KR101562435B1 - Method for manufacturing solar cell with 3-dimensional absorber layer using aao template - Google Patents

Method for manufacturing solar cell with 3-dimensional absorber layer using aao template Download PDF

Info

Publication number
KR101562435B1
KR101562435B1 KR1020130126536A KR20130126536A KR101562435B1 KR 101562435 B1 KR101562435 B1 KR 101562435B1 KR 1020130126536 A KR1020130126536 A KR 1020130126536A KR 20130126536 A KR20130126536 A KR 20130126536A KR 101562435 B1 KR101562435 B1 KR 101562435B1
Authority
KR
South Korea
Prior art keywords
layer
light absorbing
template
absorbing layer
solar cell
Prior art date
Application number
KR1020130126536A
Other languages
Korean (ko)
Other versions
KR20150047661A (en
Inventor
김진혁
신승욱
이정용
문종하
김민성
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020130126536A priority Critical patent/KR101562435B1/en
Publication of KR20150047661A publication Critical patent/KR20150047661A/en
Application granted granted Critical
Publication of KR101562435B1 publication Critical patent/KR101562435B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02258Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by anodic treatment, e.g. anodic oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

양극산화 플레이트를 이용하여 제조되는 3차원 구조의 광흡수층을 포함하는 태양전지 제조방법이 개시된다. 하부구조의 후면전극층 상에 알루미늄을 적층한 후 양극산화를 통해 다수개의 나노홀 또는 다수개의 나노기둥을 가지는 템플릿을 형성한다. 템플릿의 다수개의 나노홀 또는 다수개의 나노기둥에 CZTS 전구체물질을 충전시킨 후 템플릿을 제거하여 전구체박막을 형성한다. 전구체박막을 황화 또는 셀렌화 분위기에서 열처리하여 3차원 구조의 광흡수층을 형성한다. 나아가, 열처리를 수행하기 전에 양극산화 중에 후면전극층 상에 형성된 산화물을 제거한 후 상술한 열처리를 수행할 수 있다.A method of manufacturing a solar cell including a light absorbing layer of a three-dimensional structure manufactured using an anodic oxidation plate is disclosed. Aluminum is stacked on the rear electrode layer of the lower structure, and anodization is performed to form a template having a plurality of nanoholes or a plurality of nanoparticles. The CZTS precursor material is filled in a plurality of nanoholes or a plurality of nanoparticles of the template, and then the template is removed to form a precursor thin film. The precursor thin film is heat-treated in a sulfiding or selenizing atmosphere to form a three-dimensional light absorbing layer. Furthermore, it is possible to remove the oxide formed on the back electrode layer during the anodic oxidation before performing the heat treatment, and then perform the above-described heat treatment.

Description

양극산화 템플릿을 이용한 3차원 구조의 광흡수층을 가지는 태양전지 제조 방법{METHOD FOR MANUFACTURING SOLAR CELL WITH 3-DIMENSIONAL ABSORBER LAYER USING AAO TEMPLATE}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of manufacturing a solar cell having a three-dimensional light absorbing layer using an anodic oxidation template,

본 발명은 태양전지 분야에 관한 것으로서, 보다 상세하게는 양극산화된 템플릿을 이용하여 형성되는 3차원 구조의 광흡수층을 가지는 태양전지 제조방법에 관한 것이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell field, and more particularly, to a solar cell manufacturing method having a three-dimensional light absorbing layer formed using an anodized template.

최근 실리콘 기반 태양전지를 대체할 차세대 Cu(In,Ga)Se2(CIGS) 물질 기반 태양전지 소자가 높은 효율과 열적 안성정을 기반으로 양산화 단계에 접어들었다. 이러한 Cu(In,Ga)Se2(CIGS)를 적용한 태양전지는 높은 광흡수계수, 직접천이형 밴드갭에너지, 그리고 화학적, 열적 안정성 뿐만 아니라 20%가 넘는 높은 광전 변환효율을 가지는 장점이 있다.Recently, next-generation Cu (In, Ga) Se 2 (CIGS) based solar cell devices to replace silicon-based solar cells have entered the stage of mass production based on high efficiency and thermal stability. The solar cell to which Cu (In, Ga) Se 2 (CIGS) is applied has a high light absorption coefficient, a direct transition type band gap energy, chemical and thermal stability as well as a photoelectric conversion efficiency of more than 20%.

그러나 CIGS를 기반으로 하는 태양전지는 In과 Ga의 높은 가격과 Se의 독성으로 인하여 대량생산은 쉽지 않을 것으로 예상된다.However, due to the high price of In and Ga and the toxicity of Se, mass production of CIGS-based solar cells is not expected to be easy.

최근 이를 대체하기 위하여 In과 Ga을 Zn과 Sn으로 대체할 Cu2ZnSnS4(CZTS)를 기반으로 하는 태양전지가 많이 연구되고 있다. CZTS는 CIGS와 비슷한 결정구조와 광학적 특성을 가지고 있기 때문에 광전 변환효율이 그와 유사하다면 Si 기반의 태양전지에 대하여 가격 경쟁력을 가질 수 있을 것이다.In recent years, a number of solar cells based on Cu 2 ZnSnS 4 (CZTS) have been studied to replace In and Ga with Zn and Sn. CZTS has similar crystal structure and optical properties to CIGS, so if the photoelectric conversion efficiency is similar to that of CIGS, it will be competitive with Si-based solar cells.

그러한 맥락에서, 새로운 원소 도핑, 광흡수층에 대한 결함 분석, 새로운 버퍼, TCO 물질 개발 등과 같이 새로운 연구와 시도가 있었다.In that context, new research and attempts have been made, such as new element doping, defect analysis for the light absorbing layer, new buffers, and TCO material development.

그러나 CZTS 기반 태양전지의 변환 효율을 더 높여야 할 필요가 있다.
However, there is a need to increase the conversion efficiency of CZTS-based solar cells.

한국특허공개 10-2009-0065894Korean Patent Publication No. 10-2009-0065894

본 발명은 상술한 종래의 문제점을 해결하기 위한 것으로서, 3차원 구조의 광흡수층을 가지는 태양전지 제조방법을 제공한다.SUMMARY OF THE INVENTION The present invention provides a method of manufacturing a solar cell having a three-dimensional light absorbing layer.

본 발명은 나노기둥 형태를 포함하는 3차원 구조의 광흡수층을 가지는 태양전지를 제조하는 방법을 제공한다.
The present invention provides a method of manufacturing a solar cell having a three-dimensional structure of a light absorption layer including a nano-pillar shape.

본 발명은 3차원 구조의 광흡수층을 가지는 태양전지 제조 방법을 제공하며, 이 방법은: (a) 하부구조 상에 Al층 또는 Al을 포함하는 금속층을 형성하는 단계; (b) 상기 Al층 또는 Al을 포함하는 금속층을 양극산화하여 다수개의 홀 또는 다수개의 기둥을 가지는 템플릿을 형성하는 단계; (c) 광흡수층을 위한 전구체물질을 상기 템플릿에 충진하여 상기 다수개의 홀 내부에 충진되거나 상기 다수개의 기둥을 둘러싸는 광흡수층을 위한 전구체막을 형성하는 단계; (d) 상기 템플릿을 제거하는 단계; 및 (e) 상기 광흡수층을 위한 전구체막을 열처리하여 광흡수층을 형성하는 단계;를 포함한다.The present invention provides a method of manufacturing a solar cell having a three-dimensional light absorbing layer, comprising the steps of: (a) forming a metal layer comprising an Al layer or Al on a substructure; (b) anodizing the Al layer or the Al-containing metal layer to form a template having a plurality of holes or a plurality of pillars; (c) filling the template with a precursor material for the light absorbing layer to form a precursor film for the light absorbing layer filled in the plurality of holes or surrounding the plurality of pillars; (d) removing the template; And (e) heat treating the precursor film for the light absorbing layer to form a light absorbing layer.

상기 광흡수층은 CZTS(Cu, Zn, Sn, 및 S 또는 Se) 기반 물질을 포함한다.The light absorbing layer comprises CZTS (Cu, Zn, Sn, and S or Se) based materials.

상기 하부구조는 투명 기판과 상기 투명 기판 상에 형성된 후면전극층을 포함하고, 상기 후면전극층은 Mo를 포함하는 금속으로 형성될 수 있다. 이 경우, 상기 단계 (d)와 (e) 사이에 상기 후면전극층의 표면의 산화물을 제거하는 단계를 더 포함한다.
The lower structure may include a transparent substrate and a rear electrode layer formed on the transparent substrate, and the rear electrode layer may be formed of a metal including Mo. In this case, removing the oxide on the surface of the rear electrode layer may be performed between steps (d) and (e).

본 발명에 따르면 양극산화 플레이트 방식의 템플릿을 이용하여 3차원 구조의 광흡수층을 가지는 태양전지를 용이하게 제조할 수 있다. 이러한 3차원 구조의 광흡수층은 p-n정션이 확대되어 많은 전하 전송자가 생성될 수 있고, 그에 따라 변환효율이 증대된다. 또한 본 발명에서는 나노 홀 또는 나노기둥 형태와 같이 다양한 구조의 템플릿과 그를 통해 제조되는 3차원 구조의 광흡수층을 제공한다. 나아가 템플릿 제조를 위한 산화과정에서 생성되는 후면전극층 상의 산화물을 제거하기 때문에, 변환효율이 높은 고품질의 태양전지의 제조가 가능하다.
According to the present invention, a solar cell having a three-dimensional light absorption layer can be easily manufactured using an anodic oxidation plate type template. In such a three-dimensional light absorption layer, the pn junction is enlarged, and a large number of charge carriers can be generated, thereby increasing the conversion efficiency. Also, the present invention provides a template having various structures such as a nanohole or a nanopillar shape, and a light absorbing layer of a three-dimensional structure manufactured through the template. Furthermore, since oxides on the back electrode layer generated in the oxidation process for template production are removed, it is possible to manufacture high quality solar cells with high conversion efficiency.

도 1a 내지 1h는 본 발명의 제1실시예에 따른 3차원 구조의 광흡수층을 가지는 태양전지 제조 방법을 설명하기 위해 도시한 도면이다.
도 2a 및 2d는 본 발명의 제2실시예에 따른 3차원 구조의 광흡수층을 가지는 태양전지 제조 방법을 설명하기 위해 도시한 도면이다.
FIGS. 1A to 1H are views illustrating a method of manufacturing a solar cell having a three-dimensional structure of a light absorbing layer according to a first embodiment of the present invention.
FIGS. 2A and 2D are views illustrating a method of manufacturing a solar cell having a three-dimensional structure of a light absorbing layer according to a second embodiment of the present invention.

이하 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 본 발명의 실시예를 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the embodiments of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

도 1a 내지 1h는 본 발명의 제1실시예에 따른 3차원 구조의 광흡수층을 가지는 태양전지 제조 방법을 설명하기 위해 도시한 도면이다.FIGS. 1A to 1H are views illustrating a method of manufacturing a solar cell having a three-dimensional structure of a light absorbing layer according to a first embodiment of the present invention.

도면을 참조하여, 본 발명의 제1실시예는 CZTS 나노기둥 형태를 제조하여 3차원 구조를 구현한다.Referring to the drawings, a first embodiment of the present invention implements a three-dimensional structure by manufacturing a CZTS nanopillar shape.

먼저 하부구조를 준비한다. 하부구조(10)는 예를 들어 기판(11)과 기판(11) 상에 형성된 후면전극층(12)을 포함할 수 있다. 이는 예를 들어 SLG(soda line glass)로된 기판(11) 상에 후면전극층(12)으로서 1,000nm의 Mo 박막을, 예를 들어 DC 스퍼터링으로 형성하는 것으로 구현될 수 있다.First, prepare the substructure. The substructure 10 may comprise, for example, a substrate 11 and a backside electrode layer 12 formed on the substrate 11. This can be realized, for example, by forming a 1,000 nm thick Mo thin film as the rear electrode layer 12 on the substrate 11 made of SLG (soda line glass), for example by DC sputtering.

이어, 도 1a에 도시한 바와 같이, 하부구조(10) 상에 다수개의 나노사이즈의 홀(이하, '나노홀'이라고도 칭함)을 가지는 템플릿(310)을 형성한다. 이를 위해, 하부구조(10) 상에 소정두께로 Al박막을 형성한 후 산소 분위기에서 산화시킴으로써 다수개의 나노홀(311)을 가지는 템플릿(310)을 제작할 수 있다. Al박막의 증착은 다양한 방식이 적용될 수 있는데, 예를 들어 증착(evaporation)를 이용할 수 있다.Next, as shown in FIG. 1A, a template 310 having a plurality of nano-sized holes (hereinafter also referred to as "nano holes") is formed on the lower structure 10. To this end, a template 310 having a plurality of nano holes 311 can be fabricated by forming an Al thin film having a predetermined thickness on the lower structure 10 and oxidizing it in an oxygen atmosphere. The deposition of the Al thin film can be performed in various manners, for example, evaporation can be used.

이러한 템플릿(310)은 AAO(anodizing aluminum oxide) 플레이트이며, 2개의 금속층으로 적층된 박막을 산소분위기에서 산화시키면 Al의 특정 결정 방향에 따라 에칭이 이루어져서 도 1a에 도시된 바와 같이 다수개의 나노홀(311)이 형성된다. 이러한 다수개의 나노홀(311) 각각은 바닥면에 하부구조(10)의 상부인 후면전극층(12)의 상면을 노출하도록 형성된다.The template 310 is an AAO (anodizing aluminum oxide) plate. When a thin film stacked with two metal layers is oxidized in an oxygen atmosphere, etching is performed according to a specific crystal direction of Al to form a plurality of nano holes 311) are formed. Each of the plurality of nano holes 311 is formed on a bottom surface so as to expose an upper surface of the rear electrode layer 12 which is an upper portion of the lower structure 10.

도 1b에 도시한 바와 같이, 템플릿(310)에 광흡수층을 위한 전구체물질을 충전하여 광흡수층을 위한 전구체박막(200)을 형성한다. 본 발명에 채용되는 이러한 전구체박막은 CZTS(Cu, Zn, Sn, 및 S 또는 Se)을 포함하는 전구체 용액을 제조하여 스핀 코팅이나 전착법(electrodeposition)을 이용하여 템플릿(310)의 나노홀(311)에 충진되도록 한다.As shown in FIG. 1B, the template 310 is filled with a precursor material for a light absorbing layer to form a precursor thin film 200 for the light absorbing layer. The precursor thin film used in the present invention may be prepared by preparing a precursor solution containing CZTS (Cu, Zn, Sn, and S or Se) and spin coating or electrodeposition to form nano holes 311 ).

이후, 도 1c에 도시한 바와 같이, 템플릿(310)을 제거한다. 본 실시예에서 템플릿(310)은 Al2O3로서 산을 이용하여 제거할 수 있다.Thereafter, as shown in Fig. 1C, the template 310 is removed. In this embodiment, the template 310 may be removed using Al 2 O 3 using an acid.

