KR101568342B1 - A complex trafficking through plasmodesmata and method of transporting targeted material through plasmodesmata - Google Patents

A complex trafficking through plasmodesmata and method of transporting targeted material through plasmodesmata Download PDF

Info

Publication number
KR101568342B1
KR101568342B1 KR1020130014122A KR20130014122A KR101568342B1 KR 101568342 B1 KR101568342 B1 KR 101568342B1 KR 1020130014122 A KR1020130014122 A KR 1020130014122A KR 20130014122 A KR20130014122 A KR 20130014122A KR 101568342 B1 KR101568342 B1 KR 101568342B1
Authority
KR
South Korea
Prior art keywords
dna
artificial sequence
zfm
itd1
dof
Prior art date
Application number
KR1020130014122A
Other languages
Korean (ko)
Other versions
KR20140100841A (en
Inventor
김재연
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020130014122A priority Critical patent/KR101568342B1/en
Publication of KR20140100841A publication Critical patent/KR20140100841A/en
Application granted granted Critical
Publication of KR101568342B1 publication Critical patent/KR101568342B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 식물 세포 간 원형질연락사를 통해 이동 가능한 복합체 및 그를 이용하여 목적 물질을 식물 세포 간 원형질연락사를 통해 이동시키는 방법에 관한 것이다. 원형질연락사를 통해 이동할 수 없는 목적물질을 본 발명의 서열번호 1의 아미노산 서열을 포함하는 펩티드와 결합시킴으로써 원형질연락사를 통해 이동시킬 수 있다. The present invention relates to a complex capable of moving through plant cell intergenic plasmids and a method for moving a target substance through a plant cell intergenic plasmatic liaison using the complex. A target substance which can not be migrated through the plasmatic liaison can be moved through the plasmatic liaison by binding with a peptide comprising the amino acid sequence of SEQ ID NO: 1 of the present invention.

Description

원형질연락사를 통해 이동 가능한 복합체 및 그를 이용하여 식물 세포 간 목적 물질을 이동시키는 방법{A complex trafficking through plasmodesmata and method of transporting targeted material through plasmodesmata} [0001] The present invention relates to a complex capable of moving through a plasmatic liaison, and a method for transferring a target substance between plant cells using the same,

본 발명은 식물 세포 간 원형질연락사를 통해 이동 가능한 복합체 및 그를 이용하여 목적 물질을 식물 세포 간 원형질연락사를 통해 이동시키는 방법에 관한 것이다.The present invention relates to a complex capable of moving through plant cell intergenic plasmids and a method for moving a target substance through a plant cell intergenic plasmatic liaison using the complex.

식물계에서 조절 단백질 및 mRNA의 세포간 이동은 식물 발달의 비-세포-자율 (non-cell-autonomous: NCA) 통제를 가능하게 하는 원형질연락사 (plasmodesmata: PD)에 의해 확립된 심플라즘 (symplasm) 연락 채널에 의해 촉진된다 (1-7). 주요 발달 프로그램의 중요한 조절자로서 역할하는 전사 인자 (transcription factor: TF)가 본 발명의 주요 대상이다. 처음 보고된 내부 NCA-TF는 옥수수 KNOTTED1 (KN1)이다 (8-10). KN1은 싹 (shoot)의 끝 분열조직의 sub-L1 층에서 발현되는 것으로 알려졌으나, 상기 단백질은 그것이 세포 운명 결정하는 것을 조절하는 L1 층에서 검출된다 (8, 11).The intercellular transport of regulatory proteins and mRNAs in the plant system is a symplasm established by plasmodesmata (PD), which enables non-cell-autonomous (NCA) control of plant development. (1-7). A transcription factor (TF), which acts as an important regulator of the major developmental program, is a major subject of the present invention. The first reported internal NCA-TF is maize KNOTTED1 (KN1) (8-10). KN1 is known to be expressed in the sub-L1 layer of the shoot fissure tissue, but the protein is detected in the L1 layer, which regulates it to determine cell fate (8, 11).

Antirrhinum 꽃 호메오 단백질인 DEFICIENS 및 GLOBOSA (12), 뿌리 발달에 관련된 전사 인자, 예를 들면 Arabidopsis GRAS 패밀리 멤버, SHORT ROOT (SHR) (13), 및 CAPRICE, Myb-like DNA-결합 도메인 단백질 (14,15)은 특성이 잘 알려진 다른 NCA-TF의 예를 나타낸다. SHR의 경우, 이는 중심주 (stele)에서 발현되나 그의 작용 부위는 이 조직들을 벗어나 있고, 이는 피층/내배엽 초기의 불균형한 세포 불균형 및 내배엽 세포 운명을 조절한다. 흥미롭게도, SHR에 있는 보존된 GRAS 도메인 및 핵 위치화 (localization)는 이동을 위해 필요한 것으로 밝혀졌다 (16). Antirrhinum flower proteins such as DEFICIENS and GLOBOSA (12), transcription factors related to root development such as Arabidopsis GRAS family members, SHORT ROOT (SHR) (13), and CAPRICE, Myb-like DNA- , 15) shows an example of another well-known NCA-TF. In the case of SHR, it is expressed in the central stele, but its active site is deviated from these tissues, which regulates unbalanced cellular imbalance and endodermal cell fate in the early stages of the cortex / endoderm. Interestingly, conserved GRAS domains in SHR and nuclear localization have been found to be necessary for migration (16).

이와 같은 NCA-TF의 세포간 이동은 선택적 (10, 14-17) 또는 비선택적 (18-21) 경로를 포함할 수 있다. 어떤 단백질은 PD를 통한 단순한 확산에 의해 비선택적으로 이동할 수 있다. LFY 및 세포질에 위치한 GFP (녹색 형광 단백질)도 이러한 경로를 따르는 것으로 나타났다 (18, 21, 22). 이러한 단백질들은 서로 상호작용하고 PD를 통해 세포 간 이동하기 위한 특이적 모티프를 필요로 하지 않는 것으로 보인다. 반대로, NCA-TF의 선택적인 이동은 그들의 표적화 및 PD를 통한 이동을 중개하는 특이적 펩티드 또는 모티브와 관련 있다 (10, 15, 22-25). Such intercellular migration of NCA-TF may include selective (10, 14-17) or non-selective (18-21) pathways. Some proteins can migrate non-selectively by simple diffusion through PD. LFY and cytoplasmic GFP (green fluorescent protein) also follow this pathway (18, 21, 22). These proteins do not seem to require specific motifs to interact with each other and to intercellularly transfer through PD. Conversely, selective migration of NCA-TF is associated with specific peptides or motifs mediating their targeting and migration through PD (10, 15, 22-25).

본 발명은 TF의 아라비돕시스 Dof 패밀리의 NCA 능력에 대한 것이다. 그의 세포 간 이동 형식을 밝히기 위해 자세한 분석이 INTERCELLULAR TRAFFICKING DOF 1 (ITD1)에 대해서 행하여졌다. 돌연변이 분석은 ITD1 내의 모티프가 PD를 통하여 이동하는데 필요하고 충분하다는 것을 밝혀냈다. The present invention relates to the NCA capability of the Arabidopsis Dof family of TF. A detailed analysis was performed on INTERCELLULAR TRAFFICKING DOF 1 (ITD1) to reveal its intercellular transport pattern. The mutation analysis revealed that motifs within ITD1 are necessary and sufficient to travel through the PD.

본 발명의 목적은 목적 물질을 식물 세포 간 원형질연락사를 통해 이동시키는 복합체 및 그를 이용하여 목적 물질을 원형질연락사를 통해 이동시키는 방법을 제공하는 것이다.It is an object of the present invention to provide a complex for moving a target substance through a plant cell interplanar communicator and a method for moving a target substance through the plasmatic liaison using the complex.

본 발명의 일 양태는 서열번호 1의 아미노산 서열을 포함하는 펩티드 및 목적 물질을 포함하는 원형질연락사를 통해 이동 가능한 복합체를 제공한다. One aspect of the present invention provides a complex capable of moving through a plasmatic liaison comprising a peptide comprising the amino acid sequence of SEQ ID NO: 1 and a target substance.

"원형질연락사"는 다세포 식물체에서 이웃한 세포벽 내에 원형질막으로 형성된 통로로 세포질이 세포 외부 방향으로 확장된 것을 의미한다. 충분히 작은 크기의 물질들 (800 Da이하)은 원형질연락사를 통해 비선택적으로 확산이 가능하나 일정 정도 이상의 크기를 갖는 물질들은 원형질연락사가 에너지를 사용하여 선택적으로 투과시킨다. "Plasma contactor" means a cytoplasmic channel formed in a cell wall adjacent to a multi-celled plant, and the cytoplasm extends toward the outside of the cell. Substances of sufficiently small size (less than 800 Da) can diffuse nonselectively through the plenum liaison, but substances with a size above a certain level are selectively transmitted through the plasma liaison using energy.

"목적 물질"은 원형질연락사를 통해 다른 세포로 이동시켜 생리활성조절에 관여하거나 약리효과를 발현할 수 있는 것 또는 세포 내에서 생물학적 활성을 갖는 물질을 의미한다. 예를 들면, 핵산, 탄수화물, 지질, 당지질, 단백질 등이 있을 수 있다. 상기 목적 물질은 그 자체만으로는 원형질연락사를 통해 이동할 수 없는 물질일 수 있다. 이러한 물질의 예로서, 크기가 커서 원형질연락사를 통해 확산되지 못하는 물질, 세포-자율 단백질 (cell-autonomous protein) 등이 있다. "Target substance" means a substance which is involved in the regulation of physiological activity by transferring it to another cell through the plasma-cytoplasmic receptor or exhibits a pharmacological effect or a substance having a biological activity in the cell. For example, nucleic acids, carbohydrates, lipids, glycolipids, proteins, and the like. The target material itself can be a substance that can not move through the plasmatic liaison. Examples of such materials include substances that are large in size and can not diffuse through the plasma liaison, cell-autonomous proteins, and the like.

서열번호 1의 아미노산 서열은 아라비돕시스 탈리아나 (Arabidopsis thaliana)의 전사인자 단백질로서, Dof 패밀리 멤버 중 하나인 AtDof4.1의 61번째 아미노산 잔기부터 110번째 아미노산 잔기까지의 아미노산 서열을 의미한다. 상기 아미노산 서열 부분은 AtDof4.1의 N-말단 가변영역과 징크 핑거 도메인 영역으로 상기 부분이 원형질연락사를 통해 선택적인 이동을 하는데 충분하고도 필요한 것으로 본 발명의 실험에 의해 증명되었다. 따라서 상기 목적물질과 서열번호 1의 아미노산 서열을 포함하는 펩티드가 연결되는 경우 상기 목적물질은 식물세포 내의 원형질연락사를 통해 이동할 수 있다. The amino acid sequence of SEQ ID NO: 1 is the transcription factor protein of Arabidopsis thaliana, which means the amino acid sequence from the 61st amino acid residue to the 110th amino acid residue of AtDof4.1, one of the Dof family members. The amino acid sequence portion has been demonstrated by the experiments of the present invention to be sufficient for the N-terminal variable region of AtDof4.1 and the zinc finger domain region to be sufficient for the said moiety to undergo selective migration through the plasmatic liaison. Therefore, when the target substance and the peptide comprising the amino acid sequence of SEQ ID NO: 1 are linked, the target substance can move through the plasmatic liaison in the plant cell.

상기 하나 이상의 목적 물질은 상기 서열번호 1의 아미노산 서열을 포함하는 펩티드와 물리/화학적 공유 결합, 비공유 결합으로 연결되거나, 또는 매개체를 이용하여 통합되거나 (incorporated) 융합된 (fused) 형태로 연결될 수 있다. 상기 목적물질은 상기 서열번호 1의 아미노산 서열을 포함하는 펩티드의 N-말단 또는 C-말단에 연결될 수 있다. 상기 목적 물질이 단백질인 경우 그 단백질의 cDNA를 PCR을 통해 획득한 후 벡터를 이용한 클로닝 기법으로 융합된 단백질을 수득할 수 있거나, 또는 화학적인 융합방법이 있다. 예를 들어, 활성이 있는 목적 물질을 여러 링커 (linker)와 연결한 후 상기 서열번호 1의 아미노산 서열을 포함하는 펩티드와 결합 반응시킬 수 있다. The one or more target substances may be linked physically / chemically, covalently or non-covalently with the peptide comprising the amino acid sequence of SEQ ID NO: 1, or may be incorporated into a fused form using a mediator . The target substance may be linked to the N-terminal or C-terminal of the peptide comprising the amino acid sequence of SEQ ID NO: 1. When the target substance is a protein, the cDNA of the protein can be obtained by PCR, followed by obtaining a fusion protein by a cloning technique using a vector, or a chemical fusion method. For example, a target substance having activity may be ligated to a plurality of linkers, and then the peptide may be bound to a peptide comprising the amino acid sequence of SEQ ID NO: 1.

본 발명의 일 구체예에 따르면, 상기 펩티드는 서열번호 2의 아미노산 서열을 가질 수 있다.According to one embodiment of the present invention, the peptide may have the amino acid sequence of SEQ ID NO: 2.

서열번호 2의 아미노산 서열은 아라비돕시스 탈리아나의 전사인자 단백질인 AtDof4.1의 아미노산 서열을 의미한다. 서열번호 2의 아미노산 서열은 AtDof4.1 단백질의 N-말단 가변 영역 및 징크 핑거 도메인 (ZFM) 영역을 포함하므로 상기 서열번호 2의 아미노산 서열을 갖는 펩티드와 연결된 상기 목적물질은 식물 세포 내 원형질연락사를 통하여 이동할 수 있다. The amino acid sequence of SEQ ID NO: 2 means the amino acid sequence of AtDof4.1, the transcription factor protein of Arabidopsis thaliana. Since the amino acid sequence of SEQ ID NO: 2 includes an N-terminal variable region and a zinc finger domain (ZFM) region of the AtDof4.1 protein, the target substance linked to a peptide having the amino acid sequence of SEQ ID NO: Lt; / RTI >

본 발명의 일 구체예에 따르면, 상기 목적 물질은 핵산, 탄수화물, 지질, 당지질, 단백질 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다.According to one embodiment of the present invention, the target substance may be selected from the group consisting of nucleic acids, carbohydrates, lipids, glycolipids, proteins, and combinations thereof.

본 발명의 일 구체예에 따르면, 상기 목적물질은 단백질이고, 상기 단백질은 세포-자율 단백질 (cell-autonomous protein)일 수 있다. "세포-자율 단백질"은 다른 세포로 이동하지 않고 발현된 세포 내에서 자신의 역할을 하는 단백질을 의미한다. 상기 세포-자율 단백질의 경우 다른 세포로 이동할 필요가 없기 때문에 식물 세포 내에서 발현된 경우 다른 식물 세포로 원형질연락사를 통해 이동할 수 없으나 상기 서열번호 1의 아미노산 서열을 포함하는 펩티드와 결합시키면 원형질연락사를 통해 이동할 수 있다. 상기 세포-자율 단백질의 예로 아라비돕시스 탈리아나의 GLABROUS1 단백질, 아라비돕시스 탈리아나의 AtDof5.4 단백질을 포함하나, 이에 제한되지 않는다. According to one embodiment of the present invention, the target substance is a protein, and the protein may be a cell-autonomous protein. "Cell-autonomous protein" refers to a protein that does not migrate to another cell and plays its role in the expressed cell. In the case of the cell-autonomous protein, it is not necessary to move to another cell. Therefore, when expressed in a plant cell, the cell-autonomous protein can not migrate to another plant cell through a plasmatic liaison, but when it is combined with a peptide comprising the amino acid sequence of SEQ ID NO: 1, Can move through. Examples of such cell-autonomous proteins include, but are not limited to, the GLABROUS1 protein of Arabidopsis thaliana and the AtDof5.4 protein of Arabidopsis thaliana.

본 발명의 일 구체예에 따르면, 상기 목적 물질이 단백질인 경우, 상기 단백질의 크기가 1kDa 내지 80kDa일 수 있다. According to one embodiment of the present invention, when the target substance is a protein, the size of the protein may be 1 kDa to 80 kDa.

원형질연락사를 통해 이동시키고자 하는 단백질의 크기가 일정 크기 이상인 경우 원형질연락사를 통해 이동시키기 어려우나, 상기 서열번호 1의 아미노산 서열을 포함하는 펩티드와 연결됨으로써 원형질연락사를 통해 선택적으로 이동시킬 수 있다. When the size of the protein to be transferred through the plasmatic liaison is larger than a certain size, it is difficult to move through the plasmatic liaison. However, the protein can be selectively moved through the plasmatic liaison by connecting with the peptide containing the amino acid sequence of SEQ ID NO: have.

본 발명의 일 구체예에 따르면, 상기 목적 물질은 단백질이고, 상기 복합체는 상기 서열번호 1의 아미노산 서열을 포함하는 펩티드 및 상기 목적 물질을 결합시킨 융합 단백질일 수 있다. According to one embodiment of the present invention, the target substance is a protein, and the complex may be a peptide comprising the amino acid sequence of SEQ ID NO: 1 and a fusion protein in which the target substance is bound.

상기 융합 단백질은 상기 서열번호 1의 아미노산 서열을 포함하는 펩티드를 코딩하는 뉴클레오티드 서열 및 상기 단백질인 목적물질을 코딩하는 뉴클레오티드 서열을 포함하는 벡터를 식물체 내에서 발현시킴으로써 획득할 수 있다. 상기 벡터는 상기 목적 물질을 코딩하는 뉴클레오티드 서열과 상기 서열번호 1의 아미노산 서열을 코딩하는 뉴클레오티드 서열을 PCR를 사용하여 증폭시켜 제한효소를 이용하여 식물체에 형질전환시킬 수 있는 적절한 벡터에 삽입함으로써 제조할 수 있다. 이 때 상기 목적물질을 코딩하는 뉴클레오티드 서열은 상기 서열번호 1의 아미노산 서열을 코딩하는 뉴클레오티드 서열의 N-말단 영역에 연결될 수도 있고 C-말단 영역에 연결될 수도 있다. 이와 같은 벡터 제조 방법은 당업계에 잘 알려져 있다 (33).The fusion protein can be obtained by expressing in a plant a vector comprising a nucleotide sequence encoding a peptide comprising the amino acid sequence of SEQ ID NO: 1 and a nucleotide sequence encoding the target protein. The vector is prepared by amplifying a nucleotide sequence encoding the target substance and a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 1 using PCR and inserting it into an appropriate vector capable of transforming into a plant using a restriction enzyme . Here, the nucleotide sequence encoding the target substance may be connected to the N-terminal region of the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 1 or may be connected to the C-terminal region. Such methods of making vectors are well known in the art (33).

본 발명의 일 양태는 서열번호 1의 아미노산 서열로 구성된 펩티드를 제공한다.One aspect of the present invention provides a peptide consisting of the amino acid sequence of SEQ ID NO: 1.

또한, 본 발명의 일 양태는 서열번호 1의 아미노산 서열로 구성된 펩티드 또는 그를 코딩하는 핵산을 포함하는 조성물을 제공한다. 상기 조성물은 목적 물질을 원형질연락사를 통해 이동시키는데 사용하기 위한 것일 수 있다. 또한, 상기 조성물은 목적 물질이 원형질연락사를 통해 이동될 수 있도록 상기 펩티드 또는 핵산과 융합시키는데 사용하기 위한 것일 수 있다.Further, one aspect of the present invention provides a composition comprising a peptide consisting of the amino acid sequence of SEQ ID NO: 1 or a nucleic acid encoding the same. The composition may be for use in transferring a target material through a plasmatic liaison. In addition, the composition may be for use in fusing the peptide or nucleic acid so that the target substance can be transferred through the plasmatic liaison.

본 발명의 일 양태는 상기 융합 단백질을 코딩하는 뉴클레오티드 서열을 포함하는 벡터를 제조하는 단계;One aspect of the present invention provides a method for producing a fusion protein comprising the steps of: preparing a vector comprising a nucleotide sequence encoding the fusion protein;

상기 벡터를 아라비돕시스 탈리아나에 형질 도입시키는 단계; 및Transducing said vector into Arabidopsis thaliana; And

상기 융합 단백질을 아라비돕시스 탈리아나 세포 내에서 발현시키는 단계를 포함하는 상기 목적 물질을 원형질연락사를 통해 이동시키는 방법을 제공한다. And expressing the fusion protein in an Arabidopsis thaliana cell. The present invention also provides a method for moving the target substance through a plasmatic liaison.

상기 벡터를 제조하는 단계는 상기 서열번호 1의 아미노산 서열을 포함하는 펩티드 및 원형질연락사를 통해 이동시키고자 하는 단백질을 코딩하는 뉴클레오티드 서열을 포함하는 벡터를 제조하는 단계를 의미한다. 일반적인 재조합 벡터를 제조하는 방법은 당업계에 잘 알려져 있다 (33). 상기 벡터는 당업계에 통상적인 발현 프로모터, 종결인자, 선택마커, 리포터 유전자, 태그서열, 효소 인지 서열, 다중 클로닝 부위 등을 포함할 수 있다. The step of preparing the vector means a step of preparing a vector containing the amino acid sequence of SEQ ID NO: 1 and a nucleotide sequence encoding the protein to be transferred through the plasmatic liaison. Methods for producing general recombinant vectors are well known in the art (33). Such vectors may include expression promoters, terminators, selectable markers, reporter genes, tag sequences, enzyme recognition sequences, multiple cloning sites, and the like that are conventional in the art.

상기 벡터를 아라비돕시스 탈리아나에 형질 도입시키는 단계는 당업계에 식물의 형질전환 방법으로 잘 알려진 아그로박테리움법을 사용할 수 있고, 아그로박테리움법 중에서도 deeping method, vacuum infiltration 또는 tissue culture를 사용할 수 있다 (34, 35). 상기 벡터로 형질 전환된 아라비돕시스 탈리아나는 적절한 항생제를 포함하는 MS 플레이트에서 발아시킴으로써 선택되어질 수 있다.The step of transducing the vector into Arabidopsis thaliana may be carried out by the Agrobacterium method well-known in the art as a method of transforming plants, and the Agrobacterium method may be a deeping method, a vacuum infiltration method or a tissue culture method 34, 35). Arabidopsis thaliana transformed with this vector can be selected by germination in an MS plate containing the appropriate antibiotic.

상기 융합단백질을 아리비돕시스 탈리아나 세포 내에서 발현시키는 단계는 상기 벡터로 형질 전환된 아라비돕시스 탈리아나를 MS 플레이트 또는 흙에서 성장시키는 것에 의해 수행될 수 있다. The step of expressing the fusion protein in the Aribbicycytalliana cell can be carried out by growing the Arabidopsis thaliana transformed with the vector in MS plate or soil.

원형질연락사를 통해 이동할 수 없는 목적물질을 본 발명의 서열번호 1의 아미노산 서열을 포함하는 펩티드와 결합시킴으로써 원형질연락사를 통해 이동시킬 수 있다. A target substance which can not be migrated through the plasmatic liaison can be moved through the plasmatic liaison by binding with a peptide comprising the amino acid sequence of SEQ ID NO: 1 of the present invention.

도 1은 실시예 1 및 실시예 2에 따른 다양한 단백질들의 식물 세포 간 이동 여부를 나타낸다.
도 2는 실시예 2 및 실시예 3에 따른 사상체 구조 (trichome rescue)의 결과를 도시한다.
도 3은 실시예 4, 5 및 6에 따른 각 전사인자의 징크 핑거 모티프 간의 서열 비교, 사상체 구조 여부를 나타낸다.
도 4는 J0571 인핸서 트랩 주에서 관찰된 GFPer 발현 패턴을 나타낸다.
도 5는 ITD1-mCherry이 어린 잎에서 엽육조직-상피층 경계를 이동할 수 있다는 것을 나타낸다.
도 6은 35개의 아라비돕시스 Dof 패밀리 멤버로부터의 ZFM 범위 영역의 서열들을 정렬시킨 것을 도시한다. ZFM만이 높은 수준의 서열 보존을 나타낸다. ZFM; CX2CX21CX2C. 붉은 상자는 ITD1 (AtDof4.1)를 나타낸다.
도 7은 전장 단백질 서열에 기초한 아라비돕시스 Dof 패밀리의 이웃 인접 나무 (neighbor joining tree)를 나타낸다. 흰 박스는 실시예 4의 사상체 구조 분석에서 세포 간 이동 능력을 시험한 ZFM의 Dof 멤버를 나타낸다. 막대= 0.05% 서열 차이. 세포-자율 Dof: 적색 글자, 비-세포-자율 Dof: 청색 글자.
Fig. 1 shows the transfer of various proteins between plant cells according to Example 1 and Example 2. Fig.
Fig. 2 shows the results of a trichome rescue according to Example 2 and Example 3. Fig.
Fig. 3 shows the sequence comparison between the zinc finger motifs of the respective transcription factors according to Examples 4, 5 and 6, and whether or not the structure is a ridge structure.
Figure 4 shows the GFPer expression pattern observed in the J0571 enhancer traps.
Figure 5 It indicates that ITD1-mCherry is able to migrate the leaf tissue-epidermal layer boundary in young leaves.
Figure 6 shows the alignment of sequences in the ZFM range region from 35 Arabidopsis Dof family members. Only ZFM exhibits a high level of sequence conservation. ZFM; CX 2 CX 21 CX 2 C. The red box represents ITD1 (AtDof4.1).
Figure 7 shows the neighboring joining tree of the Arabidopsis Dof family based on the full-length protein sequence. The white box represents the Dof member of the ZFM tested for intercellular mobility in the scaly structure analysis of Example 4. Rod = 0.05% sequence difference. Cell-autonomous Dof: red letter, non-cell-autonomous Dof: blue letter.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. 이하의 실시예에서 다음의 실험 재료 및 방법을 사용하였다.Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples. In the following examples, the following experimental materials and methods were used.

(1) 식물 재료, 성장 조건 및 식물 형질도입(1) plant material, growth conditions and plant transduction

인핸서 트랩 주 J0571을 아라비돕시스 생물학 연구 센터로부터 얻었고, gl1-1 돌연변이 (36)를 상기 실시예의 사상체 구조 (trichome rescue) 스크리닝에 사용하였다. N. benthamiana, O. sativa cv. Japonica, Glycine max 및 Chlamydomonas reinhardtii 종 (strain) CC-503 cw92 mt+ 로부터의 잎 및 Physcomitrella patens 배양을 게놈 DNA를 분리하는데 사용하였다. 씨앗들은 MS 플레이트 또는 흙에 직접 발아시켰다. 형질전환 (transgenic) 식물들은 적절한 항생제 (50 mg/L의 카나마이신 또는 히그로마이신)를 포함하는 MS 플레이트에 선택되어 졌다. 2주된 형질전환된 식물을 토양으로 이식시켰다. 식물을 22℃ 및 60% RH, 16:8 h 명/암 상황하에서 성장시켰다. 빛 세기 150 μmoles m-2 sec-1이다.Enhancer Trap strain J0571 was obtained from the Arabidopsis Biology Research Center and the gll-I mutant (36) was used for the screening of the trichome rescue of this example. N. benthamiana, O. sativa cv. Leaf and Physcomitrella patens cultures from Japonica, Glycine max and Chlamydomonas reinhardtii strain CC-503 cw92 mt + were used to isolate genomic DNA. Seeds were germinated directly on MS plates or soil. Transgenic plants were selected on MS plates containing the appropriate antibiotic (50 mg / L kanamycin or hygromycin). Two main transgenic plants were transplanted into the soil. The plants were grown under the conditions of 22 ° C and 60% RH, 16: 8 h light / dark. The light intensity is 150 μmoles m -2 sec -1 .

(2) 사상체 구조 분석에 있어서의 점수(2) Score in statistical structure analysis

사상체 구조 분석을 종래 기술된 것 (17)과 같이 수행하였다. 사상체 구조주의 수는 토양에서 성장시킨 4주된 식물의 로제트 잎에서 계산되었다.The analysis of the structure was carried out in the same way as in the conventional method (17). The number of scars was calculated from the roots of 4-week-old plants grown in soil.

(3) 동일초점 (3) 레이져laser 스캐닝 및 전자 현미경 Scanning and Electron Microscope

1주된 아라비돕시스 묘목을 뿌리 및 잎에서 GFP의 세포 분포를 조사하기 위해 사용하였다. 올림푸스 (모델 FV1000, 도쿄, 일본) 동일 초점 레이져 스캐닝 현미경, 488 및 543 nm에서 여기, GFP 및 mCherry에 대해 각각 510-540 및 587-625nm에서 방사를 사용하여 형광 이미지를 얻었다. 스캐닝 전자 현미경 (SEM)에 관하여, 1주된 묘목의 잎의 두 번째 쌍을 종래에 기술된 것 (37)과 같이 준비하고 JSM-6380LV (JEOL Ltd., 일본) SEM 상에서 관찰하였다. One week old Arabidopsis seedlings were used to investigate the cell distribution of GFP in roots and leaves. Fluorescence images were obtained using Olympus (Model FV1000, Tokyo, Japan) co-focal laser scanning microscope, excitation at 488 and 543 nm, emission at 510-540 and 587-625 nm for GFP and mCherry, respectively. With respect to the scanning electron microscope (SEM), a second pair of leaves of one-week-old seedlings was prepared as previously described (37) and observed on a JSM-6380LV (JEOL Ltd., Japan) SEM.

(4) 소프트웨어 및 웹 자원(4) software and web resources

CNLS Mapper 소프트웨어 (31)를 예측된 핵 위치화 신호를 찾는데 사용하였다. 서열 정렬은 ClustalW2 소프트웨어 (38)를 사용하여 수행하였다. 벡터 지도의 구성 및 in-silico 클로닝을 Vector NTI version 9 (Invitrogen)에서 수행하였다. 계통 발생 나무는 MEGA4 소프트웨어 (39)를 사용하여 작성하였다. The CNLS Mapper software 31 was used to find the predicted nuclear localization signal. Sequence alignment was performed using ClustalW2 software (38). Construction of vector maps and in-silico cloning were performed in Vector NTI version 9 (Invitrogen). The phylogenetic tree was created using MEGA4 software (39).

