KR101539951B1 - Silica aerogels and fiberglass laminated pipe type heat insulating material and Method for producing the same - Google Patents

Silica aerogels and fiberglass laminated pipe type heat insulating material and Method for producing the same Download PDF

Info

Publication number
KR101539951B1
KR101539951B1 KR1020150008804A KR20150008804A KR101539951B1 KR 101539951 B1 KR101539951 B1 KR 101539951B1 KR 1020150008804 A KR1020150008804 A KR 1020150008804A KR 20150008804 A KR20150008804 A KR 20150008804A KR 101539951 B1 KR101539951 B1 KR 101539951B1
Authority
KR
South Korea
Prior art keywords
insulating material
pipe
thin film
heat insulating
silica
Prior art date
Application number
KR1020150008804A
Other languages
Korean (ko)
Inventor
김수봉
Original Assignee
주식회사 대원솔라
김수봉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대원솔라, 김수봉 filed Critical 주식회사 대원솔라
Priority to KR1020150008804A priority Critical patent/KR101539951B1/en
Application granted granted Critical
Publication of KR101539951B1 publication Critical patent/KR101539951B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/061Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • B32B37/0053Constructional details of laminating machines comprising rollers; Constructional features of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • B32B2309/025Temperature vs time profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

An object of the present invention is to provide a pipe type insulating material alternately stacked with a glass fiber and a silica aerogel. The manufacturing method of a pipe type insulating material comprises the steps of: applying a first coating solution composed of a silica sol and an acetic acid as a hardening controlling agent on a surface of the glass fiber nonwoven fabric; applying a second coating solution composed of a modified silicate and the silica aerogel on the surface; and pressurizing and winding the same to allow the coated layer to be in contact with an AI thin film layer which is wound around the forming roller. The pipe type insulating material alternately stacked with the glass fiber and the silica aerogel has high excellent insulation and thermal insulation properties, has improved a moisture-proof property by a super-hydrophobic silica aerogel layer, and has an effect of preventing a lowered thermal insulation property due to a moisture-absorption of the insulating material, thereby being usefully applied as an insulating material in an insulating process, such as a pipe laying equipment in which heating and insulation are required, a pipe laying equipment of heating and cooling, a pipe in an oil refinery, etc.

Description

유리섬유와 실리카 에어로겔이 적층된 파이프형 단열재의 제조방법 및 이로부터 제조된 파이프형 단열재 {Silica aerogels and fiberglass laminated pipe type heat insulating material and Method for producing the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a pipe-type thermal insulation material in which a glass fiber and a silica airgel are laminated, and a pipe-

본 발명은 정유공장의 배관설비, 열매체 등의 유체를 이송하는 난방시설의 배관 등에 적용되는 파이프형 단열재의 제조방법에 관한 것이며, 구체적으로는 유리섬유와 실리카 에어로겔이 교호로 적층된 파이프형 단열재를 제조하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a pipe-type heat insulating material applied to piping of an oil refinery, piping of a heating pipe for transferring fluids such as a heating medium, and specifically to a method of manufacturing a pipe type heat insulating material And a method for manufacturing the same.

일반적으로 실리카 에어로겔은 기공율이 90% 이상이고, 비표면적이 수백 내지 1500m2/g 정도인 극저밀도이며, 높은 투광성과 낮은 열전도도 특성을 갖기 때문에 방음재, 단열재 등의 분야에 응용이 가능한 첨단소재이지만, 연하고 쉽게 부서지는 문제점을 지니고 있어 섬유상 매트릭스와 복합체(예, 매트)로 만들어 구조적으로 안정한 형태의 제품으로 사용하고 있다.Generally, silica airgel is a state-of-the-art material that can be applied to the fields of soundproofing materials and insulation materials because it has a porosity of 90% or more and a specific surface area of several hundreds to 1,500 m 2 / g and has a high transparency and a low thermal conductivity It has a problem of being easily broken and is used as a structurally stable product made of a fibrous matrix and a composite (eg, mat).

상기한 실리카 에어로겔과 섬유상 매트릭스의 복합체와 관련하여 선행기술로 예를 들면, 국내등록특허 등록번호제10-0385829호에 (a)졸을 제조하는 단계, (b)섬유를 단계(a)의 졸에 가하는 단계, (c)단계(b)에서 수득되는 졸을 겔로 전환시키는 단계, (d)겔에 적합한 변형공정을 수행하여, 겔에 존재하는 액체를 겔의 변형공정 이전, 도중 및 이후 중의 하나의 시점 또는 2개의 시점 또는 모든 시점에서 교체하거나 교체하지 않고서 평균 용적이 0.001㎣ 내지 1㎤인 섬유-연결된 단편을 형성하도록 하는 특정 방식으로 겔에 크랙(crack)을 도입하는 단계 및 (e)단계(d)에서 수득되는 변형된 겔을 에어로겔이 수득되는 방식으로 건조시키는 단계를 포함하는 복합재료의 제조방법을 개시하고 있으며, 이러한 실리카 에어로겔-섬유상 매트릭스 복합체는 제조공정이 복잡하고, 섬유와 에어로겔의 결합력이 약해져 건조후의 복합체로부터 에어로겔이 가루로 떨어져 나와 비산하기 때문에 작업 작업환경을 악화시키고 작업자의 신체와 접촉하여 작업자의 건강을 해지는 문제점이 있다.(A) preparing a sol in Korean Patent Registration No. 10-0385829 with respect to a composite of the above-mentioned silica airgel and a fibrous matrix, (b) (C) converting the sol obtained in step (b) into a gel, (d) performing a modification process suitable for the gel so as to remove the liquid present in the gel before, during and after the modification process of the gel Introducing a crack into the gel in a specific manner so as to form a fiber-connected fragment having an average volume of from 0.001 to 1 cm3 without replacing or replacing at or at two or all time points; and (e) and drying the modified gel obtained in step (d) in such a manner that an aerogel is obtained. This silica airgel-fibrous matrix composite has a complicated manufacturing process , There is a problem, because the airgel powder given off by non-deteriorated the working environment from the fibers and airgel composite is dried after the weak binding force and in contact with the body of the operator becomes the health of workers.

또 국내 등록특허공보 등록번호 제10-1176137호에 소수성 실리카겔 분산액에 단섬유 부직포를 침지하여 부직포 내부에 실리카겔을 함침시키며, 이를 압축하여 추출된 혼합액은 침지액으로 재활용하고 부직포는 고온 건조부를 거쳐 회수되도록 구성된 단열패딩 제조방법을 개시하고 있으며, 국내 등록특허공보 등록번호 재10-1047965호에는 습윤겔을 표면 개질한 혼합액 중 상층액을 섬유 매트릭스 상에 배출시킨 후 300℃ 이상의 고온의 분위기에서 건조하고, 또는 가압롤러를 더 이용하여 함침시키는 것으로 구성된 에어로겔 매트의 제조방법이 개시되어 있으나 이들 선행기술은 다같이 에어로겔을 섬유상 소재에 '함침'시키는 기술로써 공정이 복잡하고 거기에 재료의 손실이 발생하여 생산성이 떨어지는 문제가 있을 뿐 아니라 에어로겔 입자가 섬유 내부에 균일하게 분산 및 분포되지 않고 부분적으로 뭉쳐지거나 존재하지 않아 단열효과가 균일하게 나타나지 않는 단점이 있다.In addition, Korean Registered Patent Application No. 10-1176137 discloses a method in which a short fiber nonwoven fabric is immersed in a hydrophobic silica gel dispersion, silica gel is impregnated in the nonwoven fabric, the mixed solution is recycled as an immersion liquid by compressing the nonwoven fabric, Korean Patent Registration No. 10-1047965 discloses a method for manufacturing an insulating padding, which comprises the steps of discharging a supernatant in a mixed liquid in which a wet gel is surface-modified, onto a fiber matrix, drying in a high temperature atmosphere at 300 ° C or higher Or impregnation using a pressure roller. However, these prior art techniques are also a technique for 'impregnating' an aerogel into a fibrous material, which complicates the process and causes loss of material therein There is a problem in that productivity is poor, and in addition, Does not exist, it is not uniformly dispersed and distributed in part to stick together or to the disadvantage that the thermal insulation does not appear uniform.

본 발명은 정유공장의 배관, 열매체 등의 유체를 이송하는 배관에 단열 시공이 편리하면서 단열재로부터 실리카 에어로겔의 미세입자의 비산이 없어 단열시공 시에 작업환경이 개선된 유리섬유층과 실리카 에어로겔층이 교호로 적층되고, 파이프형으로 형성한 파이프형 단열재를 제조함으로써 본 발명을 완성하였다.The present invention relates to a method and apparatus for separating a silica glass airgel layer from a glass fiber layer having improved working environment during thermal insulation due to the absence of scattering of fine particles of silica airgel from a thermal insulating material, And the pipe-shaped heat insulator is formed, thereby completing the present invention.

본 발명은 정유공장의 배관설비, 열매체 등의 유체를 이송하는 난방시설의 배관 등에 적용되는 파이프형 단열재의 제조방법을 제공하는 것에 목적이 있으며, 보다 상세하게는 실리카 에어로겔의 미세입자의 비산이 없고, 단열 시공 시에 작업환경이 개선된 유리섬유와 실리카 에어로겔이 교호로 적층된 파이프형 단열재의 제조방법 및 이로부터 제조된 파이프형 단열재를 제공하는 것을 목적으로 하는 것이다.An object of the present invention is to provide a method of manufacturing a pipe-type heat insulating material applied to piping of an oil refinery, piping of a heating pipe for transferring a fluid such as a heating medium, and the like. More specifically, A method for manufacturing a pipe-type heat insulating material in which glass fibers and silica airgel having improved working environments are alternately laminated at the time of adiabatic construction, and a pipe-type heat insulating material manufactured from the method.