도 1d에 도시한 바와 같이, 황화 또는 셀렌화 분위기에 나노기둥 형태의 전구체박막(200)을 열처리하여 광흡수층(20)으로 형성한다. 이러한 나노기둥 형태의 CZTS 광흡수층(20)은 3차원 구조를 가지기 때문에, 평면적인 구조에 비해 p-n 정션 영역을 대폭적으로 증가된다. 그에 따라 더 많은 전하전송자를 생성하게 되어 태양전지의 변환효율을 향상시킬 수 있다.As shown in FIG. 1D, the precursor thin film 200 in the form of a nano pillar is heat-treated in a sulphide or selenization atmosphere to form the light absorbing layer 20. Since the CZTS light absorbing layer 20 having a nanocrystal shape has a three-dimensional structure, the p-n junction region is significantly increased as compared with a planar structure. Accordingly, more charge carriers are generated, and the conversion efficiency of the solar cell can be improved.

바람직하게는, CZTS 전구체박막(200)을 황화 또는 셀렌화 분위기에서 열처리하여 광흡수층(20)로 합성하기 전에 후면전극층(12)인 Mo의 표면에 형성된 MoO와 같은 산화물(121)을 제거하는 단계를 먼저 실시할 수 있다. 이러한 MoO층은, 도 1e에 도시한 바와 같이, 주로 Al박막을 산화시켜서 템플릿(310)을 제조할 때에 생성되는 부도체층으로서 향후 CZTS 나노 구조물이 되었을 때 p-n 정션에 의해서 만들어진 전자와 정공이 양쪽 전극으로 끌려가는 것을 방해하여 태양전지의 변환 효율을 감소시킬 수 있다.Preferably, the step of removing the oxide 121 such as MoO 3 formed on the surface of the Mo which is the rear electrode layer 12 before the CZTS precursor thin film 200 is heat-treated in the sulfidation or selenization atmosphere to synthesize the CZTS precursor thin film 200 into the light absorption layer 20 Can be performed first. As shown in FIG. 1E, this MoO layer is an insulator layer produced when the template 310 is produced mainly by oxidizing an Al thin film. When the CZTS nanostructure is formed in the future, electrons and holes produced by the pn junction are transferred to both electrodes It is possible to reduce the conversion efficiency of the solar cell.

따라서, 바람직하게는 상술한 도 1d의 열처리 전에 산화물(121)인 MoO층을 제거한다(도 1f). MoO층의 제거는 예를 들어 일정 농도의 암모니아 용액을 이용하여 에칭함으로써 제거할 수 있다.Therefore, preferably, the MoO layer as the oxide 121 is removed before the heat treatment of FIG. 1D described above (FIG. 1F). Removal of the MoO layer can be removed, for example, by etching using a solution of ammonia of a certain concentration.

이와 같이 산화물(121)을 제거한 후에, 도 1g와 같이 나노기둥 형태의 CZTS 전구체박막(200)을 황화 또는 셀렌화 분위기에서 열처리하여 광흡수층(20)로 합성한다.After removing the oxide 121 as described above, the nanopillar CZTS precursor thin film 200 is thermally treated in a sulfiding or selenizing atmosphere to synthesize the light absorbing layer 20 as shown in FIG.

이후, 광흡수층(20)과 후면전극층(12)을 포함하는 전면에 버퍼층, 윈도우층, 및 전극을 형성할 수 있다. 이를테면, 화학 수조 증착법을 이용하여 약 50nm의 CdS층을 형성한 다음에, 스퍼터링으로 약 70nm의 i-ZnO, 그리고 Al doped ZnO와 상부 전극인 Al를 증착한다.A buffer layer, a window layer, and an electrode may be formed on the entire surface including the light absorbing layer 20 and the rear electrode layer 12. For example, a chemical vapor deposition (CVD) method is used to form a CdS layer of about 50 nm, followed by sputtering about 70 nm of i-ZnO and Al-doped ZnO and Al as an upper electrode.

