KR101568257B1 - Method for preparing lithium nickel oxide-over lithiatied manganese oxide composite and lithium nickel oxide-over lithiatied manganese oxide composite using the same - Google Patents

Method for preparing lithium nickel oxide-over lithiatied manganese oxide composite and lithium nickel oxide-over lithiatied manganese oxide composite using the same Download PDF

Info

Publication number
KR101568257B1
KR101568257B1 KR1020130166996A KR20130166996A KR101568257B1 KR 101568257 B1 KR101568257 B1 KR 101568257B1 KR 1020130166996 A KR1020130166996 A KR 1020130166996A KR 20130166996 A KR20130166996 A KR 20130166996A KR 101568257 B1 KR101568257 B1 KR 101568257B1
Authority
KR
South Korea
Prior art keywords
lithium
lithium nickel
manganese oxide
nickel oxide
oxide
Prior art date
Application number
KR1020130166996A
Other languages
Korean (ko)
Other versions
KR20150080096A (en
Inventor
김직수
최문호
정재용
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Priority to KR1020130166996A priority Critical patent/KR101568257B1/en
Publication of KR20150080096A publication Critical patent/KR20150080096A/en
Application granted granted Critical
Publication of KR101568257B1 publication Critical patent/KR101568257B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법 및 이에 의하여 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체에 관한 것으로서, 더욱 상세하게는 대전류로 충전과 방전을 반복하여도 상온 및 고온에서 긴 수명을 가지며 우수한 안전성을 나타내는 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법 및 이에 의하여 제조된 리튬 니켈 산화물과 리튬 과량 망간 산화물 복합체에 관한 것이다.
본 발명에 의한 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법은 리튬 니켈 산화물과 리튬과량 망간 산화물의 단순 혼합이 아니라, 혼합 후 분쇄하고 분무 건조 및 열처리에 의해 입자화한 복합체로서 높은 에너지 밀도와 단시간에 큰 출력을 발휘할 수 있을 뿐만 아니라, 우수한 안전성 및 장기 수명 특성을 나타낸다.
The present invention relates to a process for producing a lithium nickel oxide and a lithium excess manganese oxide composite, and a lithium nickel oxide and a lithium excess manganese oxide composite produced thereby. More particularly, A lithium nickel oxide and a lithium excess manganese oxide composite having a long lifetime and exhibiting excellent safety, and a lithium nickel oxide and a lithium excess manganese oxide composite produced thereby.
The lithium nickel oxide and lithium excess manganese oxide composite according to the present invention is not a simple mixture of lithium nickel oxide and lithium excess manganese oxide but is a composite obtained by pulverization after mixing, spray drying and heat treatment, Not only can exhibit a large output in a short time, but also exhibits excellent safety and long-life characteristics.

Description

리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법 및 이에 의하여 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체{Method for preparing lithium nickel oxide-over lithiatied manganese oxide composite and lithium nickel oxide-over lithiatied manganese oxide composite using the same}FIELD OF THE INVENTION [0001] The present invention relates to a process for preparing a lithium nickel oxide and a lithium excess manganese oxide composite, and a lithium nickel oxide and a lithium excess manganese oxide composite the same}

본 발명은 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법 및 이에 의하여 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체에 관한 것으로서, 더욱 상세하게는 대전류로 충전과 방전을 반복하여도 상온 및 고온에서 긴 수명을 가지며 우수한 안전성을 나타내는 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법 및 이에 의하여 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체에 관한 것이다.
The present invention relates to a process for producing a lithium nickel oxide and a lithium excess manganese oxide composite, and a lithium nickel oxide and a lithium excess manganese oxide composite produced thereby. More particularly, A lithium nickel oxide and a lithium excess manganese oxide composite having a long lifetime and exhibiting excellent safety, and a lithium nickel oxide and a lithium excess manganese oxide composite produced thereby.

현재, 전기자동차나 하이브리드 전기자동차에 사용될 수 있는 전지로는 고출력 전지로서 안전성이 검증된 Ni-MH 이차전지가 상용화되어 있으며, 이보다 출력밀도와 에너지밀도가 우수한 리튬 이차전지에 대한 개발도 매우 활발히 진행되고 있다.Currently, Ni-MH secondary batteries, which have proven safety as high output cells, have been commercialized as batteries that can be used in electric vehicles and hybrid electric vehicles. The development of lithium secondary batteries, which have better output density and energy density, is also actively conducted .

그러나, 전기자동차에 사용되는 리튬 이차전지는 높은 에너지 밀도와 단시간에 큰 출력을 발휘할 수 있는 특성이 필요할 뿐만 아니라, 대전류에 의한 충방전이 단시간에 반복되는 가혹한 조건하에서 10년 이상 사용될 수 있어야 하므로, 기존의 소형 리튬 이차전지보다 월등히 우수한 안전성 및 장기 수명 특성이 필요하다.However, lithium secondary batteries used in electric vehicles require high energy density and characteristics capable of exhibiting large output in a short time, and they must be used for more than 10 years under harsh conditions in which charging and discharging by a large current are repeated in a short time, It is necessary to have safety and long-life characteristics remarkably superior to conventional small-sized lithium secondary batteries.