본 발명의 목적 달성을 위한 해결수단으로 유리섬유와 실리카 에어로겔이 적층된 파이프형 단열재의 제조방법은 a). 원통형의 성형로울러의 표면에 Al박막시트를 1겹으로 감은 다음, 절단하여 Al박막층을 형성한 성형로울러를 하기 파이프형 단열재 성형단계로 이동시키는 Al박막층 형성단계와, b). 유리섬유 부직포 표면에 실리카졸 100부피부에 대하여 경화조절제로 아세트산 0.5 ~ 1부피부로 조성된 1차 도포액(S1)을 0.5 ~ 1mm 도포한 다음, 그 위에 변성 실리케이트와 실리카 에어로겔이 부피비로 1 : 1 ~ 1.5의 비율로 배합되고, 점도가 200 ~ 1000cps의 2차 도포액(S2)을 1 ~ 3mm 두께로 도포하고, 도포층이 상기 성형로울러에 감겨진 Al박막층과 접하도록 가압하면서 3 ~ 10겹으로 권취하고 절단한 후, 파이프형 단열재를 성형로울러로부터 분리하는 파이프형 단열재 성형단계 및 c) 성형로울러로부터 분리된 파이프형 단열재를 150 ~ 200℃에서 10 ~ 30분 건조시키는 건조단계를 포함하는 것으로 이루어진다.As a solution for achieving the object of the present invention, a manufacturing method of a pipe-type thermal insulating material in which glass fiber and silica airgel are laminated is a). B) forming an Al thin film layer on the surface of the cylindrical shaping roller, the Al thin film sheet being wound in a single layer, and then cutting to form an Al thin film layer; Silica sol 100 parts on the surface of the glass fiber nonwoven fabric Acetic acid 0.5-1 part as a curing regulator for the skin 0.5-1 mm of the first coating liquid (S1) composed of the skin was applied and then the modified silicate and the silica airgel were dispersed in a volume ratio of 1 : A secondary coating liquid (S2) having a viscosity of 200 to 1000 cps, which is blended at a ratio of 1 to 1.5, is applied to a thickness of 1 to 3 mm, and while the coating layer is pressed so as to contact with the aluminum thin film layer wound on the forming roller, And a drying step of drying the pipe-shaped heat insulating material separated from the forming roller at 150 to 200 DEG C for 10 to 30 minutes .

본 발명에 따른 상기 a). Al박막층 형성단계는 원통형 즉 파이프형상의 성형로울러 표면으로 Al박막시트를 1겹으로 감아서 본 발명에 따른 파이프형 단열재의 내부층으로 Al박막층을 형성하는 단계이며, Al박막층이 형성된 성형로울러를 파이프형 단열재 성형단계로 이동시키는 것으로 이루어진다.According to a) of the present invention, The step of forming the Al thin film layer is a step of forming an Al thin film layer as an inner layer of the pipe type heat insulating material according to the present invention by winding an Al thin film sheet on a surface of a cylindrical or pipe shaped forming roller, To a heat insulating material molding step.

상기 Al박막층 형성단계에 의해 단열재의 내부에 형성되는 Al박막층은 배관과 단열재의 접촉을 긴밀하게 하면서 배관표면에서 표출될 수 있는 수분을 원천적으로 차단함으로써 단열효과와 동시에 방습효과를 보다 향상시키는 작용을 나타내며, Al박막시트는 통상 널리 이용되고 있는 Al박막시트를 선택하며, 특별히 한정되는 것은 아니다. The Al thin film layer formed inside the heat insulating material by the above-mentioned Al thin film layer forming step functions to closely adhere the piping and the heat insulating material while intimately blocking the water that can be expressed on the surface of the pipe, thereby improving the heat insulating effect and the moisture- And the Al thin film sheet is selected from commonly used Al thin film sheets and is not particularly limited.

본 발명에 따른 상기 b). 파이프형 단열재 성형단계는 유리섬유 부직포 표면에 실리카졸과 경화조절제로 조성된 1차 도포액(S1)을 도포한 후, 변성실리케이트와 실리카 에어로겔로 조성된 2차 도포액(S2)을 도포하는 것에 의해 유리섬유 부직포의 표면에 실리카 에어로겔층이 형성되도록 하는 것으로 이루어지며, 도포층이 성형로울러에 감겨진 Al박막층에 접하도록 가압로울러로 가압하면서 3 ~ 10겹으로 감아 유리섬유와 실리카 에어로겔층이 교호로 적층되게 하면서 파이프형으로 성형하고 절단한 다음, 성형로울러로부터 파이프형 단열재를 분리시키는 단계로 이루어진다.B) according to the invention. In the step of forming the pipe type thermal insulation material, the first coating liquid S1 composed of silica sol and the curing agent is coated on the surface of the glass fiber nonwoven fabric, and then the second coating liquid S2 composed of the modified silicate and the silica airgel is applied And a silica airgel layer is formed on the surface of the glass fiber nonwoven fabric. The coating layer is wound in 3 to 10 layers while being pressed by a pressure roller so as to contact with the Al thin film layer wound on the forming roller, And then separating the pipe-shaped heat insulating material from the forming roller.

