 시간 동안 처리할 경우, 가장 높은 접합강도 향상결과를 보였지만, 이후 Na2O뿐만 아니라 Al2O3까지 제거하므로, 오히려 접합강도를 떨어트리는 결과를 나타내는 것으로 확인되었으며, 도 4의 결과와 같은 맥락으로 이해될 수 있다.FIG. 5 shows the bond strength of beta-alumina with alpha-alumina according to the sulfuric acid treatment time of the surface. In case of sulfuric acid surface treatment, the bond strength was improved more than when surface treatment was not performed for 2 hours or less as a whole. Particularly, when treated for a short period of time of about 10 minutes, the highest bonding strength improvement result was obtained. However, since the removal of not only Na 2 O but also Al 2 O 3 was found to result in lower bonding strength, In the same context.

본 발명은 알파-알루미나와 베타-알루미나간의 접합을 수행하기 위한 것으로 설명되어 있으나, 본 발명은 여기에 한정되지 않고, 바륨-보로실리케이트(Barium-borosilicate)기반에 600℃ 이하의 유리전이온도와 8.0~9.0 10-6/℃의 열팽창계수를 갖는 유리조성을 포함한다.
The present invention has been described for performing the bonding between alpha-alumina and beta-alumina. However, the present invention is not limited thereto, and the present invention can be applied to a barium-borosilicate- To 9.0 < RTI ID = 0.0 > 10-6 / C. ≪ / RTI >

(실시예)(Example)

실험예 1. 유리접합재를 이용한 접합Experimental Example 1. Bonding Using Glass Bonding Material

알파-알루미나와 표면처리된 베타-알루미나의 접합을 위해, 유리접합재를 프레스를 이용하여 성형하고, 1차 열처리를 통하여 바인더 번-아웃(Binder Burn-out)시킨 후, 알파-알루미나와 베타-알루미나 사이에 위치시키고, 산화분위기에서 접합공정을 수행한다. To bond the alpha-alumina with the surface-treated beta-alumina, the glass bonding material was molded using a press and subjected to binder burn-out through a primary heat treatment, and then the alpha-alumina and beta-alumina And a bonding step is performed in an oxidizing atmosphere.

유리접합재 성형시, 바인더를 첨가하므로 바인더를 충분히 날려주기 위해 400℃ 부근에서 1시간 정도 사전열처리구간을 갖는 것이 바람직하다. 바인더 제거구간 이후 접합온도까지 5℃/min의 속도로 온도를 상승시킨다. 접합온도에서 2시간동안 접합을 진행한 후, 어닐링 포인트(Annealing point)까지 -1℃/min의 속도로 냉각시킨 후, 어닐링 포인트(Annealing point)에서 1시간동안 유지시킴으로써, 알루미나와 유리접합재 사이의 열팽창계수의 차이에 의한 스트레스를 제거하며, 이후 로냉(Furnace-cooling)을 진행한다.
It is preferable to have a pre-heat treatment zone for about 1 hour at about 400 ° C to sufficiently blow out the binder when the glass binder is molded. After the binder removal period, the temperature is increased to the bonding temperature at a rate of 5 ° C / min. After joining at the junction temperature for 2 hours, cooling to the annealing point at a rate of -1 [deg.] C / min and holding at the annealing point for 1 hour, The stress due to the difference in thermal expansion coefficient is removed, and then furnace-cooling is performed.

Claims (4)

(A) 알파-알루미나의 표면을 세정하기 위해 인산(H3PO4)을 이용하여 산처리하는 단계와,
(B) 베타-알루미나의 표면에 기공을 형성하기 위해 황산(H2SO4)을 이용하여 산처리하는 단계와,
(C) 바륨-보로실리케이트(Barium-borosilicate) 기반의 유리에 RO계의 첨가물을 첨가한 유리접합재를 알파-알루미나와 베타-알루미나 사이에 배치한 후, 산화분위기에서 알파-알루미나와 베타-알루미나를 접합하는 단계로 구성되는 것을 특징으로 하는 알파 알루미나와 베타 알루미나의 접합방법.
(A) acid treatment with phosphoric acid (H 3 PO 4 ) to clean the surface of the alpha-alumina,
(B) acid treatment with sulfuric acid (H 2 SO 4 ) to form pores on the surface of the beta-alumina,
(C) A glass bonding material to which a RO-based additive is added to a barium-borosilicate-based glass is placed between alpha-alumina and beta-alumina, and then alpha-alumina and beta-alumina And bonding the mixture of alpha alumina and beta alumina.
삭제delete 제 1 항에 있어서,
상기 유리접합재는 프레스를 이용하여 성형하고, 1차 열처리를 통하여 바인더 번-아웃(Binder Burn-out)시키는 것을 특징으로 하는 알파 알루미나와 베타 알루미나의 접합방법.
The method according to claim 1,
Wherein the glass bonding material is molded using a press and is subjected to a binder burn-out through a primary heat treatment to bond the alpha-alumina and beta-alumina.
제 3 항에 있어서,
상기 1차 열처리는 바인더를 첨가하므로 바인더를 충분히 날려주기 위해 400℃ 부근에서 1시간의 사전열처리구간을 갖고, 바인더 제거구간 이후 접합온도까지 5℃/min의 속도로 온도를 상승시키고, 접합온도에서 2시간동안 접합을 진행한 후, 어닐링 포인트(Annealing point)까지 -1℃/min의 속도로 냉각시킨 후, 어닐링 포인트(Annealing point)에서 1시간동안 유지시킴으로써, 알파-알루미나와 유리접합재 그리고 베타-알루미나와 유리접합재 사이의 열팽창계수의 차이에 의한 스트레스를 제거하며, 이후 로냉(Furnace-cooling)을 진행하는 것을 특징으로 하는 알파 알루미나와 베타 알루미나의 접합방법.
The method of claim 3,
The primary heat treatment has a preheating period of about 1 hour at about 400 DEG C to sufficiently discharge the binder, and the temperature is raised at a rate of 5 DEG C / min to the bonding temperature after the binder removal period, Alumina, glass bonding material, and beta-alumina were annealed for 2 hours, followed by cooling to an annealing point at a rate of -1 [deg.] C / min and then for 1 hour at an annealing point. Wherein the stress caused by the difference in thermal expansion coefficient between the alumina and the glass bonding material is removed and then furnace-cooling is performed.
KR1020140072728A 2014-06-16 2014-06-16 Method for bonding alpha alumina and beta alumina KR101580303B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140072728A KR101580303B1 (en) 2014-06-16 2014-06-16 Method for bonding alpha alumina and beta alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140072728A KR101580303B1 (en) 2014-06-16 2014-06-16 Method for bonding alpha alumina and beta alumina