(5) (5) UASUAS 융합 시스템 및 다른 벡터의 제조  Production of fusion systems and other vectors

pZY375 (David Jackson Lab, CSHL으로부터 얻음) 벡터 (서열번호 18)를 SalI/SacI으로 제한효소 처리하여 GFPer 서열을 제거하고 그 후 SalI/SacI 사이에 있는 mCherry 서열을 상기 제거된 부분에 삽입하여 pCCL276 (UAS::mCherry)를 수득하였다. 히스톤-2B (H2B) 단편 코딩 영역을 프라이머 H2B-Avr-d1 및 H2B-HpaK-r1로 증폭시켜 pCCL276의 AvrII/KpnI 부위에 삽입하여 pCCL284 (UAS::mCherry-H2B)를 얻었다. GW 단편 (하기 실시예에서 원형질연락사를 통해 이동하는지 여부를 살펴보기 위해 도입하였던 ITD1 N-var 및 ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 3), ITD1을 코딩하는 뉴클레오티드 서열 (서열번호 4), AtDof2.2을 코딩하는 뉴클레오티드 서열 (서열번호 5), AtDof2.2 ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 6), AtDof5.6 ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 7), AtDof4.5 ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 8), AtDof3.7 ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 9), AtDof5.4 ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 10), CrDof ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 11), PpDof15 ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 12), PpDof09 ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 13), PpDof19 ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 14), GmDof ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 15), OsDof ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 16), NtDof ZFM을 코딩하는 뉴클레오티드 서열 (서열번호 17) 중 하나를 의미한다)을 XhoI 단편으로서 pEarlyGate103으로부터 얻었고, pCCL276에 있는 SalI 부위에 삽입하여 pCCL292 (UAS::GWmCherry)을 얻었다. pCCL292를 AvrII/KpnI 제한효소 처리하고 H2B 단편을 삽입하여 pCCL306 (UAS::GW-mCherry-H2B)을 얻었다. pCCL702 (pRbcS::GL1-GW) 게이트웨이 목적지 벡터를 클로닝 하기 위해 GW 단편을 프라이머 attR-Bsgl-d1/attR-BKpn-r1로 pDest22 (Invitrogen)로부터 증폭시키고, pK1401 (David Jackson Lab, CSHL으로부터 얻음) (서열번호 19)의 BglII/KpnI 부위에 삽입하였다. The GFPer sequence was removed by restriction enzyme treatment with pZY375 (obtained from David Jackson Lab, CSHL) vector (SEQ ID NO: 18) with SalI / SacI and then the mCherry sequence between SalI / SacI was inserted into the removed region to obtain pCCL276 UAS :: mCherry). The histone-2B (H2B) fragment coding region was amplified with primers H2B-Avr-d1 and H2B-HpaK-r1 and inserted into the AvrII / KpnI site of pCCL276 to obtain pCCL284 (UAS :: mCherry-H2B). GW fragment (ITD1 N-var and ZFM-encoding nucleotide sequence (SEQ ID NO: 3), ITD1-encoding nucleotide sequence (SEQ ID NO: 4)) introduced to examine whether or not they migrate through the plasmatic liaisons in the following examples, (SEQ ID NO: 5) encoding AtDof2.2, a nucleotide sequence encoding AtDof2.2 ZFM (SEQ ID NO: 6), a nucleotide sequence encoding AtDof5.6 ZFM (SEQ ID NO: 7), AtDof4.5 ZFM Nucleotide sequence (SEQ ID NO: 8) encoding AtDof3.7 ZFM (SEQ ID NO: 9), nucleotide sequence encoding AtDof5.4 ZFM (SEQ ID NO: 10), nucleotide sequence encoding CrDof ZFM ), A nucleotide sequence (SEQ ID NO: 12) encoding PpDof15 ZFM, a nucleotide sequence (SEQ ID NO: 13) encoding PpDof09 ZFM, a nucleotide sequence (SEQ ID NO: 14) encoding PpDof19 ZFM, a GmDof (SEQ ID NO: 15) encoding a ZFM, a nucleotide sequence encoding OsDof ZFM (SEQ ID NO: 16), and a nucleotide sequence (SEQ ID NO: 17) encoding NtDof ZFM) was obtained from pEarlyGate 103 as an XhoI fragment , and inserted into the SalI site in pCCL276 to obtain pCCL292 (UAS :: GWmCherry). pCCL292 was treated with AvrII / KpnI restriction enzyme and H2B fragment was inserted to obtain pCCL306 (UAS :: GW-mCherry-H2B). GW fragment was amplified from pDest22 (Invitrogen) with primer attR-Bsgl-d1 / attR-BKpn-r1 to clone the pCCL702 (pRbcS :: GL1-GW) gateway destination vector and pK1401 (obtained from David Jackson Lab, CSHL) (SEQ ID NO: 19) at the BglII / KpnI site.

전장 및 단백질 단편의 개방 리딩 프레임 (open reading fram:ORF)을 서열 특이적 프라이머 (표 1) 및 Pfu DNA 폴리머라제 (Solgent, Korea)를 사용하여 제조자의 지시에 따라 PCR로 증폭시켰다. attB 부위가 옆에 있는 PCR 생산물을 pDonr207에 BP 반응 키트 (Invitrogen, USA)를 사용하여 제조자의 지시에 따라 클로닝시켰다. 본 발명에 사용된 모든 PCR 프라이머가 표 1에 나타난다. 필요한 발현 벡터를 얻기 위해, 상기 기술된 엔트리 (entry) 벡터에 클로닝된 표적 단편을 LR 반응 키트 (Invitrogen, USA)를 사용하여 제조자의 지시에 따라 원하는 목적지 벡터에 이전시켰다. Open reading frames (ORFs) of full length and protein fragments were amplified by PCR using sequence specific primers (Table 1) and Pfu DNA polymerase (Solgent, Korea) according to the manufacturer's instructions. The PCR product with the attB site next to it was cloned into pDonr207 using the BP reaction kit (Invitrogen, USA) according to the manufacturer's instructions. All PCR primers used in the present invention are shown in Table 1. To obtain the required expression vector, the target fragment cloned into the above described entry vector was transferred to the desired destination vector according to the manufacturer's instructions using the LR reaction kit (Invitrogen, USA).

(6) 본 발명에 사용된 프라이머 ( 6) The primer used in the present invention

프라이머 명칭Name of the primer 서열번호 SEQ ID NO: 프라이머 명칭 Name of the primer 서열번호SEQ ID NO: UAS_ApaI_FUAS_ApaI_F 2020 Dof-Cr-GW-d1Dof-Cr-GW-d1 7272 NOS_ApaI_RNOS_ApaI_R 2121 Dof-Cr-GW-r1Dof-Cr-GW-r1 7373 Dof4.1_FDof4.1_F 2222 attB1-ad-F*attB1-ad-F * 7474 Dof4.1_RDof4.1_R 2323 attB2-ad-R*attB2-ad-R * 7575 Dof4.1_ZFM_FDof4.1_ZFM_F 2424 mCherry-S-d1mCherry-S-d1 7676 Dof4.1_ZFM_RDof4.1_ZFM_R 2525 mCherry-AvrKSac-r3mCherry-AvrKSac-r3 7777 Dof4.1-ΔZFM_FDof4.1-ΔZFM_F 2626 H2B-Avr-d1H2B-Avr-d1 7878 Dof4.1-ΔZFM_RDof4.1-ΔZFM_R 2727 H2B-HpaK-r1H2B-HpaK-r1 7979 Dof5.4_FDof5.4_F 2828 attR-Bsgl-d1attR-Bsgl-dl 8080 Dof5.4_RDof5.4_R 2929 attR-BKpn-r1attR-BKpn-r1 8181 Dof5.4-ZFM_FDof5.4-ZFM_F 3030 Dof4.1-del1_F1BgDof4.1-del1_F1Bg 8282 Dof5.4-ZFM_RDof5.4-ZFM_R 3131 Dof4.1-del1_R1kDof4.1-del1_R1k 8383 CrDof-ZFM_FCrDof-ZFM_F 3232 Dof4.1-del2_F2BgDof4.1-del2_F2Bg 8484 CrDof-ZFM_RCrDof-ZFM_R 3333 Dof4.1-del2_R2kDof4.1-del2_R2k 8585 PpDof19-ZFM_FPpDof19-ZFM_F 3434 Dof4.1-del3_F3BgDof4.1-del3_F3Bg 8686 PpDof19-ZFM_RPpDof19-ZFM_R 3535 Dof4.1-del3_R3kDof4.1-del3_R3k 8787 Dof4.1_GW_d1Dof4.1_GW_d1 3636 Dof4.1-del4_F4BgDof4.1-del4_F4Bg 8888 Dof4.1_GW_d2Dof4.1_GW_d2 3737 Dof4.1-del4_R4kDof4.1-del4_R4k 8989 Dof4.1_GW_d3Dof4.1_GW_d3 3838 Dof4.1-del5_F5BgDof4.1-del5_F5Bg 9090 Dof4.1_GW_d4Dof4.1_GW_d4 3939 Dof4.1-del5_R5kDof4.1-del5_R5k 9191 Dof4.1_GW_d5Dof4.1_GW_d5 4040 Dof2.2-ZFM_F3BgDof2.2-ZFM_F3Bg 9292 Dof4.1_GW_r1Dof4.1_GW_r1 4141 Dof2.2-ZFM_R3kDof2.2-ZFM_R3k 9393 Dof4.1_GW_r2Dof4.1_GW_r2 4242 Dof5.4-ZFM_F3BgDof5.4-ZFM_F3Bg 9494 Dof4.1_GW_r3Dof4.1_GW_r3 4343 Dof5.4-ZFM_R3kDof5.4-ZFM_R3k 9595 Dof4.1_GW_r4Dof4.1_GW_r4 4444 2Myc_BamHI_F12Myc_BamHI_F1 9696 Dof4.1_GW_r5Dof4.1_GW_r5 4545 2Myc_BglII_R12Myc_BglII_R1 9797 Dof4.1_GW_r6Dof4.1_GW_r6 4646 2Myc_BglII_F22Myc_BglII_F2 9898 Dof4.1_GW_r7Dof4.1_GW_r7 4747 2Myc_KpnI_R22Myc_KpnI_R2 9999 Dof2.2_GW_d1Dof2.2_GW_d1 4848 GL1_AscI_FGL1_AscI_F 100100 Dof2.2_GW_r1Dof2.2_GW_r1 4949 Dof2.2-ZFM_BamHI_RDof2.2-ZFM_BamHI_R 101101 Dof2.2_GW_d2Dof2.2_GW_d2 5050 Dof5.4-ZFM_BamHI_RDof5.4-ZFM_BamHI_R 102102 Dof2.2_GW_r2Dof2.2_GW_r2 5151 PpMKN1-3_BglII_FPpMKN1-3_BglII_F 103103 Dof3.7_GW_d2Dof3.7_GW_d2 5252 PpMKN1-3_KpnI_RPpMKN1-3_KpnI_R 104104 Dof3.7_GW_r2Dof3.7_GW_r2 5353 PpMKN2_BglII_FPpMKN2_BglII_F 105105 Dof4.5_GW_d1Dof4.5_GW_d1 5454 PpMKN2_KpnI_RPpMKN2_KpnI_R 106106 Dof4.5_GW_r1Dof4.5_GW_r1 5555 PpMKN4_BamHI_FPpMKN4_BamHI_F 107107 Dof5.6_GW_d1Dof5.6_GW_d1 5656 PpMKN4_KpnI_RPpMKN4_KpnI_R 108108 Dof5.6_GW_r1Dof5.6_GW_r1 5757 PpMKN6_BamHI_FPpMKN6_BamHI_F 109109 Dof5.4_GW_d1Dof5.4_GW_d1 5858 PpMKN6_KpnI_RPpMKN6_KpnI_R 110110 Dof5.4_GW_r1Dof5.4_GW_r1 5959 PpHD6_BglII_FPpHD6_BglII_F 111111 Dof-Os04-GW-d1Dof-Os04-GW-d1 6060 PpHD6_KpnI_RPpHD6_KpnI_R 112112 Dof-Os04-GW-r1Dof-Os04-GW-r1 6161 CrGSM1_BglII_FCrGSM1_BglII_F 113113 Dof-Nt-GW-d1Dof-Nt-GW-d1 6262 CrGSM1_KpnI_RCrGSM1_KpnI_R 114114 Dof-Nt-GW-r1Dof-Nt-GW-r1 6363 CrHDG1_BglII_FCrHDG1_BglII_F 115115 Dof-Gm-GW-d1Dof-Gm-GW-d1 6464 CrHDG1_KpnI_RCrHDG1_KpnI_R 116116 Dof-Gm-GW-r1Dof-Gm-GW-r1 6565 CrGSP1_BglII_FCrGSP1_BglII_F 117117 Dof-Pp09-GW-d1Dof-Pp09-GW-d1 6666 CrGSP1_KpnI_RCrGSP1_KpnI_R 118118 Dof-Pp09-GW-r1Dof-Pp09-GW-r1 6767 CrCO_BglII_FCrCO_BglII_F 119119 Dof-Pp15-GW-d1Dof-Pp15-GW-d1 6868 CrCO_KpnI_RCrCO_KpnI_R 120120 Dof-Pp15-GW-r1Dof-Pp15-GW-r1 6969 CrYABBY_BglII_FCrYABBY_BglII_F 121121 Dof-Pp19-GW-d1Dof-Pp19-GW-d1 7070 CrYABBY_KpnI_RCrYABBY_KpnI_R 122122 Dof-Pp19-GW-r1Dof-Pp19-GW-r1 7171

실시예Example 1:  One: 아라비돕시스Arabidopsis 뿌리 및 잎 조직에서  In root and leaf tissue ITD1ITD1 의 세포 간 이동Intercellular migration

세포-자율 (cell-automonous) 및 비-세포-자율 (non-cell-autonomous:NCA) TF 간의 진화적 관계를 알아보기 위해, 아라비돕시스 TF의 게놈-범위 스크리닝을 수행하였다. 이 스크리닝을 통해, 본 발명자들은 Dof 패밀리로부터 추정 NCA-TF인 AtDof4.1를 분리하였고 세포 간 이동 도프 1 (INTERCELLULAR TRAFFICKING DOF 1: ITD1)으로 이름지었다. 이 NCA-TF의 이동 능력을 조사하기 위해 Haseloff J0571 인핸서 트랩 주의 배경에서 상류 활성 서열 (Upstream Activation Sequence: UAS)의 통제 하에서 다양한 ITD1-mCherry 융합을 발현시켰다 (26, http://www.arexdb.org/db). To investigate the evolutionary relationship between cell-automonous and non-cell-autonomous (NCA) TF, genome-wide screening of Arabidopsis TF was performed. Through this screening, we isolated the putative NCA-TF, AtDof4.1, from the Dof family and named it INTERCELLULAR TRAFFICKING DOF 1: ITD1. To investigate the migration capability of this NCA-TF, various ITD1-mCherry fusions were expressed under the control of the Upstream Activation Sequence (UAS) in the Haseloff J0571 enhancer trap background (26, http: //www.arexdb. org / db ).

도 1은 실시예 1 및 실시예 2에 따른 다양한 단백질들의 식물 세포 간 이동 여부를 나타낸다. (A-C) mCherry는 피층 (C) 및 내피 (E)에 있는 합성 부위로부터 측면 뿌리 캡 (L), 상피 (Ep) 및 중심주 (St)를 포함하는 뿌리 끝 전체에 걸친 세포로의 넓은 범위에 걸친 이동을 보인다. (D-F) Myb88-mCherry는 발현 부위를 벗어나 이동하는데 실패하였다. (G-I) ITD1-mCherry는 바깥의 한 개 세포층 및 내부의 다중 세포층 이동 (화살표 머리)을 보인다. 내부 상자: 상자 영역의 확대. (J-L) mCherry-H2B는 피층 및 내피 세포의 핵에 제한된다. (M-O) ITD1-mCherry-H2B는 그의 발현 도메인의 외부에 mCherry 형광을 나타내고 이는 PD를 통한 이동 능력을 나타낸다. 내부 상자: mCherry 신호를 밝게 조정하여 대비시킴. 막대= 20 ㎛ Fig. 1 shows the transfer of various proteins between plant cells according to Example 1 and Example 2. Fig. (AC) mCherry has a wide range of synthesis sites in the cortex (C) and endothelium (E) to cells spanning the entire root tip, including the lateral root cap (L), epithelium (Ep) It seems to move across. (D-F) Myb88-mCherry failed to move beyond the expression site. (G-I) ITD1-mCherry shows multiple cell layer movements (arrowheads) inside and outside of one cell layer. Inner box: Enlarge the box area. (J-L) mCherry-H2B is restricted to the nuclei of the cortex and endothelial cells. (M-O) ITD1-mCherry-H2B exhibits mCherry fluorescence outside of its expression domain, indicating its ability to migrate through PD. Inner box: Brighten mCherry signal to contrast. Rod = 20 ㎛

이 J0571주는 UAS::GFPer 리포터를 뿌리의 피층 및 내배엽 내에 발현시킨다 (도 1의 A, D 및 도 4). 이 실험의 대조군으로서, 형광의 세포 패턴을 UAS::mCherry (27 kDa) 리포터에 대해 조사하였다. 도 1의 B에 나타난 바와 같이 mCherry의 유리 형태는 그의 합성 부위 (도 1의 A에 나타남)로부터 뿌리 끝 전체의 대부분의 세포 타입으로 이동할 수 있다 (도 1의 B 및 C). 이는 대부분의 뿌리 세포들을 서로 연결하고 있는 PD가 27 kDa mCherry의 비-선택적인 세포 간 이동을 확산을 통해 허용하도록 충분히 팽창한다는 것을 나타낸다. 반대로, 더 큰 Myb88-mCherry 융합 (81 kDa)은 그의 합성 부위를 벗어나 이동하지 못했다 (도 1의 D-F) Myb88-mCherry 식물로부터의 적색 형광은 피층 세포 및 내배엽 세포의 핵에 제한된다. 이는 더 큰 크기 및/또는 핵에 격리된 mCherry 융합 단백질이 PD를 통하여 확산하는 것이 방해되었다는 것을 의미한다.This J0571 strain expresses the UAS :: GFPer reporter in the fascia and endoderm of the root (Figs. A, D and Fig. 4). As a control for this experiment, the cell pattern of the fluorescence was examined for the UAS :: mCherry (27 kDa) reporter. As shown in Figure 1B, the free form of mCherry can migrate from its synthetic site (shown in Figure 1 A) to most cell types throughout the root tip (B and C in Figure 1). This indicates that the PD connecting most of the root cells expands sufficiently to allow diffusion of the non-selective intercellular movement of the 27 kDa mCherry. Conversely, the larger Myb88-mCherry fusion (81 kDa) did not migrate beyond its synthetic site (D-F in Figure 1). Red fluorescence from the Myb88-mCherry plant is restricted to the nuclei of crusted cells and endoderm cells. This means that larger size and / or nucleated mCherry fusion proteins were prevented from diffusing through the PD.

UAS::ITD1-mCherry (61.7 kDa) 형질전환 JO571 인핸서 트랩 주의 분석은 비록 약하기는 하나 GFPer가 표시된 주변의 양 옆에 형광 신호의 존재를 나타냈다 (도 1의 G-I). 내배엽으로부터 중심주 조직으로의 안쪽 이동이 단지 피층 (cortex)으로부터 외피 (epidermis)로 일어난 바깥쪽 이동에 비해 더 넓은 범위에 걸쳐 있었다. 측면 및 말초 뿌리 캡 세포로의 이동은 관찰되지 않았다. mCherry 및 ITD1-mCherry 간의 이동 패턴의 현저한 차이는 PD 크기 배제 제한에 있어 구별되는 형태 또는 ITD1 이동에 있어서의 선택성을 나타낸다. The UAS :: ITD1-mCherry (61.7 kDa) transgenic JO571 enhancer trap analysis showed the presence of fluorescent signals on both sides of the periphery, although weak, but with GFPer (GI in FIG. 1). The inward movement from the endoderm to the central body tissue was over a wider range than the outward movement from the cortex to the epidermis. No migration to the lateral and peripheral root cap cells was observed. Significant differences in the mobility patterns between mCherry and ITDl-mCherry indicate distinct forms of PD size exclusion limitation or selectivity in ITDl movement.

이러한 두 가지 가능성은 세포-자율 TF로 이전에 알려진 (27) ITD1의 먼 친척인 AtDof2.2로 실험을 수행하여 시험하였다. 이 단백질은 36.7 kDa Dof TF로 ITD1과 유사한 크기 (33.4 kDa)이다. 예상한 대로, 9개의 독립적인 T1 AtDof2.2-mCherry (64.9 kDa) 주의 분석은 형광 신호가 GFPer에 의해 표시된 발현 구간에 제한된 것을 나타낸다. 이러한 결과는 AtDof2.2가 아닌 ITD1이 PD를 통한 선택적인 이동 능력을 갖는다는 가설을 지지한다. These two possibilities were tested by conducting experiments with AtDof2.2, a distant relative of ITD1 (27), previously known as cell-autonomous TF. This protein is 36.7 kDa Dof TF, similar in size to ITD1 (33.4 kDa). As expected, the analysis of nine independent T1 AtDof2.2-mCherry (64.9 kDa) indicates that the fluorescent signal is restricted to the expression period indicated by GFPer. These results support the hypothesis that ITD1, not AtDof2.2, has selective mobility over PD.

J0571 배경에서, UAS::GFPer 리포터는 또한 잎의 엽육조직 및 성숙한 공변세포에 발현되었다 (도 4 및 도 5의 A). 성숙한 공변 세포는 성숙의 최종 단계 동안 PD의 절단에 의해 심플라즘으로 (symplasmically) 분리된다고 보고되었기 때문에 (28, 29), 본 발명자들은 ITD1이 엽육조직 및 상피층 간에 이동할 수 있는지 시험해 보았다. ITD1-mCherry는 잎 상피 세포에서 검출되었고 서브-상피 층으로부터의 그의 이동을 증명한다 (도 5의 B 및 C). 유사하게, mCherry의 세포-자율 융합 단백질은 발현 부위에 제한된 반면 (도 5의 G-I), 유리 mCherry는 상피 세포에서 검출되었다 (도 5 D-F). In the J0571 background, the UAS :: GFPer reporter was also expressed in the leaf tissue of the leaves and mature cervical cells (FIGS. 4 and 5A). Since mature guinea pigs have been reported to be separated symplasmically by PD cleavage during the final stages of maturation (28, 29), the present inventors have tested whether ITD1 can migrate between the mesophyll tissue and epithelial layers. ITDl-mCherry was detected in leaf epithelial cells and demonstrates its migration from the sub-epithelial layer (Fig. 5, B and C). Similarly, mCherry's cell-autonomous fusion protein was restricted to the expression site (G-I in Figure 5), whereas free mCherry was detected in epithelial cells (Figure D-F).

도 4는 J0571 인핸서 트랩 주에서 관찰된 GFPer 발현 패턴을 나타낸다. J0571 식물주는 뿌리 피층 (cortex), 내피 (endodermis), 잎의 엽육조직 (mesophyll) 및 공변세포에서 발현을 통제하는 아라비돕시스 내재적 인핸서에 의해 작동되는 GAL4 DNA 결합 도메인 및 VP16 활성화 도메인을 갖는 키메라 TF를 갖는다. G4V16은 상류 활성화 서열 (upstream activation sequence: UAS) 구성 요소에 의해 통제되는 ER-표적화된 mGFP 구조 (GFPer)의 발현을 활성화시킨다. (A) 아라비돕시스의 어린 잎이 표면 동일 초점 현미경 사진이 상피층의 GFP의 존재를 나타낸다. (B) 표면 이미지의 더 높은 확대는 GFP 발현이 공변 세포에 제한되어 있음을 나타낸다. (C) 명시야 (brightfield)에서의 잎 단면은 상피 및 엽육조직의 경계를 나타낸다. (D) 잎 단면의 동일 초점 이미지는 GFP가 엽육 조직에 발현되었음을 나타낸다. (E) 뿌리 종단면의 동일 초점 이미지는 GFP가 피층 및 내피층에 발현되었다는 것을 나타낸다. 약자: C, 피층; E, 내피층; Ep, 상피층; L, 측면 캡 세포; Me, 엽육조직 세포; St, 중심주. 비율 막대: 100 ㎛ (A), 5 ㎛ (B), 20 ㎛ (C, D), 10 ㎛ (E). Figure 4 shows the GFPer expression pattern observed in the J0571 enhancer traps. The J0571 plant has a chimeric TF with a GAL4 DNA binding domain and a VP16 activation domain driven by an arabicids intrinsic enhancer controlling expression in cortex, endodermis, leaf mesophyll and guard cells . G4V16 activates the expression of the ER-targeted mGFP construct (GFPer), which is controlled by an upstream activation sequence (UAS) component. (A) A young leaf-surface confocal microscope photograph of Arabidopsis shows the presence of GFP in the epithelial layer. (B) Higher magnification of the surface image indicates that GFP expression is restricted to the guard cells. (C) The leaf section in the brightfield represents the boundary of the epithelium and the leaf tissue. (D) The same focal image of the leaf section indicates that GFP was expressed in the leaf tissue. (E) The same focal image of root cross-section indicates that GFP was expressed in the cortex and endothelial layer. Abbreviation: C, cortex; E, endothelial layer; Ep, epithelial layer; L, lateral cap cells; Me, leaf tissue cells; St, central state. Ratio bars: 100 탆 (A), 5 탆 (B), 20 탆 (C, D), 10 탆 (E).

도 5는 ITD1-mCherry이 어린 잎에서 엽육조직-상피층 경계를 이동할 수 있다는 것을 나타낸다. (A-C) J0571 인핸서 트랩 주에서 UAS::GFPer 및 UAS::ITD1-mCherry를 발현하는 형질전환 아라비돕시스 식물. (A) 잎의 표면 동일 초점 이미지가 공변 세포 내의 GFPer의 발현을 나타낸다. (B) ITD1-mCherry 형광 신호가 공변 세포 및 상피 세포 (pavement cell) 모두에서 검출되었다. (C) (A) 및 (B) 이미지의 합침. (D-F) J0571 인핸서 트랩 주에서 UAS::GFPer 및 UAS::mCherry를 발현시키는 형질전환 아라비돕시스 식물. (D) 공변 세포 내에 GFPer를 발현시키는 잎 표면의 동일 초점 이미지. (E) mCherry 형광 신호가 공변 세포 및 상피 세포 모두에서 검출된다. (F) (D) 및 (E) 이미지의 겹침. (G-I) mCherry와 융합된 세포-자율 전사 인자는 엽육조직-상피세포 경계를 통과하는데 실패하였다. 화살표는 공변세포를 지시한다. 화살표 머리는 큰 액포가 있는 상피 세포의 세포질 주변에서의 mCherry 신호를 지시한다. 막대 = 20 ㎛.
Figure 5 shows that ITD1-mCherry is able to migrate through the leaf tissue-epidermal layer boundary in young leaves. Transgenic Arabidopsis plants expressing UAS :: GFPer and UAS :: ITD1-mCherry in the (AC) J0571 enhancer trap state. (A) The same focal image on the surface of the leaves indicates the expression of GFPer in the guard cells. (B) ITD1-mCherry fluorescence signals were detected in both the guard cells and the pavement cells. (C) Composition of images (A) and (B). (DF) < / RTI > J0571 enhancer trap strain expressing UAS :: GFPer and UAS :: mCherry. (D) A focal image of a leaf surface that expresses GFPer in a guard cell. (E) mCherry fluorescence signal is detected in both cervical and epithelial cells. (F) (D) and (E) Overlapping of images. (GI) mCherry fused with the cell - autonomous transcription factor failed to pass through the follicular tissue - epithelial cell boundary. Arrows indicate guanosine cells. Arrowheads indicate mCherry signals around the cytoplasm of epithelial cells with large vacuoles. Rod = 20 탆.

실시예Example 2: 선택적인  2: Optional NCANCA 경로에 의한  By path ITD1ITD1 운반  carrying

PD를 통한 비선택적 단백질 이동은 단백질의 크기를 증가시키는 것에 의해 또는 세포질 내에서 격리를 통해 봉쇄되거나 현저하게 감소될 수 있다. 히스톤 2B (H2B, 16kDa)은 융합 단백질의 핵 내 격리를 매개할 수 있는 강한 핵 위치화 신호 (nuclear localization signal: NLS)를 갖는 핵 염색질 결합 단백질이다 (30). mCherry-H2B 융합 단백질 (44.2kDa)의 발현은 형광 신호의 뿌리 끝에 있는 GFPer 표시 발현 구역 내 핵에 감금시켰다 (도 1의 J-L). 따라서 H2B NLS의 활성은 mCherry가 주변의 세포로 확산되는 것을 방해하였다. 반대로, 식물 주 ITD1-mCherry-H2B (77.5 kDa) 발현 분석은 비록 mCherry-H2B보다 크기는 훨씬 크지만 이 융합 단백질은 여전히 세포에서 세포로 이동할 수 있다는 것을 밝혔다 (도 1의 M-O). 이는 ITD1이 단순한 확산에 의해 이동하는 것이 아니라는 것을 의미하고 이는 PD의 선택적인 경로를 통해 이동한다는 가설을 지지한다. Non-selective protein transfer through PD can be blocked or significantly reduced by increasing the size of the protein or through isolation in the cytoplasm. Histone 2B (H2B, 16kDa) is a nuclear chromatin binding protein with a strong nuclear localization signal (NLS) that can mediate the nuclear sequestration of the fusion protein (30). Expression of the mCherry-H2B fusion protein (44.2 kDa) was confined to the nucleus in the GFPer labeled expression region at the root of the fluorescent signal (JL in FIG. 1). Thus, the activity of H2B NLS prevented mCherry from diffusing into surrounding cells. Conversely, plant ITD1-mCherry-H2B (77.5 kDa) expression analysis revealed that the fusion protein could still migrate from the cell to the cell, although it is much larger than mCherry-H2B (M-O in FIG. This implies that ITD1 is not moved by simple diffusion, which supports the hypothesis that it travels through a selective path of PD.

이 후 발명자들은 ITD1의 선택적인 운반 능력에 대한 추가적인 시험으로써 사상체 구조 분석 (trichome rescue assay)을 사용하였다. 본 발명자들은 ITD1이 이동 기능을 다른 세포-자율 단백질, GLABROUS1 (GL1)에 제공할 수 있는지 궁금하였다. 이를 위해, GL1-ITD1 융합 단백질은 gl1 돌연변이 식물의 엽육에 특별하게 발현시켰다. The inventors then used a trichome rescue assay as an additional test for the selective transport capability of ITD1. The present inventors wondered if ITD1 could provide the migration function to other cell-autonomous proteins, GLABROUS1 (GL1). For this, the GL1-ITD1 fusion protein was specifically expressed in the glial mutant plant livers.

도 2는 실시예 2 및 실시예 3에 따른 사상체 구조 (trichome rescue)의 결과를 도시한다. (A) GL1-ITD1를 발현하는 gl1 형질전환주가 사상체 구조를 나타냈다. (B) gl1 식물은 털 없는 잎을 발달시킨다. (C) 보통 사상체 패턴을 나타내는 야생형 잎. 내부 상자: 상자 영역의 확대. 막대 = 1 mm. (D-F) 상기 나타난 식물의 잎의 스캐닝 전자 현미경 사진 (각각 A-C). 막대= 200㎛. (G) 예측되는 ITD1의 도메인 구조 및 사상체 구조 분석에 시험된 결손 돌연변이. 숫자들은 특정 모티프 경계 및 결손 부위의 아미노산 잔기에 상응한다. ZFM, 징크 핑거 모티프; NLS, 핵 위치화 서열; SR, 세린 풍부 영역. 낮은 막대: 다섯개의 결손 돌연변이; (-) 사상체 구조 안됨, (+) 사상체 구조. (H) 사상체 구조 분석은 표시된 GL1 융합 단백질로 수행되었다. 사상체 구조 통계는 표 2에 제공된다. KN1 사상체 구조 데이타는 Kim et al (24)로부터 온 것이다. Fig. 2 shows the results of a trichome rescue according to Example 2 and Example 3. Fig. (A) gl1 transgenic strain expressing GL1-ITD1 exhibited a scar structure. (B) gl1 plants develop hairless leaves. (C) a wild-type leaf that usually represents a gouge pattern. Inner box: Enlarge the box area. Rod = 1 mm. (D-F) Scanning electron micrographs of the leaves of the plants indicated above (A-C, respectively). Rod = 200 탆. (G) Missing mutations tested in predicted domain structure of ITD1 and statistical structure analysis. The numbers correspond to amino acid residues at specific motif boundaries and deletion sites. ZFM, zinc finger motif; NLS, nuclear localization sequence; SR, serine rich region. Low bar: five defective mutations; (-) No gouge structure, (+) Gouge structure. (H) Scintillation structure analysis was performed with the indicated GL1 fusion protein. Statistical structure statistics are provided in Table 2. The KN1 constellation data come from Kim et al (24).

형질전환 주 (T1)의 분석은 GL1-ITD1이 실제로 gl1 유전적 배경에서 사상체 발달을 구조 (rescue)할 수 있다는 것을 나타냈다 (도 2의 A). 이 실험의 대조군은 gl1 돌연변이 (도 2의 B) 및 야생형 Columbia-0 (도 2의 C) 식물이었다. 동일한 식물 주들로부터의 잎의 스캐닝 전자 현미경 분석은 GL1-ITD1 (도 2의 D) 및 야생형 (도 2의 F) 식물에서는 사상체의 존재를, gl1 돌연변이주에서는 사상체의 비존재를 확인시켰다 (도 2의 E).Analysis of the transgenic strain (T1) indicated that GL1-ITD1 could indeed rescue squamish development in the gl1 genetic background (Fig. 2A). Controls in this experiment were the gl1 mutation (Figure 2B) and the wild-type Columbia-0 (Figure 2C) plants. Scanning electron microscopy analysis of leaves from the same plant states confirmed the presence of squamous cells in the GL1-ITD1 (Fig. 2D) and wild-type (Fig. 2F) plants and the absence of squamous in the gl1 mutant strain Of E).

본 발명자들은 검사한 271개 중 75개의 형질전환 식물, 즉 28%의 구조,에서 사상체 구조를 관찰하였다 (도 2의 H 및 표 2). 대조군으로써 본 발명자들은 세포-자율-TF인 AtDof2.2를 사용하였다. 207개의 독립적인 형질전환 식물 중 단지 9개 만이 그들의 잎에 사상체를 가졌다 (도 2의 H). 이 결과는 AtDof2.2-mCherry가 뿌리 내의 PD를 통해 움직일 수 없다는 것을 나타낸다. ITD1-mCherry-H2B 융합 단백질 실험결과는 ITD1이 GL1과 같은 세포-자율 단백질에 이동 기능을 제공할 수 있는 선택적인 이동 신호를 포함하고 있다는 것을 입증하였다. AtDof2.2에 의해 사상체 구조가 결핍된 것과 같이 이러한 NCA 행동은 아라비돕시스 Dof 패밀리 멤버의 일반적인 특성이 아니다. We observed the structure of the strand at 75 transgenic plants, 27% of the 271 tested, ie, 28% structure (H in Figure 2 and Table 2). As a control, we used AtDof 2.2, a cell-autonomous-TF. Only 9 out of 207 independent transgenic plants had a goblet in their leaves (H in FIG. 2). This result indicates that AtDof2.2-mCherry can not move through the PD in the root. The results of the ITD1-mCherry-H2B fusion protein experiments demonstrate that ITD1 contains a selective migration signal capable of providing migration functions to cell-autonomous proteins such as GL1. This is not a general feature of the Arabidopsis Dof family member, as AtDof2.2 lacks the structure of the ashes.

표 2: ITD1 결손 실험의 사상체 구조 분석 통계Table 2: Statistical structure analysis of ITD1 deficit experiment

단백질/펩티드Protein / peptide 독립적인 형질전환 주의 전체 수Total number of independent transgenic 사상체 구조된 주의 수Number of weeks 구조율 (%)Structure Rate (%) AtDof2.2 AtDof2.2 207207 99 4.34.3 ITD11 -294 ITD1 1 -294 271271 7575 27.727.7 ITD11 -60 ITD1 1 -60 176176 77 4.0 4.0 ITD11 -207 ITD1 1 -207 181181 8080 44.2 44.2 ITD161 -207 ITD1 61 -207 122122 3636 29.5 29.5 ITD161 -294 ITD1 61 -294 110110 2626 23.6 23.6 ITD161 -158 ITD1 61 -158 274274 6868 24.8 24.8 ITD161 -110 ITD1 61 -110 233233 8282 35.2 35.2 ITD1111 -158 ITD1 111 -158 299299 1212 4.0 4.0 ITD1111 -207 ITD1 111 -207 259259 1010 3.9 3.9 ITD1159 -207 ITD1 159 -207 297297 99 3.0 3.0 ITD1208 -294 ITD1 208 -294 9696 1010 10.4 10.4

실시예Example 3:  3: ITD1ITD1 of 징크Zinc 핑거Finger 모티프가 세포 간 이동능력을 제공한다. Motifs provide intercellular transport capability.

그 후 ITD1에게 NCA 기능을 제공하는 것에 관련될 수 있는 잠재적인 모티프를 식별하기 위해 도메인 구조 분석을 ITD1에 대해 수행하였다. Dof TF 패밀리의 다른 멤버와 같이 ITD1은 보존된 CX2CX21CX2C 징크 핑거 모티프 (zinc finger motif: ZFM)를 그의 N-터미널 영역 내에 갖는다 (도 2의 G; 아미노산 잔기 70 - 98). 또한 35개의 잔기 (아미노산 잔기 92-127)로 이루어진 NLS을 CNLS MApper 소프트웨어를 사용하여 예측하였다 (31); NLS는 ZFM과 부분적으로 오버랩되는 것으로 나타났다. 또한 모티프 스캔 프로그램 (http://myhits.isb-sib.ch/cgi-bin/motif_scan)은 NLS에 근접하게 위치한 세린 풍부 (SR) 영역을 예측했다. The domain structure analysis was then performed on ITD1 to identify potential motifs that could be associated with providing NCA functionality to ITD1. Like the other members of the Dof TF family, ITD1 has a conserved CX 2 CX 21 CX 2 C zinc finger motif (ZFM) in its N-terminal region (G in FIG. 2; amino acid residues 70-98). NLS consisting of 35 residues (amino acid residues 92-127) was also predicted using CNLS MApper software (31); NLS has been shown to partially overlap with ZFM. The motif scan program ( http://myhits.isb-sib.ch/cgi-bin/motif_scan ) predicted the serine richness (SR) region located close to the NLS.

PD를 통한 ITD1의 이동을 중개하는 모티브들의 역할을 테스트하기 위해 사상체 구조 분석을 하였다. 다양한 결실을 만들어 일련의 GL1-ITD1 구조를 제공하였고, gl1 돌연변이 주에 형질도입시켰다. 처음에는 ITD1 ORF를 다섯 개의 단편으로 분할하였다 (도 2의 G). We analyzed the structure of the ropes to test the role of the motives that mediate the movement of ITD1 through the PD. A variety of deletions were made to provide a series of GL1-ITD1 constructs and transfected into the gl1 mutant strain. Initially, the ITD1 ORF was divided into five fragments (G in Fig. 2).

흥미롭게도 ZFM, NLS 및 SR 영역을 모두 포함하는 ITD11-207, ITD161-207 및 ITD161-294 절편이 ITD11-60 (4%) 또는 ITD1208-294 (10%)에 비해 현저하게 높은 사상체 구조 (각각 44, 30 및 24%)를 중개하였다 (도 2의 H 및 표 2). 본 발명자들은 그 후 ITD161-207 영역을 절단하여 PD 이동에 필요한 기능 모티프를 더 찾아보았다. 이러한 연구는 ITD161-110 및 ITD161-158 (즉, ZFM 범위의 잔기)이 각각 35% 및 25% 구조 비율을 제공하였다는 것을 확인시켰다. 반대로, ITD1111-158, ITD1111-207 및 ITD1159-207는 사상체 구조를 중개하는데 모두 실패하였다 (각각 4, 4 및 3%). 이러한 실험 결과를 통합해 볼 때, DNA 결합 ZFM을 포함하는 ITD161-110 내에 위치한 영역이 ITD1의 PD 이동을 위해 필요하면서도 충분한 것을 확인할 수 있었다.
Interestingly, the ITD11-207, ITD161-207, and ITD161-294 fragments, including both the ZFM, NLS, and SR regions, have significantly higher mosaic structures (44% compared to ITD11-60 (4%) or ITD1208-294 , 30 and 24%) (Figure 2 H and Table 2). The present inventors have further searched for functional motifs necessary for PD movement by cutting ITD161-207 region. These studies confirmed that ITD161-110 and ITD161-158 (ie residues in the ZFM range) provided 35% and 25% structural ratios, respectively. In contrast, ITD1111-158, ITD1111-207 and ITD1159-207 all failed to mediate the geometry structure (4, 4 and 3%, respectively). Taken together, these results confirm that the region within ITD161-110 containing DNA-bound ZFM is necessary and sufficient for PD movement of ITD1.

실시예Example 4:  4: 아라비돕시스Arabidopsis DofDof 패밀리family 멤버 간 이동 모티프 보존 Preserve movement motif between members

아라비돕시스 Dof 패밀리의 ZFM 범위 영역의 서열 정렬은 높은 정도의 보존을 나타낸다 (도 6). 따라서 본 발명자들은 다른 패밀리 멤버의 ITD161-110과 동등한 영역도 세포간 이동 능력을 GL1에 제공할 수 있는지 시험하였다. 다양한 분기군 (clade) (도 7)으로부터 추가적인 다섯 개의 Dof 멤버를 사상체 구조 분석을 위해 선택하였다. 다섯 개의 Dof 멤버 모두 잎 및 뿌리 기관에서 모두 발현된다 (Genevesgator). 계통 발생 분석 및 ZFM의 서열 상동 관계 레벨로부터 예측된 바와 같이 (도 3의 A), ITD1과 동일한 분기군에 속하는 AtDof3.7 및 AtDof4.5는 현저한 사상체 구조를 중개한 반면 (도 3의 C 및 표 3), 더 멀리 관계된 AtDof2.2 및 AtDof5.4는 사상체 발달을 구조하는데 비효과적이었다. 이 ZFM의 계통 발생학적 분석에 기초할 때, 더 멀리 관계된 AtDof5.6도 사상체 구조를 용이하게 하였다는 것이 주목할 만하다. 유사한 결론이 이 Dof TF의 전체 오픈 리딩 프레임을 사용하여 조합된 계통 발생학적 나무에 의해 지지된다 (도 7). 그러므로 PD를 통한 선택적 이동능력은 초기에 유래된 특성이다.Sequence alignment of the ZFM range region of the Arabidopsis Dof family shows a high degree of conservation (Figure 6). Therefore, the present inventors have tested whether an area equivalent to ITD161-110 of other family members can provide intercellular translocation capability to GL1. An additional five Dof members from various clusters (FIG. 7) were selected for the statistical structure analysis. All five Dof members are expressed in both leaf and root organ (Genevesgator). As predicted from the phylogenetic analysis and the sequence homology relationship level of ZFM (Fig. 3 A), AtDof 3.7 and AtDof 4.5 belonging to the same branching group as ITD1 mediated significant strand conformation Table 3), and the more distant AtDof2.2 and AtDof5.4 were ineffective in rescuing tectonic development. Based on the phylogenetic analysis of this ZFM, it is noteworthy that the more distant AtDof 5.6 also facilitated the scaly structure. Similar conclusions are supported by the phylogenetic tree combined using the entire open reading frame of this Dof TF (Fig. 7). Therefore, the selective movement capability through PD is an early-derived characteristic.

도 3은 실시예 4, 5 및 6에 따른 각 전사인자의 징크 핑거 모티프 간의 서열 비교, 사상체 구조 여부를 나타낸다. (A) 선택된 AtDof 멤버의 징크 핑거 모티프 (ZFM) 범위 영역의 서열들을 정렬시켰다. 이 영역들 간 높은 정도의 서열 보존이 존재한다. 계통 발생 나무 (phylogenetic tree) (왼쪽)는 이 단백질 간의 관계를 나타낸다. 막대 = 0.1% 서열 차이. 숫자들은 ITD1 잔기를 나타낸다. N-var, N-말단 가변 영역; ZFM, CX2CX21CX2C. (B) TF의 Dof 패밀리의 선택된 멤버의 ZFM 범위 영역의 서열들을 정렬시켰다 (종은 표 4에 제공된다). 계통 발생 나무는 왼쪽에 나타난다. 막대=0.1% 서열 차이. (C) 사상체 구조 분석이 GL1에 융합된 나타난 ZFM으로 수행되었다. 사상체 구조 통계는 표 2에 제공된다. (D) ITD1 N-var 및 ZFM 영역 모두가 AtDof5.4를 NCA-TF로 변환하는데 필요하다. 사상체 구조 분석에 사용된 구조들은 표시된 AtDof5.4 (황색) 및 ITD1 (청색)의 N-var 및 ZFM의 교환을 포함하였다. 사상체 구조를 보이는 식물의 수/ 시험된 식물의 전체 수 (% 로서)를 각 구조의 오른쪽에 나타낸다. Fig. 3 shows the sequence comparison between the zinc finger motifs of the respective transcription factors according to Examples 4, 5 and 6, and whether or not the structure is a ridge structure. (A) Arranged the sequences of the zinc finger motif (ZFM) range region of the selected AtDof member. There is a high degree of sequence conservation between these regions. The phylogenetic tree (left) shows the relationship between these proteins. Rod = 0.1% sequence difference. The numbers represent ITD1 residues. N-var, N-terminal variable region; ZFM, CX 2 CX 21 CX 2 C. (B) The sequences of the ZFM range region of selected members of the Dof family of TFs were aligned (species are provided in Table 4). Phylogeny trees appear on the left. Rod = 0.1% sequence difference. (C) Scaly structure analysis was performed with the indicated ZFM fused to GL1. Statistical structure statistics are provided in Table 2. (D) Both ITD1 N-var and ZFM regions are required to convert AtDof5.4 to NCA-TF. The structures used for the analysis of the structure of the scratches involved the exchange of indicated AtDof5.4 (yellow) and ITD1 (blue) N-var and ZFM. The number of plants showing the structure of the ridges / the total number of plants tested (in%) are shown on the right of each structure.

표 3: 아라비돕시스 및 다른 종의 Dof ZFM으로 수행한 사상체 구조 분석 결과.Table 3: Analysis of the structure of filaments carried out with Dof ZFM of Arabidopsis and other species.

단백질/펩티드Protein / peptide 독립된 형질전환 주의 전체 수Total number of independent transgenic lines 사상체 구조된 주의 수Number of weeks 구조율 (%)Structure Rate (%) AtDof5.6 AtDof5.6 129 129 2828 21.7 21.7 AtDof4.5AtDof4.5 159159 5252 32.7 32.7 AtDof3.7 AtDof3.7 139139 2525 18.0 18.0 ITD1ITD1 233233 8282 35.2 35.2 AtDof2.2 AtDof2.2 163163 1515 9.2 9.2 AtDof5.4 AtDof5.4 173173 66 3.5 3.5 CrDofCrDof 210210 4848 22.9 22.9 PpDof15PpDof15 277277 5050 18.1 18.1 PpDof09PpDof09 240240 4747 19.6 19.6 PpDof19PpDof19 105105 2727 25.7 25.7 GmDofGmDof 212212 3737 17.5 17.5 OsDofOsDof 162162 1212 7.4 7.4 NtDofNtDof 181181 33 1.7 1.7

실시예Example 5:  5: DofDof TFTF 패밀리family 내의 세포 간 단백질 이동능력의 진화 Evolution of Intercellular Protein Transfer Capacity in

TF의 Dof 패밀리는 단세포 녹조류, 하위 및 상위 식물 종에 존재하는 멤버들과 함께 식물 특이적이다 (32). Chlamydomonas 에서 단일 Dof 유전자가 보고되었으며 (32), 이 TF가 Dof 패밀리의 고대 선조를 나타내는 것으로 보인다. Dof TF는 아직 PD를 발달시키지 않는 단세포 유기체에서 이미 존재하였기 때문에, 본 발명자들은 특정 Dof TF가 유전자 복제 후 기능화 (subfunctionalization)를 통해 NCA 이동 능력을 얻었을 것으로 가설을 세웠다.The Dof family of TF is plant-specific with members present in unicellular green algae, lower and upper plant species (32). A single Dof gene has been reported in Chlamydomonas (32), which appears to represent the ancient ancestor of the Dof family. Since Dof TF has already existed in a single cell organism that does not yet develop PD, the present inventors hypothesized that a particular Dof TF acquired NCA migration capability through subfunctionalization after gene cloning.

상이한 6개의 종의 ZFM에 기초한 계통 발생학적 분석은 이들 간의 높은 정도의 보존을 나타낸다 (도 3의 B 및 표 4). 조류 및 이끼 (관이 없는 관다발 식물 (non-vascular tracheophyte))와 관련된 가변 도메인 서열이 상위 식물인 아라비돕시스에서 세포 간 GL1의 이동을 중개하는데 비효율적인지 시험하기 위해 이 종들의 ITD161-110에 상응하는 영역을 사상체 구조 분석에 사용하였다. Phylogenetic analysis based on the ZFMs of the six different species shows a high degree of conservation between them (Figure 3, B and Table 4). In order to test whether the variable domain sequence associated with algae and moss (non-vascular tracheophyte) is ineffective in mediating intercellular GL1 migration in the higher plant Arabidopsis, the region corresponding to ITD161-110 of these species Were used for statistical structure analysis.

놀랍게도 Chlamydomonas의 Dof ZFM (CrDof), Physcomitrella의 Dof ZFM (PpDof) 및 Glycine max의 ZFM (GmDof)과 사상체 구조에 있어서 동일하게 효과적이었다 (도 3의 C 및 표 3). 반대로 Nicotiana tabacumOryza sativa 의 Dof ZFM (각각 NtDof, OsDof)은 AtDof5.4의 ZFM과 같이 사상체 구조를 중개하는데 비효율적이었다. 상기 본 발명자들의 AtDof ZFM 시험 결과와 이 결과들을 종합하여 볼때, Dof TF 패밀리의 멤버에게 NCA 기능을 제공하는 이 모티프는 PD 선택적 이동 경로의 진화보다 더 먼저 생겼을 것이라고 추측된다.Surprisingly, Dof ZFM (CrDof) from Chlamydomonas , Dof ZFM (PpDof) from Physcomitrella and Glycine max of ZFM (GmDof) and the scaly structure (Fig. 3C and Table 3). On the contrary Nicotiana tabacum and Oryza Sativa 's Dof ZFM (NtDof, OsDof, respectively) was ineffective in mediating the constellation structure like AtDof5.4's ZFM. Taken together with our AtDof ZFM test results and these results, it is speculated that this motif, which provides members of the Dof TF family with NCA function, may precede the evolution of the PD selective pathway.

표 4: Dof ZFM 이동 실험에 사용된 종Table 4: Species used in Dof ZFM transfer experiments

종 명Specification Accession Number/AGI Code/other nameAccession Number / AGI Code / other name ArabidopsisArabidopsis thaliana (Atthaliana ) ) AtDof2.2 (At2g28810), AtDof3.7 (At3g61850) AtDof4.1 (At4g00940), AtDof,4.5 (At4g21080) AtDof5.4 (At5g60850), AtDof5.6 (At5g62940) AtDof2.2 (At2g28810), AtDof3.7 (At3g61850) AtDof4.1 (At4g00940), AtDof, 4.5 (At4g21080) AtDof5.4 (At5g60850), AtDof5.6 (At5g62940) NicotianaNicotiana tabacum (Nttabacum (Nt ) ) CAA66601.1 CAA66601.1 OryzaOryza sativasativa japonica (Osjaponica (Os ) ) Os04g0567800Os04g0567800 GlycineGlycine max (Gmmax (Gm ) ) ABI16018.1 ABI16018.1 PhyscomitrellaPhyscomitrella patens (Pppatens (Pp ) ) PpDof09 (gi|22491945|), PpDof15 (gi|18326732|), PpDof19 (gi|7207220|)PpDof09 (gi | 22491945 |), PpDof15 (gi | 18326732 |), PpDof19 (gi | 7207220 |). ChlamydomonasChlamydomonas reinhardtii (Crreinhardtii (Cr ) ) gi|10126755| gi | 10126755 |

실시예Example 6:  6: ITD1ITD1  And AtDof5AtDof5 .4.의 n-가변 영역 및 .4 < / RTI > n- ZFMZFM 영역의 기능적인 분석.  Functional analysis of the area.

아라비돕시스 Dof TF 패밀리의 세포 간 이동 능력에 있어 N-말단 가변 영역 (N-terminal variable region: N-var) 및 ZFM의 역할을 조사하기 위해, 본 발명자들은 ITD1 및 AtDof5.4 도메인이 교환된 일련의 구조를 생성시켰다 (도 3의 D). ITD1의 N-var 영역이 AtDof5.4로 교체되었을 때 사상체 구조는 관찰할 수 없었다. AtDof5.4 N-var 영역을 ITD1으로 상호 교환한 것 또한 그의 이동 능력의 손실을 나타냈다 (도 3의 D). 이 실험은 ITD1 N-var 영역이 필요하나 AtDof5.4에게 NCA 기능을 전하는데 불충분하다는 것을 증명한다. N-var 및 ZFM 영역을 ITD1 및 AtD5.4 간에 교환시킨 동등한 실험은 ITD1이 아닌 변형된 AtDof5.4가 사상체 발달을 구조할 수 있다는 것을 나타냈다 (도 3의 D). 이 연구는 ITD1 N-var 및 ZFM 영역 모두가 PD를 통한 이동을 중재하기에 필요하면서도 충분한 것인 서명 모티프를 포함한다는 것을 입증한다.
In order to investigate the role of the N-terminal variable region (N-var) and ZFM in the intercellular translocation capacity of the Arabidopsis Dof TF family, the present inventors have identified a series of exchanged ITD1 and AtDof5.4 domains (Fig. 3, D). When the N-var region of ITD1 was replaced with AtDof5.4, the structure of the ridges could not be observed. AtDof5.4 Interchanging the N-var domain with ITD1 also showed loss of its mobility (Fig. 3D). This experiment demonstrates that the ITD1 N-var domain is required but is not sufficient to deliver NCA functionality to AtDof5.4. Equivalent experiments in which the N-var and ZFM regions were exchanged between ITD1 and AtD5.4 indicated that the modified AtDof5.4, rather than ITD1, could rescue the ridge development (Fig. 3D). This study demonstrates that both the ITD1 N-var and ZFM domains contain signature motifs that are both necessary and sufficient to mediate movement through the PD.

참고 자료Resources

1. Zambryski P, Crawford K (2000) Annu Rev Cell Develop Biol 16:393-421. 1. Zambryski P, Crawford K (2000) Annu Rev Cell Develop Biol 16: 393-421.

2. Lucas WJ, Lee JY (2004) Nat Rev Mol Cell Biol 5:712-726. 2. Lucas WJ, Lee JY (2004) Nat Rev Mol Cell Biol . 5: 712-726.

3. Cilia ML, Jackson D (2004) Curr Opin Cell Biol 16:500-506. 3. Cilia ML, Jackson D (2004) Curr Opin Cell Biol 16: 500-506.

4. Oparka KJ (2004). Trends Plant Sci 9:33-41. 4. Oparka KJ (2004). Trends Plant Sci 9: 33-41.

5. Gallagher KL, Benfey PN (2005) Genes Dev 19:189-195. 5. Gallagher KL, Benfey PN (2005) Genes Dev 19 : 189-195.

6. Maule AJ (2008) Curr Opin Plant Biol 11:680-686. 6. Maule AJ (2008) Curr Opin Plant Biol 11: 680-686.

7. Lucas WJ, Ham BK, Kim JY (2009) Trends Cell Biol 19:495-503. 7. Lucas WJ, Ham BK, Kim JY (2009) Trends Cell Biol 19: 495-503.

8. Vollbrecht E, Veit B, Sinha N, Hake S (1991) Nature 350:241-243. Vollbrecht E, Veit B, Sinha N, Hake S (1991) Nature 350: 241-243.

9. Jackson D, Veit B, Hake S (1994) Development 120:405-413. 9. Jackson D, Veit B, Hake S (1994) Development 120: 405-413.

10. Lucas WJ, et al. (1995) Science 270:1980-1983. 10. Lucas WJ, et al. (1995) Science 270: 1980-1983.

11. Sinha NR, Williams RE, Hake S (1993) Genes Dev 7:787-795. 11. Sinha NR, Williams RE, Hake S (1993) Genes Dev 7: 787-795.

12. Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Development 122:3433-3441. 12. Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Development 122: 3433-3441.

13. Nakajima K, Sena G, Nawy T, Benfey PN (2001) Nature 413:307-311. 13. Nakajima K, Sena G, Nawy T, Benfey PN (2001) Nature 413: 307-311.

14. Wada T, et al. (2002) Development 129:5409-5419. 14. Wada T, et al. (2002) Development 129: 5409-5419.

15. Kurata T, et al. (2005) Development 132:5387-5398. 15. Kurata T, et al. (2005) Development 132: 5387-5398.

16. Gallagher KL, Benfey PN (2009) Plant J 57:785-797. 16. Gallagher KL, Benfey PN (2009) Plant J 57: 785-797.

17. Lee JY, et al. (2003) Science 299:392-396. 17. Lee JY, et al. (2003) Science 299: 392-396.

18. Wu X, et al. (2003) Development 130:3735-3745. 18. Wu X, et al. (2003) Development 130: 3735-3745.

19. Oparka KJ, et al. (1999) Cell 97:743-754. 19. Oparka KJ, et al. (1999) Cell 97: 743-754.

20. Crawford KM, Zambryski PC (2000) Curr Biol 10:1032-1040. 20. Crawford KM, Zambryski PC (2000) Curr Biol 10: 1032-1040.

21. Crawford KM, Zambryski PC (2001) Plant Physiol 125:1802-1812. 21. Crawford KM, Zambryski PC (2001) Plant Physiol 125: 1802-1812.

22. Kim I, Kobayashi K, Cho E, Zambryski PC (2005) Proc Natl Acad Sci USA 102:11945-11950. 22. Kim I, Kobayashi K, Cho E, Zambryski PC (2005) Proc Natl Acad Sci USA 102: 11945-11950.

23. Gallagher KL, Paquette AJ, Nakajima K, Benfey PN (2004) Curr Biol 14:1847-1851. 23. Gallagher KL, Paquette AJ, Nakajima K, Benfey PN (2004) Curr Biol 14: 1847-1851.

24. Kim JY, Rim Y, Wang J, Jackson D (2005) Genes Dev 19:788-793. 24. Kim JY, Rim Y, Wang J, Jackson D (2005) Genes Dev 19: 788-793.

25. Taoka K, Ham BK, Xoconostle-Cazares B, Rojas MR, Lucas WJ (2007) Plant Cell 19:1866-1884. 25. Taoka K, Ham BK, Xoconostle-Cazares B, Rojas MR, Lucas WJ (2007) Plant Cell 19: 1866-1884.

26. Birnbaum K, et al. (2003) Science 302:1956 -1960. 26. Birnbaum K, et al. (2003) Science 302: 1956-1960.

27. Lee JY, et al. (2006) Proc Natl Acad Sci USA 103:6055-6060. 27. Lee JY, et al. (2006) Proc Natl Acad Sci USA 103: 6055-6060.

28. Wille AC, Lucas WJ (1984) Planta 160:129-142. 28. Wille AC, Lucas WJ (1984) Planta 160: 129-142.

29. Ding B, Kwon MO, Hammond R, Owens R (1997) Plant J 12:931-936. 29. Ding B, Kwon MO, Hammond R, Owens R (1997) Plant J 12: 931-936.

30. Boisnard-Lorig C, et al. (2001) Plant Cell 13:495-509. 30. Boisnard-Lorig C, et al. (2001) Plant Cell 13: 495-509.

31. Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009) Proc Natl Acad Sci USA 106:10171-10176. 31. Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009) Proc Natl Acad Sci USA 106: 10171-10176.

32. Shigyo M, Tabei N, Yoneyama T, Yanagisawa S (2007) Plant Cell Physiol 48:179-185. 32. Shigyo M, Tabei N, Yoneyama T, Yanagisawa S (2007) Plant Cell Physiol 48: 179-185.

33. Sambrook et al, 9:31-57, Molecular cloning (2nd edition)33. Sambrook et al, 9: 31-57, Molecular cloning (2nd edition)

34. Bechtold, N., Ellis, J., and Pelletier, G. (1993). C. R. Acad. Sci. Paris, Life Sciences 316:1194-1199.34. Bechtold, N., Ellis, J., and Pelletier, G. (1993). C. R. Acad. Sci. Paris, Life Sciences 316: 1194-1199.

35. Clough, S. J. and Bent, A.F. (1998). Plant J. 16: 735-74335. Clough, S. J. and Bent, A.F. (1998). Plant J. 16: 735-743

36. Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD (1991) Cell 67:483-493. 36. Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD (1991) Cell 67: 483-493.

37. Rim Y, et al. (2009) Funct Plant Biol 36:280-289. 37. Rim Y, et al. (2009) Funct Plant Biol . 36: 280-289.

38. Larkin MA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948. 38. Larkin MA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.

39. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599. 39. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599.

<110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> A complex trafficking through plasmodesmata and method of transporting targeted material through plasmodesmata <130> PN092500 <160> 122 <170> KopatentIn 2.0 <210> 1 <211> 50 <212> PRT <213> Artificial Sequence <220> <223> ITD1 N-var + ZFM peptide seq [ITDN'-5.4_ZfM] <400> 1 Ser Thr Arg Pro Gln Glu Pro Arg Asn Cys Pro Arg Cys Asn Ser Leu 1 5 10 15 Asn Thr Lys Phe Cys Tyr Tyr Asn Asn Tyr Asn Leu Ser Gln Pro Arg 20 25 30 His Phe Cys Lys Asn Cys Arg Arg Tyr Trp Thr Lys Gly Gly Val Leu 35 40 45 Arg Asn 50 <210> 2 <211> 294 <212> PRT <213> Artificial Sequence <220> <223> ITD1 protein seq <400> 2 Met Asp His His Gln Tyr His His His Asp Gln Tyr Gln His Gln Met 1 5 10 15 Met Thr Ser Thr Asn Asn Asn Ser Tyr Asn Thr Ile Val Thr Thr Gln 20 25 30 Pro Pro Pro Thr Thr Thr Thr Met Asp Ser Thr Thr Ala Thr Thr Met 35 40 45 Ile Met Asp Asp Glu Lys Lys Leu Met Thr Thr Met Ser Thr Arg Pro 50 55 60 Gln Glu Pro Arg Asn Cys Pro Arg Cys Asn Ser Ser Asn Thr Lys Phe 65 70 75 80 Cys Tyr Tyr Asn Asn Tyr Ser Leu Ala Gln Pro Arg Tyr Leu Cys Lys 85 90 95 Ser Cys Arg Arg Tyr Trp Thr Glu Gly Gly Ser Leu Arg Asn Val Pro 100 105 110 Val Gly Gly Gly Ser Arg Lys Asn Lys Lys Leu Pro Phe Pro Asn Ser 115 120 125 Ser Thr Ser Ser Ser Thr Lys Asn Leu Pro Asp Leu Asn Pro Pro Phe 130 135 140 Val Phe Thr Ser Ser Ala Ser Ser Ser Asn Pro Ser Lys Thr His Gln 145 150 155 160 Asn Asn Asn Asp Leu Ser Leu Ser Phe Ser Ser Pro Met Gln Asp Lys 165 170 175 Arg Ala Gln Gly His Tyr Gly His Phe Ser Glu Gln Val Val Thr Gly 180 185 190 Gly Gln Asn Cys Leu Phe Gln Ala Pro Met Gly Met Ile Gln Phe Arg 195 200 205 Gln Glu Tyr Asp His Glu His Pro Lys Lys Asn Leu Gly Phe Ser Leu 210 215 220 Asp Arg Asn Glu Glu Glu Ile Gly Asn His Asp Asn Phe Val Val Asn 225 230 235 240 Glu Glu Gly Ser Lys Met Met Tyr Pro Tyr Gly Asp His Glu Asp Arg 245 250 255 Gln Gln His His His Val Arg His Asp Asp Gly Asn Lys Lys Arg Glu 260 265 270 Gly Gly Ser Ser Asn Glu Leu Trp Ser Gly Ile Ile Leu Gly Gly Asp 275 280 285 Ser Gly Gly Pro Thr Trp 290 <210> 3 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> ITD1 N-var + ZFM DNA seq [ITDN'-5.4_ZfM] <400> 3 agcactaggc cgcaagaacc aagaaactgt cctcgttgta attctcttaa cacaaagttc 60 tgttactaca acaattacaa tctttctcag cctcgtcact tttgcaagaa ctgtcgtcgt 120 tactggacta aaggtggtgt tctccgtaac 150 <210> 4 <211> 885 <212> DNA <213> Artificial Sequence <220> <223> ITD1 CDS sequence <400> 4 atggaccatc atcagtatca tcatcatgat caataccaac atcagatgat gactagtact 60 aacaataatt cctataacac catcgtcaca acacaaccac caccaacaac aacaacaatg 120 gattcaacaa cagcaacaac tatgataatg gatgacgaga agaagttgat gacgacaatg 180 agcactaggc cgcaagaacc aagaaactgt ccaagatgca actcaagcaa caccaagttt 240 tgttattaca acaactacag cttagcacag cctaggtact tgtgtaagtc ttgtcggaga 300 tattggactg aaggtggctc tctccgtaac gtccccgtag gcggaggttc tagaaagaac 360 aagaagcttc catttcctaa ttcctctact tcttcttcca ccaagaacct cccggatctc 420 aaccctcctt tcgtcttcac atcatcagct tcatcatcaa accctagcaa gacgcatcaa 480 aacaataatg acctcagcct atccttctcc tcccctatgc aagacaagcg agctcaaggg 540 cattacggtc atttcagtga gcaagttgtg acaggagggc agaactgtct tttccaagct 600 cctatgggaa tgattcagtt tcgtcaagag tatgatcatg agcaccccaa aaagaatctt 660 gggttttcat tagacaggaa cgaggaagag attggtaatc atgataactt cgttgttaat 720 gaggaaggaa gtaagatgat gtatccttat ggagatcatg aagaccgtca acaacatcac 780 catgtgagac acgatgatgg taataagaag agagaaggtg gttcaagcaa tgagctatgg 840 agcggaatca tcctaggtgg tgatagtggt ggaccaacat ggtga 885 <210> 5 <211> 1023 <212> DNA <213> Artificial Sequence <220> <223> AtDof2.2 DNA seq <400> 5 atggttttct catccgtctc aagcttttta gatccaccaa ttaattggcc acagtctgcg 60 aatccaaata accatcctca tcatcatcag ctacaagaaa atggaagttt agttagtggc 120 caccaccaag tactctctca ccacttccca caaaacccta accctaacca ccaccatgtt 180 gagacagcag ccgccaccac cgttgatccg agcagtctca atggccaggc ggctgagaga 240 gcgaggctag ctaagaactc tcagccgcca gagggagccc taaagtgtcc tcgatgtgac 300 tcagccaata ccaagttctg ttacttcaac aactacaacc tcacgcagcc acgccacttc 360 tgcaaagctt gccgtcgcta ctggacacgt ggcggtgcct tgaggaacgt acctgtcggt 420 ggtggctgcc ggaggaataa gaagggtaaa tccggaaatt caaagtcttc ctcttcctct 480 cagaacaagc agtcaacgtc tatggtcaac gctacaagcc ctactaatac tagtaatgtc 540 cagctccaaa caaatagcca attcccattt ttgcccactc tacaaaacct cactcaactt 600 ggtggtattg gtttaaactt agccgccatt aatggaaata atggtggaaa tggtaacact 660 agctcaagtt tcttgaatga cttagggttt tttcatggtg gtaacacttc aggtccggtc 720 atgggtaaca acaacgagaa taacctaatg acttctcttg gatcatccag ccactttgct 780 ttgttcgatc gaaccatggg attatataat ttccctaacg aggtaaatat gggattatct 840 tctattggtg ctactagggt ttctcaaact gctcaggtga aaatggagga caaccatttg 900 ggtaatataa gccgcccggt ttcggggttg acatctccag ggaatcaatc caatcaatat 960 tggaccggtc aaggtctccc cggttcttca tctaacgatc atcatcacca gcatcttatg 1020 tga 1023 <210> 6 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> AtDof2.2 ZFM <400> 6 tctcagccgc cagagggagc cctaaagtgt cctcgatgtg actcagccaa taccaagttc 60 tgttacttca acaactacaa cctcacgcag ccacgccact tctgcaaagc ttgccgtcgc 120 tactggacac gtggcggtgc cttgaggaac 150 <210> 7 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> AtDof5.6 ZFM <400> 7 cgtccacctc acgaccatcc tcaaaagtgt cctcgttgcg agtcaacaca tactaagttc 60 tgttactaca ataactacag cctctctcag cctcgttact tctgcaagac ttgtcgccgt 120 tactggacaa aaggcggaac tctaaggaat 150 <210> 8 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> AtDof4.5 ZFM <400> 8 aagcccccac caccaccacc tcgagtgtgt gcaaggtgtg attctgataa tactaaattt 60 tgttattaca acaactactg tgagtttcag ccacgatact tctgcaagaa ctgtcgtaga 120 tactggactc atggtggggc tttaagaaac 150 <210> 9 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> AtDof3.7 ZFM <400> 9 aaggcgaggc cacaagagaa agtaaattgt ccaagatgca actcaacaaa cacaaagttc 60 tgttattaca acaactacag tctcacgcaa ccaagatact tctgcaaagg ttgtcgaagg 120 tattggaccg aaggtggctc tcttcgtaac 150 <210> 10 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> AtDof5.4 ZFM <400> 10 atacttaacc atcatcaatc tctcaagtgt cctcgttgta attctcttaa cacaaagttc 60 tgttactaca acaattacaa tctttctcag cctcgtcact tttgcaagaa ctgtcgtcgt 120 tactggacta aaggtggtgt tctccgtaac 150 <210> 11 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> CrDof ZFM <400> 11 cttccacgcc ccgacaagaa ggaggcatgc cctcgctgca acagcatgga caccaaattc 60 tgctactaca acaattacaa catcaagcag ccccgctttt actgcaagac gtgtcagcgg 120 tactggactg ccggcggcac gttgaggaac 150 <210> 12 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> PpDof15 ZFM <400> 12 ggcactacca agcccaagga ccttccttgc ccgcgctgcc agtccatgaa caccaaattc 60 tgctactaca acaactatag tgtcaaccag ccccgccact tctgccgcaa ttgccaacgc 120 tactggaccg tgggtggtac tctccgcaac 150 <210> 13 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> PpDof09 ZFM <400> 13 cgcgagaagc cagacaaggt gctgccgtgt cctcgctgcg agtccatgaa caccaagttc 60 tgctactaca acaattacag tgtaacacag ccccgccact tctgcaggca gtgtcagcgc 120 tactggaccg cgggagggac gcttcgcaat 150 <210> 14 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> PpDof19 ZFM <400> 14 ctgaagcctc cagatcaagt tattgcgtgc cctcgctgcc aatcccttaa caccaagttt 60 tgttactaca acaactacag ccttacgcag ccccgacatt tttgtaaaag ttgtcgccgc 120 tactggactg caggtgggac tttaagaaat 150 <210> 15 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> GmDof ZFM <400> 15 aaaacaaggc cacaagagca actgaattgt ccaaggtgca attcaaccaa cacaaagttc 60 tgttattaca acaactacag cctcacacag ccaagatact tctgcaagac ttgtagaagg 120 tattggacag aaggagggtc tctgagaaac 150 <210> 16 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> OsDof ZFM <400> 16 cggccgcaga aggagaaggc gctcaactgc ccgcggtgca actcgacgaa caccaagttc 60 tgctactaca acaactacag cctccagcag ccgcgctact tctgcaagac gtgccggcgc 120 tactggacgg agggcggctc gctccgcaac 150 <210> 17 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> NtDof ZFM <400> 17 aggccacaaa aagaacaagc aataaattgt ccaagatgca attcaacaaa cacaaaattc 60 tgttattata acaattatag cctttctcag ccaaggtatt tttgcaaaac ttgtagaagg 120 tattggactg atggtggttc tttaagaaat 150 <210> 18 <211> 13394 <212> DNA <213> Artificial Sequence <220> <223> pZY375 vector sequence <400> 18 cctgtggttg gcatgcacat acaaatggac gaacggataa accttttcac gcccttttaa 60 atatccgatt attctaataa acgctctttt ctcttaggtt tacccgccaa tatatcctgt 120 caaacactga tagtttaaac tgaaggcggg aaacgacaat ctggatccaa gcttcgtatt 180 ggctagagca gcttgccaac atggtggagc acgacactct cgtctactcc aagaatatca 240 aagatacagt ctcagaagac caaagggcta ttgagacttt tcaacaaagg gtaatatcgg 300 gaaacctcct cggattccat tgcccagcta tctgtcactt catcaaaagg acagtagaaa 360 aggaaggtgg cacctacaaa tgccatcatt gcgataaagg aaaggctatc gttcaagatg 420 cctctgccga cagtggtccc aaagatggac ccccacccac gaggagcatc gtggaaaaag 480 aagacgttcc aaccacgtct tcaaagcaag tggattgatg tgataacatg gtggagcacg 540 acactctcgt ctactccaag aatatcaaag atacagtctc agaagaccaa agggctattg 600 agacttttca acaaagggta atatcgggaa acctcctcgg attccattgc ccagctatct 660 gtcacttcat caaaaggaca gtagaaaagg aaggtggcac ctacaaatgc catcattgcg 720 ataaaggaaa ggctatcgtt caagatgcct ctgccgacag tggtcccaaa gatggacccc 780 cacccacgag gagcatcgtg gaaaaagaag acgttccaac cacgtcttca aagcaagtgg 840 attgatgtga tatctccact gacgtaaggg atgacgcaca atcccactat ccttcgcaag 900 accttcctct atataaggaa gttcatttca tttggagagg acacgctgaa atcaccagtc 960 tctctctaca aatctatctc tctcgagctt tcgcagatcc gggggggcaa tgagatatga 1020 aaaagcctga actcaccgcg acgtctgtcg agaagtttct gatcgaaaag ttcgacagcg 1080 tctccgacct gatgcagctc tcggagggcg aagaatctcg tgctttcagc ttcgatgtag 1140 gagggcgtgg atatgtcctg cgggtaaata gctgcgccga tggtttctac aaagatcgtt 1200 atgtttatcg gcactttgca tcggccgcgc tcccgattcc ggaagtgctt gacattgggg 1260 agtttagcga gagcctgacc tattgcatct cccgccgtgc acagggtgtc acgttgcaag 1320 acctgcctga aaccgaactg cccgctgttc tacaaccggt cgcggaggct atggatgcga 1380 tcgctgcggc cgatcttagc cagacgagcg ggttcggccc attcggaccg caaggaatcg 1440 gtcaatacac tacatggcgt gatttcatat gcgcgattgc tgatccccat gtgtatcact 1500 ggcaaactgt gatggacgac accgtcagtg cgtccgtcgc gcaggctctc gatgagctga 1560 tgctttgggc cgaggactgc cccgaagtcc ggcacctcgt gcacgcggat ttcggctcca 1620 acaatgtcct gacggacaat ggccgcataa cagcggtcat tgactggagc gaggcgatgt 1680 tcggggattc ccaatacgag gtcgccaaca tcttcttctg gaggccgtgg ttggcttgta 1740 tggagcagca gacgcgctac ttcgagcgga ggcatccgga gcttgcagga tcgccacgac 1800 tccgggcgta tatgctccgc attggtcttg accaactcta tcagagcttg gttgacggca 1860 atttcgatga tgcagcttgg gcgcagggtc gatgcgacgc aatcgtccga tccggagccg 1920 ggactgtcgg gcgtacacaa atcgcccgca gaagcgcggc cgtctggacc gatggctgtg 1980 tagaagtact cgccgatagt ggaaaccgac gccccagcac tcgtccgagg gcaaagaaat 2040 agagtagatg ccgaccggat ctgtcgatcg acaagctcga gtttctccat aataatgtgt 2100 gagtagttcc cagataaggg aattagggtt cctatagggt ttcgctcatg tgttgagcat 2160 ataagaaacc cttagtatgt atttgtattt gtaaaatact tctatcaata aaatttctaa 2220 ttcctaaaac caaaatccag tactaaaatc cagatccccc gaattaattc ggcgttaatt 2280 cagtacattg ctctggtggt ggttctggtg gcggctctga gggtggtggc tctgagggtg 2340 gcggttctga gggtggcggc tctgagggag gcggttccgg tggtggctct ggttccggtg 2400 attttgatta tgaaaagatg gcaaacgcta ataagggggc tatgaccgaa aatgccgatg 2460 aaaacgcgct acagtctgac gctaaaggca aacttgattc tgtcgctact gattacggtg 2520 ctgctatcga tggtttcatt ggtgacgttt ccggccttgc taatggtaat ggtgctactg 2580 gtgattttgc tggctctaat tcccaaatgg ctcaagtcgg tgacggtgat aattcacctt 2640 taatgaataa tttccgtcaa tatttacctt ccctccctca atcggttgaa tgtcgccctt 2700 ttgtctttgg cccaatacgc aaaccgcctc tccccgcgcg ttggccgatt cattaatgca 2760 gctggcacga caggtttccc gactggaaag cgggcagtga gcgcaacgca attaatgtga 2820 gttagctcac tcattaggca ccccaggctt tacactttat gcttccggct cgtatgttgt 2880 gtggaattgt gagcggataa caatttcaca caggaaacag ctatgaccat gattacgcca 2940 agcttgcatg cctgcaggtc ggagtactgt cctccgagcg gagtactgtc ctccgagcgg 3000 agtactgtcc tccgagcgga gtactgtcct ccgagcggag tactgtcctc cgagcggaga 3060 ctctagaagc tactccacgt ccataaggga cacatcacaa tcccactatc cttcgcaaga 3120 cccttcctct atataaggaa gttcatttca tttggagagg acgacctgca ggtcgacgga 3180 tccaaggaga tataacaatg aagactaatc tttttctctt tctcatcttt tcacttctcc 3240 tatcattatc ctcggccgaa ttcagtaaag gagaagaact tttcactgga gttgtcccaa 3300 ttcttgttga attagatggt gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg 3360 aaggtgatgc aacaggaaaa cttaccctta aatttatttg cactactgga aaactacctg 3420 ttccatggcc aacacttgtc actactttct cttatggtgt tcaatgcttt tcaagatacc 3480 cagatcatat gaagcggcac gacttcttca agagcgccat gcctgaggga tacgtgcagg 3540 agaggaccat cttcttcaag gacgacggga actacaagac acgtgctgaa gtcaagtttg 3600 agggagacac cctcgtcaac aggatcgagc ttaagggaat cgatttcaag gaggacggaa 3660 acatcctcgg ccacaagttg gaatacaact acaactccca caacgtatac atcatggccg 3720 acaagcaaaa gaacggcatc aaagccaact tcaagacccg ccacaacatc gaagacggcg 3780 gcgtgcaact cgctgatcat tatcaacaaa atactccaat tggcgatggc cctgtccttt 3840 taccagacaa ccattacctg tccacacaat ctgccctttc gaaagatccc aacgaaaaga 3900 gagaccacat ggtccttctt gagtttgtaa cagctgctgg gattacacat ggcatggatg 3960 aactatacaa acatgatgag ctttaagagc tcgaatttcc ccgatcgttc aaacattggc 4020 aataaagttt cttaaagatt gaatcctgtt gccggtctgc gatgattatc atataatttt 4080 ctgttgaatt acgttaagca tgtaataatt aacatgtaat gcatgacgtt atttatgaga 4140 tgggttttta tgattagagt cccgcaatta tacatttaat acgcgataga aaacaaaata 4200 tagcgcgcaa actaggataa attatcgcgc gcggtgtcat ntatgttact agatcgggaa 4260 ttaattcact ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac 4320 ttaatcgcct tgcagcacat ccccctttcg ccagctggcg taatagcgaa gaggcccgca 4380 ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcgc ccgctccttt cgctttcttc 4440 ccttcctttc tcgccacgtt cgccggcttt ccccgtcaag ctctaaatcg ggggctccct 4500 ttagggttcc gatttagtgc tttacggcac ctcgacccca aaaaacttga tttgggtgat 4560 ggttcacgta gtgggccatc gccctgatag acggtttttc gccctttgac gttggagtcc 4620 acgttcttta atagtggact cttgttccaa actggaacaa cactcaaccc tatctcgggc 4680 tattcttttg atttataagg gattttgccg atttcggaac caccatcaaa caggattttc 4740 gcctgctggg gcaaaccagc gtggaccgct tgctgcaact ctctcagggc caggcggtga 4800 agggcaatca gctgttgccc gtctcactgg tgaaaagaaa aaccacccca gtacattaaa 4860 aacgtccgca atgtgttatt aagttgtcta agcgtcaatt tgtttacacc acaatatatc 4920 ctgccaccag ccagccaaca gctccccgac cggcagctcg gcacaaaatc accactcgat 4980 acaggcagcc catcagtccg ggacggcgtc agcgggagag ccgttgtaag gcggcagact 5040 ttgctcatgt taccgatgct attcggaaga acggcaacta agctgccggg tttgaaacac 5100 ggatgatctc gcggagggta gcatgttgat tgtaacgatg acagagcgtt gctgcctgtg 5160 atcaaatatc atctccctcg cagagatccg aattatcagc cttcttattc atttctcgct 5220 taaccgtgac aggctgtcga tcttgagaac tatgccgaca taataggaaa tcgctggata 5280 aagccgctga ggaagctgag tggcgctatt tctttagaag tgaacgttga cgatatcaac 5340 tcccctatcc attgctcacc gaatggtaca ggtcggggac ccgaagttcc gactgtcggc 5400 ctgatgcatc cccggctgat cgaccccaga tctggggctg agaaagccca gtaaggaaac 5460 aactgtaggt tcgagtcgcg agatcccccg gaaccaaagg aagtaggtta aacccgctcc 5520 gatcaggccg agccacgcca ggccgagaac attggttcct gtaggcatcg ggattggcgg 5580 atcaaacact aaagctactg gaacgagcag aagtcctccg gccgccagtt gccaggcggt 5640 aaaggtgagc agaggcacgg gaggttgcca cttgcgggtc agcacggttc cgaacgccat 5700 ggaaaccgcc cccgccaggc ccgctgcgac gccgacagga tctagcgctg cgtttggtgt 5760 caacaccaac agcgccacgc ccgcagttcc gcaaatagcc cccaggaccg ccatcaatcg 5820 tatcgggcta cctagcagag cggcagagat gaacacgacc atcagcggct gcacagcgcc 5880 taccgtcgcc gcgaccccgc ccggcaggcg gtagaccgaa ataaacaaca agctccagaa 5940 tagcgaaata ttaagtgcgc cgaggatgaa gatgcgcatc caccagattc ccgttggaat 6000 ctgtcggacg atcatcacga gcaataaacc cgccggcaac gcccgcagca gcataccggc 6060 gacccctcgg cctcgctgtt cgggctccac gaaaacgccg gacagatgcg ccttgtgagc 6120 gtccttgggg ccgtcctcct gtttgaagac cgacagccca atgatctcgc cgtcgatgta 6180 ggcgccgaat gccacggcat ctcgcaaccg ttcagcgaac gcctccatgg gctttttctc 6240 ctcgtgctcg taaacggacc cgaacatctc tggagctttc ttcagggccg acaatcggat 6300 ctcgcggaaa tcctgcacgt cggccgctcc aagccgtcga atctgagcct taatcacaat 6360 tgtcaatttt aatcctctgt ttatcggcag ttcgtagagc gcgccgtgcg tcccgagcga 6420 tactgagcga agcaagtgcg tcgagcagtg cccgcttgtt cctgaaatgc cagtaaagcg 6480 ctggctgctg aacccccagc cggaactgac cccacaaggc cctagcgttt gcaatgcacc 6540 aggtcatcat tgacccaggc gtgttccacc aggccgctgc ctcgcaactc ttcgcaggct 6600 tcgccgacct gctcgcgcca cttcttcacg cgggtggaat ccgatccgca catgaggcgg 6660 aaggtttcca gcttgagcgg gtacggctcc cggtgcgagc tgaaatagtc gaacatccgt 6720 cgggccgtcg gcgacagctt gcggtacttc tcccatatga atttcgtgta gtggtcgcca 6780 gcaaacagca cgacgatttc ctcgtcgatc aggacctggc aacgggacgt tttcttgcca 6840 cggtccagga cgcggaagcg gtgcagcagc gacaccgatt ccaggtgccc aacgcggtcg 6900 gacgtgaagc ccatcgccgt cgcctgtagg cgcgacaggc attcctcggc cttcgtgtaa 6960 taccggccat tgatcgacca gcccaggtcc tggcaaagct cgtagaacgt gaaggtgatc 7020 ggctcgccga taggggtgcg cttcgcgtac tccaacacct gctgccacac cagttcgtca 7080 tcgtcggccc gcagctcgac gccggtgtag gtgatcttca cgtccttgtt gacgtggaaa 7140 atgaccttgt tttgcagcgc ctcgcgcggg attttcttgt tgcgcgtggt gaacagggca 7200 gagcgggccg tgtcgtttgg catcgctcgc atcgtgtccg gccacggcgc aatatcgaac 7260 aaggaaagct gcatttcctt gatctgctgc ttcgtgtgtt tcagcaacgc ggcctgcttg 7320 gcctcgctga cctgttttgc caggtcctcg ccggcggttt ttcgcttctt ggtcgtcata 7380 gttcctcgcg tgtcgatggt catcgacttc gccaaacctg ccgcctcctg ttcgagacga 7440 cgcgaacgct ccacggcggc cgatggcgcg ggcagggcag ggggagccag ttgcacgctg 7500 tcgcgctcga tcttggccgt agcttgctgg accatcgagc cgacggactg gaaggtttcg 7560 cggggcgcac gcatgacggt gcggcttgcg atggtttcgg catcctcggc ggaaaacccc 7620 gcgtcgatca gttcttgcct gtatgccttc cggtcaaacg tccgattcat tcaccctcct 7680 tgcgggattg ccccgactca cgccggggca atgtgccctt attcctgatt tgacccgcct 7740 ggtgccttgg tgtccagata atccacctta tcggcaatga agtcggtccc gtagaccgtc 7800 tggccgtcct tctcgtactt ggtattccga atcttgccct gcacgaatac cagcgacccc 7860 ttgcccaaat acttgccgtg ggcctcggcc tgagagccaa aacacttgat gcggaagaag 7920 tcggtgcgct cctgcttgtc gccggcatcg ttgcgccaca tctaggtact aaaacaattc 7980 atccagtaaa atataatatt ttattttctc ccaatcaggc ttgatcccca gtaagtcaaa 8040 aaatagctcg acatactgtt cttccccgat atcctccctg atcgaccgga cgcagaaggc 8100 aatgtcatac cacttgtccg ccctgccgct tctcccaaga tcaataaagc cacttacttt 8160 gccatctttc acaaagatgt tgctgtctcc caggtcgccg tgggaaaaga caagttcctc 8220 ttcgggcttt tccgtcttta aaaaatcata cagctcgcgc ggatctttaa atggagtgtc 8280 ttcttcccag ttttcgcaat ccacatcggc cagatcgtta ttcagtaagt aatccaattc 8340 ggctaagcgg ctgtctaagc tattcgtata gggacaatcc gatatgtcga tggagtgaaa 8400 gagcctgatg cactccgcat acagctcgat aatcttttca gggctttgtt catcttcata 8460 ctcttccgag caaaggacgc catcggcctc actcatgagc agattgctcc agccatcatg 8520 ccgttcaaag tgcaggacct ttggaacagg cagctttcct tccagccata gcatcatgtc 8580 cttttcccgt tccacatcat aggtggtccc tttataccgg ctgtccgtca tttttaaata 8640 taggttttca ttttctccca ccagcttata taccttagca ggagacattc cttccgtatc 8700 ttttacgcag cggtattttt cgatcagttt tttcaattcc ggtgatattc tcattttagc 8760 catttattat ttccttcctc ttttctacag tatttaaaga taccccaaga agctaattat 8820 aacaagacga actccaattc actgttcctt gcattctaaa accttaaata ccagaaaaca 8880 gctttttcaa agttgttttc aaagttggcg tataacatag tatcgacgga gccgattttg 8940 aaaccacaat tatgggtgat gctgccaact tactgattta gtgtatgatg gtgtttttga 9000 ggtgctccag tggcttctgt gtctatcagc tgtccctcct gttcagctac tgacggggtg 9060 gtgcgtaacg gcaaaagcac cgccggacat cagcgctatc tctgctctca ctgccgtaaa 9120 acatggcaac tgcagttcac ttacaccgct tctcaacccg gtacgcacca gaaaatcatt 9180 gatatggcca tgaatggcgt tggatgccgg gcaacagccc gcattatggg cgttggcctc 9240 aacacgattt tacgtcactt aaaaaactca ggccgcagtc ggtaacctcg cgcatacagc 9300 cgggcagtga cgtcatcgtc tgcgcggaaa tggacgaaca gtggggctat gtcggggcta 9360 aatcgcgcca gcgctggctg ttttacgcgt atgacagtct ccggaagacg gttgttgcgc 9420 acgtattcgg tgaacgcact atggcgacgc tggggcgtct tatgagcctg ctgtcaccct 9480 ttgacgtggt gatatggatg acggatggct ggccgctgta tgaatcccgc ctgaagggaa 9540 agctgcacgt aatcagcaag cgatatacgc agcgaattga gcggcataac ctgaatctga 9600 ggcagcacct ggcacggctg ggacggaagt cgctgtcgtt ctcaaaatcg gtggagctgc 9660 atgacaaagt catcgggcat tatctgaaca taaaacacta tcaataagtt ggagtcatta 9720 cccaattatg atagaattta caagctataa ggttattgtc ctgggtttca agcattagtc 9780 catgcaagtt tttatgcttt gcccattcta tagatatatt gataagcgcg ctgcctatgc 9840 cttgccccct gaaatcctta catacggcga tatcttctat ataaaagata tattatctta 9900 tcagtattgt caatatattc aaggcaatct gcctcctcat cctcttcatc ctcttcgtct 9960 tggtagcttt ttaaatatgg cgcttcatag agtaattctg taaaggtcca attctcgttt 10020 tcatacctcg gtataatctt acctatcacc tcaaatggtt cgctgggttt atcgcacccc 10080 cgaacacgag cacggcaccc gcgaccacta tgccaagaat gcccaaggta aaaattgccg 10140 gccccgccat gaagtccgtg aatgccccga cggccgaagt gaagggcagg ccgccaccca 10200 ggccgccgcc ctcactgccc ggcacctggt cgctgaatgt cgatgccagc acctgcggca 10260 cgtcaatgct tccgggcgtc gcgctcgggc tgatcgccca tcccgttact gccccgatcc 10320 cggcaatggc aaggactgcc agcgctgcca tttttggggt gaggccgttc gcggccgagg 10380 ggcgcagccc ctggggggat gggaggcccg cgttagcggg ccgggagggt tcgagaaggg 10440 ggggcacccc ccttcggcgt gcgcggtcac gcgcacaggg cgcagccctg gttaaaaaca 10500 aggtttataa atattggttt aaaagcaggt taaaagacag gttagcggtg gccgaaaaac 10560 gggcggaaac ccttgcaaat gctggatttt ctgcctgtgg acagcccctc aaatgtcaat 10620 aggtgcgccc ctcatctgtc agcactctgc ccctcaagtg tcaaggatcg cgcccctcat 10680 ctgtcagtag tcgcgcccct caagtgtcaa taccgcaggg cacttatccc caggcttgtc 10740 cacatcatct gtgggaaact cgcgtaaaat caggcgtttt cgccgatttg cgaggctggc 10800 cagctccacg tcgccggccg aaatcgagcc tgcccctcat ctgtcaacgc cgcgccgggt 10860 gagtcggccc ctcaagtgtc aacgtccgcc cctcatctgt cagtgagggc caagttttcc 10920 gcgaggtatc cacaacgccg gcggccgcgg tgtctcgcac acggcttcga cggcgtttct 10980 ggcgcgtttg cagggccata gacggccgcc agcccagcgg cgagggcaac cagcccggtg 11040 agcgtcgcaa aggcgctcgg tcttgccttg ctcgtcggtg atgtacttca ccagctccgc 11100 gaagtcgctc ttcttgatgg agcgcatggg gacgtgcttg gcaatcacgc gcaccccccg 11160 gccgttttag cggctaaaaa agtcatggct ctgccctcgg gcggaccacg cccatcatga 11220 ccttgccaag ctcgtcctgc ttctcttcga tcttcgccag cagggcgagg atcgtggcat 11280 caccgaaccg cgccgtgcgc gggtcgtcgg tgagccagag tttcagcagg ccgcccaggc 11340 ggcccaggtc gccattgatg cgggccagct cgcggacgtg ctcatagtcc acgacgcccg 11400 tgattttgta gccctggccg acggccagca ggtaggccga caggctcatg ccggccgccg 11460 ccgccttttc ctcaatcgct cttcgttcgt ctggaaggca gtacaccttg ataggtgggc 11520 tgcccttcct ggttggcttg gtttcatcag ccatccgctt gccctcatct gttacgccgg 11580 cggtagccgg ccagcctcgc agagcaggat tcccgttgag caccgccagg tgcgaataag 11640 ggacagtgaa gaaggaacac ccgctcgcgg gtgggcctac ttcacctatc ctgcccggct 11700 gacgccgttg gatacaccaa ggaaagtcta cacgaaccct ttggcaaaat cctgtatatc 11760 gtgcgaaaaa ggatggatat accgaaaaaa tcgctataat gaccccgaag cagggttatg 11820 cagcggaaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc 11880 agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat 11940 agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg 12000 gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc 12060 tggccttttg ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt 12120 accgcctttg agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca 12180 gtgagcgagg aagcggaaga gcgccagaag gccgccagag aggccgagcg cggccgtgag 12240 gcttggacgc tagggcaggg catgaaaaag cccgtagcgg gctgctacgg gcgtctgacg 12300 cggtggaaag ggggagggga tgttgtctac atggctctgc tgtagtgagt gggttgcgct 12360 ccggcagcgg tcctgatcaa tcgtcaccct ttctcggtcc ttcaacgttc ctgacaacga 12420 gcctcctttt cgccaatcca tcgacaatca ccgcgagtcc ctgctcgaac gctgcgtccg 12480 gaccggcttc gtcgaaggcg tctatcgcgg cccgcaacag cggcgagagc ggagcctgtt 12540 caacggtgcc gccgcgctcg ccggcatcgc tgtcgccggc ctgctcctca agcacggccc 12600 caacagtgaa gtagctgatt gtcatcagcg cattgacggc gtccccggcc gaaaaacccg 12660 cctcgcagag gaagcgaagc tgcgcgtcgg ccgtttccat ctgcggtgcg cccggtcgcg 12720 tgccggcatg gatgcgcgcg ccatcgcggt aggcgagcag cgcctgcctg aagctgcggg 12780 cattcccgat cagaaatgag cgccagtcgt cgtcggctct cggcaccgaa tgcgtatgat 12840 tctccgccag catggcttcg gccagtgcgt cgagcagcgc ccgcttgttc ctgaagtgcc 12900 agtaaagcgc cggctgctga acccccaacc gttccgccag tttgcgtgtc gtcagaccgt 12960 ctacgccgac ctcgttcaac aggtccaggg cggcacggat cactgtattc ggctgcaact 13020 ttgtcatgct tgacacttta tcactgataa acataatatg tccaccaact tatcagtgat 13080 aaagaatccg cgcgttcaat cggaccagcg gaggctggtc cggaggccag acgtgaaacc 13140 caacataccc ctgatcgtaa ttctgagcac tgtcgcgctc gacgctgtcg gcatcggcct 13200 gattatgccg gtgctgccgg gcctcctgcg cgatctggtt cactcgaacg acgtcaccgc 13260 ccactatggc attctgctgg cgctgtatgc gttggtgcaa tttgcctgcg cacctgtgct 13320 gggcgcgctg tcggatcgtt tcgggcggcg gccaatcttg ctcgtctcgc tggccggcgc 13380 cagatctggg gaac 13394 <210> 19 <211> 13201 <212> DNA <213> Artificial Sequence <220> <223> pK1401 vector sequence <400> 19 aattcgagct cactagcttc aaaaaacaga gttgccacgg gagacagaat gtttaaatgg 60 aatcaacaag tgaacacaaa ctgcatgttc tgtcacgaac ctatggaaac aagacaccat 120 cttttttttg ggtgctctta ctcgcagaag gtatgggaga agctgataag gggaatacta 180 cttgataagt actcgacata ttggagggaa gtctttaaaa ccatttgtga caaaaactat 240 gacaaaacaa aaatcttcat tctacggtat gtcttccaaa acacggttca ttcgatttgg 300 ggagaaagaa atgcttgaaa gcatggtgaa caaccatcac caatggagaa acttgtcaag 360 ttaattgaca aaaatgtttg gaaccggctg agcacaatac ggagtggggg gagctttgaa 420 gtatgaagga ggtcttcaag tttggtttgg tacaagacaa gcttaagacc aaatcctctg 480 ttttagattt gtttttcaaa aaagtatgca ttaagttgta aacacgttta tttctctttt 540 taaaatctaa tctaaaaatt ttctttttta aaatgacata gaaaaatcca actgtatatt 600 ttaaatccat aaacatgaat tctaaagccg caagtccaaa aatttagaga tgacatcata 660 gcaagcaagg acacgcaaga attaatgaaa tttataatgg agataacaaa gcatgaatat 720 ttataatttg gaaactgttt tacattaaat tagatagttt acgatacatt caaagctaaa 780 acacttattt acaatgaaaa gtaatcaatg tttcttgaat gggtttggct acttcttctc 840 atatggttgg accggggcat atatgagctt ttacgtggta ttcgtggacc catgaccata 900 tgagcttctt catgtggcct tagagtgtgg attcttccct cggatccaca ccatccattg 960 aagtgtgtta taaaatttcc ccatgatccg tcatggcttt tgtgcttaag ttgtcatggt 1020 gggaattatc ttgaggtgcc acattcgtgc ttaagtgggc cgtaagtgca attgcgttgt 1080 gctccaaaag gaacggtgcc gtgggttcct cttgttcatc agaaatatat taattagccg 1140 taaaacctga aaattcacaa gcatttggat tgttttctaa tttaatatcc attatgtgac 1200 taaaagttct agtgatcgta catactacat agaaaataat aacacaaaat actagtttac 1260 atttcccaat taaaaaccat tttgaatgaa ctctgtctga tttaattata cttttaaaat 1320 gtgggatgaa ttcaaagatt atacttatat tcttattatt taagattatc aagtggaaaa 1380 ataaaaatat gaatgtgtta atataaggta atagaaattt aatcattttt ttaatctata 1440 tgtaaaaagt atttaaccga tatctacaat ttgacgcctc ccaattgaaa ggagccaaaa 1500 gcaaccgatc aagtggagac cagtagccat acacattcac tcctaccctt acatgagaaa 1560 gataagatta tggagttttc tgccacgtga tcttatccta gtggtccaaa tcgataaggg 1620 tgtcaacacc tttccttaat cctgtggcaa ttaacgacgt tatcatgaat tatggcccct 1680 ttgatcatta gggctagttg cctctagcgg ttcccactat ataaagatga caaaaccaac 1740 agacaaacaa gtaagtaaga gaaaaaccaa aagaagaaga gaaacaacaa cccaaatcac 1800 tcttttcaaa gcaaatttaa ttctctgaaa attctcatta cttccaaaca atagcagctt 1860 cgaaggatcc agaatgagaa taaggagaag agatgaaaaa gagaatcaag aatacaagaa 1920 aggtttatgg acagttgaag aagacaacat ccttatggac tatgttctta atcatggcac 1980 tggccaatgg aaccgcatcg tcagaaaaac tgggctaaag agatgtggga aaagttgtag 2040 actgagatgg atgaattatt tgagccctaa tgtgaacaaa ggcaatttca ctgaacaaga 2100 agaagacctc attattcgtc tccacaagct cctcggcaat agatggtctt tgatagctaa 2160 aagagtaccg ggaagaacag ataaccaagt caagaactac tggaacactc atctcagcaa 2220 aaaactcgtc ggagattact cctccgccgt caaaaccacc ggagaagacg acgactctcc 2280 accgtcattg ttcatcactg ccgccacacc ttcttcttgt catcatcaac aagaaaatat 2340 ctacgagaat atagccaaga gctttaacgg cgtcgtatca gcttcgtacg aggataaacc 2400 aaaacaagaa ctggctcaaa aagatgtcct aatggcaact actaatgatc caagtcacta 2460 ttatggcaat aacgctttat gggttcatga cgacgatttt gagcttagtt cactcgtaat 2520 gatgaatttt gcttctggtg atgttgagta ctgccttgct gctgctgctg ctgctgctgc 2580 tgctgcagat cttgtcgaca tggaggagat cacccaacac tttggagttg gcgcaagcag 2640 ccacggccat ggccacggcc agcaccacca tcatcaccac caccaccacc cgtgggcatc 2700 ctccctcagc gccgtcgtag cgccgctgcc gccgcaaccg ccaagcgcag gcctgccgct 2760 gaccctgaac acggtggcgg ccactgggaa cagcggcggt agcggcaacc cggtgctgca 2820 gcttgccaac ggtggcggcc tcctcgacgc atgcgtcaag gcgaaggagc cctcgtcgtc 2880 gtctccctac gcaggcgacg tcgaggccat caaggccaag atcatctcgc acccacacta 2940 ctactcgctc ctcactgcct acctcgagtg caacaaggtg ggggcaccac cggaggtgtc 3000 ggcgaggctg acggagatag cgcaggaggt ggaggcgcgg cagcgcacgg cgctcggcgg 3060 cctggccgct gcgacggagc cggagctgga ccagttcatg gaggcgtacc acgagatgct 3120 ggtgaagttc agggaggagc tgacgaggcc gctgcaggag gcgatggagt tcatgcgaag 3180 ggtggagtcg cagctgaact cgctttccat ctccggaagg tcgctgcgca acatcctttc 3240 atctggctct tctgaggagg atcaagaagg tagcggagga gagaccgagc tccctgaagt 3300 tgatgcacat ggtgtggacc aagagctgaa gcaccatctc ctgaagaaat acagtggcta 3360 tctaagctcg ctcaagcaag aactgtcaaa gaagaagaag aaagggaagc tccccaagga 3420 ggctcgccag cagctcctta gctggtggga tcagcactac aaatggcctt acccctcaga 3480 gactcagaag gtggcactgg ctgagtctac cgggcttgac ctgaagcaga tcaacaactg 3540 gttcatcaac cagcggaagc ggcactggaa gccatccgag gagatgcacc acctgatgat 3600 ggatgggtac cacaccacca atgccttcta catggacggc cacttcatca acgacggcgg 3660 gctgtaccgg ctcggctagc caccggtatc tcgcttccat ttcacacccc acggcctagc 3720 tataaagact aatggttcca ggtgtctgaa gtactgaaga caggggggct agctatctaa 3780 tgtttgtgcc gcacgcatga gctgtaagga ggccatgctt aattattctg ttgccgttgc 3840 tactctatct atatgcgcct atgcctccgt gcatgaacta tgctttaggt ggttgctgct 3900 ccacactgtg gtggtgtgct tttgcttttg tgtggtcgta ttgtatgcgt aacctgacag 3960 atggatccct gattgctaca tgtttgaata atttgcatga tctagctagt ttctgcctaa 4020 tcaaaaggaa ttctagatgc atcgcaaatc accagtctct ctctacaaat ctatctctct 4080 ctattttctc cagaataatg tgtgagtagt tcccagataa gggaattagg gttcttatag 4140 ggtttcgctc atgtgttgag catataagaa acccttagta tgtatttgta tttgtaaaat 4200 acttctatca ataaaatttc taattcctaa aaccaaaatc cagtgacctg cacgcgttaa 4260 ttaaggatcc tctagagtcg acctgcagca tgcaagcttg gcactggccg tcgttttaca 4320 acgtcgtgac tgggaaaacc ctggcgttac ccaacttaat cgccttgcag cacatccccc 4380 tttcgccagc tggcgtaata gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg 4440 cagcctgaat ggcgaatgct agagcagctt gagcttggat cagattgtcg tttcccgcct 4500 tcagtttaaa ctatcagtgt ttgacaggat atattggcgg gtaaacctaa gagaaaagag 4560 cgtttattag aataacggat atttaaaagg gcgtgaaaag gtttatccgt tcgtccattt 4620 gtatgtgcat gccaaccaca gggttcccct cgggatcaaa gtactttgat ccaacccctc 4680 cgctgctata gtgcagtcgg cttctgacgt tcagtgcagc cgtcttctga aaacgacatg 4740 tcgcacaagt cctaagttac gcgacaggct gccgccctgc ccttttcctg gcgttttctt 4800 gtcgcgtgtt ttagtcgcat aaagtagaat acttgcgact agaaccggag acattacgcc 4860 atgaacaaga gcgccgccgc tggcctgctg ggctatgccc gcgtcagcac cgacgaccag 4920 gacttgacca accaacgggc cgaactgcac gcggccggct gcaccaagct gttttccgag 4980 aagatcaccg gcaccaggcg cgaccgcccg gagctggcca ggatgcttga ccacctacgc 5040 cctggcgacg ttgtgacagt gaccaggcta gaccgcctgg cccgcagcac ccgcgaccta 5100 ctggacattg ccgagcgcat ccaggaggcc ggcgcgggcc tgcgtagcct ggcagagccg 5160 tgggccgaca ccaccacgcc ggccggccgc atggtgttga ccgtgttcgc cggcattgcc 5220 gagttcgagc gttccctaat catcgaccgc acccggagcg ggcgcgaggc cgccaaggcc 5280 cgaggcgtga agtttggccc ccgccctacc ctcaccccgg cacagatcgc gcacgcccgc 5340 gagctgatcg accaggaagg ccgcaccgtg aaagaggcgg ctgcactgct tggcgtgcat 5400 cgctcgaccc tgtaccgcgc acttgagcgc agcgaggaag tgacgcccac cgaggccagg 5460 cggcgcggtg ccttccgtga ggacgcattg accgaggccg acgccctggc ggccgccgag 5520 aatgaacgcc aagaggaaca agcatgaaac cgcaccagga cggccaggac gaaccgtttt 5580 tcattaccga agagatcgag gcggagatga tcgcggccgg gtacgtgttc gagccgcccg 5640 cgcacgtctc aaccgtgcgg ctgcatgaaa tcctggccgg tttgtctgat gccaagctgg 5700 cggcctggcc ggccagcttg gccgctgaag aaaccgagcg ccgccgtcta aaaaggtgat 5760 gtgtatttga gtaaaacagc ttgcgtcatg cggtcgctgc gtatatgatg cgatgagtaa 5820 ataaacaaat acgcaagggg aacgcatgaa ggttatcgct gtacttaacc agaaaggcgg 5880 gtcaggcaag acgaccatcg caacccatct agcccgcgcc ctgcaactcg ccggggccga 5940 tgttctgtta gtcgattccg atccccaggg cagtgcccgc gattgggcgg ccgtgcggga 6000 agatcaaccg ctaaccgttg tcggcatcga ccgcccgacg attgaccgcg acgtgaaggc 6060 catcggccgg cgcgacttcg tagtgatcga cggagcgccc caggcggcgg acttggctgt 6120 gtccgcgatc aaggcagccg acttcgtgct gattccggtg cagccaagcc cttacgacat 6180 atgggccacc gccgacctgg tggagctggt taagcagcgc attgaggtca cggatggaag 6240 gctacaagcg gcctttgtcg tgtcgcgggc gatcaaaggc acgcgcatcg gcggtgaggt 6300 tgccgaggcg ctggccgggt acgagctgcc cattcttgag tcccgtatca cgcagcgcgt 6360 gagctaccca ggcactgccg ccgccggcac aaccgttctt gaatcagaac ccgagggcga 6420 cgctgcccgc gaggtccagg cgctggccgc tgaaattaaa tcaaaactca tttgagttaa 6480 tgaggtaaag agaaaatgag caaaagcaca aacacgctaa gtgccggccg tccgagcgca 6540 cgcagcagca aggctgcaac gttggccagc ctggcagaca cgccagccat gaagcgggtc 6600 aactttcagt tgccggcgga ggatcacacc aagctgaaga tgtacgcggt acgccaaggc 6660 aagaccatta ccgagctgct atctgaatac atcgcgcagc taccagagta aatgagcaaa 6720 tgaataaatg agtagatgaa ttttagcggc taaaggaggc ggcatggaaa atcaagaaca 6780 accaggcacc gacgccgtgg aatgccccat gtgtggagga acgggcggtt ggccaggcgt 6840 aagcggctgg gttgtctgcc ggccctgcaa tggcactgga acccccaagc ccgaggaatc 6900 ggcgtgacgg tcgcaaacca tccggcccgg tacaaatcgg cgcggcgctg ggtgatgacc 6960 tggtggagaa gttgaaggcc gcgcaggccg cccagcggca acgcatcgag gcagaagcac 7020 gccccggtga atcgtggcaa gcggccgctg atcgaatccg caaagaatcc cggcaaccgc 7080 cggcagccgg tgcgccgtcg attaggaagc cgcccaaggg cgacgagcaa ccagattttt 7140 tcgttccgat gctctatgac gtgggcaccc gcgatagtcg cagcatcatg gacgtggccg 7200 ttttccgtct gtcgaagcgt gaccgacgag ctggcgaggt gatccgctac gagcttccag 7260 acgggcacgt agaggtttcc gcagggccgg ccggcatggc cagtgtgtgg gattacgacc 7320 tggtactgat ggcggtttcc catctaaccg aatccatgaa ccgataccgg gaagggaagg 7380 gagacaagcc cggccgcgtg ttccgtccac acgttgcgga cgtactcaag ttctgccggc 7440 gagccgatgg cggaaagcag aaagacgacc tggtagaaac ctgcattcgg ttaaacacca 7500 cgcacgttgc catgcagcgt acgaagaagg ccaagaacgg ccgcctggtg acggtatccg 7560 agggtgaagc cttgattagc cgctacaaga tcgtaaagag cgaaaccggg cggccggagt 7620 acatcgagat cgagctagct gattggatgt accgcgagat cacagaaggc aagaacccgg 7680 acgtgctgac ggttcacccc gattactttt tgatcgatcc cggcatcggc cgttttctct 7740 accgcctggc acgccgcgcc gcaggcaagg cagaagccag atggttgttc aagacgatct 7800 acgaacgcag tggcagcgcc ggagagttca agaagttctg tttcaccgtg cgcaagctga 7860 tcgggtcaaa tgacctgccg gagtacgatt tgaaggagga ggcggggcag gctggcccga 7920 tcctagtcat gcgctaccgc aacctgatcg agggcgaagc atccgccggt tcctaatgta 7980 cggagcagat gctagggcaa attgccctag caggggaaaa aggtcgaaaa ggtctctttc 8040 ctgtggatag cacgtacatt gggaacccaa agccgtacat tgggaaccgg aacccgtaca 8100 ttgggaaccc aaagccgtac attgggaacc ggtcacacat gtaagtgact gatataaaag 8160 agaaaaaagg cgatttttcc gcctaaaact ctttaaaact tattaaaact cttaaaaccc 8220 gcctggcctg tgcataactg tctggccagc gcacagccga agagctgcaa aaagcgccta 8280 cccttcggtc gctgcgctcc ctacgccccg ccgcttcgcg tcggcctatc gcggccgctg 8340 gccgctcaaa aatggctggc ctacggccag gcaatctacc agggcgcgga caagccgcgc 8400 cgtcgccact cgaccgccgg cgcccacatc aaggcaccct gcctcgcgcg tttcggtgat 8460 gacggtgaaa acctctgaca catgcagctc ccggagacgg tcacagcttg tctgtaagcg 8520 gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg gtgttggcgg gtgtcggggc 8580 gcagccatga cccagtcacg tagcgatagc ggagtgtata ctggcttaac tatgcggcat 8640 cagagcagat tgtactgaga gtgcaccata tgcggtgtga aataccgcac agatgcgtaa 8700 ggagaaaata ccgcatcagg cgctcttccg cttcctcgct cactgactcg ctgcgctcgg 8760 tcgttcggct gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg ttatccacag 8820 aatcagggga taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc 8880 gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca 8940 aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt 9000 ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc 9060 tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc 9120 tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc 9180 ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact 9240 tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg 9300 ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca gtatttggta 9360 tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca 9420 aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa 9480 aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg 9540 aaaactcacg ttaagggatt ttggtcatgc attctaggta ctaaaacaat tcatccagta 9600 aaatataata ttttattttc tcccaatcag gcttgatccc cagtaagtca aaaaatagct 9660 cgacatactg ttcttccccg atatcctccc tgatcgaccg gacgcagaag gcaatgtcat 9720 accacttgtc cgccctgccg cttctcccaa gatcaataaa gccacttact ttgccatctt 9780 tcacaaagat gttgctgtct cccaggtcgc cgtgggaaaa gacaagttcc tcttcgggct 9840 tttccgtctt taaaaaatca tacagctcgc gcggatcttt aaatggagtg tcttcttccc 9900 agttttcgca atccacatcg gccagatcgt tattcagtaa gtaatccaat tcggctaagc 9960 ggctgtctaa gctattcgta tagggacaat ccgatatgtc gatggagtga aagagcctga 10020 tgcactccgc atacagctcg ataatctttt cagggctttg ttcatcttca tactcttccg 10080 agcaaaggac gccatcggcc tcactcatga gcagattgct ccagccatca tgccgttcaa 10140 agtgcaggac ctttggaaca ggcagctttc cttccagcca tagcatcatg tccttttccc 10200 gttccacatc ataggtggtc cctttatacc ggctgtccgt catttttaaa tataggtttt 10260 cattttctcc caccagctta tataccttag caggagacat tccttccgta tcttttacgc 10320 agcggtattt ttcgatcagt tttttcaatt ccggtgatat tctcatttta gccatttatt 10380 atttccttcc tcttttctac agtatttaaa gataccccaa gaagctaatt ataacaagac 10440 gaactccaat tcactgttcc ttgcattcta aaaccttaaa taccagaaaa cagctttttc 10500 aaagttgttt tcaaagttgg cgtataacat agtatcgacg gagccgattt tgaaaccgcg 10560 gtgatcacag gcagcaacgc tctgtcatcg ttacaatcaa catgctaccc tccgcgagat 10620 catccgtgtt tcaaacccgg cagcttagtt gccgttcttc cgaatagcat cggtaacatg 10680 agcaaagtct gccgccttac aacggctctc ccgctgacgc cgtcccggac tgatgggctg 10740 cctgtatcga gtggtgattt tgtgccgagc tgccggtcgg ggagctgttg gctggctggt 10800 ggcaggatat attgtggtgt aaacaaattg acgcttagac aacttaataa cacattgcgg 10860 acgtttttaa tgtactgaat taacgccgaa ttaattcggg ggatctggat tttagtactg 10920 gattttggtt ttaggaatta gaaattttat tgatagaagt attttacaaa tacaaataca 10980 tactaagggt ttcttatatg ctcaacacat gagcgaaacc ctataggaac cctaattccc 11040 ttatctggga actactcaca cattattatg gagaaactcg agcttgtcga tcgacagatc 11100 cggtcggcat ctactctatt tctttgccct cggacgagtg ctggggcgtc ggtttccact 11160 atcggcgagt acttctacac agccatcggt ccagacggcc gcgcttctgc gggcgatttg 11220 tgtacgcccg acagtcccgg ctccggatcg gacgattgcg tcgcatcgac cctgcgccca 11280 agctgcatca tcgaaattgc cgtcaaccaa gctctgatag agttggtcaa gaccaatgcg 11340 gagcatatac gcccggagtc gtggcgatcc tgcaagctcc ggatgcctcc gctcgaagta 11400 gcgcgtctgc tgctccatac aagccaacca cggcctccag aagaagatgt tggcgacctc 11460 gtattgggaa tccccgaaca tcgcctcgct ccagtcaatg accgctgtta tgcggccatt 11520 gtccgtcagg acattgttgg agccgaaatc cgcgtgcacg aggtgccgga cttcggggca 11580 gtcctcggcc caaagcatca gctcatcgag agcctgcgcg acggacgcac tgacggtgtc 11640 gtccatcaca gtttgccagt gatacacatg gggatcagca atcgcgcata tgaaatcacg 11700 ccatgtagtg tattgaccga ttccttgcgg tccgaatggg ccgaacccgc tcgtctggct 11760 aagatcggcc gcagcgatcg catccatagc ctccgcgacc ggttgtagaa cagcgggcag 11820 ttcggtttca ggcaggtctt gcaacgtgac accctgtgca cggcgggaga tgcaataggt 11880 caggctctcg ctaaactccc caatgtcaag cacttccgga atcgggagcg cggccgatgc 11940 aaagtgccga taaacataac gatctttgta gaaaccatcg gcgcagctat ttacccgcag 12000 gacatatcca cgccctccta catcgaagct gaaagcacga gattcttcgc cctccgagag 12060 ctgcatcagg tcggagacgc tgtcgaactt ttcgatcaga aacttctcga cagacgtcgc 12120 ggtgagttca ggctttttca tatctcattg cccccccgga tctgcgaaag ctcgagagag 12180 atagatttgt agagagagac tggtgatttc agcgtgtcct ctccaaatga aatgaacttc 12240 cttatataga ggaaggtctt gcgaaggata gtgggattgt gcgtcatccc ttacgtcagt 12300 ggagatatca catcaatcca cttgctttga agacgtggtt ggaacgtctt ctttttccac 12360 gatgctcctc gtgggtgggg gtccatcttt gggaccactg tcggcagagg catcttgaac 12420 gatagccttt cctttatcgc aatgatggca tttgtaggtg ccaccttcct tttctactgt 12480 ccttttgatg aagtgacaga tagctgggca atggaatccg aggaggtttc ccgatattac 12540 cctttgttga aaagtctcaa tagccctttg gtcttctgag actgtatctt tgatattctt 12600 ggagtagacg agagtgtcgt gctccaccat gttatcacat caatccactt gctttgaaga 12660 cgtggttgga acgtcttctt tttccacgat gctcctcgtg ggtgggggtc catctttggg 12720 accactgtcg gcagaggcat cttgaacgat agcctttcct ttatcgcaat gatggcattt 12780 gtaggtgcca ccttcctttt ctactgtcct tttgatgaag tgacagatag ctgggcaatg 12840 gaatccgagg aggtttcccg atattaccct ttgttgaaaa gtctcaatag ccctttggtc 12900 ttctgagact gtatctttga tattcttgga gtagacgaga gtgtcgtgct ccaccatgtt 12960 ggcaagctgc tctagccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa 13020 tgcagctggc acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat 13080 gtgagttagc tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg 13140 ttgtgtggaa ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac 13200 g 13201 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> UAS_ApaI_F <400> 20 gagcgggccc acacaggaaa cagctatgac 30 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> NOS_ApaI_R <400> 21 gagcgggccc agtgagacgg gcaacagctg 30 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_F <400> 22 caccatggac catcatcagt atcatcatc 29 <210> 23 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_R <400> 23 gttaccatgt tggtccacca ctatca 26 <210> 24 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_ZFM_F <400> 24 caccatggct agcactaggc cgcaagaacc 30 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_ZFM_R <400> 25 gttacggaga gagccacctt c 21 <210> 26 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-deltaZFM_F <400> 26 ttgatgacga caatggtccc cgtaggcgga ggttc 35 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-deltaZFM_R <400> 27 cattgtcgtc atcaacttct tc 22 <210> 28 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4_F <400> 28 caccatggct atgcaagata ttcatgattt ctc 33 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4_R <400> 29 aggaaggtag agaccactct g 21 <210> 30 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4-ZFM_F <400> 30 caccatggct atacttaacc atcatcaatc tc 32 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4-ZFM_R <400> 31 gttacggaga acaccacctt 20 <210> 32 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CrDof-ZFM_F <400> 32 caccatggct cttccacgcc ccgacaagaa 30 <210> 33 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CrDof-ZFM_R <400> 33 gttcctcaac gtgccgccgg ca 22 <210> 34 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PpDof19-ZFM_F <400> 34 caccatggct ctgaagcctc cagatcaagt 30 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PpDof19-ZFM_R <400> 35 atttcttaaa gtcccacctg 20 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_d1 <400> 36 aaaaagcagg ctttatggac catcatcagt 30 <210> 37 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_d2 <400> 37 aaaaagcagg ctttagcact aggccgcaa 29 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_d3 <400> 38 aaaaagcagg ctttcgtcaa gagtatgatc 30 <210> 39 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_d4 <400> 39 aaaaagcagg ctttgtcccc gtaggcgga 29 <210> 40 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_d5 <400> 40 aaaaagcagg ctttcatcaa aacaataatg 30 <210> 41 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r1 <400> 41 agaaagctgg gtttcacatt gtcgtcatca 30 <210> 42 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r2 <400> 42 agaaagctgg gtttcaaaac tgaatcattc 30 <210> 43 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r3 <400> 43 agaaagctgg gtttcaccat gttggtcca 29 <210> 44 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r4 <400> 44 agaaagctgg gtttcagtta cggagagagc c 31 <210> 45 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r5 <400> 45 agaaagctgg gtttcacgtc ttgctagggt t 31 <210> 46 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r6 <400> 46 agaaagctgg gttccatgtt ggtccacc 28 <210> 47 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r7 <400> 47 agaaagctgg gttccatgtt ggtccacca 29 <210> 48 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2_GW_d1 <400> 48 aaaaagcagg ctttatggtt ttctcatcc 29 <210> 49 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2_GW_r1 <400> 49 agaaagctgg gttcataaga tgctggtg 28 <210> 50 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2_GW_d2 <400> 50 aaaaagcagg cttttctcag ccgccagagg 30 <210> 51 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2_GW_r2 <400> 51 agaaagctgg gtttcagttc ctcaaggcac c 31 <210> 52 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof3.7_GW_d2 <400> 52 aaaaagcagg ctttaaggcg aggccacaag 30 <210> 53 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof3.7_GW_r2 <400> 53 agaaagctgg gtttcagtta cgaagagagc c 31 <210> 54 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.5_GW_d1 <400> 54 aaaaagcagg ctttaagccc ccaccaccac 30 <210> 55 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.5_GW_r1 <400> 55 agaaagctgg gtttcagttt cttaaagccc c 31 <210> 56 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof5.6_GW_d1 <400> 56 aaaaagcagg ctttcgtcca cctcacgacc 30 <210> 57 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof5.6_GW_r1 <400> 57 agaaagctgg gtttcaattc cttagagttc c 31 <210> 58 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4_GW_d1 <400> 58 aaaaagcagg ctttatactt aaccatcatc 30 <210> 59 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4_GW_r1 <400> 59 agaaagctgg gtttcagtta cggagaacac c 31 <210> 60 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Dof-Os04-GW-d1 <400> 60 aaaaagcagg ctttcggccg cagaaggaga ag 32 <210> 61 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Dof-Os04-GW-r1 <400> 61 agaaagctgg gtttcagttg cggagcgagc cgcc 34 <210> 62 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Dof-Nt-GW-d1 <400> 62 aaaaagcagg ctttaggcca caaaaagaac aa 32 <210> 63 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Dof-Nt-GW-r1 <400> 63 agaaagctgg gtttcaattt cttaaagaac cacc 34 <210> 64 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Dof-Gm-GW-d1 <400> 64 aaaaagcagg ctttaaaaca aggccacaag ag 32 <210> 65 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Dof-Gm-GW-r1 <400> 65 agaaagctgg gtttcagttt ctcagagacc ctcc 34 <210> 66 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp09-GW-d1 <400> 66 aaaaagcagg ctttcgcgag aagccagac 29 <210> 67 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp09-GW-r1 <400> 67 agaaagctgg gtttcaattg cgaagcgtcc c 31 <210> 68 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp15-GW-d1 <400> 68 aaaaagcagg ctttggcact accaagccc 29 <210> 69 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp15-GW-r1 <400> 69 agaaagctgg gtttcagttg cggagagtac c 31 <210> 70 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp19-GW-d1 <400> 70 aaaaagcagg ctttctgaag cctccagat 29 <210> 71 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp19-GW-r1 <400> 71 agaaagctgg gtttcaattt cttaaagtcc c 31 <210> 72 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Dof-Cr-GW-d1 <400> 72 aaaaagcagg ctttcttcca cgccccgaca ag 32 <210> 73 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Dof-Cr-GW-r1 <400> 73 agaaagctgg gtttcagttc ctcaacgtgc cgcc 34 <210> 74 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB1-ad-F* <400> 74 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 75 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB2-ad-R* <400> 75 ggggaccact ttgtacaaga aagctgggt 29 <210> 76 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mCherry-S-d1 <400> 76 gggcgtcgac atggtgagca agggcgagga 30 <210> 77 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> mCherry-AvrKSac-r3 <400> 77 gggcgagctc tccggtacct tacctaggct tgtacagctc gtccatg 47 <210> 78 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> H2B-Avr-d1 <400> 78 gggccctagg atggcgaagg cagataagaa 30 <210> 79 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> H2B-HpaK-r1 <400> 79 gggcggtacc tcagttaaca gaactcgtaa acttcgtaac c 41 <210> 80 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> attR-Bsgl-d1 <400> 80 ggcgttcgaa gatctcacaa gtttgtacaa aaaagc 36 <210> 81 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> attR-BKpn-r1 <400> 81 ggcgggtacc ttatccttcg aacaccactt tgtacaagaa ag 42 <210> 82 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del1_F1Bg <400> 82 ggcgagatct tatggaccat catcagtatc a 31 <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del1_R1k <400> 83 ggcgggtacc tcacattgtc gtcatcaact tct 33 <210> 84 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del2_F2Bg <400> 84 ggcgagatct tagcactagg ccgcaagaac c 31 <210> 85 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del2_R2k <400> 85 ggcgggtacc tcagttacgg agagagccac ctt 33 <210> 86 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del3_F3Bg <400> 86 ggcgagatct tgtccccgta ggcggaggtt c 31 <210> 87 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del3_R3k <400> 87 ggcgggtacc tcacgtcttg ctagggtttg atg 33 <210> 88 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del4_F4Bg <400> 88 ggcgagatct tcatcaaaac aataatgacc t 31 <210> 89 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del4_R4k <400> 89 ggcgggtacc tcaaaactga atcattccca tag 33 <210> 90 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del5_F5Bg <400> 90 ggcgagatct tcgtcaagag tatgatcatg a 31 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del5_R5k <400> 91 ggcgggtacc tcaccatgtt ggtccaccac 30 <210> 92 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2-ZFM_F3Bg <400> 92 ggcgagatct ttctcagccg ccagagggag c 31 <210> 93 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2-ZFM_R3k <400> 93 ggcgggtacc tcagttcctc aaggcaccgc cac 33 <210> 94 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4-ZFM_F3Bg <400> 94 ggcgagatct tatacttaac catcatcaat c 31 <210> 95 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4-ZFM_R3k <400> 95 ggcgggtacc tcagttacgg agaacaccac ctt 33 <210> 96 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 2Myc_BamHI_F1 <400> 96 ggcggatcct aaagctaccc ctagcactag tatg 34 <210> 97 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 2Myc_BglII_R1 <400> 97 ggcagatctg cacgggttgg gcctttcaaa tcctc 35 <210> 98 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 2Myc_BglII_F2 <400> 98 ggcagatctt aaagctaccc ctagcactag tatgg 35 <210> 99 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 2Myc_KpnI_R2 <400> 99 ggcggtaccg cacgggttgg gcctttcaaa tcctc 35 <210> 100 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> GL1_AscI_F <400> 100 gcaggcgcgc ctccagaatg agaataagga gaag 34 <210> 101 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2-ZFM_BamHI_R <400> 101 gcgggatcct ttcagttcct caaggcacc 29 <210> 102 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4-ZFM_BamHI_R <400> 102 gcgggatcct ttcagttacg gagaacacca c 31 <210> 103 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> PpMKN1-3_BglII_F <400> 103 ggaagatctt gttgatgtgc gagaggagat cctac 35 <210> 104 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> PpMKN1-3_KpnI_R <400> 104 ggcgggtacc aaatggattg ctgtgccagt tc 32 <210> 105 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PpMKN2_BglII_F <400> 105 ggcgagatct ttatggtcgc cacatcggag 30 <210> 106 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> PpMKN2_KpnI_R <400> 106 gggcggtacc ttatttacct tcgcagctcc agtg 34 <210> 107 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> PpMKN4_BamHI_F <400> 107 ggaagatctt ggcagcaaga agggccgtga aaacc 35 <210> 108 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> PpMKN4_KpnI_R <400> 108 ggcgggtacc ttaaccctcg cagctccagt gtcgcttg 38 <210> 109 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> PpMKN6_BamHI_F <400> 109 ggaggatcct gaggacgttc gtgaggaaat tttgc 35 <210> 110 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> PpMKN6_KpnI_R <400> 110 ggcgggtacc ttagttgcta tgccagtttc gctttcgc 38 <210> 111 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PpHD6_BglII_F <400> 111 ggcgagatct tcttggaatg ctccaacagc 30 <210> 112 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PpHD6_KpnI_R <400> 112 ggcgggtacc ttataccatt ggcttccaca g 31 <210> 113 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CrGSM1_BglII_F <400> 113 ggcgagatct tgtgcaggtg gctgccagcc t 31 <210> 114 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CrGSM1_KpnI_R <400> 114 gggcggtacc aatgcttgtg ccagtgcctc 30 <210> 115 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CrHDG1_BglII_F <400> 115 ggcgagatct tagcaagaag ggccgtgaaa ac 32 <210> 116 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CrHDG1_KpnI_R <400> 116 gggcggtacc tgatgagcgg cttccagatg c 31 <210> 117 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> CrGSP1_BglII_F <400> 117 ggcaagatct tcagctgtac ggcggcgtgg gggat 35 <210> 118 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> CrGSP1_KpnI_R <400> 118 gccgggtacc ttacatgatg gcgggccgcc agtgcct 37 <210> 119 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CrCO_BglII_F <400> 119 ggcgagatct taacctgact cgcgagcagc g 31 <210> 120 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CrCO_KpnI_R <400> 120 gggcggtacc tctcctcctt cttggcgaag c 31 <210> 121 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CrYABBY_BglII_F <400> 121 ggcgagatct tattcggtct ttctcggaaa g 31 <210> 122 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CrYABBY_KpnI_R <400> 122 gggcggtacc aaatggaagc ccacttgtcg 30 <110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> A complex trafficking through plasmodesmata and method of          transporting targeted material through plasmodesmata <130> PN092500 <160> 122 <170> Kopatentin 2.0 <210> 1 <211> 50 <212> PRT <213> Artificial Sequence <220> ITD1 N-var + ZFM peptide seq [ITDN'-5.4_ZfM] <400> 1 Ser Thr Arg Pro Gln Glu Pro Arg Asn Cys Pro Arg Cys Asn Ser Leu   1 5 10 15 Asn Thr Lys Phe Cys Tyr Tyr Asn Asn Tyr Asn Leu Ser Gln Pro Arg              20 25 30 His Phe Cys Lys Asn Cys Arg Arg Tyr Trp Thr Lys Gly Gly Val Leu          35 40 45 Arg Asn      50 <210> 2 <211> 294 <212> PRT <213> Artificial Sequence <220> <223> ITD1 protein seq <400> 2 Met Asp His His Gln Tyr His His His Asp Gln Tyr Gln His Gln Met   1 5 10 15 Met Thr Ser Thr Asn Asn Asn Ser Tyr Asn Thr Ile Val Thr Thr Gln              20 25 30 Pro Pro Thr Thr Thr Thr Met Thr Thr Thr Thr Thr Met          35 40 45 Ile Met Asp Asp Glu Lys Lys Leu Met Thr Thr Met Ser Thr Arg Pro      50 55 60 Gln Glu Pro Arg Asn Cys Pro Arg Cys Asn Ser Ser Asn Thr Lys Phe  65 70 75 80 Cys Tyr Tyr Asn Asn Tyr Ser Leu Ala Gln Pro Arg Tyr Leu Cys Lys                  85 90 95 Ser Cys Arg Arg Tyr Trp Thr Glu Gly Gly Ser Leu Arg Asn Val Pro             100 105 110 Val Gly Gly Gly Ser Arg Lys Asn Lys Lys Leu Pro Phe Pro Asn Ser         115 120 125 Ser Thr Ser Ser Thr Lys Asn Leu Pro Asp Leu Asn Pro Pro Phe     130 135 140 Val Phe Thr Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Thys 145 150 155 160 Asn Asn Asn Asp Leu Ser Leu Ser Phe Ser Ser Pro Met Gln Asp Lys                 165 170 175 Arg Ala Gln Gly His Tyr Gly His Phe Ser Glu Gln Val Val Thr Gly             180 185 190 Gly Gln Asn Cys Leu Phe Gln Ala Pro Met Gly Met Ile Gln Phe Arg         195 200 205 Gln Glu Tyr Asp His Glu His Pro Lys Lys Asn Leu Gly Phe Ser Leu     210 215 220 Asp Arg Asn Glu Glu Glu Ile Gly Asn His Asp Asn Phe Val Val Asn 225 230 235 240 Glu Glu Gly Ser Lys Met Met Tyr Pro Tyr Gly Asp His Glu Asp Arg                 245 250 255 Gln Gln His His His Val Arg His Asp Asp Gly Asn Lys Lys Arg Glu             260 265 270 Gly Gly Ser Ser Asn Glu Leu Trp Ser Gly Ile Ile Leu Gly Gly Asp         275 280 285 Ser Gly Gly Pro Thr Trp     290 <210> 3 <211> 150 <212> DNA <213> Artificial Sequence <220> ITD1 N-var + ZFM DNA seq [ITDN'-5.4_ZfM] <400> 3 agcactaggc cgcaagaacc aagaaactgt cctcgttgta attctcttaa cacaaagttc 60 tgttactaca acaattacaa tctttctcag cctcgtcact tttgcaagaa ctgtcgtcgt 120 tactggacta aaggtggtgt tctccgtaac 150 <210> 4 <211> 885 <212> DNA <213> Artificial Sequence <220> <223> ITD1 CDS sequence <400> 4 atggaccatc atcagtatca tcatcatgat caataccaac atcagatgat gactagtact 60 aacaataatt cctataacac catcgtcaca acacaaccac caccaacaac aacaacaatg 120 gattcaacaa cagcaacaac tatgataatg gatgacgaga agaagttgat gacgacaatg 180 agcactaggc cgcaagaacc aagaaactgt ccaagatgca actcaagcaa caccaagttt 240 tgttattaca acaactacag cttagcacag cctaggtact tgtgtaagtc ttgtcggaga 300 tattggactg aaggtggctc tctccgtaac gtccccgtag gcggaggttc tagaaagaac 360 aagaagcttc catttcctaa ttcctctact tcttcttcca ccaagaacct cccggatctc 420 aaccctcctt tcgtcttcac atcatcagct tcatcatcaa accctagcaa gacgcatcaa 480 aacaataatg acctcagcct atccttctcc tcccctatgc aagacaagcg agctcaaggg 540 cattacggtc atttcagtga gcaagttgtg acaggagggc agaactgtct tttccaagct 600 cctatgggaa tgattcagtt tcgtcaagag tatgatcatg agcaccccaa aaagaatctt 660 gggttttcat tagacaggaa cgaggaagag attggtaatc atgataactt cgttgttaat 720 gaggaaggaa gtaagatgat gtatccttat ggagatcatg aagaccgtca acaacatcac 780 catgtgagac acgatgatgg taataagaag agagaaggtg gttcaagcaa tgagctatgg 840 agcggaatca tcctaggtgg tgatagtggt ggaccaacat ggtga 885 <210> 5 <211> 1023 <212> DNA <213> Artificial Sequence <220> <223> AtDof2.2 DNA seq <400> 5 atggttttct catccgtctc aagcttttta gatccaccaa ttaattggcc acagtctgcg 60 aatccaaata accatcctca tcatcatcag ctacaagaaa atggaagttt agttagtggc 120 caccaccaag tactctctca ccacttccca caaaacccta accctaacca ccaccatgtt 180 gagacagcag ccgccaccac cgttgatccg agcagtctca atggccaggc ggctgagaga 240 gcgaggctag ctaagaactc tcagccgcca gagggagccc taaagtgtcc tcgatgtgac 300 tcagccaata ccaagttctg ttacttcaac aactacaacc tcacgcagcc acgccacttc 360 tgcaaagctt gccgtcgcta ctggacacgt ggcggtgcct tgaggaacgt acctgtcggt 420 ggtggctgcc ggaggaataa gaagggtaaa tccggaaatt caaagtcttc ctcttcctct 480 cagaacaagc agtcaacgtc tatggtcaac gctacaagcc ctactaatac tagtaatgtc 540 cagctccaaa caaatagcca attcccattt ttgcccactc tacaaaacct cactcaactt 600 ggtggtattg gtttaaactt agccgccatt aatggaaata atggtggaaa tggtaacact 660 agctcaagtt tcttgaatga cttagggttt tttcatggtg gtaacacttc aggtccggtc 720 atgggtaaca acaacgagaa taacctaatg acttctcttg gatcatccag ccactttgct 780 ttgttcgatc gaaccatggg attatataat ttccctaacg aggtaaatat gggattatct 840 tctattggtg ctactagggt ttctcaaact gctcaggtga aaatggagga caaccatttg 900 ggtaatataa gccgcccggt ttcggggttg acatctccag ggaatcaatc caatcaatat 960 tggaccggtc aaggtctccc cggttcttca tctaacgatc atcatcacca gcatcttatg 1020 tga 1023 <210> 6 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> AtDof2.2 ZFM <400> 6 tctcagccgc cagagggagc cctaaagtgt cctcgatgtg actcagccaa taccaagttc 60 tgttacttca acaactacaa cctcacgcag ccacgccact tctgcaaagc ttgccgtcgc 120 tactggacac gtggcggtgc cttgaggaac 150 <210> 7 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> AtDof5.6 ZFM <400> 7 cgtccacctc acgaccatcc tcaaaagtgt cctcgttgcg agtcaacaca tactaagttc 60 tgttactaca ataactacag cctctctcag cctcgttact tctgcaagac ttgtcgccgt 120 tactggacaa aaggcggaac tctaaggaat 150 <210> 8 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> AtDof4.5 ZFM <400> 8 aagcccccac caccaccacc tcgagtgtgt gcaaggtgtg attctgataa tactaaattt 60 tgttattaca acaactactg tgagtttcag ccacgatact tctgcaagaa ctgtcgtaga 120 tactggactc atggtggggc tttaagaaac 150 <210> 9 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> AtDof3.7 ZFM <400> 9 aaggcgaggc cacaagagaa agtaaattgt ccaagatgca actcaacaaa cacaaagttc 60 tgttattaca acaactacag tctcacgcaa ccaagatact tctgcaaagg ttgtcgaagg 120 tattggaccg aaggtggctc tcttcgtaac 150 <210> 10 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> AtDof5.4 ZFM <400> 10 atacttaacc atcatcaatc tctcaagtgt cctcgttgta attctcttaa cacaaagttc 60 tgttactaca acaattacaa tctttctcag cctcgtcact tttgcaagaa ctgtcgtcgt 120 tactggacta aaggtggtgt tctccgtaac 150 <210> 11 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> CrDof ZFM <400> 11 cttccacgcc ccgacaagaa ggaggcatgc cctcgctgca acagcatgga caccaaattc 60 tgctactaca acaattacaa catcaagcag ccccgctttt actgcaagac gtgtcagcgg 120 tactggactg ccggcggcac gttgaggaac 150 <210> 12 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> PpDof15 ZFM <400> 12 ggcactacca agcccaagga ccttccttgc ccgcgctgcc agtccatgaa caccaaattc 60 tgctactaca acaactatag tgtcaaccag ccccgccact tctgccgcaa ttgccaacgc 120 tactggaccg tgggtggtac tctccgcaac 150 <210> 13 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> PpDof09 ZFM <400> 13 cgcgagaagc cagacaaggt gctgccgtgt cctcgctgcg agtccatgaa caccaagttc 60 tgctactaca acaattacag tgtaacacag ccccgccact tctgcaggca gtgtcagcgc 120 tactggaccg cgggagggac gcttcgcaat 150 <210> 14 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> PpDof19 ZFM <400> 14 ctgaagcctc cagatcaagt tattgcgtgc cctcgctgcc aatcccttaa caccaagttt 60 tgttactaca acaactacag ccttacgcag ccccgacatt tttgtaaaag ttgtcgccgc 120 tactggactg caggtgggac tttaagaaat 150 <210> 15 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> GmDof ZFM <400> 15 aaaacaaggc cacaagagca actgaattgt ccaaggtgca attcaaccaa cacaaagttc 60 tgttattaca acaactacag cctcacacag ccaagatact tctgcaagac ttgtagaagg 120 tattggacag aaggagggtc tctgagaaac 150 <210> 16 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> OsDof ZFM <400> 16 cggccgcaga aggagaaggc gctcaactgc ccgcggtgca actcgacgaa caccaagttc 60 tgctactaca acaactacag cctccagcag ccgcgctact tctgcaagac gtgccggcgc 120 tactggacgg agggcggctc gctccgcaac 150 <210> 17 <211> 150 <212> DNA <213> Artificial Sequence <220> <223> NtDof ZFM <400> 17 aggccacaaa aagaacaagc aataaattgt ccaagatgca attcaacaaa cacaaaattc 60 tgttattata acaattatag cctttctcag ccaaggtatt tttgcaaaac ttgtagaagg 120 tattggactg atggtggttc tttaagaaat 150 <210> 18 <211> 13394 <212> DNA <213> Artificial Sequence <220> <223> pZY375 vector sequence <400> 18 cctgtggttg gcatgcacat acaaatggac gaacggataa accttttcac gcccttttaa 60 atatccgatt attctaataa acgctctttt ctcttaggtt tacccgccaa tatatcctgt 120 caaacactga tagtttaaac tgaaggcggg aaacgacaat ctggatccaa gcttcgtatt 180 ggctagagca gcttgccaac atggtggagc acgacactct cgtctactcc aagaatatca 240 aagatacagt ctcagaagac caaagggcta ttgagacttt tcaacaaagg gtaatatcgg 300 gaaacctcct cggattccat tgcccagcta tctgtcactt catcaaaagg acagtagaaa 360 aggaaggtgg cacctacaaa tgccatcatt gcgataaagg aaaggctatc gttcaagatg 420 cctctgccga cagtggtccc aaagatggac ccccacccac gaggagcatc gtggaaaaag 480 aagacgttcc aaccacgtct tcaaagcaag tggattgatg tgataacatg gtggagcacg 540 acactctcgt ctactccaag aatatcaaag atacagtctc agaagaccaa agggctattg 600 agacttttca acaaagggta atatcgggaa acctcctcgg attccattgc ccagctatct 660 gtcacttcat caaaaggaca gtagaaaagg aaggtggcac ctacaaatgc catcattgcg 720 ataaaggaaa ggctatcgtt caagatgcct ctgccgacag tggtcccaaa gatggacccc 780 cacccacgag gagcatcgtg gaaaaagaag acgttccaac cacgtcttca aagcaagtgg 840 attgatgtga tatctccact gacgtaaggg atgacgcaca atcccactat ccttcgcaag 900 accttcctct atataaggaa gttcatttca tttggagagg acacgctgaa atcaccagtc 960 tctctctaca aatctatctc tctcgagctt tcgcagatcc gggggggcaa tgagatatga 1020 aaaagcctga actcaccgcg acgtctgtcg agaagtttct gatcgaaaag ttcgacagcg 1080 tctccgacct gatgcagctc tcggagggcg aagaatctcg tgctttcagc ttcgatgtag 1140 gagggcgtgg atatgtcctg cgggtaaata gctgcgccga tggtttctac aaagatcgtt 1200 atgtttatcg gcactttgca tcggccgcgc tcccgattcc ggaagtgctt gacattgggg 1260 agtttagcga gagcctgacc tattgcatct cccgccgtgc acagggtgtc acgttgcaag 1320 acctgcctga aaccgaactg cccgctgttc tacaaccggt cgcggaggct atggatgcga 1380 tcgctgcggc cgatcttagc cagacgagcg ggttcggccc attcggaccg caaggaatcg 1440 gtcaatacac tacatggcgt gatttcatat gcgcgattgc tgatccccat gtgtatcact 1500 ggcaaactgt gatggacgac accgtcagtg cgtccgtcgc gcaggctctc gatgagctga 1560 tgctttgggc cgaggactgc cccgaagtcc ggcacctcgt gcacgcggat ttcggctcca 1620 acaatgtcct gacggacaat ggccgcataa cagcggtcat tgactggagc gaggcgatgt 1680 tcggggattc ccaatacgag gtcgccaaca tcttcttctg gaggccgtgg ttggcttgta 1740 tggagcagca gacgcgctac ttcgagcgga ggcatccgga gcttgcagga tcgccacgac 1800 tccgggcgta tatgctccgc attggtcttg accaactcta tcagagcttg gttgacggca 1860 atttcgatga tgcagcttgg gcgcagggtc gatgcgacgc aatcgtccga tccggagccg 1920 ggactgtcgg gcgtacacaa atcgcccgca gaagcgcggc cgtctggacc gatggctgtg 1980 tagaagtact cgccgatagt ggaaaccgac gccccagcac tcgtccgagg gcaaagaaat 2040 agagtagatg ccgaccggat ctgtcgatcg acaagctcga gtttctccat aataatgtgt 2100 gagtagttcc cagataaggg aattagggtt cctatagggt ttcgctcatg tgttgagcat 2160 ataagaaacc cttagtatgt atttgtattt gtaaaatact tctatcaata aaatttctaa 2220 ttcctaaaac caaaatccag tactaaaatc cagatccccc gaattaattc ggcgttaatt 2280 cagtacattg ctctggtggt ggttctggtg gcggctctga gggtggtggc tctgagggtg 2340 gcggttctga gggtggcggc tctgagggag gcggttccgg tggtggctct ggttccggtg 2400 attttgatta tgaaaagatg gcaaacgcta ataagggggc tatgaccgaa aatgccgatg 2460 aaaacgcgct acagtctgac gctaaaggca aacttgattc tgtcgctact gattacggtg 2520 ctgctatcga tggtttcatt ggtgacgttt ccggccttgc taatggtaat ggtgctactg 2580 gtgattttgc tggctctaat tcccaaatgg ctcaagtcgg tgacggtgat aattcacctt 2640 taatgaataa tttccgtcaa tatttacctt ccctccctca atcggttgaa tgtcgccctt 2700 ttgtctttgg cccaatacgc aaaccgcctc tccccgcgcg ttggccgatt cattaatgca 2760 gctggcacga caggtttccc gactggaaag cgggcagtga gcgcaacgca attaatgtga 2820 gttagctcac tcattaggca ccccaggctt tacactttat gcttccggct cgtatgttgt 2880 gtggaattgt gagcggataa caatttcaca caggaaacag ctatgaccat gattacgcca 2940 agcttgcatg cctgcaggtc ggagtactgt cctccgagcg gagtactgtc ctccgagcgg 3000 agtactgtcc tccgagcgga gtactgtcct ccgagcggag tactgtcctc cgagcggaga 3060 ctctagaagc tactccacgt ccataaggga cacatcacaa tcccactatc cttcgcaaga 3120 cccttcctct atataaggaa gttcatttca tttggagagg acgacctgca ggtcgacgga 3180 tccaaggaga tataacaatg aagactaatc tttttctctt tctcatcttt tcacttctcc 3240 tatcattatc ctcggccgaa ttcagtaaag gagaagaact tttcactgga gttgtcccaa 3300 ttcttgttga attagatggt gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg 3360 aaggtgatgc aacaggaaaa cttaccctta aatttatttg cactactgga aaactacctg 3420 ttccatggcc aacacttgtc actactttct cttatggtgt tcaatgcttt tcaagatacc 3480 cagatcatat gaagcggcac gacttcttca agagcgccat gcctgaggga tacgtgcagg 3540 agaggaccat cttcttcaag gacgacggga actacaagac acgtgctgaa gtcaagtttg 3600 agggagacac cctcgtcaac aggatcgagc ttaagggaat cgatttcaag gaggacggaa 3660 acatcctcgg ccacaagttg gaatacaact acaactccca caacgtatac atcatggccg 3720 acaagcaaaa gaacggcatc aaagccaact tcaagacccg ccacaacatc gaagacggcg 3780 gcgtgcaact cgctgatcat tatcaacaaa atactccaat tggcgatggc cctgtccttt 3840 taccagacaa ccattacctg tccacacaat ctgccctttc gaaagatccc aacgaaaaga 3900 gagaccacat ggtccttctt gagtttgtaa cagctgctgg gattacacat ggcatggatg 3960 aactatacaa acatgatgag ctttaagagc tcgaatttcc ccgatcgttc aaacattggc 4020 aataaagttt cttaaagatt gaatcctgtt gccggtctgc gatgattatc atataatttt 4080 ctgttgaatt acgttaagca tgtaataatt aacatgtaat gcatgacgtt atttatgaga 4140 tgggttttta tgattagagt cccgcaatta tacatttaat acgcgataga aaacaaaata 4200 tagcgcgcaa actaggataa attatcgcgc gcggtgtcat ntatgttact agatcgggaa 4260 ttaattcact ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac 4320 ttaatcgcct tgcagcacat ccccctttcg ccagctggcg taatagcgaa gaggcccgca 4380 ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcgc ccgctccttt cgctttcttc 4440 ccttcctttc tcgccacgtt cgccggcttt ccccgtcaag ctctaaatcg ggggctccct 4500 ttagggttcc gatttagtgc tttacggcac ctcgacccca aaaaacttga tttgggtgat 4560 ggttcacgta gtgggccatc gccctgatag acggtttttc gccctttgac gttggagtcc 4620 acgttcttta atagtggact cttgttccaa actggaacaa cactcaaccc tatctcgggc 4680 tattcttttg atttataagg gattttgccg atttcggaac caccatcaaa caggattttc 4740 gcctgctggg gcaaaccagc gtggaccgct tgctgcaact ctctcagggc caggcggtga 4800 agggcaatca gctgttgccc gtctcactgg tgaaaagaaa aaccacccca gtacattaaa 4860 aacgtccgca atgtgttatt aagttgtcta agcgtcaatt tgtttacacc acaatatatc 4920 ctgccaccag ccagccaaca gctccccgac cggcagctcg gcacaaaatc accactcgat 4980 acaggcagcc catcagtccg ggacggcgtc agcgggagag ccgttgtaag gcggcagact 5040 ttgctcatgt taccgatgct attcggaaga acggcaacta agctgccggg tttgaaacac 5100 ggatgatctc gcggagggta gcatgttgat tgtaacgatg acagagcgtt gctgcctgtg 5160 atcaaatatc atctccctcg cagagatccg aattatcagc cttcttattc atttctcgct 5220 taaccgtgac aggctgtcga tcttgagaac tatgccgaca taataggaaa tcgctggata 5280 aagccgctga ggaagctgag tggcgctatt tctttagaag tgaacgttga cgatatcaac 5340 tcccctatcc attgctcacc gaatggtaca ggtcggggac ccgaagttcc gactgtcggc 5400 ctgatgcatc cccggctgat cgaccccaga tctggggctg agaaagccca gtaaggaaac 5460 aactgtaggt tcgagtcgcg agatcccccg gaaccaaagg aagtaggtta aacccgctcc 5520 gatcaggccg agccacgcca ggccgagaac attggttcct gtaggcatcg ggattggcgg 5580 atcaaacact aaagctactg gaacgagcag aagtcctccg gccgccagtt gccaggcggt 5640 aaaggtgagc agaggcacgg gaggttgcca cttgcgggtc agcacggttc cgaacgccat 5700 ggaaaccgcc cccgccaggc ccgctgcgac gccgacagga tctagcgctg cgtttggtgt 5760 caacaccaac agcgccacgc ccgcagttcc gcaaatagcc cccaggaccg ccatcaatcg 5820 tatcgggcta cctagcagag cggcagagat gaacacgacc atcagcggct gcacagcgcc 5880 taccgtcgcc gcgaccccgc ccggcaggcg gtagaccgaa ataaacaaca agctccagaa 5940 tagcgaaata ttaagtgcgc cgaggatgaa gatgcgcatc caccagattc ccgttggaat 6000 ctgtcggacg atcatcacga gcaataaacc cgccggcaac gcccgcagca gcataccggc 6060 gacccctcgg cctcgctgtt cgggctccac gaaaacgccg gacagatgcg ccttgtgagc 6120 gtccttgggg ccgtcctcct gtttgaagac cgacagccca atgatctcgc cgtcgatgta 6180 ggcgccgaat gccacggcat ctcgcaaccg ttcagcgaac gcctccatgg gctttttctc 6240 ctcgtgctcg taaacggacc cgaacatctc tggagctttc ttcagggccg acaatcggat 6300 ctcgcggaaa tcctgcacgt cggccgctcc aagccgtcga atctgagcct taatcacaat 6360 tgtcaatttt aatcctctgt ttatcggcag ttcgtagagc gcgccgtgcg tcccgagcga 6420 tactgagcga agcaagtgcg tcgagcagtg cccgcttgtt cctgaaatgc cagtaaagcg 6480 ctggctgctg aacccccagc cggaactgac cccacaaggc cctagcgttt gcaatgcacc 6540 aggtcatcat tgacccaggc gtgttccacc aggccgctgc ctcgcaactc ttcgcaggct 6600 tcgccgacct gctcgcgcca cttcttcacg cgggtggaat ccgatccgca catgaggcgg 6660 aaggtttcca gcttgagcgg gtacggctcc cggtgcgagc tgaaatagtc gaacatccgt 6720 cgggccgtcg gcgacagctt gcggtacttc tcccatatga atttcgtgta gtggtcgcca 6780 gcaaacagca cgacgatttc ctcgtcgatc aggacctggc aacgggacgt tttcttgcca 6840 cggtccagga cgcggaagcg gtgcagcagc gacaccgatt ccaggtgccc aacgcggtcg 6900 gcgtgaagc ccatcgccgt cgcctgtagg cgcgacaggc attcctcggc cttcgtgtaa 6960 taccggccat tgatcgacca gcccaggtcc tggcaaagct cgtagaacgt gaaggtgatc 7020 ggctcgccga taggggtgcg cttcgcgtac tccaacacct gctgccacac cagttcgtca 7080 tcgtcggccc gcagctcgac gccggtgtag gtgatcttca cgtccttgtt gacgtggaaa 7140 atgaccttgt tttgcagcgc ctcgcgcggg attttcttgt tgcgcgtggt gaacagggca 7200 gagcgggccg tgtcgtttgg catcgctcgc atcgtgtccg gccacggcgc aatatcgaac 7260 aaggaaagct gcatttcctt gatctgctgc ttcgtgtgtt tcagcaacgc ggcctgcttg 7320 gcctcgctga cctgttttgc caggtcctcg ccggcggttt ttcgcttctt ggtcgtcata 7380 gttcctcgcg tgtcgatggt catcgacttc gccaaacctg ccgcctcctg ttcgagacga 7440 cgcgaacgct ccacggcggc cgatggcgcg ggcagggcag ggggagccag ttgcacgctg 7500 tcgcgctcga tcttggccgt agcttgctgg accatcgagc cgacggactg gaaggtttcg 7560 cggggcgcac gcatgacggt gcggcttgcg atggtttcgg catcctcggc ggaaaacccc 7620 gcgtcgatca gttcttgcct gtatgccttc cggtcaaacg tccgattcat tcaccctcct 7680 tgcgggattg ccccgactca cgccggggca atgtgccctt attcctgatt tgacccgcct 7740 ggtgccttgg tgtccagata atccacctta tcggcaatga agtcggtccc gtagaccgtc 7800 tggccgtcct tctcgtactt ggtattccga atcttgccct gcacgaatac cagcgacccc 7860 ttgcccaaat acttgccgtg ggcctcggcc tgagagccaa aacacttgat gcggaagaag 7920 tcggtgcgct cctgcttgtc gccggcatcg ttgcgccaca tctaggtact aaaacaattc 7980 atccattaaa atataatatt ttattttctc ccaatcaggc ttgatcccca gtaagtcaaa 8040 aaatagctcg acatactgtt cttccccgat atcctccctg atcgaccgga cgcagaaggc 8100 aatgtcatac cacttgtccg ccctgccgct tctcccaaga tcaataaagc cacttacttt 8160 gccatctttc acaaagatgt tgctgtctcc caggtcgccg tgggaaaaga caagttcctc 8220 ttcgggcttt tccgtcttta aaaaatcata cagctcgcgc ggatctttaa atggagtgtc 8280 ttcttcccag ttttcgcaat ccacatcggc cagatcgtta ttcagtaagt aatccaattc 8340 ggctaagcgg ctgtctaagc tattcgtata gggacaatcc gatatgtcga tggagtgaaa 8400 gagcctgatg cactccgcat acagctcgat aatcttttca gggctttgtt catcttcata 8460 ctcttccgag caaaggacgc catcggcctc actcatgagc agattgctcc agccatcatg 8520 ccgttcaaag tgcaggacct ttggaacagg cagctttcct tccagccata gcatcatgtc 8580 cttttcccgt tccacatcat aggtggtccc tttataccgg ctgtccgtca tttttaaata 8640 taggttttca ttttctccca ccagcttata taccttagca ggagacattc cttccgtatc 8700 ttttacgcag cggtattttt cgatcagttt tttcaattcc ggtgatattc tcattttagc 8760 catttattat ttccttcctc ttttctacag tatttaaaga taccccaaga agctaattat 8820 aacaagacga actccaattc actgttcctt gcattctaaa accttaaata ccagaaaaca 8880 gctttttcaa agttgttttc aaagttggcg tataacatag tatcgacgga gccgattttg 8940 aaaccacaat tatgggtgat gctgccaact tactgattta gtgtatgatg gtgtttttga 9000 ggtgctccag tggcttctgt gtctatcagc tgtccctcct gttcagctac tgacggggtg 9060 gtgcgtaacg gcaaaagcac cgccggacat cagcgctatc tctgctctca ctgccgtaaa 9120 acatggcaac tgcagttcac ttacaccgct tctcaacccg gtacgcacca gaaaatcatt 9180 gatatggcca tgaatggcgt tggatgccgg gcaacagccc gcattatggg cgttggcctc 9240 aacacgattt tacgtcactt aaaaaactca ggccgcagtc ggtaacctcg cgcatacagc 9300 cgggcagtga cgtcatcgtc tgcgcggaaa tggacgaaca gtggggctat gtcggggcta 9360 aatcgcgcca gcgctggctg ttttacgcgt atgacagtct ccggaagacg gttgttgcgc 9420 acgtattcgg tgaacgcact atggcgacgc tggggcgtct tatgagcctg ctgtcaccct 9480 ttgacgtggt gatatggatg acggatggct ggccgctgta tgaatcccgc ctgaagggaa 9540 agctgcacgt aatcagcaag cgatatacgc agcgaattga gcggcataac ctgaatctga 9600 ggcagcacct ggcacggctg ggacggaagt cgctgtcgtt ctcaaaatcg gtggagctgc 9660 atgacaaagt catcgggcat tatctgaaca taaaacacta tcaataagtt ggagtcatta 9720 cccaattatg atagaattta caagctataa ggttattgtc ctgggtttca agcattagtc 9780 catgcaagtt tttatgcttt gcccattcta tagatatatt gataagcgcg ctgcctatgc 9840 cttgccccct gaaatcctta catacggcga tatcttctat ataaaagata tattatctta 9900 tcagtattgt caatatattc aaggcaatct gcctcctcat cctcttcatc ctcttcgtct 9960 tggtagcttt ttaaatatgg cgcttcatag agtaattctg taaaggtcca attctcgttt 10020 tcatacctcg gtataatctt acctatcacc tcaaatggtt cgctgggttt atcgcacccc 10080 cgaacacgag cacggcaccc gcgaccacta tgccaagaat gcccaaggta aaaattgccg 10140 gccccgccat gaagtccgtg aatgccccga cggccgaagt gaagggcagg ccgccaccca 10200 ggccgccgcc ctcactgccc ggcacctggt cgctgaatgt cgatgccagc acctgcggca 10260 cgtcaatgct tccgggcgtc gcgctcgggc tgatcgccca tcccgttact gccccgatcc 10320 cggcaatggc aaggactgcc agcgctgcca tttttggggt gaggccgttc gcggccgagg 10380 ggcgcagccc ctggggggat gggaggcccg cgttagcggg ccgggagggt tcgagaaggg 10440 ggggcacccc ccttcggcgt gcgcggtcac gcgcacaggg cgcagccctg gttaaaaaca 10500 aggtttataa atattggttt aaaagcaggt taaaagacag gttagcggtg gccgaaaaac 10560 gggcggaaac ccttgcaaat gctggatttt ctgcctgtgg acagcccctc aaatgtcaat 10620 aggtgcgccc ctcatctgtc agcactctgc ccctcaagtg tcaaggatcg cgcccctcat 10680 ctgtcagtag tcgcgcccct caagtgtcaa taccgcaggg cacttatccc caggcttgtc 10740 cacatcatct gtgggaaact cgcgtaaaat caggcgtttt cgccgatttg cgaggctggc 10800 cagctccacg tcgccggccg aaatcgagcc tgcccctcat ctgtcaacgc cgcgccgggt 10860 gagtcggccc ctcaagtgtc aacgtccgcc cctcatctgt cagtgagggc caagttttcc 10920 gcgaggtatc cacaacgccg gcggccgcgg tgtctcgcac acggcttcga cggcgtttct 10980 ggcgcgtttg cagggccata gacggccgcc agcccagcgg cgagggcaac cagcccggtg 11040 agcgtcgcaa aggcgctcgg tcttgccttg ctcgtcggtg atgtacttca ccagctccgc 11100 gaagtcgctc ttcttgatgg agcgcatggg gacgtgcttg gcaatcacgc gcaccccccg 11160 gccgttttag cggctaaaaa agtcatggct ctgccctcgg gcggaccacg cccatcatga 11220 ccttgccaag ctcgtcctgc ttctcttcga tcttcgccag cagggcgagg atcgtggcat 11280 caccgaaccg cgccgtgcgc gggtcgtcgg tgagccagag tttcagcagg ccgcccaggc 11340 ggcccaggtc gccattgatg cgggccagct cgcggacgtg ctcatagtcc acgacgcccg 11400 tgattttgta gccctggccg acggccagca ggtaggccga caggctcatg ccggccgccg 11460 ccgccttttc ctcaatcgct cttcgttcgt ctggaaggca gtacaccttg ataggtgggc 11520 tgcccttcct ggttggcttg gtttcatcag ccatccgctt gccctcatct gttacgccgg 11580 cggtagccgg ccagcctcgc agagcaggat tcccgttgag caccgccagg tgcgaataag 11640 ggacagtgaa gaaggaacac ccgctcgcgg gtgggcctac ttcacctatc ctgcccggct 11700 gacgccgttg gatacaccaa ggaaagtcta cacgaaccct ttggcaaaat cctgtatatc 11760 gtgcgaaaaa ggatggatat accgaaaaaa tcgctataat gaccccgaag cagggttatg 11820 cagcggaaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc 11880 agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat 11940 agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg 12000 gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc 12060 tggccttttg ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt 12120 accgcctttg agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca 12180 gtgagcgagg aagcggaaga gcgccagaag gccgccagag aggccgagcg cggccgtgag 12240 gcttggacgc tagggcaggg catgaaaaag cccgtagcgg gctgctacgg gcgtctgacg 12300 cggtggaaag ggggagggga tgttgtctac atggctctgc tgtagtgagt gggttgcgct 12360 ccggcagcgg tcctgatcaa tcgtcaccct ttctcggtcc ttcaacgttc ctgacaacga 12420 gcctcctttt cgccaatcca tcgacaatca ccgcgagtcc ctgctcgaac gctgcgtccg 12480 gaccggcttc gtcgaaggcg tctatcgcgg cccgcaacag cggcgagagc ggagcctgtt 12540 caacggtgcc gccgcgctcg ccggcatcgc tgtcgccggc ctgctcctca agcacggccc 12600 caacagtgaa gtagctgatt gtcatcagcg cattgacggc gtccccggcc gaaaaacccg 12660 cctcgcagag gaagcgaagc tgcgcgtcgg ccgtttccat ctgcggtgcg cccggtcgcg 12720 tgccggcatg gatgcgcgcg ccatcgcggt aggcgagcag cgcctgcctg aagctgcggg 12780 cattcccgat cagaaatgag cgccagtcgt cgtcggctct cggcaccgaa tgcgtatgat 12840 tctccgccag catggcttcg gccagtgcgt cgagcagcgc ccgcttgttc ctgaagtgcc 12900 agtaaagcgc cggctgctga acccccaacc gttccgccag tttgcgtgtc gtcagaccgt 12960 ctacgccgac ctcgttcaac aggtccaggg cggcacggat cactgtattc ggctgcaact 13020 ttgtcatgct tgacacttta tcactgataa acataatatg tccaccaact tatcagtgat 13080 aaagaatccg cgcgttcaat cggaccagcg gaggctggtc cggaggccag acgtgaaacc 13140 caacataccc ctgatcgtaa ttctgagcac tgtcgcgctc gacgctgtcg gcatcggcct 13200 gattatgccg gtgctgccgg gcctcctgcg cgatctggtt cactcgaacg acgtcaccgc 13260 ccactatggc attctgctgg cgctgtatgc gttggtgcaa tttgcctgcg cacctgtgct 13320 gggcgcgctg tcggatcgtt tcgggcggcg gccaatcttg ctcgtctcgc tggccggcgc 13380 cagatctggg gaac 13394 <210> 19 <211> 13201 <212> DNA <213> Artificial Sequence <220> <223> pK1401 vector sequence <400> 19 aattcgagct cactagcttc aaaaaacaga gttgccacgg gagacagaat gtttaaatgg 60 aatcaacaag tgaacacaaa ctgcatgttc tgtcacgaac ctatggaaac aagacaccat 120 cttttttttg ggtgctctta ctcgcagaag gtatgggaga agctgataag gggaatacta 180 cttgataagt actcgacata ttggagggaa gtctttaaaa ccatttgtga caaaaactat 240 gacaaaacaa aaatcttcat tctacggtat gtcttccaaa acacggttca ttcgatttgg 300 ggagaaagaa atgcttgaaa gcatggtgaa caaccatcac caatggagaa acttgtcaag 360 ttaattgaca aaaatgtttg gaaccggctg agcacaatac ggagtggggg gagctttgaa 420 gtatgaagga ggtcttcaag tttggtttgg tacaagacaa gcttaagacc aaatcctctg 480 ttttagattt gtttttcaaa aaagtatgca ttaagttgta aacacgttta tttctctttt 540 taaaatctaa tctaaaaatt ttctttttta aaatgacata gaaaaatcca actgtatatt 600 ttaaatccat aaacatgaat tctaaagccg caagtccaaa aatttagaga tgacatcata 660 gcaagcaagg acacgcaaga attaatgaaa tttataatgg agataacaaa gcatgaatat 720 ttataatttg gaaactgttt tacattaaat tagatagttt acgatacatt caaagctaaa 780 acacttattt acaatgaaaa gtaatcaatg tttcttgaat gggtttggct acttcttctc 840 atatggttgg accggggcat atatgagctt ttacgtggta ttcgtggacc catgaccata 900 tgagcttctt catgtggcct tagagtgtgg attcttccct cggatccaca ccatccattg 960 aagtgtgtta taaaatttcc ccatgatccg tcatggcttt tgtgcttaag ttgtcatggt 1020 gggaattatc ttgaggtgcc acattcgtgc ttaagtgggc cgtaagtgca attgcgttgt 1080 gctccaaaag gaacggtgcc gtgggttcct cttgttcatc agaaatatat taattagccg 1140 taaaacctga aaattcacaa gcatttggat tgttttctaa tttaatatcc attatgtgac 1200 taaaagttct agtgatcgta catactacat agaaaataat aacacaaaat actagtttac 1260 atttcccaat taaaaaccat tttgaatgaa ctctgtctga tttaattata cttttaaaat 1320 gtgggatgaa ttcaaagatt atacttatat tcttattatt taagattatc aagtggaaaa 1380 ataaaaatat gaatgtgtta atataaggta atagaaattt aatcattttt ttaatctata 1440 tgtaaaaagt atttaaccga tatctacaat ttgacgcctc ccaattgaaa ggagccaaaa 1500 gcaaccgatc aagtggagac cagtagccat acacattcac tcctaccctt acatgagaaa 1560 gataagatta tggagttttc tgccacgtga tcttatccta gtggtccaaa tcgataaggg 1620 tgtcaacacc tttccttaat cctgtggcaa ttaacgacgt tatcatgaat tatggcccct 1680 ttgatcatta gggctagttg cctctagcgg ttcccactat ataaagatga caaaaccaac 1740 agacaaacaa gtaagtaaga gaaaaaccaa aagaagaaga gaaacaacaa cccaaatcac 1800 tcttttcaaa gcaaatttaa ttctctgaaa attctcatta cttccaaaca atagcagctt 1860 cgaaggatcc agaatgagaa taaggagaag agatgaaaaa gagaatcaag aatacaagaa 1920 aggtttatgg acagttgaag aagacaacat ccttatggac tatgttctta atcatggcac 1980 tggccaatgg aaccgcatcg tcagaaaaac tgggctaaag agatgtggga aaagttgtag 2040 actgagatgg atgaattatt tgagccctaa tgtgaacaaa ggcaatttca ctgaacaaga 2100 agaagacctc attattcgtc tccacaagct cctcggcaat agatggtctt tgatagctaa 2160 aagagtaccg ggaagaacag ataaccaagt caagaactac tggaacactc atctcagcaa 2220 aaaactcgtc ggagattact cctccgccgt caaaaccacc ggagaagacg acgactctcc 2280 accgtcattg ttcatcactg ccgccacacc ttcttcttgt catcatcaac aagaaaatat 2340 ctacgagaat atagccaaga gctttaacgg cgtcgtatca gcttcgtacg aggataaacc 2400 aaaacaagaa ctggctcaaa aagatgtcct aatggcaact actaatgatc caagtcacta 2460 ttatggcaat aacgctttat gggttcatga cgacgatttt gagcttagtt cactcgtaat 2520 gatgaatttt gcttctggtg atgttgagta ctgccttgct gctgctgctg ctgctgctgc 2580 tgctgcagat cttgtcgaca tggaggagat cacccaacac tttggagttg gcgcaagcag 2640 ccacggccat ggccacggcc agcaccacca tcatcaccac caccaccacc cgtgggcatc 2700 ctccctcagc gccgtcgtag cgccgctgcc gccgcaaccg ccaagcgcag gcctgccgct 2760 gccctgaac acggtggcgg ccactgggaa cagcggcggt agcggcaacc cggtgctgca 2820 gcttgccaac ggtggcggcc tcctcgacgc atgcgtcaag gcgaaggagc cctcgtcgtc 2880 gtctccctac gcaggcgacg tcgaggccat caaggccaag atcatctcgc acccacacta 2940 ctactcgctc ctcactgcct acctcgagtg caacaaggtg ggggcaccac cggaggtgtc 3000 ggcgaggctg acggagatag cgcaggaggt ggaggcgcgg cagcgcacgg cgctcggcgg 3060 cctggccgct gcgacggagc cggagctgga ccagttcatg gaggcgtacc acgagatgct 3120 ggtgaagttc agggaggagc tgacgaggcc gctgcaggag gcgatggagt tcatgcgaag 3180 ggtggagtcg cagctgaact cgctttccat ctccggaagg tcgctgcgca acatcctttc 3240 atctggctct tctgaggagg atcaagaagg tagcggagga gagaccgagc tccctgaagt 3300 tgatgcacat ggtgtggacc aagagctgaa gcaccatctc ctgaagaaat acagtggcta 3360 tctaagctcg ctcaagcaag aactgtcaaa gaagaagaag aaagggaagc tccccaagga 3420 ggctcgccag cagctcctta gctggtggga tcagcactac aaatggcctt acccctcaga 3480 gactcagaag gtggcactgg ctgagtctac cgggcttgac ctgaagcaga tcaacaactg 3540 gttcatcaac cagcggaagc ggcactggaa gccatccgag gagatgcacc acctgatgat 3600 ggatgggtac cacaccacca atgccttcta catggacggc cacttcatca acgacggcgg 3660 gctgtaccgg ctcggctagc caccggtatc tcgcttccat ttcacacccc acggcctagc 3720 tataaagact aatggttcca ggtgtctgaa gtactgaaga caggggggct agctatctaa 3780 tgtttgtgcc gcacgcatga gctgtaagga ggccatgctt aattattctg ttgccgttgc 3840 tactctatct atatgcgcct atgcctccgt gcatgaacta tgctttaggt ggttgctgct 3900 ccacactgtg gtggtgtgct tttgcttttg tgtggtcgta ttgtatgcgt aacctgacag 3960 atggatccct gattgctaca tgtttgaata atttgcatga tctagctagt ttctgcctaa 4020 tcaaaaggaa ttctagatgc atcgcaaatc accagtctct ctctacaaat ctatctctct 4080 ctattttctc cagaataatg tgtgagtagt tcccagataa gggaattagg gttcttatag 4140 ggtttcgctc atgtgttgag catataagaa acccttagta tgtatttgta tttgtaaaat 4200 acttctatca ataaaatttc taattcctaa aaccaaaatc cagtgacctg cacgcgttaa 4260 ttaaggatcc tctagagtcg acctgcagca tgcaagcttg gcactggccg tcgttttaca 4320 acgtcgtgac tgggaaaacc ctggcgttac ccaacttaat cgccttgcag cacatccccc 4380 tttcgccagc tggcgtaata gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg 4440 cagcctgaat ggcgaatgct agagcagctt gagcttggat cagattgtcg tttcccgcct 4500 tcagtttaaa ctatcagtgt ttgacaggat atattggcgg gtaaacctaa gagaaaagag 4560 cgtttattag aataacggat atttaaaagg gcgtgaaaag gtttatccgt tcgtccattt 4620 gtatgtgcat gccaaccaca gggttcccct cgggatcaaa gtactttgat ccaacccctc 4680 cgctgctata gtgcagtcgg cttctgacgt tcagtgcagc cgtcttctga aaacgacatg 4740 tcgcacaagt cctaagttac gcgacaggct gccgccctgc ccttttcctg gcgttttctt 4800 gtcgcgtgtt ttagtcgcat aaagtagaat acttgcgact agaaccggag acattacgcc 4860 atgaacaaga gcgccgccgc tggcctgctg ggctatgccc gcgtcagcac cgacgaccag 4920 gacttgacca accaacgggc cgaactgcac gcggccggct gcaccaagct gttttccgag 4980 aagatcaccg gcaccaggcg cgaccgcccg gagctggcca ggatgcttga ccacctacgc 5040 cctggcgacg ttgtgacagt gaccaggcta gaccgcctgg cccgcagcac ccgcgaccta 5100 ctggacattg ccgagcgcat ccaggaggcc ggcgcgggcc tgcgtagcct ggcagagccg 5160 tgggccgaca ccaccacgcc ggccggccgc atggtgttga ccgtgttcgc cggcattgcc 5220 gagttcgagc gttccctaat catcgaccgc acccggagcg ggcgcgaggc cgccaaggcc 5280 cgaggcgtga agtttggccc ccgccctacc ctcaccccgg cacagatcgc gcacgcccgc 5340 gagctgatcg accaggaagg ccgcaccgtg aaagaggcgg ctgcactgct tggcgtgcat 5400 cgctcgaccc tgtaccgcgc acttgagcgc agcgaggaag tgacgcccac cgaggccagg 5460 cggcgcggtg ccttccgtga ggacgcattg accgaggccg acgccctggc ggccgccgag 5520 aatgaacgcc aagaggaaca agcatgaaac cgcaccagga cggccaggac gaaccgtttt 5580 tcattaccga agagatcgag gcggagatga tcgcggccgg gtacgtgttc gagccgcccg 5640 cgcacgtctc aaccgtgcgg ctgcatgaaa tcctggccgg tttgtctgat gccaagctgg 5700 cggcctggcc ggccagcttg gccgctgaag aaaccgagcg ccgccgtcta aaaaggtgat 5760 gtgtatttga gtaaaacagc ttgcgtcatg cggtcgctgc gtatatgatg cgatgagtaa 5820 ataaacaaat acgcaagggg aacgcatgaa ggttatcgct gtacttaacc agaaaggcgg 5880 gtcaggcaag acgaccatcg caacccatct agcccgcgcc ctgcaactcg ccggggccga 5940 tgttctgtta gtcgattccg atccccaggg cagtgcccgc gattgggcgg ccgtgcggga 6000 agatcaaccg ctaaccgttg tcggcatcga ccgcccgacg attgaccgcg acgtgaaggc 6060 catcggccgg cgcgacttcg tagtgatcga cggagcgccc caggcggcgg acttggctgt 6120 gtccgcgatc aaggcagccg acttcgtgct gattccggtg cagccaagcc cttacgacat 6180 atgggccacc gccgacctgg tggagctggt taagcagcgc attgaggtca cggatggaag 6240 gctacaagcg gcctttgtcg tgtcgcgggc gatcaaaggc acgcgcatcg gcggtgaggt 6300 tgccgaggcg ctggccgggt acgagctgcc cattcttgag tcccgtatca cgcagcgcgt 6360 gagctaccca ggcactgccg ccgccggcac aaccgttctt gaatcagaac ccgagggcga 6420 cgctgcccgc gaggtccagg cgctggccgc tgaaattaaa tcaaaactca tttgagttaa 6480 tgaggtaaag agaaaatgag caaaagcaca aacacgctaa gtgccggccg tccgagcgca 6540 cgcagcagca aggctgcaac gttggccagc ctggcagaca cgccagccat gaagcgggtc 6600 aactttcagt tgccggcgga ggatcacacc aagctgaaga tgtacgcggt acgccaaggc 6660 aagaccatta ccgagctgct atctgaatac atcgcgcagc taccagagta aatgagcaaa 6720 tgaataaatg agtagatgaa ttttagcggc taaaggaggc ggcatggaaa atcaagaaca 6780 accaggcacc gacgccgtgg aatgccccat gtgtggagga acgggcggtt ggccaggcgt 6840 aagcggctgg gttgtctgcc ggccctgcaa tggcactgga acccccaagc ccgaggaatc 6900 ggcgtgacgg tcgcaaacca tccggcccgg tacaaatcgg cgcggcgctg ggtgatgacc 6960 tggtggagaa gttgaaggcc gcgcaggccg cccagcggca acgcatcgag gcagaagcac 7020 gccccggtga atcgtggcaa gcggccgctg atcgaatccg caaagaatcc cggcaaccgc 7080 cggcagccgg tgcgccgtcg attaggaagc cgcccaaggg cgacgagcaa ccagattttt 7140 tcgttccgat gctctatgac gtgggcaccc gcgatagtcg cagcatcatg gacgtggccg 7200 ttttccgtct gtcgaagcgt gaccgacgag ctggcgaggt gatccgctac gagcttccag 7260 acgggcacgt agaggtttcc gcagggccgg ccggcatggc cagtgtgtgg gattacgacc 7320 tggtactgat ggcggtttcc catctaaccg aatccatgaa ccgataccgg gaagggaagg 7380 gagacaagcc cggccgcgtg ttccgtccac acgttgcgga cgtactcaag ttctgccggc 7440 gagccgatgg cggaaagcag aaagacgacc tggtagaaac ctgcattcgg ttaaacacca 7500 cgcacgttgc catgcagcgt acgaagaagg ccaagaacgg ccgcctggtg acggtatccg 7560 agggtgaagc cttgattagc cgctacaaga tcgtaaagag cgaaaccggg cggccggagt 7620 acatcgagat cgagctagct gattggatgt accgcgagat cacagaaggc aagaacccgg 7680 acgtgctgac ggttcacccc gattactttt tgatcgatcc cggcatcggc cgttttctct 7740 accgcctggc acgccgcgcc gcaggcaagg cagaagccag atggttgttc aagacgatct 7800 acgaacgcag tggcagcgcc ggagagttca agaagttctg tttcaccgtg cgcaagctga 7860 tcgggtcaaa tgacctgccg gagtacgatt tgaaggagga ggcggggcag gctggcccga 7920 tcctagtcat gcgctaccgc aacctgatcg agggcgaagc atccgccggt tcctaatgta 7980 cggagcagat gctagggcaa attgccctag caggggaaaa aggtcgaaaa ggtctctttc 8040 ctgtggatag cacgtacatt gggaacccaa agccgtacat tgggaaccgg aacccgtaca 8100 ttgggaaccc aaagccgtac attgggaacc ggtcacacat gtaagtgact gatataaaag 8160 agaaaaaagg cgatttttcc gcctaaaact ctttaaaact tattaaaact cttaaaaccc 8220 gcctggcctg tgcataactg tctggccagc gcacagccga agagctgcaa aaagcgccta 8280 cccttcggtc gctgcgctcc ctacgccccg ccgcttcgcg tcggcctatc gcggccgctg 8340 gccgctcaaa aatggctggc ctacggccag gcaatctacc agggcgcgga caagccgcgc 8400 cgtcgccact cgaccgccgg cgcccacatc aaggcaccct gcctcgcgcg tttcggtgat 8460 gcggtgaaa acctctgaca catgcagctc ccggagacgg tcacagcttg tctgtaagcg 8520 gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg gtgttggcgg gtgtcggggc 8580 gcagccatga cccagtcacg tagcgatagc ggagtgtata ctggcttaac tatgcggcat 8640 cagagcagat tgtactgaga gtgcaccata tgcggtgtga aataccgcac agatgcgtaa 8700 ggagaaaata ccgcatcagg cgctcttccg cttcctcgct cactgactcg ctgcgctcgg 8760 tcgttcggct gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg ttatccacag 8820 aatcagggga taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc 8880 gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca 8940 aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt 9000 ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc 9060 tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc 9120 tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc 9180 ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact 9240 tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg 9300 ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca gtatttggta 9360 tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca 9420 aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa 9480 aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg 9540 aaaactcacg ttaagggatt ttggtcatgc attctaggta ctaaaacaat tcatccagta 9600 aaatataata ttttattttc tcccaatcag gcttgatccc cagtaagtca aaaaatagct 9660 cgacatactg ttcttccccg atatcctccc tgatcgaccg gacgcagaag gcaatgtcat 9720 accacttgtc cgccctgccg cttctcccaa gatcaataaa gccacttact ttgccatctt 9780 tcacaaagat gttgctgtct cccaggtcgc cgtgggaaaa gacaagttcc tcttcgggct 9840 tttccgtctt taaaaaatca tacagctcgc gcggatcttt aaatggagtg tcttcttccc 9900 agttttcgca atccacatcg gccagatcgt tattcagtaa gtaatccaat tcggctaagc 9960 ggctgtctaa gctattcgta tagggacaat ccgatatgtc gatggagtga aagagcctga 10020 tgcactccgc atacagctcg ataatctttt cagggctttg ttcatcttca tactcttccg 10080 agcaaaggac gccatcggcc tcactcatga gcagattgct ccagccatca tgccgttcaa 10140 agtgcaggac ctttggaaca ggcagctttc cttccagcca tagcatcatg tccttttccc 10200 gttccacatc ataggtggtc cctttatacc ggctgtccgt catttttaaa tataggtttt 10260 cattttctcc caccagctta tataccttag caggagacat tccttccgta tcttttacgc 10320 agcggtattt ttcgatcagt tttttcaatt ccggtgatat tctcatttta gccatttatt 10380 atttccttcc tcttttctac agtatttaaa gataccccaa gaagctaatt ataacaagac 10440 gaactccaat tcactgttcc ttgcattcta aaaccttaaa taccagaaaa cagctttttc 10500 aaagttgttt tcaaagttgg cgtataacat agtatcgacg gagccgattt tgaaaccgcg 10560 gtgatcacag gcagcaacgc tctgtcatcg ttacaatcaa catgctaccc tccgcgagat 10620 catccgtgtt tcaaacccgg cagcttagtt gccgttcttc cgaatagcat cggtaacatg 10680 agcaaagtct gccgccttac aacggctctc ccgctgacgc cgtcccggac tgatgggctg 10740 cctgtatcga gtggtgattt tgtgccgagc tgccggtcgg ggagctgttg gctggctggt 10800 ggcaggatat attgtggtgt aaacaaattg acgcttagac aacttaataa cacattgcgg 10860 acgtttttaa tgtactgaat taacgccgaa ttaattcggg ggatctggat tttagtactg 10920 gattttggtt ttaggaatta gaaattttat tgatagaagt attttacaaa tacaaataca 10980 tactaagggt ttcttatatg ctcaacacat gagcgaaacc ctataggaac cctaattccc 11040 ttatctggga actactcaca cattattatg gagaaactcg agcttgtcga tcgacagatc 11100 cggtcggcat ctactctatt tctttgccct cggacgagtg ctggggcgtc ggtttccact 11160 atcggcgagt acttctacac agccatcggt ccagacggcc gcgcttctgc gggcgatttg 11220 tgtacgcccg acagtcccgg ctccggatcg gacgattgcg tcgcatcgac cctgcgccca 11280 agctgcatca tcgaaattgc cgtcaaccaa gctctgatag agttggtcaa gaccaatgcg 11340 gagcatatac gcccggagtc gtggcgatcc tgcaagctcc ggatgcctcc gctcgaagta 11400 gcgcgtctgc tgctccatac aagccaacca cggcctccag aagaagatgt tggcgacctc 11460 gtattgggaa tccccgaaca tcgcctcgct ccagtcaatg accgctgtta tgcggccatt 11520 gtccgtcagg acattgttgg agccgaaatc cgcgtgcacg aggtgccgga cttcggggca 11580 gtcctcggcc caaagcatca gctcatcgag agcctgcgcg acggacgcac tgacggtgtc 11640 gtccatcaca gtttgccagt gatacacatg gggatcagca atcgcgcata tgaaatcacg 11700 ccatgtagtg tattgaccga ttccttgcgg tccgaatggg ccgaacccgc tcgtctggct 11760 aagatcggcc gcagcgatcg catccatagc ctccgcgacc ggttgtagaa cagcgggcag 11820 ttcggtttca ggcaggtctt gcaacgtgac accctgtgca cggcgggaga tgcaataggt 11880 caggctctcg ctaaactccc caatgtcaag cacttccgga atcgggagcg cggccgatgc 11940 aaagtgccga taaacataac gatctttgta gaaaccatcg gcgcagctat ttacccgcag 12000 gacatatcca cgccctccta catcgaagct gaaagcacga gattcttcgc cctccgagag 12060 ctgcatcagg tcggagacgc tgtcgaactt ttcgatcaga aacttctcga cagacgtcgc 12120 ggtgagttca ggctttttca tatctcattg cccccccgga tctgcgaaag ctcgagagag 12180 atagatttgt agagagagac tggtgatttc agcgtgtcct ctccaaatga aatgaacttc 12240 cttatataga ggaaggtctt gcgaaggata gtgggattgt gcgtcatccc ttacgtcagt 12300 ggagatatca catcaatcca cttgctttga agacgtggtt ggaacgtctt ctttttccac 12360 gatgctcctc gtgggtgggg gtccatcttt gggaccactg tcggcagagg catcttgaac 12420 gatagccttt cctttatcgc aatgatggca tttgtaggtg ccaccttcct tttctactgt 12480 ccttttgatg aagtgacaga tagctgggca atggaatccg aggaggtttc ccgatattac 12540 cctttgttga aaagtctcaa tagccctttg gtcttctgag actgtatctt tgatattctt 12600 ggagtagacg agagtgtcgt gctccaccat gttatcacat caatccactt gctttgaaga 12660 cgtggttgga acgtcttctt tttccacgat gctcctcgtg ggtgggggtc catctttggg 12720 accactgtcg gcagaggcat cttgaacgat agcctttcct ttatcgcaat gatggcattt 12780 gtaggtgcca ccttcctttt ctactgtcct tttgatgaag tgacagatag ctgggcaatg 12840 gaatccgagg aggtttcccg atattaccct ttgttgaaaa gtctcaatag ccctttggtc 12900 ttctgagact gtatctttga tattcttgga gtagacgaga gtgtcgtgct ccaccatgtt 12960 ggcaagctgc tctagccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa 13020 tgcagctggc acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat 13080 gtgagttagc tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg 13140 ttgtgtggaa ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac 13200 g 13201 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> UAS_ApaI_F <400> 20 gagcgggccc acacaggaaa cagctatgac 30 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> NOS_ApaI_R <400> 21 gagcgggccc agtgagacgg gcaacagctg 30 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_F <400> 22 caccatggac catcatcagt atcatcatc 29 <210> 23 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_R <400> 23 gttaccatgt tggtccacca ctatca 26 <210> 24 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_ZFM_F <400> 24 caccatggct agcactaggc cgcaagaacc 30 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_ZFM_R <400> 25 gttacggaga gagccacctt c 21 <210> 26 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-deltaZFM_F <400> 26 ttgatgacga caatggtccc cgtaggcgga ggttc 35 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-deltaZFM_R <400> 27 cattgtcgtc atcaacttct tc 22 <210> 28 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4_F <400> 28 caccatggct atgcaagata ttcatgattt ctc 33 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4_R <400> 29 aggaaggtag agaccactct g 21 <210> 30 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4-ZFM_F <400> 30 caccatggct atacttaacc atcatcaatc tc 32 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4-ZFM_R <400> 31 gttacggaga acaccacctt 20 <210> 32 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CrDof-ZFM_F <400> 32 caccatggct cttccacgcc ccgacaagaa 30 <210> 33 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CrDof-ZFM_R <400> 33 gttcctcaac gtgccgccgg ca 22 <210> 34 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PpDof19-ZFM_F <400> 34 caccatggct ctgaagcctc cagatcaagt 30 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PpDof19-ZFM_R <400> 35 atttcttaaa gtcccacctg 20 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_d1 <400> 36 aaaaagcagg ctttatggac catcatcagt 30 <210> 37 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_d2 <400> 37 aaaaagcagg ctttagcact aggccgcaa 29 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_d3 <400> 38 aaaaagcagg ctttcgtcaa gagtatgatc 30 <210> 39 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_d4 <400> 39 aaaaagcagg ctttgtcccc gtaggcgga 29 <210> 40 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_d5 <400> 40 aaaaagcagg ctttcatcaa aacaataatg 30 <210> 41 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r1 <400> 41 agaaagctgg gtttcacatt gtcgtcatca 30 <210> 42 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r2 <400> 42 agaaagctgg gtttcaaaac tgaatcattc 30 <210> 43 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r3 <400> 43 agaaagctgg gtttcaccat gttggtcca 29 <210> 44 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r4 <400> 44 agaaagctgg gtttcagtta cggagagagc c 31 <210> 45 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r5 <400> 45 agaaagctgg gtttcacgtc ttgctagggt t 31 <210> 46 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r6 <400> 46 agaaagctgg gttccatgtt ggtccacc 28 <210> 47 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1_GW_r7 <400> 47 agaaagctgg gttccatgtt ggtccacca 29 <210> 48 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2_GW_d1 <400> 48 aaaaagcagg ctttatggtt ttctcatcc 29 <210> 49 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2_GW_r1 <400> 49 agaaagctgg gttcataaga tgctggtg 28 <210> 50 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2_GW_d2 <400> 50 aaaaagcagg cttttctcag ccgccagagg 30 <210> 51 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2_GW_r2 <400> 51 agaaagctgg gtttcagttc ctcaaggcac c 31 <210> 52 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof3.7_GW_d2 <400> 52 aaaaagcagg ctttaaggcg aggccacaag 30 <210> 53 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof3.7_GW_r2 <400> 53 agaaagctgg gtttcagtta cgaagagagc c 31 <210> 54 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.5_GW_d1 <400> 54 aaaaagcagg ctttaagccc ccaccaccac 30 <210> 55 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.5_GW_r1 <400> 55 agaaagctgg gtttcagttt cttaaagccc c 31 <210> 56 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof5.6_GW_d1 <400> 56 aaaaagcagg ctttcgtcca cctcacgacc 30 <210> 57 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof5.6_GW_r1 <400> 57 agaaagctgg gtttcaattc cttagagttc c 31 <210> 58 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4_GW_d1 <400> 58 aaaaagcagg ctttatactt aaccatcatc 30 <210> 59 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4_GW_r1 <400> 59 agaaagctgg gtttcagtta cggagaacac c 31 <210> 60 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Dof-Os04-GW-d1 <400> 60 aaaaagcagg ctttcggccg cagaaggaga ag 32 <210> 61 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Dof-Os04-GW-r1 <400> 61 agaaagctgg gtttcagttg cggagcgagc cgcc 34 <210> 62 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Dof-Nt-GW-d1 <400> 62 aaaaagcagg ctttaggcca caaaaagaac aa 32 <210> 63 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Dof-Nt-GW-r1 <400> 63 agaaagctgg gtttcaattt cttaaagaac cacc 34 <210> 64 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Dof-Gm-GW-d1 <400> 64 aaaaagcagg ctttaaaaca aggccacaag ag 32 <210> 65 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Dof-Gm-GW-r1 <400> 65 agaaagctgg gtttcagttt ctcagagacc ctcc 34 <210> 66 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp09-GW-d1 <400> 66 aaaaagcagg ctttcgcgag aagccagac 29 <210> 67 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp09-GW-r1 <400> 67 agaaagctgg gtttcaattg cgaagcgtcc c 31 <210> 68 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp15-GW-d1 <400> 68 aaaaagcagg ctttggcact accaagccc 29 <210> 69 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp15-GW-r1 <400> 69 agaaagctgg gtttcagttg cggagagtac c 31 <210> 70 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp19-GW-d1 <400> 70 aaaaagcagg ctttctgaag cctccagat 29 <210> 71 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof-Pp19-GW-r1 <400> 71 agaaagctgg gtttcaattt cttaaagtcc c 31 <210> 72 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Dof-Cr-GW-d1 <400> 72 aaaaagcagg ctttcttcca cgccccgaca ag 32 <210> 73 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Dof-Cr-GW-r1 <400> 73 agaaagctgg gtttcagttc ctcaacgtgc cgcc 34 <210> 74 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB1-ad-F * <400> 74 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 75 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB2-ad-R * <400> 75 ggggaccact ttgtacaaga aagctgggt 29 <210> 76 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mCherry-S-d1 <400> 76 gggcgtcgac atggtgagca agggcgagga 30 <210> 77 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> mCherry-AvrKSac-r3 <400> 77 gggcgagctc tccggtacct tacctaggct tgtacagctc gtccatg 47 <210> 78 <211> 30 <212> DNA <213> Artificial Sequence <220> H2B-Avr-d1 <400> 78 gggccctagg atggcgaagg cagataagaa 30 <210> 79 <211> 41 <212> DNA <213> Artificial Sequence <220> H2B-HpaK-r1 <400> 79 gggcggtacc tcagttaaca gaactcgtaa acttcgtaac c 41 <210> 80 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> attR-Bsgl-d1 <400> 80 ggcgttcgaa gatctcacaa gtttgtacaa aaaagc 36 <210> 81 <211> 42 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > attR-BKpn-r1 <400> 81 ggcgggtacc ttatccttcg aacaccactt tgtacaagaa ag 42 <210> 82 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del1_F1Bg <400> 82 ggcgagatct tatggaccat catcagtatc a 31 <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del1_R1k <400> 83 ggcgggtacc tcacattgtc gtcatcaact tct 33 <210> 84 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del2_F2Bg <400> 84 ggcgagatct tagcactagg ccgcaagaac c 31 <210> 85 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del2_R2k <400> 85 ggcgggtacc tcagttacgg agagagccac ctt 33 <210> 86 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del3_F3Bg <400> 86 ggcgagatct tgtccccgta ggcggaggtt c 31 <210> 87 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del3_R3k <400> 87 ggcgggtacc tcacgtcttg ctagggtttg atg 33 <210> 88 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del4_F4Bg <400> 88 ggcgagatct tcatcaaaac aataatgacc t 31 <210> 89 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del4_R4k <400> 89 ggcgggtacc tcaaaactga atcattccca tag 33 <210> 90 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del5_F5Bg <400> 90 ggcgagatct tcgtcaagag tatgatcatg a 31 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Dof4.1-del5_R5k <400> 91 ggcgggtacc tcaccatgtt ggtccaccac 30 <210> 92 <211> 31 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Dof2.2-ZFM_F3Bg <400> 92 ggcgagatct ttctcagccg ccagagggag c 31 <210> 93 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2-ZFM_R3k <400> 93 ggcgggtacc tcagttcctc aaggcaccgc cac 33 <210> 94 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4-ZFM_F3Bg <400> 94 ggcgagatct tatacttaac catcatcaat c 31 <210> 95 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4-ZFM_R3k <400> 95 ggcgggtacc tcagttacgg agaacaccac ctt 33 <210> 96 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 2Myc_BamHI_F1 <400> 96 ggcggatcct aaagctaccc ctagcactag tatg 34 <210> 97 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 2Myc_BglII_R1 <400> 97 ggcagatctg cacgggttgg gcctttcaaa tcctc 35 <210> 98 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 2Myc_BglII_F2 <400> 98 ggcagatctt aaagctaccc ctagcactag tatgg 35 <210> 99 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 2Myc_KpnI_R2 <400> 99 ggcggtaccg cacgggttgg gcctttcaaa tcctc 35 <210> 100 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> GL1_AscI_F <400> 100 gcaggcgcgc ctccagaatg agaataagga gaag 34 <210> 101 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Dof2.2-ZFM_BamHI_R <400> 101 gcgggatcct ttcagttcct caaggcacc 29 <210> 102 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Dof5.4-ZFM_BamHI_R <400> 102 gcgggatcct ttcagttacg gagaacacca c 31 <210> 103 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> PpMKN1-3_BglII_F <400> 103 ggaagatctt gttgatgtgc gagaggagat cctac 35 <210> 104 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> PpMKN1-3_KpnI_R <400> 104 ggcgggtacc aaatggattg ctgtgccagt tc 32 <210> 105 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PpMKN2_BglII_F <400> 105 ggcgagatct ttatggtcgc cacatcggag 30 <210> 106 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> PpMKN2_KpnI_R <400> 106 gggcggtacc ttatttacct tcgcagctcc agtg 34 <210> 107 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> PpMKN4_BamHI_F <400> 107 ggaagatctt ggcagcaaga agggccgtga aaacc 35 <210> 108 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> PpMKN4_KpnI_R <400> 108 ggcgggtacc ttaaccctcg cagctccagt gtcgcttg 38 <210> 109 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> PpMKN6_BamHI_F <400> 109 ggaggatcct gaggacgttc gtgaggaaat tttgc 35 <210> 110 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> PpMKN6_KpnI_R <400> 110 ggcgggtacc ttagttgcta tgccagtttc gctttcgc 38 <210> 111 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PpHD6_BglII_F <400> 111 ggcgagatct tcttggaatg ctccaacagc 30 <210> 112 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PpHD6_KpnI_R <400> 112 ggcgggtacc ttataccatt ggcttccaca g 31 <210> 113 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CrGSM1_BglII_F <400> 113 ggcgagatct tgtgcaggtg gctgccagcc t 31 <210> 114 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CrGSM1_KpnI_R <400> 114 gggcggtacc aatgcttgtg ccagtgcctc 30 <210> 115 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CrHDG1_BglII_F <400> 115 ggcgagatct tagcaagaag ggccgtgaaa ac 32 <210> 116 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CrHDG1_KpnI_R <400> 116 gggcggtacc tgatgagcgg cttccagatg c 31 <210> 117 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> CrGSP1_BglII_F <400> 117 ggcaagatct tcagctgtac ggcggcgtgg gggat 35 <210> 118 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> CrGSP1_KpnI_R <400> 118 gccgggtacc ttacatgatg gcgggccgcc agtgcct 37 <210> 119 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CrCO_BglII_F <400> 119 ggcgagatct taacctgact cgcgagcagc g 31 <210> 120 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CrCO_KpnI_R <400> 120 gggcggtacc tctcctcctt cttggcgaag c 31 <210> 121 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CrYABBY_BglII_F <400> 121 ggcgagatct tattcggtct ttctcggaaa g 31 <210> 122 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CrYABBY_KpnI_R <400> 122 gggcggtacc aaatggaagc ccacttgtcg 30