종래의 소형전지에 사용되는 리튬이온 전지는 양극에 층상(Layered) 구조의 리튬 코발트 복합산화물을 사용하고 음극에 흑연계 재료를 사용하는 것이 일반적이지만, 리튬 코발트 복합산화물의 경우 주 구성원소인 코발트가 매우 고가이고 안전성면에서 전기자동차용으로 적합하지 못하다. 따라서, 전기자동차용 리튬이온 전지의 양극으로는 저가이고 안전성이 우수한 망간으로 구성된 스피넬 구조의 리튬 망간 복합산화물이 적합하다. 하지만, 리튬 망간 복합산화물의 경우, 고온 및 대전류 충방전시 전해액의 영향으로 망간이 전해액에 용출되어 전지 특성을 퇴화시키므로 이를 방지하기 위한 개선책이 필요하다. 또한, 리튬 망간 복합산화물의 경우, 기존의 리튬 코발트 복합산화물이나 리튬 니켈 복합산화물에 비하여 단위 중량당 용량이 작은 단점을 가지고 있으므로, 전지 중량당 용량의 증가에 한계가 있고 이를 개선하는 전지의 설계가 병행이 되어야 전기자동차의 전원으로 실용화될 수 있다.A lithium ion battery used in a conventional small-sized battery generally uses a layered lithium-cobalt composite oxide as an anode and a graphite-based material as an anode. In the case of a lithium-cobalt composite oxide, cobalt, It is expensive and unsuitable for electric vehicles in terms of safety. Therefore, a lithium manganese composite oxide having a spinel structure composed of manganese, which is inexpensive and excellent in safety, is suitable as an anode of a lithium ion battery for an electric vehicle. However, in the case of the lithium manganese composite oxide, manganese is eluted into the electrolyte due to the influence of the electrolytic solution during high temperature and high current charge / discharge, and degradation of the battery characteristics is required. In addition, the lithium manganese composite oxide has a disadvantage in that the capacity per unit weight is smaller than that of the conventional lithium cobalt composite oxide or lithium nickel composite oxide. Therefore, there is a limitation in increasing the capacity per cell weight, It can be practically used as a power source of an electric vehicle.

이러한 각각의 단점을 보완하기 위하여, 혼합 양극 활물질로 전극을 제조하는 연구가 시도되고 있다. 예를 들어, 일본 특허 출원공개 제2002-110253호 및 일본특허 제2003-168430호에는, 회생출력 등을 높이기 위하여 리튬 망간 산화물 및/또는 리튬 코발트 산화물과, 리튬 니켈-망간-코발트 복합산화물을 혼합해 사용하는 기술이 개시되어 있으나, 리튬 망간 산화물의 열악한 싸이클 수명의 문제점과 안전성 향상에 한계가 있다는 단점을 가지고 있다.
In order to overcome these disadvantages, studies have been made to fabricate electrodes using a mixed cathode active material. For example, in Japanese Patent Application Laid-Open Nos. 2002-110253 and 2003-168430, a lithium manganese oxide and / or a lithium cobalt oxide and a lithium nickel-manganese-cobalt composite oxide are mixed However, the lithium manganese oxide has a disadvantage in that it has a problem of poor cycle life and safety improvement.

일본 공개 특허 제2002-110253호Japanese Patent Application Laid-Open No. 2002-110253 일본 공개 특허 제2003-168430호Japanese Patent Application Laid-Open No. 2003-168430

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안전성이 확보되고, 리튬 망간 산화물의 단점을 보완하여 대전류로 충전과 방전을 반복하여도 상온 및 고온에서 긴 수명을 가질 수 있는 새로운 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법을 제공하는 것을 목적으로 한다. Disclosure of the Invention The present invention has been made to solve the above-mentioned problems of the prior art and to provide a novel lithium nickel oxide which can secure long life at room temperature and high temperature by repeating charging and discharging at high current, And a process for producing a lithium-excess manganese oxide composite.

본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물의 복합체를 제공하는 것을 목적으로 한다.
The present invention also provides a composite of a lithium nickel oxide and a lithium excess manganese oxide produced by the production method of the present invention.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

아래 화학식 1로 표시되는 리튬 니켈 산화물과 화학식 2로 표시되는 리튬과량 망간 산화물을 혼합하는 제 1 단계;A first step of mixing a lithium nickel oxide represented by the following Chemical Formula 1 with a lithium excessive manganese oxide represented by Chemical Formula 2;

[화학식 1] Li1 + aNibCocM1 -(b+c)O2 (상기 화학식 1에서 0≤a<0.2, 0.3<b<0.7, 0<c<0.4, M 은 Mn, Al, Mg, Ni, Co, Fe, Ti, V, Zr 및 Zn로 이루어지는 군에서 선택된 1 종 이상의 원소이다) [Chemical Formula 1] Li 1 + a Ni b Co c M 1 - (b + c) O 2 ( In the formula 1 0≤a <0.2, 0.3 <b <0.7, 0 <c <0.4, M is Mn, Al And at least one element selected from the group consisting of Mg, Ni, Co, Fe, Ti, V, Zr and Zn.