Publications (1)

Publication Number Publication Date
KR101580303B1 true KR101580303B1 (en) 2015-12-28

Family

ID=55085054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140072728A KR101580303B1 (en) 2014-06-16 2014-06-16 Method for bonding alpha alumina and beta alumina

Country Status (1)

Country Link
KR (1) KR101580303B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079815B2 (en) * 1986-05-09 1995-02-01 株式会社日立製作所 Method for manufacturing β-alumina-based solid electrolyte tube
JP2013234117A (en) * 2012-05-04 2013-11-21 Schott Ag Glass ceramic bonding material and use thereof
JP7009815B2 (en) 2017-07-27 2022-02-10 東レ株式会社 Chemical solution treatment method and chemical solution treatment device for film, and manufacturing method and manufacturing device for ion exchange membrane.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079815B2 (en) * 1986-05-09 1995-02-01 株式会社日立製作所 Method for manufacturing β-alumina-based solid electrolyte tube
JP2013234117A (en) * 2012-05-04 2013-11-21 Schott Ag Glass ceramic bonding material and use thereof
JP7009815B2 (en) 2017-07-27 2022-02-10 東レ株式会社 Chemical solution treatment method and chemical solution treatment device for film, and manufacturing method and manufacturing device for ion exchange membrane.

Similar Documents

Publication Publication Date Title
US8790992B2 (en) Low-temperature bonding process
FI125996B (en) Glass ceramic jointing material and its use
KR20190108138A (en) Supports for Semiconductor Structures
KR101580303B1 (en) Method for bonding alpha alumina and beta alumina
CN104471726B (en) Direct wafer bonding of the gallium nitride to silicon
JP6799015B2 (en) A method for manufacturing a semiconductor device including a layer for trapping electric charges.
CN103021773B (en) Porous composite ceramics parts, its preparation method and plasma process chamber
KR101991091B1 (en) Process for the manufacture of a high resistivity semiconductor substrate
EP3040322B1 (en) Joined porous substrates and process to join porous substrates while maintaining structural and physical characteristics across the bond surface
CN107000117B (en) Microelectronic component with reduced risk of cracking and method for the production thereof
KR101265941B1 (en) Manufacturing method of glaze
EP2528067A1 (en) A fire resistant cable
WO2016006640A1 (en) METHOD FOR PRODUCING SiC WAFER, METHOD FOR PRODUCING SiC SEMICONDUCTOR, AND SILICON CARBIDE COMPOSITE SUBSTRATE
KR100664900B1 (en) ANODIZED Al OR Al ALLOY MEMBER HAVING GOOD THERMAL CRACKING-RESISTANCE AND THE METHOD FOR MANUFACTURING THE MEMBER
JP2008105927A (en) Method of joining porous silicon carbide body and silicon carbide-silicon composite
KR101660279B1 (en) - - low-temperature bonding method for bonding between metal and -alumina in sodium-sulfur battery
JP2012519372A (en) Method for manufacturing a heterostructure aimed at reducing the tensile stress state of a donor substrate
CN105655243A (en) Assembly process of two substrates
CN104025281B (en) Method for manufacturing substrate and semiconductor structure
KR101838730B1 (en) Reaction bonded silicon carbide joining and preparing method of the same
JP2019106292A (en) Electrode plate for plasma processing device, and method for manufacturing the same
KR20160021433A (en) LOW-TEMPERATURE BONDING METHOD FOR BONDING BETWEEN METAL AND α-ALUMINA IN SODIUM-SULFUR BATTERY
KR101541896B1 (en) Apparatus and method for reducing rare earth resources
EP4129955A1 (en) Ceramic plate and method for producing same
CN111741932A (en) Sealing composition

Legal Events

Date Code Title Description
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee