KR101536050B1 - Novel Isatin-Based Hydroxamic Acids and Anti-Cancer Composition Comprising the Same As Active Ingredient - Google Patents

Novel Isatin-Based Hydroxamic Acids and Anti-Cancer Composition Comprising the Same As Active Ingredient Download PDF

Info

Publication number
KR101536050B1
KR101536050B1 KR1020130090494A KR20130090494A KR101536050B1 KR 101536050 B1 KR101536050 B1 KR 101536050B1 KR 1020130090494 A KR1020130090494 A KR 1020130090494A KR 20130090494 A KR20130090494 A KR 20130090494A KR 101536050 B1 KR101536050 B1 KR 101536050B1
Authority
KR
South Korea
Prior art keywords
cancer
oxoindolin
compound
hydroxyheptanamide
methoxyimino
Prior art date
Application number
KR1020130090494A
Other languages
Korean (ko)
Other versions
KR20150014804A (en
Inventor
한상배
김영수
홍진태
하이 남 응우옌
티 마이 덩 두
티 푸옹 덩 판
티 킴 오안 다오
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020130090494A priority Critical patent/KR101536050B1/en
Priority to PCT/KR2013/012035 priority patent/WO2015016441A1/en
Publication of KR20150014804A publication Critical patent/KR20150014804A/en
Application granted granted Critical
Publication of KR101536050B1 publication Critical patent/KR101536050B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/40Nitrogen atoms, not forming part of a nitro radical, e.g. isatin semicarbazone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • C07D209/34Oxygen atoms in position 2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

본 발명은 신규의 이사틴 기반 히드록삼산 및 이를 유효성분으로 포함하는 항암용 조성물에 관한 것이다. 본 발명의 히드록삼산 화합물은 히스톤 탈아세틸화 효소(histone deacetylase, HDAC)의 억제 활성을 가지며, 다양한 암세포에서 세포독성을 나타내어 항암 효능을 발휘하므로, 강력한 항암제의 활성성분으로 개발될 수 있다. The present invention relates to novel isatin-based hydroxamic acid and an anticancer composition comprising the same as an active ingredient. The hydroxamic acid compound of the present invention has an inhibitory activity against histone deacetylase (HDAC), exhibits cytotoxicity in various cancer cells and exhibits anticancer efficacy, and thus can be developed as an active ingredient of a potent anticancer drug.

Description

신규 이사틴 기반 히드록삼산 및 이를 유효성분으로 포함하는 항암용 조성물{Novel Isatin-Based Hydroxamic Acids and Anti-Cancer Composition Comprising the Same As Active Ingredient} [0001] The present invention relates to a new actin-based hydroxamic acid and an anticancer composition comprising the hydroxamic acid as an active ingredient. [0002]

본 발명은 신규의 이사틴 기반 히드록삼산 및 이를 유효성분으로 포함하는 항암용 조성물에 관한 것이다.
The present invention relates to novel isatin-based hydroxamic acid and an anticancer composition comprising the same as an active ingredient.

히스톤 아세틸화효소(histone acetylases, HATs) 및 히스톤 탈아세틸화효소(histone deacetylases, HDACs)는 각각 히스톤 꼬리부분에 존재하는 특정한 라이신 잔기의 아세틸화 및 탈아세틸화를 촉매하는 2가지 효소이다. 이들 효소는 아세틸화가 염색체 구조를 열고 유전자를 전사 가능한 상태로 만드는 것과 관련되어 있기 때문에 유전자 전사에 있어서 매우 중요한 역할을 한다[1]. 최근의 연구결과에 따르면, 이들 2가지 효소는 염색체 구조 및 유전자 발현의 조절 뿐만 아니라 세포주기의 진행 및 발암과정도 조절한다[2]. 인간에서는 18개의 HDAC 효소들이 확인되었고, 이들은 효모 HDAC와의 상동성에 기초하여 4 가지의 클래스로 나뉘어진다. 클래스 Ⅰ은 HDAC 1, 2, 3, 및 8을 포함하고, 클래스 Ⅱ는 HDAC 4, 5, 6, 7, 9 및 10을 포함한다. Sirtuin으로 알려진 클래스 Ⅲ HDACs은 NAD+-의존성 효소인 Sirt1-7을 포함한다. 클래스 Ⅳ는 오직 하나의 효소 HDAC11을 포함하는데, 이 효소는 클래스 I 및 클래스 Ⅱ HDACs 모두의 특성을 나타낸다[2]. 몇몇의 암세포주 및 인 비보 전임상 모델에서 HDACs를 억제하면 세포 분화, 아폽토시스 및 세포주기정지가 유도된다는 것이 알려져 있다. 따라서 HDAC 억제제가 현재 항암제로서 주목받고 있다[3-6]. 세포증식성 질환의 치료에 대해 치료적 가능성에 기반하여 다양한 종류의 신규 HDAC 억제제들 예컨대, trichostatin A, SAHA (Vorinostat), MS-27-275 (Entinostat), LBH-589 (Panobinostat), PXD-101, 및 oxamflatin 등이 개발되었다[7-12](도 1 참조). 이들 중에서 SAHA는 몇가지 타입의 림프종 치료제로서 2006년에 허가되었다.
Histone acetylases (HATs) and histone deacetylases (HDACs) are two enzymes that catalyze the acetylation and deacetylation of specific lysine residues in the tail portion of the histone, respectively. These enzymes play a very important role in gene transcription because acetylation is involved in opening the chromosomal structure and making the gene transcribable [1]. Recent studies have shown that these two enzymes regulate chromosome structure and gene expression as well as cell cycle progression and carcinogenesis [2]. In humans, 18 HDAC enzymes have been identified and are divided into four classes based on homology with yeast HDAC. Class I includes HDACs 1, 2, 3, and 8, and Class II includes HDACs 4, 5, 6, 7, 9, and 10. Class III HDACs, known as Sirtuins, contain the NAD + -dependent enzyme Sirt1-7. Class IV contains only one enzyme, HDAC11, which exhibits the characteristics of both Class I and Class II HDACs [2]. It is known that inhibition of HDACs in some cancer cell lines and in vivo pre-clinical models induces cell differentiation, apoptosis and cell cycle arrest. Therefore, HDAC inhibitors are currently attracting attention as anticancer drugs [3-6]. Based on the therapeutic potential for the treatment of cellular proliferative disorders, a variety of new HDAC inhibitors such as trichostatin A, SAHA (Vorinostat), MS-27-275 (Entinostat), LBH-589 (Panobinostat), PXD- And oxamflatin have been developed [7-12] (see Figure 1). Of these, SAHA was approved in 2006 as a treatment for several types of lymphoma.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

대한민국 공개특허 제2009-0094383호Korea Patent Publication No. 2009-0094383 대한민국 등록특허 제10-1261305호Korean Patent No. 10-1261305 대한민국 공개특허 제2007-0043978호Korea Patent Publication No. 2007-0043978

O. Witt, H.E. Deubzer, T. Milde, I. Oehme. HDAC family: What are the cancer relevant targets? Cancer Lett. 277 (2009) 8-21.O. Witt, H.E. Deubzer, T. Milde, I. Oehme. HDAC family: What are cancer related targets? Cancer Lett. 277 (2009) 8-21. A.J.M. De Ruijter, A.H.V. Gennip, H.N. Caron, S. Kemp, A.B.P.V. Kuilenburg. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370 (2003) 737-739.A.J.M. De Ruijter, A.H.V. Gennip, H.N. Caron, S. Kemp, A.B.P.V. Kuilenburg. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 370 (2003) 737-739. J. Li, G. Li, W. Xu. Histone deacetylase inhibitors: an attractive strategy for cancer therapy. Curr Med. Chem. 20 (2013) 1858-1886. J. Li, G. Li, W. Xu. Histone deacetylase inhibitors: an attractive strategy for cancer therapy. Curr Med. Chem. 20 (2013) 1858-1886. M. Dokmanovic, P.A. Marks. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin. Investig. Drugs. 14 (2005), 1497-1511.M. Dokmanovic, P.A. Marks. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin. Investig. Drugs. 14 (2005), 1497-1511. K.B. Glaser. HDAC inhibitors: clinical update and mechanism-based potential. Biochem. Pharmacol. 74 (2007) 659-871.K.B. Glaser. HDAC inhibitors: clinical update and mechanism-based potential. Biochem. Pharmacol. 74 (2007) 659-871. R.W. Johnstone. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nat. Rev. Drug Dis. 1 (2002) 287-299. R.W. Johnstone. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nat. Rev. Drug Dis. 1 (2002) 287-299. K. Ververis, A. Hiong, T.C. Karagiannis, P.V. Licciardi. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 7 (2013) 47-60.K. Ververis, A. Hiong, T.C. Karagiannis, P.V. Licciardi. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 7 (2013) 47-60. J.L. Hubbs, H. Zhou, A.M. Kral, J.C. Fleming, W.K. Dahlberg, B.L. Hughes, R.E. Middleton, A.A. Szewczak, J.P. Secrist, T.A. Miller. Amino acid derivatives as histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 18 (2008) 34-38. J.L. Hubbs, H. Zhou, A.M. King, J.C. Fleming, W.K. Dahlberg, B.L. Hughes, R.E. Middleton, A.A. Szewczak, J.P. Secrist, T.A. Miller. Amino acid derivatives as histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 18 (2008) 34-38. T. Qiu, L. Zhou, W. Zhu, T. Wang, J. Wang, Y. Shu, P. Liu. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol. 9 (2013) 255-269. T. Qiu, L. Zhou, W. Zhu, T. Wang, J. Wang, Y. Shu, P. Liu. Effects of treatment with histone deacetylase inhibitors on solid tumors: a review based on 30 clinical trials. Future Oncol. 9 (2013) 255-269. S. Dallavalle, R. Cincinelli, R. Nannei, L. Merlini, G. Morini, S. Penco, C. Pisano, L. Vesci, M. Barbarino, V. Zuco, M. De Cesare, F. Zunino. Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur. J. Med. Chem. 44 (2009) 1900-1912. S. Dallavalle, R. Cincinelli, R. Nannei, L. Merlini, G. Morini, S. Penco, C. Pisano, L. Vesci, M. Barbarino, V. Zuco, M. De Cesare, F. Zunino. Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur. J. Med. Chem. 44 (2009) 1900-1912. T.U. Bracker, A. Sommer, I. Fichtner, H. Faus, B. Haendler, H. Hess-Stumpp. Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int J. Oncol. 35 (2009) 909-920. T.U. Bracker, A. Sommer, I. Fichtner, H. Faus, B. Haendler, H. Hess-Stumpp. Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int J. Oncol. 35 (2009) 909-920. P. Jones, S. Altamura, P.K. Chakravarty, O. Cecchetti, R. De Francesco, P. Gallinari, R. Ingenito, P. T. Meinke, A. Petrocchi, M. Rowley, R. Scarpelli, S. Serafini, C. Steinkㆌhler. A series of novel, potent, and selective histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 16 (2006) 5948-5952. P. Jones, S. Altamura, P.K. Chakravarty, O. Cecchetti, R. De Francesco, P. Gallinari, R. Ingenito, P. T. Meinke, A. Petrocchi, M. Rowley, R. Scarpelli, S. Serafini, C. Steink. A series of novel, potent, and selective histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 16 (2006) 5948-5952. D.T.K. Oanh, H.V. Hai, V.T.M. Hue, S.H. Park, H.J. Kim, B.W. Han, H.S. Kim, J.T. Hong, S.B. Han, N.H. Nam. Benzothiazole-containing hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorg. Med. Chem. Lett. 21 (2011) 7509-7512.D.T.K. Oanh, H.V. Hai, V.T.M. Hue, S.H. Park, H.J. Kim, B.W. Han, H.S. Kim, J.T. Hong, S.B. Han, N.H. Nam. Benzothiazole-containing hydroxamic acids such as histone deacetylase inhibitors and antitumor agents. Bioorg. Med. Chem. Lett. 21 (2011) 7509-7512. T.T. Tung, D.T.K. Oanh, V.T.M. Hue, S.H. Park, B.W. Han, Y.S. Kim, J.T. Hong, S.B. Han, N.H. Nam. New benzothiazole/thiazole-containing hydroxamic acid as potent histone deacetylase inhibitors and antitumor agents. Med. Chem. (2013) In press.T.T. Tung, D.T.K. Oanh, V.T.M. Hue, S.H. Park, B.W. Han, Y.S. Kim, J.T. Hong, S.B. Han, N.H. Nam. New benzothiazole / thiazole-containing hydroxamic acid as potent histone deacetylase inhibitors and antitumor agents. Med. Chem. (2013) In press. N.H. Nam, D.T.M. Dung, D.T.K. Oanh, T.L. Huong, P.T.P. Dung, K.R. Kim, B.W. Han, Y.S. Kim, J.T. Hong, S.B. Han. Synthesis, bioevaluation and docking study of 5-substitutedphenyl-1,3,4-thiadiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. J. Enzyme Inh. Med. Chem. (2013) (submitted).N.H. Nam, D.T.M. Dung, D.T.K. Oanh, T.L. Huong, P.T.P. Dung, K.R. Kim, B.W. Han, Y.S. Kim, J.T. Hong, S.B. Han. Synthesis, bioevaluation and docking studies of 5-substitutedphenyl-1,3,4-thiadiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. J. Enzyme Inh. Med. Chem. (2013) (submitted). A. Beauchard, Y. Ferandin, S. Frㅸre, O. Lozach, M. Blairvacq, L. Meijer, V. T. Besson, T. Synthesis of novel 5-substituted indirubins as protein kinases inhibitors. Bioorg Med Chem. 14 (2006), 6434-6474. A. Beauchard, Y. Ferandin, S. Frøre, O. Lozach, M. Blairvacq, L. Meijer, V. T. Besson, T. Synthesis of novel 5-substituted ndubins as protein kinases inhibitors. Bioorg Med Chem. 14 (2006), 6434-6474. M.J. Moon, S.K. Lee, J.W Lee, W.K. Song, S.W. Kim, J.I. Kim, C. Cho, S.J. Choi, Y.C. Kim. Synthesis and structure-activity relationships of novel indirubin derivatives as potent anti-proliferative agents with CDK2 inhibitory activities. Bioorg Med Chem. 14 (2006) 237-246.M.J. Moon, S.K. Lee, J.W Lee, W.K. Song, S.W. Kim, J.I. Kim, C. Cho, S.J. Choi, Y.C. Kim. Synthesis and Structure-Activity Relationships of Nucleophilic Substituents and Their Potential Anti-proliferative Agents. Bioorg Med Chem. 14 (2006) 237-246. R. Hoessel, S. Leclerc, J.A. Endicott, M.E. Nobel, A. Lawrie, P. Tunnah, M. Leost, E. Damiens, D. Marie, D. Marko, E. Niederberger, W. Tang, G. Eisenbrand, L. Meijer, L. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nature Cell Biol. 1 (1999) 60-67.R. Hoessel, S. Leclerc, J.A. Endicott, M.E. Nobel, A. Lawrie, P. Tunnah, M. Leost, E. Damiens, D. Marie, D. Marko, E. Niederberger, W. Tang, G. Eisenbrand, L. Meijer, L. Indirubin, a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nature Cell Biol. 1 (1999) 60-67. M.N. Tam, N.H. Nam, G.J. Jin, B.Z. Ahn. 2-(1 -hydroxyiminoalkyl)-1 ,4-dimethoxy-9,10-anthraquinones: synthesis and evaluation of cytotoxicity. Arch. Pharm. Res. 23 (2000) 283-287.M.N. Full, N.H. Nam, G.J. Jin, B.Z. Ahn. 2- (1-hydroxyiminoalkyl) -1,4-dimethoxy-9,10-anthraquinones: synthesis and evaluation of cytotoxicity. Arch. Pharm. Res. 23 (2000) 283-287. M.D. Hall, K.R. Brimacombe, M.S. Varonka, K.M. Pluchino, J.K. Monda, J.Y. Li, M.J. Walsh, M.B. Boxer, T.H. Warren, H.M. Fales, M.M. Gottesman. Synthesis and structure-activity evaluation of isatin-β-thiosemicarbazones with improved selective activity toward multidrug-resistant cells expressing P-glycoprotein. J. Med. Chem. 54 (2011) 5878-5889.M.D. Hall, K.R. Brimacombe, M.S. Varonka, K.M. Pluchino, J.K. Monda, J.Y. Li, M.J. Walsh, M.B. Boxer, T.H. Warren, H.M. Fales, M.M. Gottesman. Synthesis and structure-activity evaluation of isatin-β-thiosemicarbazones with enhanced selective activity toward multidrug-resistant cells expressing P-glycoprotein. J. Med. Chem. 54 (2011) 5878-5889. M.D. Hall, N.K. Salam, J.L. Hellawell, H.M. Fales, C.B. Kensler, J.A. Ludwig, G. Szakacs, D.E. Hibbs, M.M. Gottesman. J. Med. Chem. Synthesis, activity, and pharmacophore development for isatin-beta-thiosemicarbazones with selective activity toward multidrug-resistant cells. 52 (2009) 3191-3204.M.D. Hall, N.K. Salam, J.L. Hellawell, H.M. Fales, C. B. Kensler, J.A. Ludwig, G. Szakacs, D.E. Hibbs, M.M. Gottesman. J. Med. Chem. Synthesis, activity, and pharmacophore development for isatin-beta-thiosemicarbazones with selective activity towards multidrug-resistant cells. 52 (2009) 3191-3204. J.F.M. da Silva, S.J. Garden, A.C. Pinto. Chemistry of isatins: a review from 1975 to 1999. J. Braz. Chem. Soc. 12 (2001) 273-324.J.F.M. da Silva, S.J. Garden, A.C. Pinto. Chemistry of isatins: a review from 1975 to 1999. J. Braz. Chem. Soc. 12 (2001) 273-324. N.N. Sin, B.L. Venables, K.D. Combrink, H.G. Gulgeze, K.L. Yu, R.L. Civiello, J. Thuring, X.A. Wang, Z. Yang, L. Zadjura, A. Marino, K.F. Kadow, C.W. Cianci, J. Clarke, E.V. Genovesi, I. Medina, L. Lamb, K. Krystal, N.A. Meanwell. Respiratory syncytial virus fusion inhibitors. Part 7: structure-activity relationships associated with a series of isatin oximes that demonstrate antiviral activity in vivo. Bioorg. Med. Chem. Let. 2009, 19, 4857-4862. N.N. Sin, B.L. Venables, K.D. Combrink, H.G. Gulgeze, K.L. Yu, R.L. Civiello, J. Thuring, X.A. Wang, Z. Yang, L. Zadjura, A. Marino, K.F. Kadow, C.W. Cianci, J. Clarke, E.V. Genovese, I. Medina, L. Lamb, K. Krystal, N.A. Meanwell. Respiratory syncytial virus fusion inhibitors. Part 7: Structure-activity relationships associated with a series of isatin oximes that demonstrate antiviral activity in vivo. Bioorg. Med. Chem. Let. 2009, 19, 4857-4862. Y. Liu, H.A. Lashuel, S. Choi, X. Xing, A. Case, J. Ni, L.A. Yeh, G.D. Cuny, R.L. Stein, P.T. Lansbury Jr. Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem. Biol. 10 (2003) 837-846.Y. Liu, H.A. Lashuel, S. Choi, X. Xing, A. Case, J. Ni, L.A. Yeh, G.D. Cuny, R.L. Stein, P.T. Lansbury Jr. Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem. Biol. 10 (2003) 837-846. J.R. Somoza, R.J. Skene, B.A. Katz, C. Mol, J.D. Ho, A.J. Jennings, C. Luong, A. Arvai, J.J. Buggy, E. Chi, J. Tang, B.C. Sang, E. Verner, R. Wynands, E.M. Leahy, D.R. Dougan, G. Snell, M. Navre, M.W. Knuth, R.V. Swanson, D.E. McRee, L.W. Tari. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12 (2004) 1325-1334.J.R. Somoza, R.J. Skene, B.A. Katz, C. Mol, J. D. Ho, A.J. Jennings, C. Luong, A. Arvai, J.J. Buggy, E. Chi, J. Tang, B.C. Sang, E. Verner, R. Wynands, E.M. Leahy, D.R. Dougan, G. Snell, M. Navre, M.W. Knuth, R.V. Swanson, D.E. McRee, L.W. Tari. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12 (2004) 1325-1334. O. Trott, A.J. Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2010) 455-461.O. Trott, A.J. Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2010) 455-461. J.C. Bressi, A.J. Jennings, R. Skene, Y. Wu, R. Melkus, R. De Jong, S. O'Connell, C.E. Grimshaw, M. Navre, A.R. Gangloff. Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg. Med. Chem. Lett. 20 (2010) 3142-3145.J.C. Bressi, A.J. Jennings, R. Skene, Y. Wu, R. Melkus, R. De Jong, S. O'Connell, C.E. Grimshaw, M. Navre, A.R. Gangloff. Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N- (2-aminophenyl) benzamides. Bioorg. Med. Chem. Lett. 20 (2010) 3142-3145. P. Skehan, R. Storeng, D. Scudiero, A. Monk, J. MacMahon, D. Vistica, J. Warren, H. Bokesch, S. Kenney, M.R. Boyd. New colorimetric cytotoxicity assay for anticancer drug screening. J. Natl. Cancer Inst. 82 (1990) 1107-1112.P. Skehan, R. Storeng, D. Scudiero, A. Monk, J. MacMahon, D. Vistica, J. Warren, H. Bokesch, S. Kenney, M.R. Boyd. New colorimetric cytotoxicity assay for anticancer drug screening. J. Natl. Cancer Inst. 82 (1990) 1107-1112. L. Wu, A.M. Smythe, S.F. Stinson, L.A. Mullendore, A. Monks, D.A. Scudiero, K.D. Paull, A.D. Koutsoukos, L.V. Rubinstein, M.R. Boyd, R.H. Shoemaker. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res. 52 (1992) 3029-3034. L. Wu, A.M. Smythe, S.F. Stinson, L.A. Mullendore, A. Monks, D.A. Scudiero, K.D. Paull, A.D. Koutsoukos, L.V. Rubinstein, M.R. Boyd, R.H. Shoemaker. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res. 52 (1992) 3029-3034. [30] A.W. Schuttelkopf, D.M. van Aalten. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta crystallographica. Section D, Biol. Crystallography 60 (2004) 1355-1363. [30] A.W. Schuttelkopf, D.M. van Aalten. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta crystallographica. Section D, Biol. Crystallography 60 (2004) 1355-1363.