[화학식 2] Li1 + xNiyCozM'1 -(y+z)O2 (상기 화학식 2에서 0.2<x<0.7, 0.2<y<0.7, 0.3<1-(y+z)<0.7, M' 은 Mn, Co, Ni로 이루어지는 군에서 선택된 1 종 이상의 원소이다) ???????? Li 1 + x Ni y Co z M ' 1 - (y + z) O 2 (Y + z) < 0.7, M 'is at least one element selected from the group consisting of Mn, Co and Ni,

상기 혼합물에 용매를 투입하여 슬러리를 제조하는 단계;Adding a solvent to the mixture to prepare a slurry;

상기 슬러리를 입자 평균 크기 D50 이 600 nm 이하가 될 때까지 분쇄하는 단계; Milling the slurry until the average particle size D 50 is less than or equal to 600 nm;

상기 분쇄된 슬러리에 분산제를 투입하고 점도가 1000 내지 2000 cp 가 될때까지 교반하는 단계; Adding a dispersant to the pulverized slurry and stirring until the viscosity becomes 1000 to 2000 cp;

분무건조에 의하여 상기 슬러리를 구형 입자화 하는 단계; 및Spherical granulating the slurry by spray drying; And

상기 얻어진 구형 입자를 산소 분위기에서 열처리 하는 단계를 포함하는 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법을 제공한다.
And heat treating the obtained spherical particles in an oxygen atmosphere. The present invention also provides a method for producing a lithium nickel oxide and a lithium excess manganese oxide composite.

본 발명의 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법에 있어서, 상기 화학식 1로 표시되는 리튬 니켈 복합 산화물과 화학식 2로 표시되는 리튬 망간 복합 산화물의 2차 입자의 평균 크기 D50 은 10 내지 25 ㎛ 인 것을 특징으로 한다. In the method for producing the lithium nickel oxide and the lithium excess manganese oxide composite of the present invention, the average size D 50 of the secondary particles of the lithium nickel complex oxide represented by the formula (1) and the lithium manganese composite oxide represented by the formula (2) 25 占 퐉.

본 발명의 리튬 니켈 산화물과 리튬과량 망간 산화물의 복합체 제조 방법에 있어서, 상기 화학식 1로 표시되는 리튬 니켈 산화물 100 중량부당 상기 화학식 2로 표시되는 리튬과량 망간 산화물을 25 중량부 내지 100 중량부의 비율로 혼합되는 것을 특징으로 한다. In the method for producing a composite of a lithium nickel oxide and a lithium excess manganese oxide according to the present invention, the lithium excess manganese oxide represented by the general formula (2) is added in an amount of 25 to 100 parts by weight per 100 parts by weight of the lithium nickel oxide represented by the general formula Is mixed.

본 발명의 리튬 니켈 산화물과 리튬과량 망간 산화물의 복합체 제조 방법에 있어서, 상기 용매는 증류수 또는 알코올인 것을 특징으로 한다. In the method for producing a composite of lithium nickel oxide and lithium excess manganese oxide according to the present invention, the solvent is distilled water or alcohol.

본 발명의 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법에 있어서, 상기 분무건조시 투입 온도는 230 내지 270 ℃, 배출 온도는 100 내지 120 ℃ 인 것을 특징으로 한다. In the method for producing the lithium nickel oxide and the lithium excess manganese oxide composite of the present invention, the injection temperature and the discharge temperature are 230 to 270 ° C. and 100 to 120 ° C., respectively.

본 발명의 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법에 있어서, 상기 열처리는 500 내지 700 ℃ 에서 1 시간 내지 3 시간 동안 열처리되는 것을 특징으로 한다. In the method for producing the lithium nickel oxide and the lithium excess manganese oxide composite of the present invention, the heat treatment is performed at 500 to 700 ° C for 1 to 3 hours.

본 발명은 또한, 본 발명의 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법에 의하여 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체를 제공한다. The present invention also provides a lithium nickel oxide and a lithium excess manganese oxide composite produced by the method of the present invention for producing a lithium nickel oxide and a lithium excess manganese oxide composite.

본 발명은 또한, 본 발명에 의한 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체를 포함하는 리튬 이차 전지를 제공한다.
The present invention also provides a lithium secondary battery comprising the lithium nickel oxide and the lithium excess manganese oxide composite according to the present invention.

본 발명에 의한 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법은 리튬 니켈 산화물과 리튬과량 망간 산화물의 단순 혼합이 아니라, 혼합 후 분쇄하고 분무 건조 및 열처리에 의해 입자화함으로써, 이로 인해 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물의 복합체는 높은 에너지 밀도와 단시간에 큰 출력을 발휘할 수 있을 뿐만 아니라, 우수한 안전성 및 장기 수명 특성을 나타낸다.
The lithium nickel oxide and the lithium excess manganese oxide according to the present invention are not simply mixed with lithium nickel oxide and lithium excess manganese oxide but are pulverized after mixing and pulverized and spray-dried and heat treated to be granulated, The composite of nickel oxide and lithium excess manganese oxide exhibits high energy density and high output in a short time, as well as excellent safety and long life characteristics.