이상과 같은 본 발명의 제1실시예에 따른 태양전지 제조 방법은 3차원 구조의 광흡수층을 형성함으로써 3차원 구조의 모든 영역에서 p-n 정션이 형성되어 평면형의 기존 p-n 정션 보다 더 많은 전하 전송자가 생성될 수 있다.
The solar cell manufacturing method according to the first embodiment of the present invention can form a light absorbing layer of a three-dimensional structure, so that pn junctions are formed in all regions of the three-dimensional structure, so that more charge carriers .

이하에서는 제2실시예에 따른 본 발명의 3차원 구조의 광흡수층을 가지는 태양전지 제조 방법에 대해 설명한다.Hereinafter, a method of manufacturing a solar cell having a light absorbing layer of a three-dimensional structure according to the second embodiment of the present invention will be described.

도 2a 내지 2d는 본 발명의 제2실시예에 따른 3차원 구조의 광흡수층을 가지는 태양전지 제조 방법을 설명하기 위해 도시한 도면이다.FIGS. 2A to 2D are views illustrating a method of manufacturing a solar cell having a three-dimensional structure of a light absorbing layer according to a second embodiment of the present invention.

제2실시예에서 채용되는 템플릿(320)은 다수개의 나노기둥을 포함한다. 이러한 나노기둥 형태는 제1실시예와 마찬가지로 Mo로 형성된 후면전극층(12) 상에 Al박막을 적층한 후 양극산화를 통해 다수개의 나노기둥 구조를 남기고 나머지를 제거하는 방식으로 형성할 수 있다(도 2a).The template 320 employed in the second embodiment includes a plurality of nanopillars. As in the first embodiment, the nanocrystal may be formed by stacking an Al thin film on the rear electrode layer 12 formed of Mo, and then removing the rest by leaving a plurality of nanopillar structures through anodic oxidation 2a).

이어, 도 2b와 같이, 템플릿(320)에 광흡수층을 위한 전구체물질을 충진시켜서 CZTS 전구체박막(400)을 형성한다. 이때, 전구체박막(400)은 템플릿(320)의 다수개의 나노기둥이 노출되는 높이까지 형성하도록 한다.Next, as shown in FIG. 2B, a template 320 is filled with a precursor material for a light absorbing layer to form a CZTS precursor thin film 400. At this time, the precursor thin film 400 is formed to a height at which a plurality of nanoparticles of the template 320 are exposed.

도 2c와 같이, 템플릿(320)을 제거한다. 제1실시예에서 템플릿(320)의 제거는 다수개의 나노기둥(321)을 제거함으로써 구현될 수 있다. 상술한 바와 같이 다수개의 나노기둥(321)의 상부가 전구체박막(400)의 상면으로 노출되어 있으며, Al2O3인 나노기둥을 산을 이용하여 선택적으로 제거할 수 있다. 도면에서 알 수 있는 바와 같이 나노기둥(321)이 제거된 부위에는 구멍(41)이 생성되고, 그에 따라 전구체박막(400)이 3차원 구조를 갖게 된다.As shown in FIG. 2C, the template 320 is removed. In the first embodiment, the removal of the template 320 can be realized by removing the plurality of nanoparticles 321. [ As described above, the upper portions of the plurality of nano pillars 321 are exposed on the upper surface of the precursor thin film 400, and the nano pillars of Al 2 O 3 can be selectively removed using an acid. As can be seen in the figure, a hole 41 is formed in a portion where the nano pillar 321 is removed, so that the precursor thin film 400 has a three-dimensional structure.

도 2d와 같이, CZTS 전구체박막(400)을 황화 또는 셀렌화 분위기에서 열처리하여 광흡수층(40)을 형성한다.As shown in FIG. 2D, the CZTS precursor thin film 400 is heat-treated in a sulfiding or selenizing atmosphere to form a light absorption layer 40.

