KR101900575B1 - Novel Hydroxamic Acids and Uses Thereof - Google Patents

Novel Hydroxamic Acids and Uses Thereof Download PDF

Info

Publication number
KR101900575B1
KR101900575B1 KR1020160175023A KR20160175023A KR101900575B1 KR 101900575 B1 KR101900575 B1 KR 101900575B1 KR 1020160175023 A KR1020160175023 A KR 1020160175023A KR 20160175023 A KR20160175023 A KR 20160175023A KR 101900575 B1 KR101900575 B1 KR 101900575B1
Authority
KR
South Korea
Prior art keywords
methyl
hydroxyimino
cancer
triazol
oxoindolin
Prior art date
Application number
KR1020160175023A
Other languages
Korean (ko)
Other versions
KR20180071890A (en
Inventor
한상배
김영수
홍진태
하이 남 응우옌
티 란 흐엉 트란
티 마이 덩 두
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020160175023A priority Critical patent/KR101900575B1/en
Publication of KR20180071890A publication Critical patent/KR20180071890A/en
Application granted granted Critical
Publication of KR101900575B1 publication Critical patent/KR101900575B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41921,2,3-Triazoles

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 신규한 히드록삼산(hydroxamic acid) 계 화합물 및 이의 용도에 관한 것이다. 보다 상세하게는, 본 발명은 히스톤 탈아세틸화 효소 억제제로 유용한 신규한 히드록삼산(hydroxamic acid) 계 화합물 및 이를 포함하는 조성물을 제공하는 것으로, 본 발명에 따른 화합물은 암의 치료 및 예방을 위한 약제로 유용하게 사용할 수 있다.The present invention relates to novel hydroxamic acid based compounds and their use. More particularly, the present invention provides novel hydroxamic acid-based compounds useful as histone deacetylase inhibitors and compositions comprising same, wherein the compounds according to the present invention are useful for the treatment and prevention of cancer It can be used effectively as a medicine.

Description

신규한 히드록삼산 및 이의 용도{Novel Hydroxamic Acids and Uses Thereof}Novel Hydroxamic Acids and Uses Thereof < RTI ID = 0.0 >

본 발명은 신규한 히드록삼산 및 이의 용도에 관한 것이다.The present invention relates to novel hydroxamic acids and their use.

히스톤 탈아세틸화 효소 (HDAC, histone deacetylases)는 히스톤 단백질의 꼬리에서 라이신 잔기로부터 아세틸기의 제거를 촉매하는 효소의 군을 말한다 [1-3]. 현재까지 18 가지의 상이한 HDAC의 아이소폼(isoform)이 진핵 생물에서 동정되었다 [4]. 서열간의 상대적인 유사성에 기초하여, 이들 아이소폼은 4 개의 클래스로 분류된다. HDAC 클래스 I은 HDAC1, 2, 3 및 HDAC8을 포함하는 4 종의 효소로 구성되고, HDAC 클래스 II는 HDAC4, 5, 6, 7, 9 및 HDAC10을 포함한 6 종의 효소로 구성된다. 또한 시르투인(Sirtuin)이라고도 알려진 HDAC 클래스 III는 7 종의 효소가 있다 (Sirt1-7). 시르투인은 NAD+ 의존적 효소이다. 마지막으로 HDAC 클래스 IV에는 단 하나의 효소(HDAC11)만이 있다. 이 아이소폼은 클래스 II와 클래스 I의 HDAC2의 특성을 모두 갖는 것으로 알려져 있다 [3].Histone deacetylases (HDACs) are groups of enzymes that catalyze the removal of acetyl groups from lysine residues in the tail of histone proteins [1-3]. Up to now, 18 different isoforms of HDAC have been identified in eukaryotes [4]. Based on the relative similarity between sequences, these isoforms are classified into four classes. HDAC class I consists of four enzymes including HDAC1, 2, 3 and HDAC8, and HDAC class II consists of six enzymes including HDAC4, 5, 6, 7, 9 and HDAC10. HDAC class III, also known as Sirtuin, has seven enzymes (Sirt1-7). Siruin is an NAD + dependent enzyme. Finally, there is only one enzyme (HDAC11) in HDAC class IV. This isoform is known to have both HDAC2 characteristics of class II and class I [3].