도 1은 본 발명에 의한 리튬 니켈 산화물과 리튬과량 망간 산화물의 복합체 제조 방법을 모식적으로 나타내었다.
도 2는 본 발명의 일실시예 및 비교예에서 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 SEM 사진을 나타낸다.
도 3은 본 발명의 일실시예 및 비교예에서 제조된 양극 활물질을 사용하여 제조된 전지의 충방전 특성을 나타낸다.
도 4는 본 발명의 일실시예 및 비교예에서 제조된 양극 활물질을 사용하여 제조된 전지의 율특성을 나타낸다.
도 5는 본 발명의 일실시예 및 비교예에서 제조된 양극 활물질을 사용하여 제조된 전지의 수명특성을 나타낸다.
FIG. 1 schematically shows a method for producing a composite of a lithium nickel oxide and a lithium excess manganese oxide according to the present invention.
FIG. 2 is a SEM photograph of the lithium nickel oxide and the lithium excess manganese oxide composite prepared in one embodiment and the comparative example of the present invention.
FIG. 3 shows charge / discharge characteristics of a battery manufactured using the cathode active material prepared in one embodiment of the present invention and a comparative example.
FIG. 4 shows the rate characteristics of a battery manufactured using the cathode active material prepared in one embodiment of the present invention and a comparative example.
FIG. 5 shows lifetime characteristics of a battery manufactured using the cathode active material prepared in one embodiment of the present invention and a comparative example.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<< 제조예Manufacturing example > 리튬 과량 망간 산화물의 제조 > Preparation of Lithium Excess Manganese Oxide

Ni:Co:Mn 몰비가 28:12:60이 되도록 2.5M의 황산니켈 6수화물(NiSO4·6H2O)과 황산코발트 7수화물(CoSO4·7H2O) 및 황산망간 1수화물(MnSO4·H2O) 혼합 금속용액을 제조하였다. 1M 암모니아 수용액을 채운 내용적 90L를 가지는 연속반응기를 이용하였으며 초기 용액의 pH는 10~11 범위로 하였다. 상기 제조된 2.5M의 니켈/코발트/망간 혼합금속용액과 28% 암모니아수 및 18% 탄산나트륨 용액을 500 rpm의 속도로 질소 투입 하에 교반하면서 정량펌프를 이용하여 동시에 연속적으로 투입하였다. 이때 반응기 내의 온도는 55 ℃를 유지하면서 혼합금속용액은 3 L/hr, 암모니아수는 0.2 L/hr의 속도로 투입하였고, 탄산나트륨은 반응기 내의 pH가 10~11를 유지하도록 투입량을 조정하면서 연속반응을 수행하였다. 반응기 체류시간은 10시간이었다. 연속반응으로 반응기 오버플로우(over flow)를 통해 배출되는 반응생성물인 슬러리(slurry)를 모아 두었다. 반응시작 30시간 이후부터 모아둔 슬러리 용액을 여과 및 고순도의 증류수로 세척 후 110 ℃, 12시간 진공오븐에서 건조하여 전구체인 니켈/코발트/망간 금속복합수산화물을 얻었다. 얻어진 금속복합탄산화물의 조성은 Ni0 .28Co0 .12Mn0 .60(CO3) 이었다. 건조된 상기 금속복합탄산화물을 탄산리튬(Li2CO3)과 Li/(Ni+Co+Mn)=1.25의 몰비로 혼합하여 코딜라이트(Cordilite) 도가니(Sega)에 넣고 공기 흐름 하에서 900 ℃, 10시간 소성하여 리튬금속복합산화물을 얻었다. 소성물인 리튬금속복합산화물의 화학 조성은 Li1 .25[Ni0 .21Co0 .09Mn0 .45]O2 이었다.
(NiSO 4 .6H 2 O), cobalt sulfate heptahydrate (CoSO 4 .7H 2 O) and manganese sulfate monohydrate (MnSO 4 ) were added so that the molar ratio of Ni: Co: Mn was 28:12:60. H 2 O) mixed metal solution was prepared. A continuous reactor having an internal volume of 90 L filled with 1 M aqueous ammonia was used and the pH of the initial solution was in the range of 10 to 11. The prepared 2.5 M nickel / cobalt / manganese mixed metal solution, 28% ammonia water, and 18% sodium carbonate solution were continuously and simultaneously introduced into the reactor at a rate of 500 rpm using a metering pump while stirring under nitrogen. At this time, the temperature in the reactor was maintained at 55 ° C., the mixed metal solution was fed at a rate of 3 L / hr, the ammonia water was fed at a rate of 0.2 L / hr, and the sodium carbonate was continuously fed Respectively. The reactor retention time was 10 hours. The slurry, which is the reaction product discharged through the reactor overflow in a continuous reaction, was collected. The slurry solution collected from 30 hours after the start of the reaction was filtered and washed with high purity distilled water and dried in a vacuum oven at 110 ° C for 12 hours to obtain a precursor nickel / cobalt / manganese metal complex hydroxide. The composition of this composite metal carbonate is Co 0 .28 0 .12 Ni was Mn 0 .60 (CO 3). The dried composite metal carbonate was mixed with lithium carbonate (Li 2 CO 3 ) at a molar ratio of Li / (Ni + Co + Mn) = 1.25 and placed in a Cordilite crucible. Followed by baking for 10 hours to obtain a lithium metal composite oxide. The chemical composition of the calcined lithium metal composite oxide was Li 1 .25 [Ni 0 .21 Co 0 .09 Mn 0 .45 ] O 2 .

<< 실시예Example > 리튬 니켈 산화물과 > Lithium nickel oxide and 리튬과량Lithium excess 망간 산화물 복합체의 제조 Preparation of manganese oxide complex

리튬 니켈 산화물로서 상용으로 시판되는 평균 입경 10 ㎛의 Li[Ni1/3Co1/3Mn1/3]O2 와 상기 제조예에서 제조된 리튬과량 망간 산화물로서 평균 입경 15 ㎛의 Li1 .25[Ni0 .21Co0 .09Mn0 .45]O2 를 아래 비율로 혼합하였다. Having an average particle size of 10 ㎛ as marketed commercially as lithium nickel oxide Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 with average particle size of the lithium 15 ㎛ an excess of manganese oxide obtained in Preparation Example 1 Li. 25 and mixed with the [Ni Co 0 .21 0 .09 0 .45 Mn] O 2 down ratio.

Li[Ni1 /3Co1 /3Mn1 /3]O2 Li [Ni 1/3 Co 1 /3 Mn 1/3] O 2 Li1 .25[Ni0 .21Co0 .09Mn0 .45]O2 Li 1 .25 [Ni 0 .21 Co 0 .09 Mn 0 .45] O 2 실시예 1Example 1 1010 9090 실시예 2Example 2 1515 8585 실시예 3Example 3 2020 8080

이 혼합물에 순수(DIW)를 투입하여 30 wt%의 고형분이 되게 한 다음 beads mill(Netch사, LabStar Mini)을 이용하여 30분간 분쇄하였다. 분쇄된 슬러리에 분산제를 1 wt% 투입하고 10분간 교반하여 점도를 1,000 ~ 2000 cp가 되도록 한 후 분무 건조기(동진기연, DJE003R)를 이용하여 구형화 시켰다. 분무 건조를 위해 사용된 Atomizer는 2류체 분사노즐이며 투입온도는 250 ℃, 배출온도는 110 ℃ 이다. DIW was added to the mixture so that the solid content became 30 wt%, followed by pulverization for 30 minutes using beads mill (Netch, LabStar Mini). 1 wt% of a dispersant was added to the pulverized slurry, and the mixture was stirred for 10 minutes to obtain a viscosity of 1,000 to 2,000 cp, followed by sphering using a spray dryer (DONGJIN KYEON, DJE003R). The atomizer used for spray drying is a two-fluid spray nozzle with an inlet temperature of 250 ° C and an outlet temperature of 110 ° C.

Spray dryer를 사용하여 얻은 구형의 입자를 산소가 포함된 공기 분위기에서 550 ℃에서 2시간 열처리하여 리튬 니켈 산화물과 리튬과량 망간 산화물의 복합체를 얻었다.
The spherical particles obtained by using a spray dryer were heat-treated at 550 ° C for 2 hours in oxygen-containing air atmosphere to obtain a composite of lithium nickel oxide and lithium excess manganese oxide.

<< 비교예Comparative Example >>

리튬 니켈 산화물 Li[Ni1 /3Co1 /3Mn1 /3]O2 20 중량부와 리튬과량 망간 산화물 Li1.25[Ni0.21Co0.09Mn0.45]O2 80 중량부를 단순 혼합하여 비교예로 하였다.
Lithium nickel oxide Li [Ni 1/3 Co 1 /3 Mn 1/3] O 2 20 parts by weight of lithium excess manganese oxide Li 1.25 [Ni 0.21 Co 0.09 Mn 0.45] O 2 80 parts by weight by mixing parts of simple was determined as Comparative Example .

<< 실험예Experimental Example > > SEMSEM 사진 측정 Photo measurement

상기 실시예 1 내지 3 및 비교예에서 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 SEM 사진을 측정하고 도 2에 나타내었다.
SEM photographs of the lithium nickel oxide and lithium excess manganese oxide composite prepared in Examples 1 to 3 and Comparative Examples were measured and shown in FIG.

<< 실험예Experimental Example > 입자 물성 측정> Particle properties measurement

상기 실시예 1 내지 3 및 비교예에서 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 입경 및 BET 표면적을 측정한 결과를 아래 표 2에 나타내었다.The results of measurement of the particle diameter and BET surface area of the lithium nickel oxide and lithium excess manganese oxide composite prepared in Examples 1 to 3 and Comparative Examples are shown in Table 2 below.