본 발명자들은 히스톤 탈아세틸화 효소(histone deacetylase, HDAC)에 대한 강력한 억제효과를 갖는 신규의 히드록삼산을 개발하기 위해 연구 노력하였다. 그 결과, 이사틴 기반의 새로운 히드록삼산을 합성하는데 성공하였고, 합성한 히드록삼산 화합물들이 히스톤 탈아세틸화 효소의 활성을 억제할 뿐만 아니라 다양한 종류의 암세포주에 대해 항암 활성을 가진다는 사실을 확인함으로써 본 발명을 완성하였다.The present inventors have made efforts to develop a novel hydroxamic acid having a strong inhibitory effect on histone deacetylase (HDAC). As a result, we succeeded in synthesizing a novel hydroxyacetic acid based on Isatin, and the fact that the synthesized hydroxamic acid compounds not only inhibited the activity of histone deacetylase, but also had anticancer activity against various kinds of cancer cell lines The present invention has been completed.

따라서, 본 발명의 목적은 신규의 이사틴 기반 히드록삼산 화합물을 제공하는데 있다. It is therefore an object of the present invention to provide novel isatin-based hydroxamic acid compounds.

본 발명의 다른 목적은 상기 신규 이사틴 기반 히드록삼산 화합물을 유효성분으로 포함하는 항암용 약제학적 조성물을 제공하는데 있다.
It is another object of the present invention to provide an anticancer pharmaceutical composition comprising the novel isatin-based hydroxamic acid compound as an active ingredient.

본 발명의 목적 및 장점은 하기의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 명확하게 된다.
The objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 하기 화학식 1 또는 화학식 2로 표시되는 이사틴 기반 히드록삼산 화합물을 제공한다. According to one aspect of the present invention, there is provided a isostene-based hydroxamic acid compound represented by the following formula (1) or (2).

[화학식 1] [Chemical Formula 1]

Figure 112013069306035-pat00001
Figure 112013069306035-pat00001

상기 화학식 1에서 R은 수소, 할로겐, C1-C5알킬, 또는 니트로이다. Wherein R is hydrogen, halogen, C 1 -C 5 alkyl, or nitro.

[화학식 2] (2)

Figure 112013069306035-pat00002
Figure 112013069306035-pat00002

상기 화학식 2에서 R은 수소, 할로겐, C1-C5알킬, 또는 니트로이다. In Formula 2, R is hydrogen, halogen, C 1 -C 5 alkyl, or nitro.

본 발명의 바람직한 구현예에 따르면, 상기 화학식 1 또는 화학식 2에서 상기 치환기 R은 이사틴 고리의 5번 또는 7번 탄소위치에 존재한다. According to a preferred embodiment of the present invention, in the above formula (1) or (2), the substituent R is present at carbon number 5 or 7 of the adamantine ring.

본 발명의 다른 바람직한 구현예에 따르면, 상기 R 치환기로서 할로겐은 플루오르(F), 염소(Cl), 또는 브롬(Br)이다. According to another preferred embodiment of the present invention, the halogen as the R substituent is fluorine (F), chlorine (Cl), or bromine (Br).

본 발명의 다른 바람직한 구현예에 따르면, 상기 화학식 1 또는 화학식 2으로 표시되는 이사틴 기반 히드록삼산 화합물은 다음의 화합물 중 어느 하나이다:According to another preferred embodiment of the present invention, the isostene-based hydroxamic acid compound represented by Formula 1 or Formula 2 is any one of the following compounds:

N-히드록시-7-(3-(히드록시이미노)-2-옥소인돌린-1-일)헵탄아미드; N-hydroxy-7- (3- (hydroxyimino) -2-oxoindolin-1-yl) heptanamide;

7-(5-플루오로-3-(히드록시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드; 7- (5-fluoro-3- (hydroxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;

7-(5-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;7- (5-chloro-3- (hydroxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;

7-(5-브로모-3-(히드록시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드; 7- (5-bromo-3- (hydroxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;

N-히드록시-7-(3-(히드록시이미노)-5-니트로-2-옥소인돌린-1-일)헵탄아미드;N-hydroxy-7- (3- (hydroxyimino) -5-nitro-2-oxoindolin-1-yl) heptanamide;

N-히드록시-7-(3-(히드록시이미노)-5-메틸-2-옥소인돌린-1-일)헵탄아미드; N-hydroxy-7- (3- (hydroxyimino) -5-methyl-2-oxoindolin-1-yl) heptanamide;

7-(7-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드; 7- (7-chloro-3- (hydroxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;

N-히드록시-7-(3-(메톡시이미노)-2-옥소인돌린-1-일)헵탄아미드;N-hydroxy-7- (3- (methoxyimino) -2-oxoindolin-1-yl) heptanamide;

7-(5-플루오로-3-(메톡시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;7- (5-fluoro-3- (methoxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;

7-(5-클로로-3-(메톡시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;7- (5-chloro-3- (methoxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;

7-(5-브로모-3-(메톡시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;7- (5-bromo-3- (methoxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;

N-히드록시-7-(3-(메톡시이미노)-5-니트로-2-옥소인돌린-1-일)헵탄아미드; N-Hydroxy-7- (3- (methoxyimino) -5-nitro-2-oxoindolin-1-yl) heptanamide;

N-히드록시-7-(3-(메톡시이미노)-5-메틸-2-옥소인돌린-1-일)헵탄아미드; 및N-hydroxy-7- (3- (methoxyimino) -5-methyl-2-oxoindolin-1-yl) heptanamide; And

7-(7-클로로-3-(메톡시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드.7- (7-Chloro-3- (methoxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide.

본 발명의 다른 일 양태에 따르면, 본 발명은 상기 설명된 화학식 1 또는 화학식 2의 화합물을 유효성분으로 포함하는 항암용 약제학적 조성물을 제공한다. According to another aspect of the present invention, there is provided an anticancer pharmaceutical composition comprising the compound of formula (I) or (II) described above as an active ingredient.

본 발명의 바람직한 구현예에 따르면, 본 발명의 화합물은 히스톤 탈아세틸화효소(histone deacetylase)의 억제 활성을 통해 히스톤의 아세틸화를 촉진하는 효능을 갖는다. 즉, 본 발명의 이사틴 기반 히드록삼산 화합물은 히스톤 탈아세틸화 효소의 활성을 억제함으로써 세포내 히스톤을 고아세틸화 상태로 유도한다. According to a preferred embodiment of the present invention, the compound of the present invention has an effect of promoting histone acetylation through the inhibitory activity of histone deacetylase. That is, the isostane-based hydroxamic acid compound of the present invention induces intracellular histone to a high acetylation state by inhibiting the activity of the histone deacetylase.

본 발명의 화합물은 하기 구체적인 일 실시예에서 입증되는 바와 같이, 다양한 암세포주에 대해 세포독성 효과를 나타내어 항암 효능을 발휘한다. The compounds of the present invention exhibit cytotoxic effects against various cancer cell lines and demonstrate anticancer efficacy, as demonstrated in the following specific example.

본 발명의 약제학적 조성물에 의한 치료 대상 질병인 “암(cancer)”은 세포가 정상적인 성장 한계를 무시하고 분열 및 성장하는 공격적(aggressive) 특성, 주위 조직에 침투하는 침윤적(invasive) 특성, 및 체내의 다른 부위로 퍼지는 전이적(metastatic) 특성을 갖는 세포에 의한 질병을 총칭하는 의미이다. &Quot; Cancer " which is a disease to be treated by the pharmaceutical composition of the present invention is characterized by aggressive characteristics of cells that divide and grow by ignoring normal growth limits, invasive characteristics that penetrate surrounding tissues, It is a generic term for diseases caused by cells with metastatic characteristics that spread to other parts of the body.

본 발명의 바람직한 구현예에 의하면, 상기 치료 대상암은 유방암, 폐암, 위암, 간암, 혈액암, 뼈암, 췌장암, 피부암, 두경부암, 피부 또는 안구 흑색종, 자궁육종, 난소암, 직장암, 항문암, 대장암, 난관암, 자궁내막암, 자궁경부암, 소장암, 내분비암, 갑상선암, 부갑상선암, 신장암, 연조직종양, 요도암, 전립선암, 기관지암, 또는 골수암이다. 보다 바람직하게는 대장암, 유방암, 전립선암, 췌장암, 또는 폐암이다. According to a preferred embodiment of the present invention, the cancer to be treated is selected from breast cancer, lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, head and neck cancer, skin or ocular melanoma, uterine sarcoma, ovarian cancer, Endometrial cancer, small bowel cancer, endocrine cancer, thyroid cancer, pituitary cancer, kidney cancer, soft tissue tumor, urethral cancer, prostate cancer, bronchial cancer, or bone cancer. More preferably a colon cancer, a breast cancer, a prostate cancer, a pancreatic cancer, or a lung cancer.

본 발명의 항암용 약제학적 조성물은 (i) 상기 설명된 화학식 1 또는 화학식 2의 히드록삼산 화합물의 약제학적 유효량; 및 (ii) 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물의 형태로 제공될 수 있다. The anticancer pharmaceutical composition of the present invention comprises (i) a pharmaceutically effective amount of the hydroxamic acid compound of the above-described formula (1) or (2); And (ii) a pharmaceutically acceptable carrier.

본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다. The pharmaceutically acceptable carriers to be contained in the pharmaceutical composition of the present invention are those conventionally used in the present invention and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, But are not limited to, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrups, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. It is not. The pharmaceutical composition of the present invention may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington ' s Pharmaceutical Sciences (19th ed., 1995).

본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 따라 다양한 방법으로 처방될 수 있다. 한편, 본 발명의 약제학적 조성물의 투여량은 바람직하게는 1일 당 0.001-1000 mg/kg(체중)이다. The appropriate dosage of the pharmaceutical composition of the present invention may be determined by various methods depending on factors such as the formulation method, administration method, age, body weight, sex, pathological condition, food, administration time, administration route, excretion rate and responsiveness of the patient It can be prescribed. On the other hand, the dosage of the pharmaceutical composition of the present invention is preferably 0.001-1000 mg / kg (body weight) per day.

본 발명의 약제학적 조성물은 경구 또는 비경구로 투여할 수 있고, 비경구로 투여되는 경우, 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 경피 투여 등으로 투여할 수 있다. The pharmaceutical composition of the present invention can be administered orally or parenterally, and when administered parenterally, it can be administered by intravenous injection, subcutaneous injection, muscle injection, intraperitoneal injection, transdermal administration, or the like.

본 발명의 조성물에 포함되는 유효성분의 농도는 치료 목적, 환자의 상태, 필요 기간, 질환의 위중도 등을 고려하여 결정하며 특정 범위의 농도로 한정되지 않는다. 본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
The concentration of the active ingredient contained in the composition of the present invention is determined in consideration of the purpose of the treatment, the condition of the patient, the period of time required, the severity of the disease, and the like. The pharmaceutical composition of the present invention may be formulated into a unit dose form by formulating it using a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by a person having ordinary skill in the art to which the present invention belongs. Or by intrusion into a multi-dose container. The formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media, or in the form of excipients, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.

본 발명은 신규의 이사틴 기반 히드록삼산 및 이를 유효성분으로 포함하는 항암용 조성물에 관한 것이다. 본 발명의 히드록삼산 화합물은 히스톤 탈아세틸화 효소(histone deacetylase, HDAC)의 억제 활성을 가지며, 다양한 암세포에서 세포독성을 나타내어 항암 효능을 발휘하므로, 강력한 항암제의 활성성분으로 개발될 수 있다.
The present invention relates to novel isatin-based hydroxamic acid and an anticancer composition comprising the same as an active ingredient. The hydroxamic acid compound of the present invention has an inhibitory activity against histone deacetylase (HDAC), exhibits cytotoxicity in various cancer cells and exhibits anticancer efficacy, and thus can be developed as an active ingredient of a potent anticancer drug.

도 1은 지금까지 알려진 히스톤 탈아세틸화 효소(HDAC) 억제자들의 화학구조를 보여준다.
도 2는 SW620 세포에서 히스톤 아세틸화에 대한 본 발명의 합성 화합물들의 영향을 확인한 결과이다. 세포에 대해 화합물 1μM의 농도로 24시간 동안 처리하였다. 총 세포 용해물에서 아세틸화된 히스톤-H3 및 -H4의 수준을 웨스턴 블롯 분석을 통해 측정하였다.
도 3는 HDAC8에 대해 SAHA의 실제 결합 모습 및 화합물 3a 및 화합물 6a의 시뮬레이션 도킹 모습을 보여준다. SAHA는 탄소, 질소 및 산소 원자를 노란색, 파란색 및 빨간색으로 각각 표시하여 스틱 모델로 표시하였다. 화합물 3a 및 6a는 탄소 원자를 청록색 및 자홍색으로 표시하고, 질소 및 산소 원자는 각각 파랑 및 빨강색으로 표시하여 스틱 모델로 나타내었다. 효소의 상호작용시의 중요한 부분들은 탄소, 질소 및 산소를 각각 녹색, 파란색 및 빨간색으로 각각 나타내는 스틱 모델로 나타내었다. Zn2+ 이온은 짙은 회색구로 표시하였다.
도 4는 HDAC2에 대해 N-(4-아미노페닐-3-일)벤즈아미드의 실제 결합 모습 및 화합물 3a 및 화합물 6a의 시뮬레이션 도킹 모습을 보여준다. N-(4-아미노페닐-3-일)벤즈아미드는 탄소, 질소 및 산소 원자를 노란색, 파란색 및 빨간색으로 각각 표시하여 스틱 모델로 표시하였다. 화합물 3a 및 6a는 탄소 원자를 회색-파란색 및 백색으로 표시하고, 질소 및 산소 원자는 각각 파랑 및 빨강색으로 표시하여 스틱 모델로 나타내었다. 효소의 상호작용시의 중요한 부분들은 탄소, 질소 및 산소를 각각 녹색, 파란색 및 빨간색으로 각각 나타내는 스틱 모델로 나타내었다. Zn2+ 이온은 짙은 회색구로 표시하였다.
Figure 1 shows the chemical structure of hysteretic deacetylase (HDAC) inhibitors so far known.
Figure 2 shows the effect of the synthetic compounds of the present invention on histone acetylation in SW620 cells. Cells were treated for 24 hours at a concentration of 1 [mu] M. Levels of acetylated histone-H3 and -H4 in total cell lysates were determined by western blot analysis.
Figure 3 shows the actual binding of SAHA to HDAC8 and the simulated docking appearance of compounds 3a and 6a. SAHA labeled the carbon, nitrogen, and oxygen atoms in yellow, blue, and red, respectively, as a stick model. The compounds 3a and 6a are represented by a stick model in which carbon atoms are indicated by cyan and magenta, and nitrogen and oxygen atoms are indicated by blue and red, respectively. Significant parts of the enzyme's interaction are represented by stick models that represent carbon, nitrogen, and oxygen, respectively, in green, blue, and red, respectively. Zn 2+ ions are denoted by dark gray sphere.
Figure 4 shows the actual binding figure of N- (4-aminophenyl-3-yl) benzamide for HDAC2 and the simulated docking appearance of compounds 3a and 6a. N- (4-aminophenyl-3-yl) benzamide was labeled with a stick model in which carbon, nitrogen and oxygen atoms were respectively labeled yellow, blue and red. In the compounds 3a and 6a, carbon atoms are represented by gray-blue and white, and nitrogen and oxygen atoms are represented by blue and red, respectively, in a stick model. Significant parts of the enzyme's interaction are represented by stick models that represent carbon, nitrogen, and oxygen, respectively, in green, blue, and red, respectively. Zn 2+ ions are denoted by dark gray sphere.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예 Example

I. 화합물의 합성 I. Synthesis of compounds

1. 재료 및 방법 1. Materials and Methods

모든 화합물들은 균일하게 얻었으며, Whatman® 250 Jm Silica Gel GF Uniplates상에서 박막 크로마토그래피를 행하고 λ 254 및 365 nm 파장의 UV광하에서 시각화하여 확인하였다. 끓는점은 Electrothermal Melting Point apparatus를 사용하여 측정하였다. 크로마토그래피를 사용한 정제는 Merck silica gel 60 (240 to 400 mesh)를 사용하여 오픈 플래쉬 실리카젤 컬럼 크로마토그래피를 통해 행하였다. 핵자기공명스펙트럼(1H NMR)은 다르게 지정하지 않으면 테트라메틸실란을 내부표준물질로 사용하고 DMSO-d6를 용매로 사용하여 Bruker DPX 500 MHz FT NMR spectrometer상에서 측정하였다. 화학적 이동(chemical shift)은 내부표준물질인 테트라메틸실란으로부터의 다운필드로 ppm(parts per million)으로 기록하였다. 전자이온화(electron ionization, EI), 전기분무이온화(electrospray ionization, ESI) 및 고해상도 질량스펙트럼은 각각 PE Biosystems API 2000 및 Marinerㄾ mass spectrometers를 사용하여 측정하였다. 시약 및 용매는 Aldrich사 또는 Fluka Chemical Corp. (Milwaukee, WI, USA) 또는 Merk사로부터 구입하여 사용하였다. 용매는 증류 및 건조하여 사용하였다.
All compounds were homogeneously obtained and thin-layer chromatographed on Whatman® 250 Jm Silica Gel GF Uniplates and visualized under UV light at λ 254 and 365 nm wavelengths. The boiling point was measured using an Electrothermal Melting Point apparatus. Purification using chromatography was performed by open flash silica gel column chromatography using Merck silica gel 60 (240 to 400 mesh). The nuclear magnetic resonance spectrum (1 H NMR) was determined on a Bruker DPX 500 MHz FT NMR spectrometer using tetramethylsilane as the internal standard and DMSO-d 6 as the solvent unless otherwise specified. Chemical shifts were recorded in parts per million (ppm) downfield from the internal standard tetramethylsilane. Electron ionization (EI), electrospray ionization (ESI) and high resolution mass spectra were measured using PE Biosystems API 2000 and Mariner ㄾ mass spectrometers, respectively. The reagents and solvents are commercially available from Aldrich or Fluka Chemical Corp. (Milwaukee, WI, USA) or Merk. The solvent was distilled and dried.

2. 합성예 2. Synthetic Example

합성예 1: N-히드록시-7-(5/7-치환-3-히드록시이미노-2-옥소인돌인-1-일)헵탄아미드(화합물 3a-3g)의 합성 Synthesis Example 1 Synthesis of N-hydroxy-7- (5/7-substituted-3-hydroxyimino-2-oxoindolin-1-yl) heptanamide (Compound 3a-3g)

N-히드록시-7-(5/7-치환-3-히드록시이미노-2-옥소인돌인-1-일)헵탄아미드(3a-g)는 하기 반응식 1에 따라 합성하였다. (5/7-substituted-3-hydroxyimino-2-oxoindolin-1-yl) heptanamide (3a-g) was synthesized according to the following reaction scheme 1.

[반응식 1] [Reaction Scheme 1]

Figure 112013069306035-pat00003
Figure 112013069306035-pat00003

상기 반응식 1은 본 발명의 이사틴-3-옥심계 히드록삼산의 합성과정을 보여준다. 합성과정에서의 반응의 시약 및 조건은 다음과 같다: a) 에틸7-브로모헵타노에이트, K2CO3, KI, DMF; b) 히드록실아민 하이드로클로라이드, NaOH, MeOH, THF.
Scheme 1 shows a process for synthesizing isatin-3-oxime-based hydroxamic acid of the present invention. Reagents and conditions of the reaction in the synthesis process are as follows: a) ethyl 7-bromoheptanoate, K 2 CO 3 , KI, DMF; b) Hydroxylamine hydrochloride, NaOH, MeOH, THF.

(1) 화합물 3a: N-히드록시-7-(3-히드록시이미노-2-옥소인돌린-1-일)헵탄아미드의 합성 (1) Compound 3a: Synthesis of N-hydroxy-7- (3-hydroxyimino-2-oxoindolin-1-yl) heptanamide

DMF내의 화합물 1a 용액(147 mg, 1 mmol)을 -5℃로 냉각시키고 K2CO3(165.5 mg, 1.2 mmol)을 첨가하였다. 혼합물을 -5℃에서 1시간 동안 교반한 후 상온에서 45분간 교반하고, CH3OH (0.5 ml) 및 KI (8.3 mg, 0.05 mmol)를 첨가하였다. 15분간 교반한 후에, DMF내의 에틸 7-브로모헵타노에이트 용액((1 ml)을 첨가하고, 생성된 반응 혼합물을 60℃에서 24시간 동안 교반하였다. 반응이 종료된 후에 반응혼합물을 냉각시키고 10% HCl로 산성화시킨 후, DCM(50 ml x2)로 추출하였다. 추출물을 회수하여 DCM을 감압하에서 증발시켰다. 화합물 2a는 갈색-노란색 오일형태로 최종 수득하였다 수율: 80%; Rf = 0.8 (DCM/MeOH, 30/1). A compound 1a solution (147 mg, 1 mmol) in DMF was cooled to -5 ℃ and added to K 2 CO 3 (165.5 mg, 1.2 mmol). The mixture was then stirred at -5 ℃ at room temperature stirred for 45 minutes, and added to CH 3 OH (0.5 ml) and KI (8.3 mg, 0.05 mmol) . After stirring for 15 min, a solution of ethyl 7-bromoheptanoate in DMF (1 ml) was added and the resulting reaction mixture was stirred for 24 h at 60 C. After the reaction was complete the reaction mixture was cooled and 10 Compound 2a was finally obtained in the form of a brown-yellow oil. Yield: 80%; Rf = 0.8 (from DCM). ≪ Desc / / MeOH, 30/1).

메탄올/테트라하이드로푸란 혼합물(1/1, 3 mL)내의 화합물 2a의 용액(289 mg, 1 mmoL)을 -5℃까지 냉각시킨 후에 히드록실암모늄 클로라이드(195 mg, 10 mmol)를 첨가하였다. NaOH(0.4 g, 10 mmol)를 2 ml의 물에 용해시키고, -5℃로 냉각시켜 혼합물에 첨가하였다. 혼합물은 화합물 2a가 완전히 반응할 때 까지 -5℃에서 교반하였다. 반응 혼합물에 HCl 15% 용액을 가하여 pH 7까지 산성화시킴으로써 침전을 유도하였다. 침전물을 여과하고 물로 세정하여 60℃에서 건조시키고, 에탄올로부터 재결정화하여 노란색 고체의 화합물을 얻었다. A solution of compound 2a (289 mg, 1 mmol) in a methanol / tetrahydrofuran mixture (1/1, 3 mL) was cooled to -5 [deg.] C followed by the addition of hydroxylammonium chloride (195 mg, 10 mmol). NaOH (0.4 g, 10 mmol) was dissolved in 2 ml of water, cooled to -5 [deg.] C and added to the mixture. The mixture was stirred at -5 < 0 > C until compound 2a was completely reacted. The reaction mixture was acidified to pH 7 by addition of 15% HCl solution to induce precipitation. The precipitate was filtered, washed with water, dried at 60 < 0 > C and recrystallized from ethanol to give a yellow solid compound.

수율: 65%. mp: 192-194℃. Rf = 0.65 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3420, 3251(OH), 3050 (NH), 2927, 2865 (CH, CH2), 1650, 1629 (C=O), 1558 (C=C). ESI-MS (m/z): 305.4 [M-H]-. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 13.45 (1H, s, OH, oxime), 10.35 (1H, s, NH), 8.68 (1H, brs, OH), 7.97 (1H, d, J = 7.5 Hz), 7.42 (1H, t, J = 7.5 Hz), 7.06-7.10 (2H, m), 3.67 (2H, t, J = 7.0 Hz, CH2), 1.91 (2H, t, J = 8.5 Hz, CH2), 1.55-1.57 (2H, m, CH2), 1.44-1.47 (2H, m, CH2), 1.25-1.26 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.20, 163.00, 143.00, 143.00, 132.12, 126.12, 126.98, 122.56, 115.24, 109.18, 32.21, 30.70, 28.21, 26.90, 25.96, 25.01. Anal. Calcd. For C15H20N3O4 (306.34): C, 58.81; H, 6.58; N, 13.72. Found: 58.64; H, 6.61; N, 13.55.
Yield: 65%. mp: 192-194 [deg.] C. Rf = 0.65 (DCM / MeOH = 9/1). IR (KBr, cm-1): 3420, 3251 (OH), 3050 (NH), 2927, 2865 (CH, CH2), 1650, 1629 (C.dbd.O), 1558 (C.dbd.C). ESI-MS (m / z): 305.4 [MH] <">. (1H, s, NH), 8.68 (1H, brs, OH), 7.97 (1H, d, J = 7.5 Hz), 7.42 (1H, t, J = 7.5 Hz), 7.06-7.10 (2H, m), 3.67 (2H, t, Hz, CH 2), 1.55-1.57 (2H, m, CH 2), 1.44-1.47 (2H, m, CH 2), 1.25-1.26 (4H, m, CH 2). 13 C NMR (125 MHz, DMSO-d 6, ppm): δ 169.20, 163.00, 143.00, 143.00, 132.12, 126.12, 126.98, 122.56, 115.24, 109.18, 32.21, 30.70, 28.21, 26.90, 25.96, 25.01. Anal. Calcd. For C15H20N3O4 (306.34): C, 58.81; H, 6.58; N, 13.72. Found: 58.64; H, 6.61; N, 13.55.

다른 화합물 3b-3g는 상기 화합물 3a의 합성에서 사용하였던 방법과 유사한 방법을 통해 각각의 5-/7-치환된 이사틴을 출발물질로 하여 합성하였다.
Other compounds 3b-3g were synthesized starting from the respective 5- / 7-substituted isostin via methods analogous to those used for the synthesis of compound 3a above.

(2) 화합물 3b: 7-(5-플루오로-3-(히드록시이미노)-2-옥소인돌린-1-일)-(2) Compound 3b: 7- (5-Fluoro-3- (hydroxyimino) -2-oxoindolin- NN -히드록시헵탄아미드의 합성 - Synthesis of hydroxyheptanamide

수율: 67.5%. mp: 188-190℃. Rf = 0.67 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3417, 3220 (OH), 3057 (NH), 2936, 2859 (CH, CH2), 1714, 1662 (C=O), 1618, 1598 (C=C). ESI-MS (m/z): 323.1 [M-H]-, 346.0 [M+Na]+. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 12.65 (1H, s, OH, oxime), 10.32 (1H, s, NH), 8.64 (1H, brs, OH), 7.75 (1H, dd, J = 8.0, 2.5 Hz), 7.30 (1H, td, J = 9.0, 2.5 Hz, H6), 7.14 (1H, dd, J = 8.5, 4.0 Hz, H7), 3.68 (2H, t, J = 7.0 Hz, CH2), 1.92 (2H, t, J = 7.5 Hz, CH2), 1.54-1.57 (2H, m, CH2), 1.44-1.47 (2H, m, CH2), 1.26-1.27 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.58, 163.32, 159.31, 143.71, 139.89, 118.74, 118.55, 116.24, 116.17, 114.51, 114.30, 110.67, 110.61, 32.65, 28.67, 27.27, 26.39, 25.45. Anal. Calcd. For C15H18FN3O4 (323.32): C, 55.72; H, 5.61; N, 13.00. Found: C, 55.75; H, 5.57; N, 13.21.
Yield: 67.5%. mp: 188-190 [deg.] C. Rf = 0.67 (DCM / MeOH = 9/1). IR (KBr, cm-1): 3417,3220 (OH), 3057 (NH), 2936,2859 (CH, CH2), 1714, 1662 (C = O), 1618, 1598 (C = C). ESI-MS (m / z): 323.1 [MH] -, 346.0 [M + Na] < + >. (1H, br s, OH), 7.75 (1H, d, d, J = 8Hz). 1H NMR (500 MHz, DMSO- J = 8.0, 2.5 Hz), 7.30 (1H, td, J = 9.0, 2.5 Hz, H6), 7.14 (1H, dd, J = 8.5, 4.0 Hz, H7), 3.68 (2H, m, CH2), 1.92 (2H, t, J = 7.5 Hz, CH2), 1.54-1.57 . 13 C NMR (125 MHz, DMSO-d 6, ppm): δ 169.58, 163.32, 159.31, 143.71, 139.89, 118.74, 118.55, 116.24, 116.17, 114.51, 114.30, 110.67, 110.61, 32.65, 28.67, 27.27, 26.39, Anal. Calcd. For C15H18FN3O4 (323.32): C, 55.72; H, 5.61; N, 13.00. Found: C, 55.75; H, 5.57; N, 13.21.

(3) 화합물 3c: 7-(5-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)-(3) Compound 3c: 7- (5-Chloro-3- (hydroxyimino) -2-oxoindolin- NN -히드록시헵탄아미드의 합성 - Synthesis of hydroxyheptanamide

수율: 60.0%. mp: 197.0-199℃. Rf = 0.60 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3424, 3216 (OH), 3050 (NH), 2933, 2859 (CH, CH2), 1714, 1659 (C=O), 1608 (C=C). ESI-MS (m/z): 338.5 [M-H]-. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 10.32 (1H, s, NH), 8.65 (1H, brs, OH), 7.95 (1H, d, J = 2.5 Hz, H4), 7.49 (1H, dd, J = 8.5, 2.5 Hz, H6), 7.16 (1H, d, J = 8.5 Hz, H7), 3.68 (2H, t, J = 7.0 Hz, CH2), 1.91 (2H, t, J = 7.5 Hz, CH2), 1.54-1.56 (2H, m, CH2), 1.44-1.47 (2H, m, CH2), 1.25-1.26 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.00, 162.61, 142.73, 141.79, 131.38, 126.23, 126.13, 116.32, 110.71, 32.12, 28.14, 26.75, 25.84, 24.91. Anal. Calcd. For C15H18ClN3O4 (339.77): C, 53.02; H, 5.34; N, 12.37. Found: C, 53.13; H, 5.29; N, 12.42.
Yield: 60.0%. mp: 197.0-199 [deg.] C. Rf = 0.60 (DCM / MeOH = 9/1). IR (KBr, cm-1): 3424, 3216 (OH), 3050 (NH), 2933, 2859 (CH, CH2), 1714, 1659 (C = O), 1608 (C-C). ESI-MS (m / z): 338.5 [MH] <">. (1H, brs, OH), 7.95 (1H, d, J = 2.5 Hz, H4), 7.49 (1H, (d, J = 8.5, 2.5 Hz, H6), 7.16 (1H, d, J = 8.5 Hz, H7), 3.68 Hz, CH2), 1.54-1.56 (2H, m, CH2), 1.44-1.47 (2H, m, CH2), 1.25-1.26 (4H, m, CH2). 13 C NMR (125 MHz, DMSO-d 6, ppm): δ 169.00, 162.61, 142.73, 141.79, 131.38, 126.23, 126.13, 116.32, 110.71, 32.12, 28.14, 26.75, 25.84, 24.91. Anal. Calcd. For C15H18ClN3O4 (339.77): C, 53.02; H, 5.34; N, 12.37. Found: C, 53.13; H, 5.29; N, 12.42.

(4) 화합물 3d: 7-(5-브로모-3-(히드록시이미노)-2-옥소인돌린-1-일)-(4) Compound 3d: 7- (5-Bromo-3- (hydroxyimino) -2-oxoindolin- NN -히드록시헵탄아미드의 합성 - Synthesis of hydroxyheptanamide

수율: 62.0%. mp: 192-195℃. Rf = 0.61 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3455 (OH), 2926, 2856 (CH, CH2), 1665 (C=O), 1602 (C=C). ESI-MS (m/z): 384.9 [M-H, 81Br]-., 382.9 [M-H, 79Br]-. 1H-NMR (500 MHz, DMSO-d6 + CDOD3, ppm): δ 8.31 (1H, d, J = 2.0 Hz, H4), 7.22 (1H, dd, J = 8.0, 2.0 Hz, H6), 6.88 (1H, d, J = 8.0 Hz, H7), 3.68 (2H, t, J = 7.0 Hz, CH2), 1.92 (2H, t, J = 7.5 Hz, CH2), 1.55 (2H, m, CH2), 1.44-1.47 (2H, m, CH2), 1.26 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6 + CDOD3, ppm): δ 169.07, 165.95, 143.86, 136.80, 127.46, 122.44, 117.93, 112.88, 108.88, 38.45, 32.15, 28.23, 27.41, 25.99, 25.00. Anal. Calcd. For C15H18BrN3O4 (384.23): C, 46.89; H, 4.72; N, 10.94. Found: C, 46.90; H, 4.74; N, 10.97.
Yield: 62.0%. mp: 192-195 [deg.] C. Rf = 0.61 (DCM / MeOH = 9/1). IR (KBr, cm -1): 3455 (OH), 2926, 2856 (CH, CH 2), 1665 (C = O), 1602 (C = C). ESI-MS (m / z): 384.9 [MH, 81Br] -, 382.9 [MH, 79Br] (1H, dd, J = 8.0, 2.0 Hz, H6), 6.88 (1H, d, J = 2.0 Hz, 1H) (2H, m, CH 2), 1.44 (2H, t, J = 8.0 Hz, H7), 3.68 1.47 (2H, m, CH 2), 1.26 (4H, m, CH 2). 13 C NMR (125 MHz, DMSO-d6 + CDOD3, ppm): δ 169.07, 165.95, 143.86, 136.80, 127.46, 122.44, 117.93, 112.88, 108.88, 38.45, 32.15, 28.23, 27.41, 25.99, Anal. Calcd. For C15H18BrN3O4 (384.23): C, 46.89; H, 4.72; N, 10.94. Found: C, 46.90; H, 4.74; N, 10.97.

(5) 화합물 3e: (5) Compound 3e: NN -히드록시-7-(3-(히드록시이미노)-5-니트로-2-옥소인돌린-1-일)헵탄아미드의 합성 Synthesis of hydroxy-7- (3- (hydroxyimino) -5-nitro-2-oxoindolin-1-yl) heptanamide

수율: 61.0%. mp: 201-203℃. Rf = 0.67 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3307 (OH), 2936, 2858 (CH, CH2), 1747, 1729 (C=O), 1630, 1611 (C=C). ESI-MS (m/z): 348.5 [M-H]-. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 14.13 (1H, s, OH, oxime), 10.34 (1H, s, NH), 8.67 (2H, s, H4-OH overlap), 8.34 (1H, d, J = 8.0 Hz, H6), 7.35 (1H, d, J = 9.0 Hz, H7), 3.75 (2H, t, CH2), 1.92 (2H, t, J = 7.0 Hz, CH2), 1.58 (2H, m, CH2), 1.46-1.47 (2H, m, CH2), 1.27 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.01, 163.26, 148.27, 142.32, 142.10, 128.30, 121.47, 115.02, 109.42, 32.12, 28.15, 26.84, 25.83, 24.91. Anal. Calcd. For C15H18N4O6 (350.33): C, 51.43; H, 5.18; N, 15.99. Found: C, 51.45; H, 5.21; N, 15.85.
Yield: 61.0%. mp: 201-203 [deg.] C. Rf = 0.67 (DCM / MeOH = 9/1). IR (KBr, cm-1): 3307 (OH), 2936, 2858 (CH, CH2), 1747, 1729 (C = O), 1630, 1611 (C = C). ESI-MS (m / z): 348.5 [MH] <">. (1H, s, NH), 8.67 (2H, s, H4-OH overlap), 8.34 (1H, (d, J = 8.0 Hz, H6), 7.35 (1H, d, J = 9.0 Hz, H7), 3.75 2H, m, CH 2), 1.46-1.47 (2H, m, CH 2), 1.27 (4H, m, CH 2). 13 C NMR (125 MHz, DMSO-d 6, ppm): δ 169.01, 163.26, 148.27, 142.32, 142.10, 128.30, 121.47, 115.02, 109.42, 32.12, 28.15, 26.84, 25.83, 24.91. Anal. Calcd. For C15H18N4O6 (350.33): C, 51.43; H, 5.18; N, 15.99. Found: C, 51.45; H, 5.21; N, 15.85.

(6) 화합물 3f: (6) Compound 3f: NN -히드록시-7-(3-(히드록시이미노)-5-메틸-2-옥소인돌린-1-일)헵탄아미드의 합성 Synthesis of hydroxy-7- (3- (hydroxyimino) -5-methyl-2-oxoindolin-1-yl) heptanamide

수율: 70.0%. mp: 181-183℃. Rf = 0.67 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3304 (OH), 3039 (NH), 2929, 2862 (CH, CH2), 1699 (C=O), 1650, 1618 (C=C). ESI-MS (m/z): 318.1 [M-H]-, 288.2 [M-NOH]-, 342.0 [M+Na]-. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 13.36 (1H, s, OH, oxime), 8.65 (1H, brs, OH), 10.32 (1H, s, NH), 7.82 (1H, s, H4), 7.23 (1H, d, J = 7.5 Hz, H6), 6.98 (1H, d, J = 7.5 Hz, H7), 3.64 (2H, t, CH2), 2.28 (3H, s, CH3), 1.91 (2H, t, J = 7.0 Hz, CH2), 1.55 (2H, m, CH2), 1.45 (2H, m, CH2), 1.25 (4H, m, CH2),. 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.01, 162.95, 143.65, 140.84, 132.21, 131.45, 127.47, 115.25, 108.86, 32.15, 28.16, 26.85, 25.90, 24.95, 20.48.
Yield: 70.0%. mp: 181-183 [deg.] C. Rf = 0.67 (DCM / MeOH = 9/1). IR (KBr, cm-1): 3304 (OH), 3039 (NH), 2929, 2862 (CH, CH2), 1699 (C.dbd.O), 1650, 1618 (C.dbd.C). ESI-MS (m / z): 318.1 [MH] -, 288.2 [M-NOH] -, 342.0 [M + Na] -. (1H, s, NH), 7.82 (1H, s, OH, oxime), 8.65 (1H, brs, OH), 10.32 (1H, d, J = 7.5 Hz, H7), 7.23 (1H, d, J = 7.5 Hz, H6), 6.98 (2H, t, J = 7.0Hz, CH2), 1.55 (2H, m, CH2), 1.45 (2H, m, CH2), 1.25 (4H, m, CH2). 13 C NMR (125 MHz, DMSO-d 6, ppm): δ 169.01, 162.95, 143.65, 140.84, 132.21, 131.45, 127.47, 115.25, 108.86, 32.15, 28.16, 26.85, 25.90, 24.95, 20.48.

(7) 화합물 3g: 7-(7-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)-(7) Compound 3g: 7- (7-Chloro-3- (hydroxyimino) -2-oxoindolin- NN -히드록시헵탄아미드의 합성 - Synthesis of hydroxyheptanamide

수율: 65.0%. mp: 190-192℃. Rf = 0.62 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3353, 3297 (OH), 3109 (NH), 3021 (C-H, aren), 2930, 2862 (CH, CH2), 1702, 1649 (C=O), 1602 (C=C). ESI-MS (m/z): 338.1 [M-H]-. 1H-NMR (500 MHz, DMSO-d6 + CDOD3, ppm): δ 8.65 (1H, brs, OH), 10.34 (1H, s, NH), 8.03 (1H, dd, J = 7.5, 1.0 Hz, H6), 7.42 (1H, dd, J = 8.5 , 1.0 Hz, H4), 7.08 (1H, t, J = 8.0 Hz, H5), 3.97 (2H, t, J = 7.5 Hz, CH2), 1.93 (2H, t, J = 7.5 Hz, CH2), 1.59-1.61 (2H, m, CH2), 1.46-1.49 (2H, m, CH2), 1.27-1.28 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6 + CDOD3, ppm): δ 169.01, 163.41, 142.15, 138.59, 133.85, 125.87, 123.99, 118.18, 114.29, 40.73, 32.12, 29.15, 28.15, 25.73, 24.96.
Yield: 65.0%. mp: 190-192 [deg.] C. Rf = 0.62 (DCM / MeOH = 9/1). IR (KBr, cm -1): 3353, 3297 (OH), 3109 (NH), 3021 (CH, aren), 2930, 2862 C). ESI-MS (m / z): 338.1 [MH] <">. (1H, s, NH), 8.03 (1H, dd, J = 7.5, 1.0 Hz, H6) , 7.42 (1H, dd, J = 8.5, 1.0 Hz, H4), 7.08 (1H, t, J = 8.0Hz, H5), 3.97 (2H, m, CH 2), J = 7.5 Hz, CH 2), 1.59-1.61 (2H, m, CH 2), 1.46-1.49 (2H, m, CH 2), 1.27-1.28 13C NMR (125 MHz, DMSO-d6 + CDOD3, ppm): δ 169.01, 163.41, 142.15, 138.59, 133.85, 125.87, 123.99, 118.18, 114.29, 40.73, 32.12, 29.15, 28.15, 25.73, 24.96.

합성예 2: N-히드록실-7-(5/7-치환-3-메톡시이미노-2-옥소인돌린-1-일)헵탄아미드(화합물 6a-6g)의 합성 Synthesis Example 2 Synthesis of N-Hydroxyl-7- (5/7-substituted-3-methoxyimino-2-oxoindolin-1-yl) heptanamide (Compound 6a-6g)

[반응식 2] [Reaction Scheme 2]

Figure 112013069306035-pat00004
Figure 112013069306035-pat00004

상기 반응식 2는 3′-메톡심이사틴계 히드록삼산의 합성과정을 보여준다. 합성과정에서의 시약 및 조건은 다음과 같다: (a) 메톡실아민 하이드로클로라이드, 피리딘, 에탄올, 80℃, 3 시간; (b) 에틸 7-브로모헵타노에이트, K2CO3, KI, DMF, rt, 24 시간; (c) 히드록실아민 하이드로클로라이드, NaOH, MeOH, THF, 0℃. 30분. 화합물 6a-6g의 화합물들은 각각의 5-/7-치환된 이사틴-3-메톡심을 출발물질로 사용하여 화합물 3a에서 사용하였던 방법과 유사한 방법을 통해 합성하였다. 5-/7-치환된이사틴-3-메톡심은 5-/7-치환된 이사틴으로부터 좋은 수율(75-96%)으로 합성되었다[17, 18].
Scheme 2 shows the synthesis process of 3'-methoxime satin hydroxamic acid. Reagents and conditions in the synthesis process are as follows: (a) methoxylamine hydrochloride, pyridine, ethanol, 80 C, 3 hours; (b) ethyl 7-bromoheptanoate, K 2 CO 3 , KI, DMF, rt, 24 h; (c) Hydroxylamine hydrochloride, NaOH, MeOH, THF, 0 < 0 > C. 30 minutes. Compounds 6a-6g were synthesized by methods analogous to those used for compound 3a using the respective 5- / 7-substituted isatin-3-methoxy as starting material. The 5- / 7-substituted isatin-3-methoxse was synthesized in good yields (75-96%) from the 5/7-substituted isostene [17,18].

(1) 화합물 6a: (1) Compound 6a: N-N- 히드록시-7-(3-(메톡시이미노)-2-옥소인돌린-1-일)헵탄아미드의 합성 Synthesis of hydroxy-7- (3- (methoxyimino) -2-oxoindolin-1-yl) heptanamide

수율: 75.0%. mp: 191-193℃. Rf = 0.71 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3399 (OH), 3249 (NH), 3038 (C-H, aren), 2933, 2862 (CH, CH2), 1704, 1647 (C=O), 1621, 1607 (C=C). ESI-MS (m/z): 318.2 [M-H]-, 287.0 [M-NHOH]-. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 10.33 (1H, s, NH), 8.66 (1H, brs, OH), 7.87 (1H, d, J = 7.5 Hz), 7.46 (1H, t, J = 7.5 Hz), 7.12 (1H, d, J = 8.0 Hz), 7.07 (1H, t, J = 7.5 Hz), 4.20 (3H, s, OCH3), 3.66 (2H, t, J = 7.0 Hz, CH2), 1.92 (2H, t, J = 7.0 Hz, CH2), 1.56 (2H, m, CH2), 1.45-1.47 (2H, m, CH2), 1.26 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.06, 162.15, 143.68, 143.28, 132.96, 127.34, 122.61, 114.87, 109.40, 64.40, 32.14, 28.14, 26.77, 25.87, 24.95. Anal. Calcd. For C16H21N3O4 (319.36): C, 60.17; H, 6.63; N, 13.16. Found: C, 60.21; H, 6.59; N, 13.22.
Yield: 75.0%. mp: 191-193 [deg.] C. Rf = 0.71 (DCM / MeOH = 9/1). IR (KBr, cm -1): 3399 (OH), 3249 (NH), 3038 (CH, aren), 2933, 2862 (CH, CH 2), 1704, 1647 C). ESI-MS (m / z): 318.2 [MH] -, 287.0 [M-NHOH] -. (1H, brs, OH), 7.87 (1H, d, J = 7.5 Hz), 7.46 (1H, t, J = 7.5 Hz), 7.20 (1H, d, J = 8.0 Hz), 7.07 (1H, t, J = 7.5 Hz), 4.20 M, CH2), 1.92 (2H, t, J = 7.0Hz, CH2), 1.56 (2H, m, CH2), 1.45-1.47 (2H, m, CH2), 1.26 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm):? 169.06, 162.15, 143.68, 143.28, 132.96, 127.34, 122.61, 114.87, 109.40, 64.40, 32.14, 28.14, 26.77, 25.87, 24.95. Anal. Calcd. For C16H21N3O4 (319.36): C, 60.17; H, 6.63; N, 13.16. Found: C, 60.21; H, 6.59; N, 13.22.

(2) 화합물 6b: 7-(5-플루오로-3-(메톡시이미노)-2-옥소인돌린-1-일)-(2) Compound 6b: 7- (5-Fluoro-3- (methoxyimino) -2-oxoindolin- NN -히드록시헵탄아미드의 합성 - Synthesis of hydroxyheptanamide

수율: 72.0%. mp: 200-202℃. Rf = 0.70 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3331 (OH), 3234 (NH), 3045 (C-H, aren), 2931, 2861 (CH, CH2), 1702, 1655 (C=O), 1622, 1602 (C=C). ESI-MS (m/z): 334.7 [M-2H]-, 697.4 [2M+Na]-. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 10.33 (1H, s, NH), 8.66 (1H, brs, OH), 7.65 (1H, dd, J = 8.0, 2.5 Hz, H4), 7.33 (1H, td, J = 9.25, 2.5 Hz, H6), 7.14 (1H, dd, J = 8.5, 4.0 Hz, H7), 4.21 (3H, s, OCH3), 3.66 (2H, t, J = 7.0 Hz, CH2), 1.91 (2H, t, J = 7.0 Hz, CH2), 1.53-1.56 (2H, m, CH2), 1.44-1.46 (2H, m, CH2), 1.25-1.26 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.10, 162.03, 158.83, 156.93, 142.96, 140.02, 119.23, 119.04, 115.41, 115.33, 114.50, 114.29, 110.52, 110.46, 64.67, 32.15, 28.16, 26.71, 25.86, 24.95.
Yield: 72.0%. mp: 200-202 [deg.] C. Rf = 0.70 (DCM / MeOH = 9/1). IR (KBr, cm -1): 3331 (OH), 3234 (NH), 3045 (CH, aren), 2931, 2861 (CH, CH 2), 1702, 1655 C). ESI-MS (m / z): 334.7 [M-2H] -, 697.4 [2M + Na] -. (1H, brs, OH), 7.65 (1H, dd, J = 8.0, 2.5 Hz, H4), 7.33 (1H, td, J = 9.25, 2.5 Hz, H6), 7.14 (1H, dd, J = 8.5, 4.0 Hz, H7), 4.21 (3H, s, OCH3) (2H, m, CH 2), 1.91 (2H, t, J = 7.0 Hz, CH 2), 1.53-1.56 . 163.10, 162.03, 158.83, 156.93, 142.96, 140.02, 119.23, 119.04, 115.41, 115.33, 114.50, 114.29, 110.52, 110.46, 64.67, 32.15, 28.16, 26.71, 25.86, 24.95.

(3) 화합물 6c: 7-(5-클로로-3-(메톡시이미노)-2-옥소인돌린-1-일)-(3) Compound 6c: 7- (5-Chloro-3- (methoxyimino) -2-oxoindolin- NN -히드록시헵탄아미드의 합성 - Synthesis of hydroxyheptanamide

수율: 78.0%. mp: 198-199℃. Rf = 0.70 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3431 (OH), 3259 (NH), 2935, 2859 (CH, CH2), 1714, 1645 (C=O), 1609 (C=C). ESI-MS (m/z): 352.2 [M-H]-. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 10.45 (1H, s, NH), 7.81 (1H, s, H4), 8.70 (1H, brs, OH), 7.50 (1H, d, J = 8.0 Hz, H6), 7.16 (1H, d, J = 8.0 Hz, H7), 4.22 (3H, s, OCH3), 3.65 (2H, t, J = 6.5 Hz, CH2), 1.93 (2H, t, J = 7.0 Hz, CH2), 1.53 (2H, m, CH2), 1.44 (2H, m, CH2),1.25 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.04, 161.77, 142.44, 142.41, 132.30, 126.54, 126.38, 115.97, 111.00, 64.71, 33.92, 33.57, 32.09, 28.11, 26.67, 25.80, 24.91.
Yield: 78.0%. mp: 198-199 [deg.] C. Rf = 0.70 (DCM / MeOH = 9/1). IR (KBr, cm-1): 3431 (OH), 3259 (NH), 2935, 2859 (CH, CH2), 1714, 1645 (C = O), 1609 (C = C). ESI-MS (m / z): 352.2 [MH] <">. (1H, s, H4), 8.70 (1H, brs, OH), 7.50 (1H, d, J = 8.0 Hz, H6), 7.16 (1H, d, J = 8.0 Hz, H7), 4.22 (3H, s, OCH3), 3.65 = 7.0 Hz, CH 2), 1.53 (2H, m, CH 2), 1.44 (2H, m, CH 2), 1.25 (4H, m, CH 2). 13 C NMR (125 MHz, DMSO-d 6, ppm): δ 169.04, 161.77, 142.44, 142.41, 132.30, 126.54, 126.38, 115.97, 111.00, 64.71, 33.92, 33.57, 32.09, 28.11, 26.67, 25.80,

(4) 화합물 6d: 7-(5-브로모-3-(메톡시이미노)-2-옥소인돌린-1-일)-(4) Compound 6d: 7- (5-Bromo-3- (methoxyimino) -2-oxoindolin- NN -히드록시헵탄아미드의 합성 - Synthesis of hydroxyheptanamide

수율: 70.0%. mp: 205-207℃. Rf = 0.76 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3400 (OH), 3222 (NH), 2935, 2856 (CH, CH2), 1722, 1647 (C=O), 1604 (C=C). ESI-MS (m/z): 398.0 [M-], 382.9 [M-CH3]-. 1H-NMR (500 MHz, DMSO-d6 + CDOD3, ppm): δ 7.94 (1H, s, H4), 7.62 (1H, d, J = 7.5 Hz, H6), 7.11 (1H, d, J = 8.0 Hz, H7), 4.22 (3H, s, OCH3), 1.53 (2H, m, CH2), 3.65 (2H, t, J = 6.5 Hz, CH2), 1.91 (2H, t, J = 7.0 Hz, CH2), 1.44 (2H, m, CH2), 1.25 (4H, m, CH2),. 13C NMR (125 MHz, DMSO-d6 + CDOD3, ppm): δ 168.69, 161.66, 142.80, 142.32, 135.13, 129.22, 116.41, 114.00, 111.47, 64.72, 32.21, 28.15, 26.68, 26.18, 25.84, 25.03.
Yield: 70.0%. mp: 205-207 [deg.] C. Rf = 0.76 (DCM / MeOH = 9/1). IR (KBr, cm-1): 3400 (OH), 3222 (NH), 2935, 2856 (CH, CH2), 1722, 1647 (C = O), 1604 (C = C). ESI-MS (m / z): 398.0 [M-], 382.9 [M-CH3] -. (1H, d, J = 8.0 Hz, 1H). 1H NMR (500 MHz, DMSO-d6 + CDOD3, ppm):? 7.94 , 2H), 4.22 (3H, s, OCH3), 1.53 (2H, m, CH2), 3.65 (2H, t, 1.44 (2H, m, CH 2), 1.25 (4H, m, CH 2). 13C NMR (125 MHz, DMSO-d6 + CDOD3, ppm): δ 168.69, 161.66, 142.80, 142.32, 135.13, 129.22, 116.41, 114.00, 111.47, 64.72, 32.21, 28.15, 26.68, 26.18, 25.84, 25.03.

(5) 화합물 6e: (5) Compound 6e: NN -히드록시-7-(3-(메톡시이미노)-5-니트로-2-옥소인돌린-1-일)헵탄아미드의 합성 Synthesis of hydroxy-7- (3- (methoxyimino) -5-nitro-2-oxoindolin-1-yl) heptanamide

수율: 70.0%. mp: 203-205℃. Rf = 0.67 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3210 (OH), 2934, 2856 (CH, CH2), 1729 (C=O), 1611 (C=C). ESI-MS (m/z): 363.0 [M-H]-, 348.0 [M-CH3]-. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 10.33 (1H, s, NH), 8.66 (1H, s, OH), 8.35 (1H, dd, J = 9.0, 2.5 Hz, H6), 8.49 (1H, d, J = 2.0 Hz, H4), 7.35 (1H, d, J = 9.0 Hz, H7), 4.29 (3H, s, OCH3), 3.73 (2H, t, J = 7.0 Hz, CH2), 1.92 (2H, t, J = 7.0 Hz, CH2), 1.54 -1.58 (2H, m, CH2), 1.43-1.49 (2H, m, CH2), 1.26 -1.27 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.05, 162.43, 148.87, 142.34, 141.79, 129.06, 121.84, 114.74, 109.72, 65.20, 32.11, 28.13, 26.76, 25.80, 24.91.
Yield: 70.0%. mp: 203-205 [deg.] C. Rf = 0.67 (DCM / MeOH = 9/1). IR (KBr, cm-1): 3210 (OH), 2934, 2856 (CH, CH2), 1729 (C = O), 1611 (C = C). ESI-MS (m / z): 363.0 [MH] -, 348.0 [M-CH3] -. (1H, s, OH), 8.35 (1H, d, J = 9.0, 2.5 Hz, H6), 8.49 (1H, d, J = 2.0 Hz, H4), 7.35 (1H, d, J = 9.0 Hz, H7), 4.29 (3H, s, OCH3) 1.92 (2H, t, J = 7.0Hz, CH2), 1.54-1.58 (2H, m, CH2), 1.43-1.49 (2H, m, CH2), 1.26-1.27 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm):? 169.05, 162.43, 148.87, 142.34, 141.79, 129.06, 121.84, 114.74, 109.72, 65.20, 32.11, 28.13, 26.76, 25.80, 24.91.

(6) 화합물 6f: (6) Compound 6f: NN -히드록시-7-(3-(메톡시이미노)-5-메틸-2-옥소인돌린-1-일)헵탄아미드의 합성 Synthesis of hydroxy-7- (3- (methoxyimino) -5-methyl-2-oxoindolin-1-yl) heptanamide

수율: 78.0%. mp: 193-195℃. Rf = 0.75 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3400 (OH), 3217 (NH), 3047 (C-H, arren), 2926, 2856 (CH, CH2), 1706 , 1638 (C=O), 1616, 1594 (C=C). ESI-MS (m/z): 332.0 [M-H]-. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 10.34 (1H, s, NH), 7.70 (1H, s, H4), 7.26 (1H, d, J = 8.0 Hz, H6), 7.00 (1H, d, J = 8.0 Hz, H7), 4.19 (3H, s, OCH3), 3.64 (2H, t, J = 7.0 Hz, CH2), 2.27 (3H, s, CH3), 1.91 (2H, t, J = 7.5 Hz, CH2), 1.53-1.55 (2H, m, CH2), 1.43 -1.46 (2H, m, CH2), 1.24-1.25 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.02, 162.11, 143.38, 141.44, 133.13, 131.65, 127.81, 114.90, 109.15, 64.34, 32.12, 28.13, 26.76, 25.85, 24.93, 20.40.
Yield: 78.0%. mp: 193-195 [deg.] C. Rf = 0.75 (DCM / MeOH = 9/1). IR (KBr, cm -1): 3400 (OH), 3217 (NH), 3047 (CH, arylene), 2926, 2856 (CH, CH 2), 1706, 1638 C). ESI-MS (m / z): 332.0 [MH] <">. 7.00 (1H, s, H4), 7.26 (1H, d, J = 8.0 Hz, H6), 7.00 (1H, s). 1H NMR (500 MHz, DMSO- (d, J = 8.0 Hz, H7), 4.19 (3H, s, OCH3), 3.64 (2H, t, J = 7.0Hz, CH2), 2.27 = 7.5 Hz, CH 2), 1.53-1.55 (2H, m, CH 2), 1.43-1.46 (2H, m, CH 2), 1.24-1.25 (4H, m, CH 2). 13 C NMR (125 MHz, DMSO-d 6, ppm): δ 169.02, 162.11, 143.38, 141.44, 133.13, 131.65, 127.81, 114.90, 109.15, 64.34, 32.12, 28.13, 26.76, 25.85, 24.93,

(7) 화합물 6g: 7-(7-클로로-3-(메톡시이미노)-2-옥소인돌린-1-일)-(7) Compound 6g: 7- (7-Chloro-3- (methoxyimino) -2-oxoindolin- NN -히드록시헵탄아미드의 합성 - Synthesis of hydroxyheptanamide

수율: 75.0%. mp: 189-191℃. Rf = 0.72 (DCM/MeOH = 9/1). IR (KBr, cm-1): 3232 (NH), 3059 (C-H, aren) 2937, 2858 (CH, CH2), 1728 (C=O), 1605 (C=C). ESI-MS (m/z): 352.0 [M-H]-, 338.1 [M-CH3]-. 1H-NMR (500 MHz, DMSO-d6, ppm): δ 10.36 (1H, s, NH), 8.66 (1H, brs, OH), 7.90 (1H, d, J = 7.5 Hz, H6), 7.47 (1H, d, J = 8.0 Hz, H4), 7.09 (1H, t, J = 8.0 Hz, H5), 4.22 (3H, s, OCH3), 3.95 (2H, t, J = 7.0 Hz, CH2), 1.93 (2H, t, J = 7.5 Hz, CH2), 1.56-1.60 (2H, m, CH2), 1.44-1.50 (2H, m, CH2), 1.27 (4H, m, CH2). 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.00, 162.57, 141.92, 139.21, 134.76, 126.36, 124.10, 117.84, 114.49, 64.79, 40.87, 32.10, 29.06, 28.13, 25.69, 24.95.
Yield: 75.0%. mp: 189-191 [deg.] C. Rf = 0.72 (DCM / MeOH = 9/1). IR (KBr, cm-1): 3232 (NH), 3059 (CH, aren) 2937, 2858 (CH, CH2), 1728 (C = O), 1605 (C = C). ESI-MS (m / z): 352.0 [MH] -, 338.1 [M-CH3] -. (1H, brs, OH), 7.90 (1H, d, J = 7.5 Hz, H6), 7.47 (1H, (d, J = 8.0Hz, H4), 7.09 (1H, t, J = 8.0 Hz, H5), 4.22 (3H, s, OCH3), 3.95 2H, t, J = 7.5Hz, CH2), 1.56-1.60 (2H, m, CH2), 1.44-1.50 (2H, m, CH2), 1.27 (4H, m, CH2). 13 C NMR (125 MHz, DMSO-d 6, ppm): δ 169.00, 162.57, 141.92, 139.21, 134.76, 126.36, 124.10, 117.84, 114.49, 64.79, 40.87, 32.10, 29.06, 28.13, 25.69, 24.95.

3. 화합물의 합성 결과의 요약 3. Summary of Compound Synthesis Results

히드록삼산 화합물 3a-3g의 합성과정은 상기 반응식 1에 도시하였다. 첫 번째 단계로서, 이사틴 및 이의 5- 또는 7-치환 유도체들 및 1몰 당량의 K2CO3를 DMF(다이메틸포름아마이드)에 용해시키고, 이어서, 1몰 당량의 에틸 7-브로모헵타노에이트를 상온에서 적하하여 가하였다. 반응 혼합물을 24시간 동안 교반하면서 60℃까지 가열하고 상온까지 다시 냉각시켰다. 각각의 대응하는 반응 혼합물을 냉각된 HCl 10% 용액에 부어 에스테르 화합물 2a-2g를 침전시켰다. n-헥산/아세톤으로부터 재결정화를 통해 중간체 화합물 2a-2g를 좋은 수율(65-90%)로 얻었다. 에스테르 화합물들을 메탄올-테트라하이드로푸란(1/1)의 혼합물내에 용해시켰다. 히드록실아민 하이드로클로라이드(10 mol equiv.)를 가하고 생성된 현탁액을 -5℃까지 냉각시켰다. NaOH(10 mol equiv) 용액을 -5℃에서 일정하게 유지시킨 반응 혼합물에 천천히 떨어뜨렸다. 30분 후에, 반응 내용물을 냉각수에 붓고 HCl 15% 용액을 사용하여 pH를 7으로 조절하여 조생성물을 침전시켰다. 조생성물을 에탄올로부터 재결정시켜 화합물 3a-3g를 중간 내지 높은 수율(50-90%)로 생성하였다. The synthesis of the hydroxamic acid compound 3a-3g is shown in Scheme 1 above. In the first step, isatin and its 5-or 7-substituted derivatives and 1 molar equivalent of K 2 CO 3 are dissolved in DMF (dimethylformamide) and then 1 molar equivalent of ethyl 7-bromoheptano Was added dropwise at room temperature. The reaction mixture was heated to 60 < 0 > C with stirring for 24 hours and cooled again to ambient temperature. Each corresponding reaction mixture was poured into a 10% solution of cooled HCl to precipitate the ester compound 2a-2g. Recrystallization from n-hexane / acetone gave the intermediate compound 2a-2g in good yield (65-90%). The ester compounds were dissolved in a mixture of methanol-tetrahydrofuran (1/1). Hydroxylamine hydrochloride (10 mol equiv.) Was added and the resulting suspension was cooled to -5 [deg.] C. A solution of NaOH (10 mol equiv) was slowly dropped into the reaction mixture held constant at -5 < 0 > C. After 30 minutes, the reaction contents were poured into cooling water and the pH was adjusted to 7 using a 15% solution of HCl to precipitate the crude product. The crude product was recrystallized from ethanol to give 3a-3g of intermediate to high yield (50-90%).

화합물 6a-6g는 상기 반응식 2의 과정을 통해 합성하였다. 이사틴-3'-메톡심 히드록삼산(화합물 6a-6g)는 이사틴을 에탄올 조건내의 환류하에서 메톡실아민 히드로클로라이드를 사용하여 3-메톡심 유도체 4로 전환시켜서 합성하였다(반응식 2 참조). 얻어진 화합물들 및 중간체들의 구조는 IR, MS, 1H NMR, 13C NMR 및 원소분석 등을 포함하는 스펙트럼 연구를 통해 직접적으로 명확하게 확인하였다. 3-옥심 화합물 3a 내지 화합물 3g와 대조적으로, 이사틴-3-메톡심 히드록삼산(화합물 6a 내지 화합물 6g)에서, -OH 양성자는 메틸기로 치환되었기 때문에, 인접한 2′-위치에서 카르보닐기와의 수소결합은 존재하지 않는다. 이사틴-3-메톡심(화합물 6a 내지 화합물 6g)는 분광학 데이터 및 상관분석(correlation)에 확인된 바와 같이 순수한 E-이소머로서 얻어졌다. 선택된 화합물 3b에 대해 행한 NOE 분석 결과 H-4' 및 3'메톡심기의 메틸 양성자 사이에 깨끗한 상관관계(correlation)가 확인되었다. 추가적으로, 화합물 6a 내지 화합물 6g의 1H NMR 스펙트럼에서, H-4'에 해당하는 피크는 화합물 3a 내지 화합물 3g의 것과 비교하여 일관되게 0.2-0.3 ppm 만큼 위쪽으로 더 이동하였다. 이는 E-메톡심기의 보호효과에 의한 것이었다. 이사틴-3'-알킬옥심에 대해 E-이소머가 선호적으로 형성되는 것은 문헌들[23-25]에서 언급되고 검토되어 있다.
Compound 6a-6g was synthesized through the process of Reaction Scheme 2 above. (6a-6g) was synthesized by converting isatin to the 3-methoxime derivative 4 using methoxylamine hydrochloride under reflux in ethanol conditions (see Scheme 2) . The structures of the obtained compounds and intermediates were directly and clearly confirmed through spectral studies including IR, MS, 1 H NMR, 13 C NMR and elemental analysis and the like. In contrast to the 3-oxime compounds 3a to 3g, in the isatin-3-methoxycinnamic acid (compounds 6a to 6g), the -OH protons were substituted with methyl groups, There is no hydrogen bond. The isatin-3-methoxy (compounds 6a to 6g) was obtained as pure E-isomers as confirmed by spectroscopic data and correlation. NOE analysis on selected compound 3b showed a clear correlation between the methyl protons of the H-4 'and 3' methoxymethyl groups. In addition, in the 1 H NMR spectrum of the compounds 6a to 6g, the peak corresponding to H-4 'shifted more consistently 0.2-0.3 ppm upward compared with that of the compounds 3a to 3g. This was due to the protective effect of the E-methoxy group. The preferential formation of the E-isomer for the isatin-3'-alkyl oxime is mentioned and discussed in literature [23-25].

Ⅱ. 화합물들의 생물학적 활성의 평가 Ⅱ. Evaluation of biological activity of compounds

1. 히스톤 탈아세틸화 효소(HDAC)의 억제 활성 측정 1. Measurement of inhibitory activity of histone deacetylase (HDAC)

(1) 웨스턴 블롯 (1) Western blot

합성한 히드록삼산 화합물(화합물 3a - 3g 및 화합물 6a - 6g)에 대해 웨스턴 블롯 분석을 통해 1μM 농도에서의 히스톤-H3 및 히스톤-H4 탈아세틸화의 억제 활성을 평가하였다. 웨스턴 블롯은 다음의 방법을 통해 수행하였다. 먼저, RIPA 완충액 (50 mM Tris-HCl [pH 8.0], 5 mM EDTA, 150 mM NaCl, 1% NP-40, 0.1% SDS, 및 1 mM phenylmethylsulfonyl fluoride)내에서 세포를 용해시켜 총 단백질 추출물을 얻었다. 용해물내의 단백질 농도는 제조사의 지시서에 따라 Bio-Rad 단백질 분석 키트(Bio-Rad Laboratories Inc., Hercules, CA, USA)를 사용하여 측정하였다. 시료를 SDS-PAGE에서 분리하고 니트로셀룰로오스 멤브레인으로 이동시켰다. 멤브레인을 블로킹 완충액(0.2% Tween-20 및 3% 탈지유를 포함하는 TBS)과 함께 인큐베이션한 후, 아세틸 히스톤-H3, -H4, 및 GAPDH에 대한 1차 항체를 사용하여 탐색하였다. 세정후에 멤브레인을 서양고추냉이 퍼옥시다아제-컨쥬게이트된 2차 항체를 사용하여 탐색하였다. 검출은 ECL(enhanced chemiluminescent protein) 검출 시스템(Amersham Biosciences, Little Chalfont, UK)을 사용하여 행하였다.
The inhibitory activity of histone-H3 and histone-H4 deacetylation at 1 mu M concentration was evaluated by Western blot analysis on the synthesized hydroxamic acid compounds (compounds 3a to 3g and compounds 6a to 6g). Western blotting was performed by the following method. First, the total protein extract was obtained by dissolving the cells in RIPA buffer (50 mM Tris-HCl [pH 8.0], 5 mM EDTA, 150 mM NaCl, 1% NP-40, 0.1% SDS, and 1 mM phenylmethylsulfonyl fluoride) . Protein concentrations in the lysates were determined using a Bio-Rad protein assay kit (Bio-Rad Laboratories Inc., Hercules, Calif., USA) according to the manufacturer's instructions. Samples were separated on SDS-PAGE and transferred to a nitrocellulose membrane. Membranes were incubated with blocking buffer (TBS containing 0.2% Tween-20 and 3% skim milk) and then screened using primary antibodies against acetyl histone-H3, -H4, and GAPDH. After washing, the membranes were screened using horseradish peroxidase-conjugated secondary antibodies. Detection was performed using an enhanced chemiluminescent protein (ECL) detection system (Amersham Biosciences, Little Chalfont, UK).

(2) 화합물의 활성측정결과 (2) Results of activity measurement of the compound

도 2의 결과에서 보여지는 바와 같이, 화합물 3a - 3d 및 3f - 3g는 1μM 농도에서 HDAC 효소의 억제를 통해 히스톤-H3 및 히스톤-H4의 아세틸화를 현저하게 증가시켰다. 잘 알려진 HDAC 억제제인 SAHA도 유사한 방식으로 히스톤 아세틸화를 증가시켰다. 이사틴 부분상에 5-니트로기를 갖는 화합물인 3e만이 HDAC 효소를 억제하지 않아 히스톤-H3 및 히스톤-H4이 완전히 탈아세틸화되었다. As shown in the results of FIG. 2, compounds 3a-3d and 3f-3g significantly increased the acetylation of histone-H3 and histone-H4 through inhibition of HDAC enzyme at a concentration of 1 μM. SAHA, a well-known HDAC inhibitor, also increased histone acetylation in a similar manner. Only 3e, a compound having a 5-nitro group on the isatin moiety, did not inhibit the HDAC enzyme and histone-H3 and histone-H4 were completely deacetylated.

화합물 6a - 6g에 대해서는, 화합물 6a - 6c 및 6g의 4가지 화합물이 SAHA, 화합물 3a - 3d 및 3f - 3g와 유사하게 히스톤-H3 및 히스톤-H4의 아세틸화를 현저하게 증가시켰다. 그러나, 화합물 6d (5-Br 치환체), 화합물 6e (5-니트로 치환체) 및 화합물 6f (5-CH3기를 포함하는 화합물)은 분석한 농도에서 HDAC 효소의 현저한 억제활성을 보이지 않았다. 상기 얻어진 결과로 부터 (i) 이사틴 부분의 5번 위치에 니트로기가 존재하면 HDAC 억제에 유리하지 않다; (ⅱ) 3′-옥심기의 메틸화와 함께 이사틴환상의 5번 위치에 -Br 또는 -CH3와 같이 부피가 큰 치환체가 동시에 존재하게 되면(화합물 6d 및 6f) 효소 억제 활성에 좋지 않다는 점을 알 수 있었다.
For compounds 6a-6g, the four compounds of compounds 6a-6c and 6g significantly increased the acetylation of histone-H3 and histone-H4, similar to SAHA, compounds 3a-3d and 3f-3g. However, Compound 6d (5-Br substituent), Compound 6e (5-nitro substituent) and Compound 6f (compound containing 5-CH 3 group) did not show significant inhibitory activity of HDAC enzyme at the analyzed concentrations. From the obtained results, (i) the presence of a nitro group at position 5 of the isatin moiety is not favorable for HDAC inhibition; (Ii) methylation of the 3'-oxime group and the simultaneous presence of bulky substituents such as -Br or -CH 3 at the 5-position on the adamantine ring (compounds 6d and 6f) And it was found.

2. 암세포에 대한 세포독성 측정을 통한 항암활성 평가2. Evaluation of anticancer activity by measuring cytotoxicity against cancer cells

(1) 평가방법 (1) Evaluation method

인간 암세포주, NCI-H460 (폐암), PC3 (전립선암), SW620 (대장암), MCF-7 (유방암), 및 AsPC-1 (췌장암) 세포주는 American Type Culture Collection (ATCC, Manassas, VA, USA)으로부터 구입하였다. 세포들을 96웰 플레이트에서 9 x 103 세포/웰의 농도로 플레이팅하고, 하룻밤 인큐베이션하여 48 시간 동안 시료로 처리하였다. 화합물은 디메틸설폭사이드(dimethyl sulfoxide, DMSO)에 용해시켜 사용하였다. 세포독성은 문헌 [Skehan P, Storeng R, Scudiero D, Monk A, MacMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer drug screening. J. Natl Cancer Inst 1990; 82: 1107-1112]에 기술된 방법을 약간 변형한 방법[12]을 통해 측정하였다. IC50 값은 Probits 방법에 따라 산출하였다. 각 화합물에 대해 측정한 값은 3회의 독립적 측정결과의 평균값이다.
(American Type Culture Collection (ATCC, Manassas, Va., USA) was used as an anti-cancer agent for human cancer cell lines NCI-H460 (lung cancer), PC3 (prostate cancer), SW620 (colorectal cancer), MCF- USA). Cells are played in 96 well plates at a density of 9 x 10 3 cells / well plated and treated with samples for 48 hours and incubated overnight. The compound was dissolved in dimethyl sulfoxide (DMSO) and used. Cytotoxicity was assessed by the method of Skehan P, Storeng R, Scudiero D, Monk A, MacMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer drug screening. J. Natl Cancer Inst 1990; 82: 1107-1112] by a slightly modified method [12]. IC 50 values were calculated according to the Probits method. The values measured for each compound are the average values of three independent measurements.

(2) 암세포주에 대한 항증식 활성 평가 결과 (2) Antiproliferative Activity Evaluation Results on Cancer Cell Lines

SRB (sulforhodamine B) 세포 증식 분석을 사용하여 합성한 화합물의 항증식 활성을 평가하였다. 먼저, 이들 화합물들은 30μM의 농도에서 SW620 (인간 대장암) 세포주에 대해 이 암세포의 성장을 억제하는지 스크리닝하였다. 스크리닝 결과, 화합물 3a - 3f 및 화합물 6a - 6f 모두가 30μM의 농도에서 SW620 세포의 성장을 완전히 억제함을 확인하였다. 따라서, 이들 화합물 모두를 5 종류의 상이한 농도(30, 10, 3, 1, 0.3μM)에서 SW620 및 추가 4 가지 종류의 인간 암세포주, MCF-7 (유방암), PC-3 (전립선암), AsPC-1 (췌장암), 및 NCI-H460 (폐암) 세포주에 대해 암세포 증식 억제 활성을 측정하였다. 각 화합물의 IC50 (50%의 세포 증식 억제를 달성하는 농도) 값을 측정하고 하기 표 1에 정리하였다. SAHA는 양성 대조군으로 사용하였다. 하기 표 1에 나타난 실험데이터에 따르면 화합물 3a - 3f의 암세포주에 대한 세포독성은 HDAC 억제 활성과 잘 일치함을 보여주었다. 즉, 1μM의 농도에서 HDAC 효소 활성을 완전하게 억제하였던 화합물 3a - 3d 및 3f - 3g는 테스트한 5개 종류의 모든 암세포주에 대해서 마이크로몰 이하 또는 매우 낮은 마이크로몰 농도 범위의 IC50 값을 가지면서 암세포주에 대한 매우 뛰어난 세포독성 효과를 나타내었다. 반면에, 1μM의 농도에서 HDAC 효소 억제 활성을 나타내지 않았던 화합물 3e은 IC50 값이 19.69 μM으로 높은 값을 가지면서 암세포에 대한 세포독성 활성이 가장 낮았다(도 2). The antiproliferative activity of compounds synthesized using SRB (sulforhodamine B) cell proliferation assay was evaluated. First, these compounds were screened against SW620 (human colon cancer) cell line at a concentration of 30 [mu] M to inhibit growth of this cancer cell. As a result of screening, it was confirmed that both of the compounds 3a-3f and 6a-6f completely inhibited the growth of SW620 cells at a concentration of 30 μM. Thus, all of these compounds were tested for SW620 and four additional types of human cancer cell lines, MCF-7 (breast cancer), PC-3 (prostate cancer), and the like, at five different concentrations (30, 10, AsPC-1 (pancreatic cancer), and NCI-H460 (lung cancer) cell lines. The IC 50 (concentration at which 50% cell proliferation inhibition is attained) of each compound was measured and summarized in Table 1 below. SAHA was used as a positive control. According to the experimental data shown in the following Table 1, the cytotoxicity of the compound 3a-3f to the cancer cell line showed a good agreement with the HDAC inhibitory activity. That is, compounds 3a-3d and 3f-3g, which completely inhibited HDAC enzyme activity at a concentration of 1 μM, had IC 50 values in the micromolar or very low micromolar range for all five cancer cell lines tested And showed excellent cytotoxic effects on cancer cell lines. On the other hand, compound 3e, which did not exhibit the HDAC enzyme inhibitory activity at a concentration of 1 μM, had the lowest IC 50 activity against cancer cells while having an IC 50 value of 19.69 μM (FIG. 2).

화합물 6a - 6f에 대해서도, 일반적으로 암세포에 대한 세포독성활성은 HDAC 억제 활성과 상관성을 보였다. 도 2에 나타난 바와 같이 HDAC 효소 활성을 억제하지 않은 화합물 6d - 6f는 암세포에 대한 세포독성활성이 가장 낮게 나타났다. 반면에서, 히스톤-H3 및 -H4의 아세틸화 수준이 크게 증가되는 것에 의해 확인된 바와 같이, HDAC 효소를 강하게 억제하는 활성을 보인 화합물 6a - 6c, 및 6g는 테스트한 5 가지 종류의 모든 암세포주에 대해서도 강력한 세포독성을 나타내었다. 화합물 6e 만이 분명하지 않은 생물학적 활성 프로파일을 보였는데, 이 화합물은 분석한 농도(1 μM)에서 HDAC의 활성을 억제하지 않았으나, 활성을 측정한 4가지 암세포주 (SW620, MCF-7, PC-3, AsPC-1)에 대해서는 강력한 세포독성을 보여 항암활성을 나타내었으며, NCI-H460 세포주에 대해서만 약한 항암활성을 보였다. 화합물 3e 및 화합물 6d - 6f를 제외하고, 다른 모든 화합물들은 암세포주에 대한 세포독성활성의 면에서 양성대조군 화합물 SAHA 보다 더 강한 활성을 보였다. 특히, 화합물 3d는 AsPC-1 세포주(췌장암 세포주)에 대해서 SAHA 보다 45배 강한 세포독성을 보였다. 화합물 3b도 SW620 세포주(대장암 세포주)에 대해서 약 30배 강한 세포독성을 보였다. 3-옥심 시리즈 화합물(3a-3g)에서 상이한 크기 및 전자 영향을 갖는 치환체들은 세포독성에 대해 큰 영향을 주지 않는 것 같다. 반면에, 이사틴 고리상의 5번 위치에서 큰 치환체들은 3'메톡심 화합물(6d 및 6f)의 세포독성에 대해서는 부정적인 영향을 미쳤다. 이사틴 1a-1g, 이들의 대응하는 3-옥심 및 3-메톡심 유도체가 테스트한 5가지 종류의 암세포주에 대해서 세포독성을 특별히 나타내지 않았다(데이터는 보이지 않음). 따라서, 화합물 3a-3g 및 6a-6g에 의해 유도된 히스톤-H3 및 히스톤-H4 아세틸화 수준이 강하게 상승된다는 것으로부터 증명되는 바와 같이, 히드록삼산 부분의 도입이 화합물 3a-3g 및 6a-6g의 암세포에 대한 세포독성효과 및 HDAC에 대한 억제에 대해서 매우 중요한 역할을 한다는 것이 이들 화합물들의 항암 세포독성에 대한 중요한 메카니즘일 것으로 추정된다. For compounds 6a-6f, cytotoxic activity against cancer cells generally correlated with HDAC inhibitory activity. As shown in Fig. 2, Compound 6d-6f, which did not inhibit HDAC enzyme activity, showed the lowest cytotoxic activity against cancer cells. On the other hand, compounds 6a-6c, and 6g, which exhibited activity to strongly inhibit HDAC enzymes, as evidenced by a significant increase in the acetylation levels of histone-H3 and -H4, were tested in all five cancer cell lines tested But also showed strong cytotoxicity. Only compound 6e showed an undefined biological activity profile, which did not inhibit the activity of HDAC at the concentration (1 μM) analyzed, but the four cancer cell lines (SW620, MCF-7, PC-3 , AsPC-1) showed strong cytotoxicity and showed antitumor activity. NCI-H460 cell line showed weak anti-cancer activity. Except Compound 3e and Compound 6d-6f, all other compounds showed stronger activity than the positive control compound SAHA in terms of cytotoxic activity against cancer cells. Particularly, Compound 3d showed 45 times stronger cytotoxicity than SAHA in AsPC-1 cell line (pancreatic cancer cell line). Compound 3b also showed about 30 times stronger cytotoxicity against the SW620 cell line (colon cancer cell line). Substituents with different sizes and electron affinities in the 3-oxime series compounds (3a-3g) do not appear to have a significant effect on cytotoxicity. On the other hand, large substitutions at position 5 on the Isatin ring had a negative effect on the cytotoxicity of the 3 'methoxyl compounds (6d and 6f). Actin 1a-1g, their corresponding 3-oxime and 3-methoxy derivatives did not specifically show cytotoxicity against the 5 different types of cancer cells tested (data not shown). Thus, as evidenced by the strongly elevated levels of histone-H3 and histone-H4 acetylation induced by compounds 3a-3g and 6a-6g, the introduction of the hydroxamic acid moiety results in compounds 3a-3g and 6a-6g Is believed to be an important mechanism for the anticancer cytotoxicity of these compounds to play a crucial role in cytotoxic effects on cancer cells and inhibition on HDAC.

화합물compound RR 분자량Molecular Weight 세포독성(IC50,1 μM)/세포주2 Cytotoxicity (IC 50 , 1 μM) / cell line 2 SW620SW620 MCF-7MCF-7 PC3PC3 AsPC-1AsPC-1 NCI-H460NCI-H460 화합물 3a Compound 3a -H-H 305.33305.33 0.640.64 0.790.79 0.980.98 1.101.10 0.890.89 화합물 3bCompound 3b 5-F5-F 323.32323.32 0.110.11 1.551.55 2.732.73 1.721.72 1.501.50 화합물 3cCompound 3c 5-Cl5-Cl 339.77339.77 0.650.65 0.680.68 0.850.85 1.861.86 0.850.85 화합물 3dCompound 3d 5-Br5-Br 384.23384.23 0.290.29 1.771.77 2.212.21 0.080.08 0.970.97 화합물 3eCompound 3e 5-NO2 5-NO 2 350.33350.33 3.393.39 1.341.34 19.6919.69 4.684.68 7.717.71 화합물 3fCompound 3f 5-CH3 5-CH 3 319.36319.36 0.990.99 1.191.19 0.620.62 2.442.44 2.092.09 화합물 3gCompound 3g 7-Cl7-Cl 339.77339.77 1.051.05 1.741.74 1.571.57 1.821.82 1.351.35 화합물 6a Compound 6a -H-H 319.36319.36 0.730.73 1.711.71 1.671.67 1.221.22 0.750.75 화합물 6bCompound 6b 5-F5-F 337.35337.35 1.111.11 2.422.42 1.151.15 0.970.97 0.970.97 화합물 6cCompound 6c 5-Cl5-Cl 353.80353.80 0.490.49 1.561.56 2.332.33 0.490.49 0.760.76 화합물 6dCompound 6d 5-Br5-Br 398.25398.25 2.322.32 7.797.79 8.918.91 1.681.68 2.902.90 화합물 6eCompound 6e 5-NO2 5-NO 2 364.35364.35 1.351.35 0.940.94 1.691.69 0.840.84 14.2714.27 화합물 6fCompound 6f 5-CH3 5-CH 3 333.38333.38 1.071.07 16.6716.67 0.350.35 5.485.48 1.191.19 화합물 6gCompound 6g 7-Cl7-Cl 353.80353.80 0.260.26 0.340.34 0.290.29 0.630.63 0.350.35 SAHA SAHA 264.32264.32 3.703.70 6.426.42 4.314.31 3.663.66 2.772.77

상기 표 1에서 1 은 세포 성장을 50% 감소시키는 화합물의 농도이고, 숫자는 10% 보다 작은 편차로서 3회 반복 실험의 평균 결과값을 나타낸다. 2은 세포주: SW620, 대장암; MCF-7, 유방암; PC3, 전립선암; AsPC-1, 췌장암; NCI-H460, 폐암; 3 SAHA (suberoylanilide hydroxamic acid), 양성대조군.
In Table 1, 1 is the concentration of the compound that reduces cell growth by 50%, and the number is a deviation of less than 10%, which represents the average result of three repeated experiments. 2 is the cell line: SW620, colon cancer; MCF-7, breast cancer; PC3, prostate cancer; AsPC-1, pancreatic cancer; NCI-H460, lung cancer; 3 SAHA (suberoylanilide hydroxamic acid), positive control.

3. HDAC 효소와의 결합 구조 시뮬레이션 3. Simulation of bond structure with HDAC enzyme

HDAC 효소와 이 효소의 억제화합물들 사이의 상호작용에 대해 알아보기 위해, HDAC의 활성자리를 사용하여 도킹 시뮬레이션(docking simulation)을 수행하였다. AutoDock Vina program [14]을 사용하여 도킹 연구(docking study)를 수행하였다. HDAC8 효소의 초기 구조(SAHA와의 복합체, 25) 및 HDAC2 효소의 초기 구조[N-(2-아미노페닐)벤즈아미드와의 복합체, 27]는 Protein Data Bank (PDB) (각각 PDB ID: 1T69 and PDB ID: 3MAX)으로부터 얻었고, 화합물들에 대한 좌표는 GlycoBioChem PRODRG2 Server (http://davapc1.bioch.dundee.ac.uk/prodrg/)를 사용하여 생성시켰다[30]. 도킹 연구에 대한 그리드 맵(grid map)은 SAHA 결합자리상의 중앙에 위치하게 하였고, 복합체 구조로부터 SAHA(HDAC8의 경우) 또는 N-(2-아미노페닐)벤즈아미드 (HDAC2의 경우)를 제거한 후에 1.0 Å 공간으로 26 x 26 x 22 포인트를 포함하였다[13-15]. AutoDock Vina program을 four-way multithreading으로 수행시키고, AutoDock Vina program 에서의 다른 파라미터들은 디폴트 세팅에 두었다. To understand the interaction between the HDAC enzyme and its inhibitory compounds, a docking simulation was performed using the active site of HDAC. A docking study was performed using the AutoDock Vina program [14]. The initial structure of the HDAC8 enzyme (complex with SAHA, 25) and the initial structure of the HDAC2 enzyme, [27] with Protein Data Bank (PDB) ID: 3MAX), and the coordinates for the compounds were generated using GlycoBioChem PRODRG2 Server (http://davapc1.bioch.dundee.ac.uk/prodrg/) [30]. The grid map for the docking study was centered on the SAHA binding site and after removal of SAHA (for HDAC8) or N- (2-aminophenyl) benzamide (for HDAC2) from the complex structure, A space of 26 x 26 x 22 points was included [13-15]. The AutoDock Vina program is run with four-way multithreading, and the other parameters in the AutoDock Vina program are placed in the default settings.

SAHA를 복합체 구조로부터 제거한 후에 AutoDock Vina program [28]을 사용하여 HDAC8의 결정구조에 대해 SAHA와 함께 대조군 도킹 실험을 수행하였다[14, 15]. After SAHA was removed from the composite structure, a control docking experiment was performed with SAHA on the crystal structure of HDAC8 using the AutoDock Vina program [28] [14,15].

화합물들과 HDAC 사이의 상호결합에 대한 정보를 얻기 위해, HDAC의 활성자리를 사용하여 도킹 시뮬레이션을 행하였다. 도킹 주형으로서, SAHA와 복합체를 형성한 HDAC8의 구조를 선택하였는데, 선택한 이유는 이 결정 구조를 입수하기 쉽기 때문이다(25, Protein Data Bank ID: 1T69). 복합체 구조로부터 SAHA를 제거한 후에 AutoDock Vina program [26]를 사용하여 HDAC8의 결정구조에 대해 SAHA를 대조군으로 하여 도킹 실험을 수행하였다. 도킹 실험결과, 활성자리에 위치한 화합물 3a 및 6a가 SAHA 보다 더 안정한 에너지를 가짐을 확인하였다(도 3). 화합물 3a 및 6a에 대한 예상 결합 모드의 안정화 에너지는 -5.3 및 -5.6 kcal/mol 인데 반해, SAHA는 -4.4 kcal/mol이었다. 따라서, 도킹 실험 결과에 의하면, 화합물 3a 및 6a는 HDAC8에 대해서 SAHA 보다 더 큰 친화도를 갖는 것으로 확인하였다. To obtain information on the interconnection between the compounds and HDAC, a docking simulation was performed using the active site of the HDAC. As the docking template, the structure of HDAC8 complexed with SAHA was chosen because it is easy to obtain this crystal structure (25, Protein Data Bank ID: 1T69). After SAHA was removed from the composite structure, docking experiments were performed using SAHA as a control for the crystal structure of HDAC8 using the AutoDock Vina program [26]. As a result of the docking experiment, it was confirmed that the compounds 3a and 6a located at the active sites had more stable energy than SAHA (FIG. 3). The stabilization energies of the expected binding modes for compounds 3a and 6a were -5.3 and -5.6 kcal / mol, while SAHA was -4.4 kcal / mol. Therefore, according to the results of the docking experiments, it was confirmed that the compounds 3a and 6a had greater affinity for HDAC8 than SAHA.

HDAC8에 대한 도킹 연구에 추가하여, N-(2-아미노페닐)벤즈아미드와의 HDAC2 복합체를 선정하였다(27, PDB ID: 3MAX). 히스톤-H3 및 히스톤-H4 탈아세틸화는 HDAC1 및 HDAC2에 의해 조절되기 때문에, HDAC2에 대한 화합물 3a 및 화합물 6a의 도킹 실험을 추가적으로 시행하였다. 도킹 실험결과, 화합물 3a 및 6a 모두 HDAC2의 활성자리에 잘 위치하고 있음을 확인하였고, 히드록삼산 부분이 아연-결합 자리에도 잘 위치하고 있음을 확인하였다(도 4). 예상되는 결합 모드의 안정화 에너지는 화합물 3a 및 6a 모두에 대해 각각 -6.7 kcal/mol이었던 반면, N-(2-아미노페닐)벤즈아미드의 경우는 -7.5 kcal/mol이었다. 따라서, 양쪽 모두의 화합물은 HDAC2에 대해 강한 결합 친화도를 나타내었다.
In addition to docking studies for HDAC8, HDAC2 complexes with N- (2-aminophenyl) benzamide were selected (27, PDB ID: 3MAX). Since histone-H3 and histone-H4 deacetylation is regulated by HDAC1 and HDAC2, docking experiments of Compound 3a and Compound 6a against HDAC2 were additionally performed. As a result of the docking experiment, it was confirmed that both of the compounds 3a and 6a were well located in the active site of HDAC2, and that the hydroxamic acid moiety was well located in the zinc-binding site (FIG. 4). The expected stabilization energies for the coupled modes were -6.7 kcal / mol for both compounds 3a and 6a, and -7.5 kcal / mol for N- (2-aminophenyl) benzamide. Thus, both compounds showed strong binding affinity for HDAC2.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (6)

하기 화학식 1 또는 화학식 2로 표시되는 이사틴 기반 히드록삼산 화합물.
[화학식 1]
Figure 112015022847036-pat00005

상기 화학식 1에서 R은 할로겐, C1-C5알킬, 또는 니트로이다.
[화학식 2]
Figure 112015022847036-pat00006

상기 화학식 2에서 R은 수소, 할로겐, C1-C5알킬, 또는 니트로이다.
A isatin-based hydroxamic acid compound represented by the following formula (1) or (2).
[Chemical Formula 1]
Figure 112015022847036-pat00005

Wherein R is halogen, C 1 -C 5 alkyl, or nitro.
(2)
Figure 112015022847036-pat00006

In Formula 2, R is hydrogen, halogen, C 1 -C 5 alkyl, or nitro.
제 1 항에 있어서, 상기 할로겐은 플루오르(F), 염소(Cl) 또는 브롬(Br)인 것을 특징으로 하는 화합물.
2. A compound according to claim 1, wherein the halogen is fluorine (F), chlorine (Cl) or bromine (Br).
제 1 항에 있어서, 상기 화학식 1 또는 화학식 2으로 표시되는 이사틴 기반 히드록삼산 화합물은 다음의 화합물 중 어느 하나인 것을 특징으로 하는 화합물:
7-(5-플루오로-3-(히드록시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;
7-(5-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;
7-(5-브로모-3-(히드록시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;
N-히드록시-7-(3-(히드록시이미노)-5-니트로-2-옥소인돌린-1-일)헵탄아미드;
N-히드록시-7-(3-(히드록시이미노)-5-메틸-2-옥소인돌린-1-일)헵탄아미드;
7-(7-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;
N-히드록시-7-(3-(메톡시이미노)-2-옥소인돌린-1-일)헵탄아미드;
7-(5-플루오로-3-(메톡시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;
7-(5-클로로-3-(메톡시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;
7-(5-브로모-3-(메톡시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드;
N-히드록시-7-(3-(메톡시이미노)-5-니트로-2-옥소인돌린-1-일)헵탄아미드;
N-히드록시-7-(3-(메톡시이미노)-5-메틸-2-옥소인돌린-1-일)헵탄아미드; 및
7-(7-클로로-3-(메톡시이미노)-2-옥소인돌린-1-일)-N-히드록시헵탄아미드.
2. The compound according to claim 1, wherein the isostene-based hydroxamic acid compound represented by Formula 1 or Formula 2 is any one of the following compounds:
7- (5-fluoro-3- (hydroxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;
7- (5-chloro-3- (hydroxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;
7- (5-bromo-3- (hydroxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;
N-hydroxy-7- (3- (hydroxyimino) -5-nitro-2-oxoindolin-1-yl) heptanamide;
N-hydroxy-7- (3- (hydroxyimino) -5-methyl-2-oxoindolin-1-yl) heptanamide;
7- (7-chloro-3- (hydroxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;
N-hydroxy-7- (3- (methoxyimino) -2-oxoindolin-1-yl) heptanamide;
7- (5-fluoro-3- (methoxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;
7- (5-chloro-3- (methoxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;
7- (5-bromo-3- (methoxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide;
N-Hydroxy-7- (3- (methoxyimino) -5-nitro-2-oxoindolin-1-yl) heptanamide;
N-hydroxy-7- (3- (methoxyimino) -5-methyl-2-oxoindolin-1-yl) heptanamide; And
7- (7-Chloro-3- (methoxyimino) -2-oxoindolin-1-yl) -N-hydroxyheptanamide.
제 1 항 내지 제 3 항 중 어느 한 항 기재의 화합물을 유효성분으로 포함하는 항암용 약제학적 조성물.
An anticancer pharmaceutical composition comprising the compound of any one of claims 1 to 3 as an active ingredient.
제 4 항에 있어서, 상기 암은 유방암, 폐암, 위암, 간암, 혈액암, 뼈암, 췌장암, 피부암, 두경부암, 피부 또는 안구 흑색종, 자궁육종, 난소암, 직장암, 항문암, 대장암, 난관암, 자궁내막암, 자궁경부암, 소장암, 내분비암, 갑상선암, 부갑상선암, 신장암, 연조직종양, 요도암, 전립선암, 기관지암, 또는 골수암인 것을 특징으로 하는 항암용 약제학적 조성물.
The method of claim 4, wherein the cancer is selected from the group consisting of breast cancer, lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, head and neck cancer, skin or ocular melanoma, uterine sarcoma, ovarian cancer, rectal cancer, Wherein the cancer is cancer, endometrial cancer, cervical cancer, small bowel cancer, endocrine cancer, thyroid cancer, pituitary cancer, kidney cancer, soft tissue tumor, urethral cancer, prostate cancer, bronchial cancer or bone cancer.
제 4 항에 있어서, 상기 화합물은 히스톤 탈아세틸화효소(histone deacetylase)의 억제를 통해 히스톤의 아세틸화를 촉진하는 활성을 갖는 것을 특징으로 하는 항암용 약제학적 조성물. 5. The anticancer pharmaceutical composition according to claim 4, wherein the compound has an activity of promoting histone acetylation through inhibition of histone deacetylase.
KR1020130090494A 2013-07-30 2013-07-30 Novel Isatin-Based Hydroxamic Acids and Anti-Cancer Composition Comprising the Same As Active Ingredient KR101536050B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130090494A KR101536050B1 (en) 2013-07-30 2013-07-30 Novel Isatin-Based Hydroxamic Acids and Anti-Cancer Composition Comprising the Same As Active Ingredient
PCT/KR2013/012035 WO2015016441A1 (en) 2013-07-30 2013-12-23 Novel isatin-based hydroxamic acid and anti-cancer composition containing same as active ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130090494A KR101536050B1 (en) 2013-07-30 2013-07-30 Novel Isatin-Based Hydroxamic Acids and Anti-Cancer Composition Comprising the Same As Active Ingredient

Publications (2)

Publication Number Publication Date
KR20150014804A KR20150014804A (en) 2015-02-09
KR101536050B1 true KR101536050B1 (en) 2015-07-13

Family

ID=52431942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130090494A KR101536050B1 (en) 2013-07-30 2013-07-30 Novel Isatin-Based Hydroxamic Acids and Anti-Cancer Composition Comprising the Same As Active Ingredient

Country Status (2)

Country Link
KR (1) KR101536050B1 (en)
WO (1) WO2015016441A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230155311A (en) 2022-05-03 2023-11-10 충북대학교 산학협력단 Novel N-hydroxypropenamide compound and pharmaceutical composition for preventing or treating cancer comprising the same as an active ingredient
KR20230155310A (en) 2022-05-03 2023-11-10 충북대학교 산학협력단 Novel N-hydroxypropenamide compound and pharmaceutical composition for preventing or treating cancer comprising the same as an active ingredient

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100110756A (en) * 2009-04-03 2010-10-13 네이처와이즈 바이오테크 & 메디칼스 코포레이션 Cinamic compounds and derivatives therefrom for the inhibition of histone deacetylase
KR20120132657A (en) * 2011-05-27 2012-12-07 충북대학교 산학협력단 Novel Hydroxamic Acids Having Histone Deacetylase Inhibiting Activity and Pharmaceutical Composition for Treating Cancer Comprising the Same As Active Ingredient

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784173B2 (en) * 2001-06-15 2004-08-31 Hoffmann-La Roche Inc. Aromatic dicarboxylic acid derivatives
KR101384350B1 (en) * 2012-06-21 2014-04-14 충북대학교 산학협력단 Novel Hydroxamic Acids Having Histone Deacetylase Inhibiting Activity and Anti-Cancer Composition Comprising the Same As An Active Ingredient

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100110756A (en) * 2009-04-03 2010-10-13 네이처와이즈 바이오테크 & 메디칼스 코포레이션 Cinamic compounds and derivatives therefrom for the inhibition of histone deacetylase
KR20120132657A (en) * 2011-05-27 2012-12-07 충북대학교 산학협력단 Novel Hydroxamic Acids Having Histone Deacetylase Inhibiting Activity and Pharmaceutical Composition for Treating Cancer Comprising the Same As Active Ingredient

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230155311A (en) 2022-05-03 2023-11-10 충북대학교 산학협력단 Novel N-hydroxypropenamide compound and pharmaceutical composition for preventing or treating cancer comprising the same as an active ingredient
KR20230155310A (en) 2022-05-03 2023-11-10 충북대학교 산학협력단 Novel N-hydroxypropenamide compound and pharmaceutical composition for preventing or treating cancer comprising the same as an active ingredient

Also Published As

Publication number Publication date
KR20150014804A (en) 2015-02-09
WO2015016441A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
Nam et al. Novel isatin-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents
JP5758395B2 (en) Sepiapterin reductase inhibitors for the treatment of pain
ES2452868T3 (en) New histone deacetylase inhibitors based simultaneously on 1H-trisubstituted pyrroles and aromatic and heteroaromatic spacers
CN111770914B (en) Compounds as neurokinin-1 receptor antagonists and uses thereof
Thanh Tung et al. New benzothiazole/thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents
TW201021798A (en) Amide acetate derivative having inhibitory activity on endothelial lipase
WO2014165090A1 (en) Compounds for the treatment of tuberculosis
TW200307535A (en) Therapeutic agent for cancer
WO2018184585A1 (en) Compound for inhibiting ido, manufacturing method and use thereof
Shao et al. Discovery of 2-methoxy-3-phenylsulfonamino-5-(quinazolin-6-yl or quinolin-6-yl) benzamides as novel PI3K inhibitors and anticancer agents by bioisostere
EP3004057A1 (en) Heterocyclic derivatives and use thereof
Li et al. Selective HDAC inhibitors with potent oral activity against leukemia and colorectal cancer: Design, structure-activity relationship and anti-tumor activity study
WO2011106226A2 (en) Prolylhydroxylase inhibitors and methods of use
Cilibrasi et al. Synthesis of 2H-Imidazo [2′, 1': 2, 3][1, 3] thiazolo [4, 5-e] isoindol-8-yl-phenylureas with promising therapeutic features for the treatment of acute myeloid leukemia (AML) with FLT3/ITD mutations
WO2013170758A1 (en) Fused ring-structured benzamide compound and application thereof as antineoplastic medicament
Do Dung et al. Novel 3-substituted-2-oxoindoline-based N-hydroxypropenamides as histone deacetylase inhibitors and antitumor agents
US9732067B2 (en) Compounds and methods for activating the apoptotic arm of the unfolded protein response
KR101536050B1 (en) Novel Isatin-Based Hydroxamic Acids and Anti-Cancer Composition Comprising the Same As Active Ingredient
El-Gamil et al. Development of novel conformationally restricted selective Clk1/4 inhibitors through creating an intramolecular hydrogen bond involving an imide linker
KR101624344B1 (en) Novel 3-Substituted-2-Oxoindoline-Based N-hydroxypropenamides Having Activity of Inhibiting Histone Deacetylase and Antitumor Composition Comprising the Same
KR101586045B1 (en) Novel Phenylthiazole-Based Hydroxamic Acids and Anti-Cancer Composition Comprising the Same As Active Ingredient
KR102330072B1 (en) Novel Indirubin-based N-Hydroxybenzamides, N-Hydroxypropenamides and N-Hydroxyheptanamides and its use
KR101900575B1 (en) Novel Hydroxamic Acids and Uses Thereof
KR101900574B1 (en) Novel N-hydroxybenzamide and Use Thereof
Thi Lan Huong et al. 5-Aryl-1, 3, 4-thiadiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents: synthesis, bioevaluation and docking study

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 4