또한 제2실시예에서도 도 2d의 열처리 단계 이전에 후면전극층(12)에 형성된 산화물(121)인 MoO층을 제거하는 단계를 더 진행할 수 있다. 그 후에 전구체박막(400)을 열처리하여 광흡수층(40)으로 형성한 후, 제1실시예에서 설명한 바와 같은 태양전지를 위한 제1실시예에서 설명한 바와 같은 상부구조를 형성하면 된다.Also, in the second embodiment, the step of removing the MoO layer, which is the oxide 121 formed on the rear electrode layer 12, may be further performed before the heat treatment step of FIG. 2D. After that, the precursor thin film 400 is thermally treated to form the light absorbing layer 40, and then the upper structure as described in the first embodiment for the solar cell as described in the first embodiment may be formed.

지금까지 본 발명의 상세한 설명에서는 구체적인 실시예에 관해서 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 당해 분야에서 통상의 지식을 가진 자에게 있어서 자명하다 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

10: 하부구조 11: 기판
12: 후면전극층 20, 40: 광흡수층
121: 산화물 200, 400: 전구체박막
310, 320: 템플릿 311: 나노홀
321: 나노기둥
10: substructure 11: substrate
12: rear electrode layer 20, 40: light absorbing layer
121: oxide 200, 400: precursor thin film
310, 320: template 311: nano hole
321: Nano pillar

Claims (4)

(a) 투명 기판과 상기 투명 기판 상에 형성된 후면전극층으로서 Mo를 포함하는 하부구조 상에 Al층 또는 Al을 포함하는 금속층을 형성하는 단계;
(b) 상기 Al층 또는 Al을 포함하는 금속층을 양극산화하여 다수개의 홀 또는 다수개의 기둥을 가지며, 저면에 상기 후면전극층을 노출하는 템플릿을 형성하는 단계;
(c) 광흡수층을 위한 전구체물질을 상기 템플릿에 충진하여 상기 다수개의 홀 내부에 충진되거나 상기 다수개의 기둥을 둘러싸는 광흡수층을 위한 전구체막을 형성하는 단계;
(d) 상기 템플릿을 제거하는 단계;
(e) 상기 광흡수층을 위한 전구체막을 황화 또는 셀렌화 분위기에서 열처리하여 광흡수층을 형성하는 단계; 및
(f) 상기 광흡수층과 상기 후면전극층을 포함하는 전체면에 버퍼층, 윈도우층, 및 전극을 순차로 형성하는 단계;를 포함하고,
상기 광흡수층은 CZTS(Cu, Zn, Sn, 및 S 또는 Se) 기반 물질을 포함하고,
상기 단계 (d)와 (e) 사이에 상기 Mo의 후면전극층의 표면의 산화물인 MoO를 암모니아 용액을 이용하여 제거하는 단계를 포함하는 것인,
3차원 구조의 광흡수층을 가지는 태양전지 제조 방법.
(a) forming a metal layer including an Al layer or Al on a transparent substrate and a substructure including Mo as a rear electrode layer formed on the transparent substrate;
(b) anodizing the Al layer or the Al-containing metal layer to form a template having a plurality of holes or a plurality of pillars and exposing the rear electrode layer on the bottom surface;
(c) filling the template with a precursor material for the light absorbing layer to form a precursor film for the light absorbing layer filled in the plurality of holes or surrounding the plurality of pillars;
(d) removing the template;
(e) heat treating the precursor film for the light absorbing layer in a sulfiding or selenizing atmosphere to form a light absorbing layer; And
(f) sequentially forming a buffer layer, a window layer, and an electrode on the entire surface including the light absorption layer and the rear electrode layer,
Wherein the light absorbing layer comprises a material based on CZTS (Cu, Zn, Sn, and S or Se)
And removing the MoO 3, which is an oxide of the surface of the Mo back electrode layer, between the steps (d) and (e) using an ammonia solution.
A method of manufacturing a solar cell having a light absorbing layer of a three-dimensional structure.
삭제delete 삭제delete 삭제delete
KR1020130126536A 2013-10-23 2013-10-23 Method for manufacturing solar cell with 3-dimensional absorber layer using aao template KR101562435B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130126536A KR101562435B1 (en) 2013-10-23 2013-10-23 Method for manufacturing solar cell with 3-dimensional absorber layer using aao template