항목Item 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예Comparative Example ICP조성ICP composition Li1 .23[Ni0 .22Co0 .12Mn0 .44]O2 Li 1 .23 [Ni 0 .22 Co 0 .12 Mn 0 .44] O 2 Li1 .22[Ni0 .23Co0 .13Mn0 .43]O2 Li 1 .22 [Ni 0 .23 Co 0 .13 Mn 0 .43] O 2 Li1 .21[Ni0 .23Co0 .14Mn0 .43]O2 Li 1 .21 [Ni 0 .23 Co 0 .14 Mn 0 .43] O 2 Li1 .21[Ni0 .23Co0 .14Mn0 .43]O2 Li 1 .21 [Ni 0 .23 Co 0 .14 Mn 0 .43] O 2 D50(㎛)D 50 (占 퐉) 8.88.8 8.78.7 8.98.9 9.29.2 BET(m2/g)BET (m 2 / g) 3.543.54 3.583.58 3.493.49 2.922.92

<< 제조예Manufacturing example >>

상기 실시예1 내지 3 및 비교예 각각에 따라 제조된 리튬이차전지용 양극 활물질과 도전제로서 아세틸렌블랙, 결합제로는 폴리비닐리덴플루오라이드(PVdF 제품명: solef6020)를 90: 5: 5의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 20 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 130 ℃에서 진공 건조하여 리튬이차전지용 양극을 제조하였다.The positive electrode active material for a lithium secondary battery prepared according to each of Examples 1 to 3 and Comparative Examples was mixed with acetylene black as a conductive agent and polyvinylidene fluoride (PVdF product name: solef6020) as a binder in a weight ratio of 90: 5: 5 To prepare a slurry. The slurry was uniformly coated on an aluminum foil having a thickness of 20 占 퐉 and vacuum-dried at 130 占 폚 to prepare a positive electrode for a lithium secondary battery.

상기 양극과, 리튬 호일을 상대 전극으로 하며, 두께가 25 ㎛인 다공성 폴리에틸렌막을 세퍼레이터로 하고, 에틸렌 카보네이트와 에틸 메틸카보네이트가 3:7 의 부피비로 혼합된 용매에 LiPF6를 1M 농도로 녹인 전해액을 사용하여 통상의 방법으로 코인 전지를 제조하였다.
An electrolytic solution obtained by dissolving LiPF 6 at a concentration of 1 M in a solvent mixed with ethylene carbonate and ethyl methyl carbonate in a volume ratio of 3: 7 was used as a separator, using the above anode and lithium foil as counter electrodes and a porous polyethylene film having a thickness of 25 탆 as a separator. A coin cell was produced by a conventional method.

<< 실험예Experimental Example > 전지 특성 평가> Evaluation of battery characteristics

상기 실시예 및 비교예의 양극 활물질을 사용하여 제조된 코인 전지에 대해 초기 용량 및 율특성을 평가하고 아래 표 3 및 도 3, 도 4에 나타내었다.The initial capacity and the rate characteristics of the coin cell manufactured using the cathode active materials of the examples and comparative examples were evaluated and shown in Table 3 and FIG. 3 and FIG. 4, respectively.

항목Item 단위unit 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예Comparative Example 0.1C 충전0.1C charge mAh/gmAh / g 283.4283.4 276.5276.5 266.4266.4 286.4286.4 0.1C 방전0.1 C discharge mAh/gmAh / g 252.6252.6 248.1248.1 230.4230.4 251.5251.5 EfficiencyEfficiency %% 89.1%89.1% 89.7%89.7% 86.5%86.5% 87.8%87.8% 0.2C0.2C mAh/gmAh / g 241.5241.5 236.9236.9 221.4221.4 239.9239.9 0.5C0.5 C mAh/gmAh / g 221.9221.9 218.8218.8 207.8207.8 223.9223.9 1.0C1.0 C mAh/gmAh / g 204.3204.3 203.8203.8 195.7195.7 208.0208.0 1.5C1.5 C mAh/gmAh / g 191.9191.9 194.6194.6 188.4188.4 194.5194.5 2.0C2.0C mAh/gmAh / g 182.4182.4 187.4187.4 182.3182.3 183.4183.4 5.0C5.0 C mAh/gmAh / g 146.5146.5 164.8164.8 163.8163.8 135.8135.8 0.2C vs. 0.1C0.2C vs. 0.1 C %% 95.6%95.6% 95.5%95.5% 96.1%96.1% 95.4%95.4% 0.5C vs. 0.1C0.5C vs. 0.1 C %% 87.9%87.9% 88.2%88.2% 90.2%90.2% 89.0%89.0% 1.0C vs. 0.1C1.0C etc. 0.1 C %% 80.9%80.9% 82.1%82.1% 84.9%84.9% 82.7%82.7% 1.5C vs. 0.1C1.5C vs. 0.1 C %% 76.0%76.0% 78.5%78.5% 81.8%81.8% 77.3%77.3% 2.0C vs. 0.1C2.0C etc. 0.1 C %% 72.2%72.2% 75.5%75.5% 79.1%79.1% 72.9%72.9% 5.0C vs. 0.1C5.0C vs. 0.1 C %% 58.0%58.0% 62.0%62.0% 71.1%71.1% 54.0%54.0%