Claims (8)

서열번호 1의 아미노산 서열로 구성된 펩티드와 목적 물질의 원형질연락사를 통해 이동 가능한 복합체로서, 상기 목적 물질은 분자량이 1kDa 내지 80kDa인 단백질이고, 상기 복합체는 상기 서열번호 1의 아미노산 서열로 구성된 펩티드 및 상기 목적 물질을 결합시킨 융합 단백질인 것인 복합체.1. A complex capable of moving through a plasmid liaison of a target substance with a peptide consisting of the amino acid sequence of SEQ ID NO: 1, wherein the target substance is a protein having a molecular weight of 1 kDa to 80 kDa and the complex is a peptide composed of the amino acid sequence of SEQ ID NO: Wherein the fusion protein is a fusion protein in which the target substance is bound. 제1항에 있어서, 상기 펩티드는 서열번호 2의 아미노산 서열로 구성된 것인 복합체. 2. The complex of claim 1, wherein said peptide is comprised of the amino acid sequence of SEQ ID NO: 2. 삭제delete 제1항에 있어서, 상기 단백질은 세포-자율 단백질 (cell-autonomous protein)인 것인 복합체. The complex according to claim 1, wherein the protein is a cell-autonomous protein. 삭제delete 삭제delete 서열번호 1의 아미노산 서열로 구성된 펩티드.A peptide consisting of the amino acid sequence of SEQ ID NO: 1. 제1항의 상기 융합 단백질을 코딩하는 뉴클레오티드 서열을 포함하는 벡터를 제조하는 단계;
상기 벡터를 아라비돕시스 탈리아나에 형질 도입시키는 단계; 및
상기 융합 단백질을 아라비돕시스 탈리아나 세포 내에서 발현시키는 단계를 포함하는 상기 목적 물질을 원형질연락사를 통해 이동시키는 방법.
Preparing a vector comprising a nucleotide sequence encoding said fusion protein of claim 1;
Transducing said vector into Arabidopsis thaliana; And
And expressing the fusion protein in an Arabidopsis thaliana cell, wherein the target substance is transferred through a plasmatic liaison.
KR1020130014122A 2013-02-07 2013-02-07 A complex trafficking through plasmodesmata and method of transporting targeted material through plasmodesmata KR101568342B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130014122A KR101568342B1 (en) 2013-02-07 2013-02-07 A complex trafficking through plasmodesmata and method of transporting targeted material through plasmodesmata