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130126536A KR101562435B1 (en) 2013-10-23 2013-10-23 Method for manufacturing solar cell with 3-dimensional absorber layer using aao template

Publications (2)

Publication Number Publication Date
KR20150047661A KR20150047661A (en) 2015-05-06
KR101562435B1 true KR101562435B1 (en) 2015-10-22

Family

ID=53386481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130126536A KR101562435B1 (en) 2013-10-23 2013-10-23 Method for manufacturing solar cell with 3-dimensional absorber layer using aao template

Country Status (1)

Country Link
KR (1) KR101562435B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101686342B1 (en) * 2015-09-01 2016-12-14 연세대학교 산학협력단 Semitransparent perovskite solar cells and fabrication thereof
KR102208515B1 (en) 2017-06-27 2021-01-26 주식회사 엘지화학 Electrode assembly and lithium secondary battery including the same
CN111099553B (en) * 2019-12-23 2023-07-18 湘潭大学 Bismuth sodium titanate nanotube array and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050121068A1 (en) 2002-06-22 2005-06-09 Nanosolar, Inc. Photovoltaic devices fabricated by growth from porous template
US20090050204A1 (en) 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050121068A1 (en) 2002-06-22 2005-06-09 Nanosolar, Inc. Photovoltaic devices fabricated by growth from porous template
US20090050204A1 (en) 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material

Also Published As

Publication number Publication date
KR20150047661A (en) 2015-05-06

Similar Documents

Publication Publication Date Title
Pastuszak et al. Photovoltaic cell generations and current research directions for their development
Baek et al. Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes
Han et al. Three dimensional-TiO 2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells
KR101339874B1 (en) Manufacturing method of double grading czts thin film, manufacturing method of double grading czts solar cell and czts solar cell
Akram et al. Arrays of CZTS sensitized ZnO/ZnS and ZnO/ZnSe core/shell nanorods for liquid junction nanowire solar cells
Chen et al. Rational design of nanowire solar cells: from single nanowire to nanowire arrays
US8071400B2 (en) Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion device, and solar cell
JP5928612B2 (en) Compound semiconductor solar cell
CN104659123A (en) Compound film solar battery and manufacturing method thereof
Zhang et al. CuInSe2 nanocrystals/CdS quantum dots/ZnO nanowire arrays heterojunction for photovoltaic applications
KR101562435B1 (en) Method for manufacturing solar cell with 3-dimensional absorber layer using aao template
Zhang et al. n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays
Chen et al. Three-dimensional radial junction solar cell based on ordered silicon nanowires
Baek et al. Characterization of optical absorption and photovoltaic properties of silicon wire solar cells with different aspect ratio
CN102496639B (en) Plasmon enhancement type solar cell with intermediate bands and photoelectric conversion film material of solar cell
JP2014503128A (en) Solar cell and manufacturing method thereof
JP2011187646A (en) Optical converter and electronic apparatus including the same
Mellikov et al. Research in solar cell technologies at Tallinn University of Technology
JP5720837B2 (en) Optical conversion device and electronic device including the same
TW201427054A (en) Photoelectric conversion element and method of producing the same, manufacturing method for buffer layer of photoelectric conversion element, and solar cell
JP2014504033A (en) Solar cell and manufacturing method thereof
JP5258951B2 (en) Thin film solar cell
Dang et al. Effects of anodic aluminum oxide membrane on performance of nanostructured solar cells
KR101629690B1 (en) Hot Electron Energy Device using MetalInsulatorMetal structure
JP2015162524A (en) Photoelectric conversion element, solar battery, and method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
FPAY Annual fee payment

Payment date: 20180919

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190923

Year of fee payment: 5