<< 실험예Experimental Example > 전지 특성 평가> Evaluation of battery characteristics

상기 실시예 및 비교예의 양극 활물질을 사용하여 제조된 코인 전지에 대해 수명 특성을 평가하고 아래 표 4 및 도 5에 나타내었다.The life characteristics of the coin cells manufactured using the cathode active materials of the above Examples and Comparative Examples were evaluated and shown in Table 4 and FIG.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예Comparative Example Capacity Retention(%) at 100th cycleCapacity Retention (%) at 100th cycle 72.4 %72.4% 79.2 %79.2% 83.2 %83.2% 61.4 %61.4%

Claims (8)

아래 화학식 1로 표시되는 리튬 니켈 산화물과 화학식 2로 표시되는 리튬과량 망간 산화물을 혼합하여 리튬 니켈 산화물과 리튬과량 망간 산화물의 혼합물을 제조하는 단계;
[화학식 1] Li1+aNibCocM1-(b+c)O2 (상기 화학식 1에서 0≤a<0.2, 0.3<b<0.7, 0<c<0.4, M 은 Mn, Al, Mg, Ni, Co, Fe, Ti, V, Zr 및 Zn로 이루어지는 군에서 선택된 1 종 이상의 원소이다)
[화학식 2] Li1+xNiyCozM'1-(y+z)O2 (상기 화학식 2에서 0.2<x<0.7, 0.2<y<0.7, 0.3<1-(y+z)<0.7, M' 은 Mn, Co, Ni로 이루어지는 군에서 선택된 1 종 이상의 원소이다)
상기 리튬 니켈 산화물과 리튬과량 망간 산화물의 혼합물을 용매에 투입하여 슬러리를 제조하는 단계;
상기 슬러리를 입자 평균 크기 D50 이 600 nm 이하가 될 때까지 분쇄하는 단계;
상기 분쇄된 슬러리에 분산제를 투입하고 점도가 1000 내지 2000 cp 가 될때까지 교반하는 단계;
분무건조에 의하여 상기 슬러리를 구형 입자화 하는 단계; 및
상기 얻어진 구형 입자를 산소 분위기에서 열처리 하는 단계;를 포함하는 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법.
Preparing a mixture of a lithium nickel oxide and a lithium excess manganese oxide by mixing a lithium nickel oxide represented by the following Chemical Formula 1 and a lithium excessive manganese oxide represented by Chemical Formula 2;
[Chemical Formula 1] Li 1 + a Ni b Co c M 1- (b + c) O 2 ( In the formula 1 0≤a <0.2, 0.3 <b <0.7, 0 <c <0.4, M is Mn, Al And at least one element selected from the group consisting of Mg, Ni, Co, Fe, Ti, V, Zr and Zn.
[Chemical Formula 2] Li 1 + x Ni y Co z M '1- (y + z) O 2 (0.2 <x <0.7, 0.2 <y <0.7, 0.3 <1- (y + z in the above formula (2)) < 0.7, and M 'is at least one element selected from the group consisting of Mn, Co, and Ni)
Adding a mixture of lithium nickel oxide and lithium excess manganese oxide to a solvent to prepare a slurry;
Milling the slurry until the average particle size D 50 is less than or equal to 600 nm;
Adding a dispersant to the pulverized slurry and stirring until the viscosity becomes 1000 to 2000 cp;
Spherical granulating the slurry by spray drying; And
And heat treating the obtained spherical particles in an oxygen atmosphere. The method of producing a lithium nickel oxide and a lithium excess manganese oxide composite according to claim 1,
제 1 항에 있어서,
상기 화학식 1로 표시되는 리튬 니켈 복합 산화물과 화학식 2로 표시되는 리튬과량 망간 복합 산화물의 2차 입자의 평균 크기 D50 은 10 내지 25 ㎛ 인 것을 특징으로 하는 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법.
The method according to claim 1,
Wherein an average size D 50 of the secondary particles of the lithium nickel complex oxide represented by Formula 1 and the lithium excess manganese composite oxide represented by Formula 2 is 10 to 25 탆, Gt;
제 1 항에 있어서,
상기 화학식 1로 표시되는 리튬 니켈 산화물 100 중량부당 상기 화학식 2로 표시되는 리튬과량 망간 산화물을 25 중량부 내지 100 중량부의 비율로 혼합되는 것인 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법.
The method according to claim 1,
Wherein the lithium-excess manganese oxide represented by Formula 2 is mixed in an amount of 25 parts by weight to 100 parts by weight per 100 parts by weight of the lithium nickel oxide represented by Formula 1, and a process for producing the lithium-excess manganese oxide composite.
제 1 항에 있어서,
상기 용매는 증류수 또는 알코올인 것을 특징으로 하는 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법.
The method according to claim 1,
Wherein the solvent is distilled water or alcohol. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제 1 항에 있어서,
상기 분무건조시 투입 온도는 230 내지 270 ℃, 배출 온도는 100 내지 120 ℃ 인 것을 특징으로 하는 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법.
The method according to claim 1,
Wherein the spraying-drying temperature is from 230 to 270 DEG C and the discharge temperature is from 100 to 120 DEG C. 6. The method for producing a lithium nickel oxide and lithium excess manganese oxide composite according to claim 1,
제 1 항에 있어서,
상기 열처리는 500 내지 700 ℃ 에서 1 시간 내지 3 시간 동안 열처리되는 것을 특징으로 하는 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체의 제조 방법.
The method according to claim 1,
Wherein the heat treatment is performed at 500 to 700 占 폚 for 1 hour to 3 hours. The method for producing a lithium nickel oxide and lithium excess manganese oxide composite according to claim 1,
제 1 항 내지 제 6 항 중 어느 하나의 제조 방법에 의하여 제조된 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체.
A lithium nickel oxide and a lithium excess manganese oxide composite produced by the method of any one of claims 1 to 6.
제 7 항의 리튬 니켈 산화물과 리튬과량 망간 산화물 복합체를 포함하는 리튬 이차 전지.A lithium secondary battery comprising the lithium nickel oxide and the lithium excess manganese oxide composite according to claim 7.
KR1020130166996A 2013-12-30 2013-12-30 Method for preparing lithium nickel oxide-over lithiatied manganese oxide composite and lithium nickel oxide-over lithiatied manganese oxide composite using the same KR101568257B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130166996A KR101568257B1 (en) 2013-12-30 2013-12-30 Method for preparing lithium nickel oxide-over lithiatied manganese oxide composite and lithium nickel oxide-over lithiatied manganese oxide composite using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130166996A KR101568257B1 (en) 2013-12-30 2013-12-30 Method for preparing lithium nickel oxide-over lithiatied manganese oxide composite and lithium nickel oxide-over lithiatied manganese oxide composite using the same