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130014122A KR101568342B1 (en) 2013-02-07 2013-02-07 A complex trafficking through plasmodesmata and method of transporting targeted material through plasmodesmata

Publications (2)

Publication Number Publication Date
KR20140100841A KR20140100841A (en) 2014-08-18
KR101568342B1 true KR101568342B1 (en) 2015-11-12

Family

ID=51746529

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130014122A KR101568342B1 (en) 2013-02-07 2013-02-07 A complex trafficking through plasmodesmata and method of transporting targeted material through plasmodesmata

Country Status (1)

Country Link
KR (1) KR101568342B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020470A1 (en) 1995-12-04 1997-06-12 The Regents Of The University Of California Regulation of plant development and physiology through plasmodesmatal macromolecular transport of proteins and oligonucleotides
US20090209002A1 (en) 2006-06-30 2009-08-20 Andrew Maule Compositions and methods relating to cellular targeting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020470A1 (en) 1995-12-04 1997-06-12 The Regents Of The University Of California Regulation of plant development and physiology through plasmodesmatal macromolecular transport of proteins and oligonucleotides
US20090209002A1 (en) 2006-06-30 2009-08-20 Andrew Maule Compositions and methods relating to cellular targeting

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Development. 2005, Vol. 132, pp5387-5398
SCIENCE. 2003, Vol. 299, pp.392-396

Also Published As

Publication number Publication date
KR20140100841A (en) 2014-08-18

Similar Documents

Publication Publication Date Title
AU2020264325A1 (en) Plant genome modification using guide rna/cas endonuclease systems and methods of use
US10450580B2 (en) Transcriptional regulation for improved plant productivity
KR20180008572A (en) Rapid characterization of CAS endonuclease systems, PAM sequences and guide RNA elements
US11299744B2 (en) Transgenic plants expressing type 2C protein phosphatase abscisic acid (PP2CABA) proteins and uses thereof
BRPI0609283A2 (en) methods for identifying an intron with plant expression enhancing properties, to enrich the number of introns with plant expression enhancing properties, to isolate, supply or produce an intron with plant expression enhancing properties, to provide an expression cassette and to enhance expression of a nucleic acid sequence in a plant or a plant cell, computer algorithm, computer device or data storage device, recombinant DNA expression construct, expression vector, transgenic cell, or nonhuman organism transgenic material, cell culture, propagating parts or material, and, use of a transgenic organism or cell cultures, transgenic propagating material parts derived from these
US20110138495A1 (en) Methods and Compositions for Expressing Proteins In Plants
CN112119160A (en) Replicating and non-replicating vectors for production of recombinant proteins in plants and methods of use thereof
EP1629096A1 (en) Methods for assembling multiple expression constructs
CN112424365A (en) Nucleic acid constructs and methods of use thereof
US20110209244A1 (en) Method for production of plant imparted with stress tolerance and use thereof
Yamchi et al. Proline accumulation in transgenic tobacco as a result of expression of Arabidopsis Δ 1-pyrroline-5-carboxylate synthetase (P5CS) during osmotic stress
WO2012033462A1 (en) Molecular interaction between xa10 and avrxa10
CN109112136A (en) The separation of GGC2 gene is cloned and its application in rice modification
JP2002238564A (en) Expression cassette for potent constructive gene expression, and plasmid and method for using the same
WO2005103267A2 (en) Agroinoculation method for virus induced gene silencing
KR102000454B1 (en) Promoter recognition site by Xanthomonas oryzae pv. oryzae and uses thereof
KR101568342B1 (en) A complex trafficking through plasmodesmata and method of transporting targeted material through plasmodesmata
JP5230608B2 (en) P15 hairpin structure and method of use thereof
CN113699180A (en) Application of gene BnaCYP705a12 in brassinolide biosynthesis and transgenic plant production
US20050048652A1 (en) Retroelement vector system for amplification and delivery of nucleotide sequences in plants
US20050039228A1 (en) Methods and compositions for analysis of plant gene function
WO2024093843A1 (en) Disease resistance-related protein rcr1, coding gene thereof, and use thereof
KR101101774B1 (en) Fruit specific expression promoter from Solanum lycopersicum histidine decarboxylase gene and uses thereof
CN108251450B (en) In-situ overexpression vector pGV64 and application
KR102093371B1 (en) Luminescent plant development with fused LuxAB gene construct from the bacterial luminescent gene LuxA and LuxB

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 5