상기 파이프형 단열재 성형단계에서 공급되는 유리섬유 부직포는 내열온도 400 ~ 750℃의 두께 3 ~ 10mm, 밀도 20 ~ 100㎏/㎥인 유리장섬유 부직포로 이루어지며, 단열소재로 이용되고 있는 E-글래스 파이버(E-glass Fifer) 부직포가 선택될 수가 있다.The glass fiber nonwoven fabric supplied in the pipe-shaped thermal insulating material forming step is made of a glass long fiber nonwoven fabric having a thickness of 3 to 10 mm and a density of 20 to 100 kg / m 3 at a temperature of 400 to 750 ° C., Fiber (E-glass Fifer) non-woven fabric can be selected.

그리고 상기 1차도포액(S1)은 2차 도포액과 친화력이 있고, 유리섬유 부직포층 사이에 실리카 에어로겔층이 일정 두께로 형성되게 하는 작용을 하며, 1차 도포액(S1)의 실리카졸은 20℃에서 점도 20cps, 비중 1.15 ~ 1.4인 널리 시판되고 있는 제품으로 그 선택이 제한되는 것은 아니며, 본 발명이 속하는 기술분야의 숙련자이면 쉽게 선택할 수가 있다.The primary coating liquid S1 has an affinity with the secondary coating liquid and acts to form a silica airgel layer between the glass fiber nonwoven fabric layers with a predetermined thickness. The silica sol of the primary coating liquid S1 A product having a viscosity of 20 cps at 20 ° C and a specific gravity of 1.15 to 1.4, and is not limited in its selection, and can be easily selected by those skilled in the art.

또, 상기 2차 도포액(S2)의 변성실리케이트는 포타슘 메틸 실리케이트, 소듐 메틸 실리케이트 및 리튬 실리케이트로부터 1 이상의 성분이 선택되며, 실리카 에어로겔은 나노다공성 구조를 지니고 있는 저밀도 물질로서 열전도도가 매우 낮고, 1400℃ 정도의 용융한계점을 나타내므로 촉매의 담체, 내열재, 단열재, 소음 차폐재 등 다양한 분야에서 응용되고 있으며, 본 발명에서는 기공율 80 ~ 99.8%, 입자크기 10 ~ 100㎚, 굴절율 1.007 ~ 1.05. 열전도도 10 ~ 20 mW/mK의 실릴화된 극소수성 에어로겔(Aerogel)을 선택하는 것으로 이루어지며, 널리 알려진 물질로 시판(ISA 상사, REM텍 등)되고 있어 본 발명이 속하는 기술분야의 숙련자이면 쉽게 선택하여 사용할 수 있다.The modified silicate of the secondary coating liquid (S2) is at least one selected from the group consisting of potassium methyl silicate, sodium methyl silicate and lithium silicate. The silica airgel is a low density material having a nanoporous structure and has a very low thermal conductivity, And is used in various fields such as catalyst carrier, heat-resistant material, heat insulating material, noise shielding material, etc. In the present invention, the porosity is 80 to 99.8%, the particle size is 10 to 100 nm, and the refractive index is 1.007 to 1.05. (ISA Corporation, REMTECH, etc.) as a well-known substance, which is selected from the silylated ultrafine aerogels having a thermal conductivity of 10 to 20 mW / mK. You can choose to use it.

본 발명에 따른 상기 c). 건조단계는 성형로울러로부터 분리된 파이프형 단열재 로부터 수분 등을 제거하면서 도포액이 경화되도록 건조실에서 가열 건조하는 단계이며, 150 ~ 200℃에서 10 ~ 30분 건조시키는 것으로 이루어진다.C) according to the invention. The drying step is a step of heating and drying in a drying chamber so as to cure the coating liquid while removing moisture and the like from the pipe-shaped heat insulating material separated from the forming roller, and drying at 150 to 200 ° C for 10 to 30 minutes.

그리고 본 발명에 따른 유리섬유와 실리카 에어로겔이 적층된 파이프형 단열재의 제조방법은 상기 c). 건조단계에 후속하여 파이프형 단열재의 외부 표면에 Al박막시트를 접합시키는 단계 또는 망상의 유리섬유 크로스(Glass fiber cloth)와 Al박막시트를 순차적으로 접합시키는 단계를 추가로 포함할 수 있으며, 파이프형 단열재의 외부 표면에 망상의 유리섬유 크로스(Glass fiber cloth) 또는 Al박막시트를 적합함으로써 단열재의 외형이 변형되는 것을 보다 더 확실하게 방지할 수 있을 뿐 아니라, 파이프형 단열재의 외부 표면에 접합되는 Al박막시트는 방수성, 단열성을 보다 향상시킬 수가 있다.A method of manufacturing a pipe-type heat insulating material in which a glass fiber and a silica airgel are laminated according to the present invention, The step of bonding the Al thin sheet to the outer surface of the pipe-type heat insulating material or the step of sequentially bonding the glass fiber cloth and the Al thin sheet to each other after the drying step, It is possible to more reliably prevent the outer shape of the heat insulating material from being deformed by fitting a mesh glass fiber cloth or an Al thin sheet to the outer surface of the heat insulating material, The thin film sheet can further improve the waterproof property and the heat insulating property.

본 발명의 파이프형 단열재는 유리섬유층과 실리카 에어로겔층이 교호로 적층되어 유리섬유층와 실리카 에어로겔의 중복된 단열에 의해 단열성이 향상되면서 동시에 단열재의 부피 및 무게를 보다 감소시켜 제작할 수 있는 장점이 있을 뿐 아니라, 방습성이 향상되어 단열재의 수분 흡수에 따른 유리섬유의 열화를 방지하여 단열재의 수명이 향상되며, 실리카 에어로겔층이 유리섬유층들의 사이에 위치하기 때문에 단열재로부터 실리카 에어로겔의 미세입자의 비산이 없어 단열시공 시에 작업환경이 개선되는 특징 내지 장점이 있다.The pipe-type heat insulating material of the present invention has an advantage that the heat insulating property can be improved by overlapping the glass fiber layer and the silica airgel layer alternately with the glass fiber layer and the silica airgel, and at the same time, the volume and weight of the heat insulating material can be further reduced, , The moisture resistance is improved, the glass fiber is prevented from deteriorating due to moisture absorption of the heat insulator, and the life of the insulator is improved. Since the silica airgel layer is located between the glass fiber layers, there is no scattering of the silica airgel fine particles from the heat insulator. There is a feature or an advantage that the working environment is improved.

도 1은 본 발명에 따른 파이프형 단열재의 제조방법을 설명하기 위한 개략적인 제조장치.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic drawing for explaining a method of manufacturing a pipe-type heat insulating material according to the present invention. FIG.

이하에서는 본 발명을 실시예, 시험예 및 첨부한 도면에 의해 더욱 구체적으로 설명하겠으며, 아래 기재에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples, test examples and accompanying drawings, and the present invention is not limited to the following description.

<실시예><Examples>

1). 1차 및 2차 도포액의 제조One). Preparation of primary and secondary coating liquids

시판하는 실리카졸 100부피부에 대하여 아세트산 1부피부를 배합하여 1차 도포액(S1)을 조제한다.100 parts of commercially available silica sol, and 1 part acetic acid is added to the skin to prepare a primary coating liquid (S1).

또 포타슘 메틸 실리케이트 50중량부, 소듐 메틸 실리케이트 50중량부로 조성된 변성실리케이드와 실리카 에어로겔(미국 케보사 제품)을 부피비로 1 : 1의 비율로 고속혼합기(RPM 32000)에 투입하고, 균일하게 혼합하면서 점도가 800cps 되도록 조절하여 2차 도포액(S2)을 얻는다.50 parts by weight of potassium methyl silicate and 50 parts by weight of sodium methyl silicate were charged into a high-speed mixer (RPM 32000) at a ratio of 1: 1 in volume ratio of modified silica and silica airgel And the viscosity is adjusted to 800 cps to obtain a second coating liquid S2.

2). 파이프형 단열재의 제조2). Manufacture of pipe insulation

도 1를 참조하여 본 발명에 따른 파이프형 단열재의 제조방법을 설명하면, Al박막시트 공급로울러(P1)로부터 Al박막시트를 공급하면서 원통형의 성형로울러(R1) 및 가압로울러(R2)를 이용하여 원통형의 성형로울러(R1) 측에 Al박막시트를 1회 권취 (1겹)하고 절단하여, Al박막층을 형성한 다음 Al박막층이 형성된 성형로울러(R1)를 파이프형 단열재 성형단계로 이동시킨다.1, a method of manufacturing a pipe-shaped heat insulating material according to the present invention will be described. A method of manufacturing a pipe-shaped heat insulating material according to the present invention will be described with reference to FIGS. An Al thin film sheet is wound once (one layer) on the side of the cylindrical shaping roller R1 to form an Al thin film layer, and then the forming roller R1 on which the Al thin film layer is formed is moved to the pipe-shaped heat insulating material forming step.

별도의 유리섬유부직포 공급로울러(P2)로부터 밀도 50kg/㎥, 두께 3㎜ 두께의 유리섬유부직포(SHENZEN HUACHANG CHEMICAL CO.,LTD 중국제품)를 공급하면서 유리섬유 부직포 표면으로 위 제조한 1차 도포액(S1)을 0.5㎜두께로 도포한 다음, 1차 도포액(S1)의 도포층 상부로 위 제조한 2차 도포액(S2)을 2㎜로 도포하고, 도포층이 상기 성형로울러(R1)에 감겨진 Al박막층과 접하도록 하면서 원통형의 성형로울러의 회전에 의해 유리섬유 부직포를 5겹으로 권취시켜 파이프형 단열재를 성형한 다음 절단하여 파이프형 단열재를 원통형의 성형로울러(R1)로부터 분리한다.A glass fiber nonwoven fabric (SHENZEN HUACHANG CHEMICAL CO., LTD., China) having a density of 50 kg / m 3 and a thickness of 3 mm was supplied from a separate glass fiber nonwoven fabric supplying roller (P2) The second coating liquid S2 prepared above is applied to the top of the coating layer of the primary coating liquid S1 at a thickness of 0.5 mm and the coating layer is applied to the forming roller R1, The glass fiber nonwoven fabric is wound in five layers by rotation of a cylindrical shaping roller so as to be in contact with the aluminum thin film layer wound around the aluminum foil layer, and then the pipe heat insulation material is cut to separate the pipe insulation from the cylindrical shaping roller R1.

상기 분리된 파이프형 단열재를 건조실로 이송하여 200℃에서 30분간 건조시켜 최종적으로 건조과정의 수축 등에 의해 두께 10㎜의 파이프형 단열재를 제조하였다.The separated pipe-type heat insulating material was transferred to a drying chamber and dried at 200 ° C for 30 minutes. Finally, a 10 mm thick pipe-type heat insulating material was produced by shrinkage of the drying process or the like.

<시험예><Test Example>

상기 <실시예>에서 제조한 파이프형 단열재는 밀도 150㎏/㎥, 열전도도 20mW/m.k 로 나타났으며, 위 실시예와 동일한 두께(10㎜)를 갖는 시중에 시판하고 있는 유리섬유단열재 및 에어로겔 복합단열재에 대하여 단열효과를 비교시험하고 그 결과를 아래 [표 1]에 나타내었다.The pipe-type heat insulating material produced in the above Example had a density of 150 kg / m 3 and a thermal conductivity of 20 mW / mk The insulation effect of glass fiber insulation and airgel composite insulation, which have the same thickness (10 mm) as those of the above-mentioned embodiment, is shown in Table 1 below.

가열 표면온도(℃)Heating surface temperature (캜) 단열 표면온도(℃)Insulation surface temperature (℃) 실시예Example 유리섬유단열재Glass fiber insulation 에어로겔 복합단열재Airgel composite insulation 150150 5252 7272 55 55 200200 6565 104104 70 70 250250 7676 129129 82 82 350350 9797 177177 105 105 550550 127127 221221 135 135

상기 [표 1]에 나타난 바와 같은 특성을 갖는 본 발명의 유리섬유와 실리카 에어로겔이 교호로 적층된 파이프형 단열재가 보온, 단열성이 높은 것을 알 수 있으며, 또한 본 발명의 유리섬유와 실리카 에어로겔이 적층된 파이프형 단열재는 극소수성 실리카 에어로겔층 및 내부 Al박막층에 의해 방습성이 보다 향상됨으로써 흡습 및 열에 의한 유리섬유의 열화 현상도 방지되어 단열재의 수명이 연장되는 효과가 있으므로 보온, 단열이 요구되는 배관설비, 난방 및 냉방의 배관설비, 정유공장의 배관 등의 단열시공에 단열재로 매우 유용하게 적용될 수 있다.It can be seen that the pipe type heat insulating material in which the glass fiber and the silica airgel of the present invention having the characteristics as shown in the above Table 1 are alternately laminated has a high thermal insulation and heat insulation property, and the glass fiber and the silica airgel of the present invention are laminated Pipe type thermal insulation material is improved in moisture proofing property by the micro silica silica aerogel layer and the inner Al thin film layer to prevent the deterioration of the glass fiber due to moisture absorption and heat and thus the life of the thermal insulation material is prolonged. , Piping equipment for heating and cooling, piping of oil refinery, and so on.

P1 : Al박막시트 공급로울러 P2 : 유리섬유부직포 공급로울러
R1 : 성형로울러 R2 : 가압로울러
R3 : 안내로울러 S1 : 1차 도포액 도포수단
S2 : 2차 도포액 도포수단 t : 절단수단
P1: Al thin film sheet supply roller P2: Glass fiber nonwoven fabric supply roller
R1: Molding roller R2: Pressurizing roller
R3: guide roller S1: primary coating liquid application means
S2: secondary coating liquid application means t: cutting means

Claims (5)

a). 원통형의 성형로울러의 표면에 Al박막시트를 1겹으로 감은 다음, 절단하여 Al박막층을 형성한 원통형의 성형로울러를 하기 파이프형 단열재 성형단계로 이동시키는 Al박막층 형성단계와,
b). 두께 3 ~ 10mm 유리섬유 부직포 표면에 실리카졸과 경화조절제로 아세트산으로 조성된 1차 도포액(S1)을 0.5 ~ 1mm 도포한 다음, 그 위에 변성 실리케이트와 실리카 에어로겔로 조성되고, 점도가 200 ~ 1000cps의 2차 도포액(S2)을 1 ~ 3mm 두께로 도포하고, 도포층이 상기 성형로울러에 감겨진 Al박막층과 접하도록 가압하면서 3 ~ 10겹으로 권취하고 절단한 후, 파이프형 단열재를 상기 성형로울러로부터 분리하는 파이프형 단열재 성형단계 및
c) 상기 성형로울러로부터 분리된 파이프형 단열재를 150 ~ 200℃에서 10 ~ 30분 건조시키는 건조단계를 포함하는 것을 특징으로 하는 유리섬유와 실리카 에어로겔이 적층된 파이프형 단열재의 제조방법.
a). An Al thin film layer forming step of moving a cylindrical shaping roller in which an Al thin film sheet is wound on a surface of a cylindrical shaping roller in one layer and then cut to form an Al thin film layer,
b). A first coating liquid (S1) composed of silica sol and acetic acid as a curing regulator is coated on the surface of a glass fiber nonwoven fabric with a thickness of 3 to 10 mm at a thickness of 0.5 to 1 mm and then formed thereon with a modified silicate and a silica airgel having a viscosity of 200 to 1000 cps Is applied in a thickness of 1 to 3 mm, and the coating layer is wound in 3 to 10 layers while being pressed so as to come in contact with the Al thin film layer wound on the forming roller, A step of forming a pipe-shaped thermal insulating material to be separated from the roller and
and c) drying the pipe-type heat insulating material separated from the forming roller at a temperature of 150 to 200 ° C for 10 to 30 minutes. The method of manufacturing a pipe-type thermal insulating material according to claim 1,
청구항1에 있어서, 1차 도포액(S1)은 실리카졸 100부피부에 대하여 경화조절제로 아세트산 0.5 ~ 1부피부로 조성되고, 2차 도포액(S2)은 변성 실리케이트와 실리카 에어로겔이 부피비로 1 : 1 ~ 1.5의 비율로 조성되는 것을 특징으로 하는 유리섬유와 실리카 에어로겔이 적층된 파이프형 단열재의 제조방법.[2] The method according to claim 1, wherein the primary coating liquid (S1) is composed of 0.5 to 1 part acetic acid as a curing regulator for 100 parts of silica sol, and the secondary coating liquid (S2) is a mixture of modified silicate and silica airgel in a volume ratio of 1 : 1 to 1.5. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt; 청구항2에 있어서, 변성실리케이트는 포타슘 메틸 실리케이트, 소듐 메틸 실리케이트 및 리튬 실리케이트로부터 선택된 1 이상의 성분이고, 실리카 에어로겔은 기공율 80 ~ 99.8%, 입자크기 10 ~ 100㎚, 굴절율 1.007 ~ 1.05. 열전도도 10 ~ 20 mW/mK의 실릴화된 극소수성 에어로겔(Aerogel)인 것을 특징으로 하는 유리섬유와 실리카 에어로겔이 적층된 파이프형 단열재의 제조방법.The silica gel according to claim 2, wherein the modified silicate is at least one component selected from potassium methyl silicate, sodium methyl silicate and lithium silicate, and the silica airgel has a porosity of 80 to 99.8%, a particle size of 10 to 100 nm and a refractive index of 1.007 to 1.05. And a thermal conductivity of 10 to 20 mW / mK. Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a pipe-shaped thermal insulation material. 청구항3에 있어서, c). 건조단계에 후속하여 파이프형 단열재의 외부 표면에 Al박막시트를 접합시키는 단계 또는 망상의 유리섬유 크로스(Glass fiber cloth)와 Al박막시트를 순차적으로 접합하는 단계를 추가로 포함하는 것을 특징으로 하는 유리섬유와 실리카 에어로겔이 적층된 파이프형 단열재의 제조방법. The method of claim 3, wherein c). Further comprising the step of bonding the Al thin film sheet to the outer surface of the pipe-shaped thermal insulating material after the drying step, or sequentially bonding the thin metal sheet cloth and the Al thin sheet to each other. A method for manufacturing a pipe-type heat insulating material in which a fiber and a silica airgel are laminated. 삭제delete
KR1020150008804A 2015-01-19 2015-01-19 Silica aerogels and fiberglass laminated pipe type heat insulating material and Method for producing the same KR101539951B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150008804A KR101539951B1 (en) 2015-01-19 2015-01-19 Silica aerogels and fiberglass laminated pipe type heat insulating material and Method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150008804A KR101539951B1 (en) 2015-01-19 2015-01-19 Silica aerogels and fiberglass laminated pipe type heat insulating material and Method for producing the same

Publications (1)

Publication Number Publication Date
KR101539951B1 true KR101539951B1 (en) 2015-07-29

Family

ID=53876586

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150008804A KR101539951B1 (en) 2015-01-19 2015-01-19 Silica aerogels and fiberglass laminated pipe type heat insulating material and Method for producing the same

Country Status (1)

Country Link
KR (1) KR101539951B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111795260A (en) * 2020-07-20 2020-10-20 中海油安全技术服务有限公司 LNG pipeline aerogel cold insulation construction method
CN115724646A (en) * 2022-11-30 2023-03-03 中国科学技术大学先进技术研究院 Preparation method and application of graphene-based composite aerogel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130022163A (en) * 2011-08-25 2013-03-06 주식회사 세운티.엔.에스 An aerogel binder for forming insulating materials of glass long fibers and forming process of insulating materials thereby
KR20130066582A (en) * 2010-04-30 2013-06-20 바-큐-텍 아게 Evacuated sheet material for thermal insulation
KR101454233B1 (en) * 2013-08-21 2014-10-23 주식회사 관평기술 Continuous manufacturing method and device for aerogel blanket, and the aerogel blanket

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130066582A (en) * 2010-04-30 2013-06-20 바-큐-텍 아게 Evacuated sheet material for thermal insulation
KR20130022163A (en) * 2011-08-25 2013-03-06 주식회사 세운티.엔.에스 An aerogel binder for forming insulating materials of glass long fibers and forming process of insulating materials thereby
KR101454233B1 (en) * 2013-08-21 2014-10-23 주식회사 관평기술 Continuous manufacturing method and device for aerogel blanket, and the aerogel blanket

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111795260A (en) * 2020-07-20 2020-10-20 中海油安全技术服务有限公司 LNG pipeline aerogel cold insulation construction method
CN111795260B (en) * 2020-07-20 2021-07-27 中海油安全技术服务有限公司 LNG pipeline aerogel cold insulation construction method
CN115724646A (en) * 2022-11-30 2023-03-03 中国科学技术大学先进技术研究院 Preparation method and application of graphene-based composite aerogel
CN115724646B (en) * 2022-11-30 2024-02-27 中国科学技术大学先进技术研究院 Preparation method and application of graphene-based composite aerogel

Similar Documents

Publication Publication Date Title
KR101539950B1 (en) Silica aerogels and fiberglass laminated heat insulating material and Method for producing the same
RU2729992C2 (en) Aerogel composite and method for production thereof
JP6629798B2 (en) Segmented gel composites and rigid panels made from the composites
JP4120992B2 (en) COMPOSITE MATERIAL CONTAINING AIRGEL AND ADHESIVE, ITS MANUFACTURING METHOD, AND USE THEREOF
KR101536565B1 (en) Aramid fiber, fiberglass and Silica aerogels laminated heat insulating material with iproved impact resistance and Method for producing the same
DE202021004280U1 (en) Thermal management element
DE202020005871U1 (en) Airgel-based components and systems for the thermal management of electric vehicles
US3053715A (en) High temperature pipe insulation and method of making same
KR101619889B1 (en) Heat insulating material and method for producing same
CN104603344A (en) Flexible insulating structures and methods of making and using same
KR101336964B1 (en) An aerogel binder for forming insulating materials of glass long fibers and forming process of insulating materials thereby
US7874109B2 (en) Fireproof panels and methods of fabricating the same
KR20180109078A (en) Improved laminate comprising reinforced airgel composite
EP3083230B1 (en) Self supporting aerogel insulation
KR101287805B1 (en) An aerogel binder for forming insulating materials of glass long fibers and forming process of insulating materials thereby
KR102231590B1 (en) Method of manufacturing aerogel blanket and aerogel and produced aerogel blanket
JP2013530325A (en) Insulator having a layered structure
CN108116011B (en) A kind of sandwich thermally protective materials and preparation method thereof of surface Jing Guo protective treatment
JP2020190340A (en) Adiabatic wall material for ventilation duct of building and method for producing the same
KR101539951B1 (en) Silica aerogels and fiberglass laminated pipe type heat insulating material and Method for producing the same
KR102145611B1 (en) Aerogel insulation composition for thin film and aerogel thin film sheet comprising the same
RU2680443C2 (en) Mineral fiber batting for manufacture of thermally insulation composite
KR102666096B1 (en) Continous manufacturing process for silica-aerogel adiabatic sheet having a continuous patterned insulation coating layer
JP2006017169A (en) Vacuum heat insulating material, core material for vacuum heat insulating material and its producing method
CN111043450B (en) Wave-transparent heat-insulation gas-barrier member and preparation method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190122

Year of fee payment: 4