Publications (2)

Publication Number Publication Date
KR20150080096A KR20150080096A (en) 2015-07-09
KR101568257B1 true KR101568257B1 (en) 2015-11-12

Family

ID=53791977

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130166996A KR101568257B1 (en) 2013-12-30 2013-12-30 Method for preparing lithium nickel oxide-over lithiatied manganese oxide composite and lithium nickel oxide-over lithiatied manganese oxide composite using the same

Country Status (1)

Country Link
KR (1) KR101568257B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10868305B2 (en) 2016-11-18 2020-12-15 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery containing the same, and method of preparing the composite cathode active material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380054A (en) * 2019-08-02 2019-10-25 北方奥钛纳米技术有限公司 A kind of titanium niobium oxide electrode material and preparation method thereof, lithium ion button shape cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146426A (en) 1999-11-19 2001-05-29 Mitsubishi Chemicals Corp Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146426A (en) 1999-11-19 2001-05-29 Mitsubishi Chemicals Corp Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10868305B2 (en) 2016-11-18 2020-12-15 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery containing the same, and method of preparing the composite cathode active material

Also Published As

Publication number Publication date
KR20150080096A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
EP3024070B1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including same
KR101400593B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR101470092B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
CN104704659B (en) Li Ni composite oxide particle powders and its manufacture method and rechargeable nonaqueous electrolytic battery
KR101577179B1 (en) Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
CN104703921B (en) Li Ni composite oxide particle powders and rechargeable nonaqueous electrolytic battery
KR101589294B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
KR20160045029A (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR101762540B1 (en) Positive active material for sodium rechargeable batteries and method of manufacturing the same
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
EP2615672A2 (en) Positive electrode active material for a lithium secondary battery, and method for preparing same
KR20130059029A (en) Process for producing composite metal oxide
KR20140092492A (en) Manufacturing method of cathod active material for lithium rechargeable battery and cathod active material made by the same
KR20240011822A (en) Surface coated cathode material and manufacturing method thereof, lithium ion battery
KR20160075404A (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
KR102152370B1 (en) Cathode active material and lithium secondary batteries comprising the same
KR101439638B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR101568257B1 (en) Method for preparing lithium nickel oxide-over lithiatied manganese oxide composite and lithium nickel oxide-over lithiatied manganese oxide composite using the same
KR20150050427A (en) Cobalt precursor, preparation method thereof, and litium cobalt oxide comprising the same
KR101991254B1 (en) Positive Active material with high Power density and longevity
KR100668051B1 (en) Manganese Oxide Using Coprecipitation Method, Lithium Secondary Battery Spinel Type Cathode Active Material Using the Same and Manufacturing Method Thereof
KR101632887B1 (en) Cathode active material precursor for lithium rechargeable battery and preparation method thereof, cathode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
KR101506680B1 (en) Cathode active material for lithium secondary battery and manufacturing method of the same
KR20150059820A (en) Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same
KR101589296B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20131230

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20150521

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20151030

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20151105

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20151106

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20180816

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20191004

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20191004

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20210825

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20221019

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20230905

Start annual number: 9

End annual number: 9