서로 다른 HDAC 아이소폼, 특히 클래스 I 및 II의 아이소폼은 세포와 관련된 여러 가지 프로세스에 관여하는 것으로 알려져 있다. 예를 들어, HDAC 1, 2, 3 및 8은 세포 증식을 촉진하는 반면, HDAC 1-4, 5 및 8은 세포 사멸 및 분화를 예방한다. HDAC 4, 6, 7 및 10을 포함한 몇 가지 다른 아이소폼 (isoforms)은 암세포 전이에 있어서 중요한 두 가지 과정인 혈관 신생(angiogenesis) 및 세포 이동(cell migration)을 촉진시키는 것으로 밝혀졌다 [4,5]. 각각의 HDAC 아이소폼의 억제는 많은 유형의 종양 세포에서 분화(differentiation), 세포 사멸(apoptosis) 및 세포주기 정지(cell cycle arrest)와 관련된 효과를 나타낸다. 또한, HDAC 억제의 종양 세포의 성장에 대한 선택적 효과는 시험관 내(in vitro)뿐만 아니라 수많은 생체 내(in vivo) 전임상 모델 및 임상 환경에서도 분명하게 입증되었다 [6,7]. 따라서 HDAC의 억제는 최근 암 치료 방법에 있어서 매우 흥미로운 접근법이 되었다 [8]. 이에 따라 지난 수년 동안 많은 수의 HDAC 억제제가 보고되었다. Different HDAC isoforms, particularly isoforms of class I and II, are known to be involved in various cell related processes. For example, HDACs 1, 2, 3 and 8 promote cell proliferation whereas HDACs 1-4, 5 and 8 prevent apoptosis and differentiation. Several other isoforms, including HDACs 4, 6, 7 and 10, have been shown to promote two important processes in cancer cell metastasis, angiogenesis and cell migration [4,5 ]. Inhibition of each HDAC isoform shows effects associated with differentiation, apoptosis and cell cycle arrest in many types of tumor cells. In addition, the selective effect of HDAC inhibition on tumor cell growth has been evident not only in vitro but also in a number of in vivo preclinical models and clinical settings [6,7]. Therefore, inhibition of HDAC has become a very interesting approach in recent cancer treatment methods [8]. Thus, a number of HDAC inhibitors have been reported over the past several years.

지금까지 개발된 HDAC 억제제는 부틸레이트(butyrate), 페닐부틸레이트(phenylbutyrate) 또는 발프로익산(valproic acid)과 같은 짧은 사슬 지방산에서부터 다양한 형태의 히드록삼산(hydroxamic acid), 또는 벤즈아미드까지 다양하다. 이 중 보리노스타트(vorinostat, 상품명 Zolinza®) (SAHA 또는 suberoylanilide hydroxamic acid라고도 함)는, 피부의 T 세포 림프종 (CTCL, cutaneous T cell lymphoma) 치료를 위해 2006년 10월 미국 FDA에서 승인한 최초의 HDAC 억제제이다. 두 번째로 FDA 승인을 받은 HDAC 억제제인 로미뎁신(romidepsin, 상품명 Istodax®)은 2009년 미국 FDA의 승인을 받았다. 최근에는 파노비노스타트(panobinostat) (LBH-589, 상표명 Farydak®)가 다발성 골수종의 치료를 위해 2015년 2월 미국 FDA로부터 허가를 받았고 [16], 또한 2015년에는 치다마이드(chidamide, 상품명 Epidaza®)가 재발성 또는 난치성 말초 T 세포 림프종에 대해 중국 FDA로부터 승인을 받았다. 이밖에도 PXD-01 (Belinostat), MS-27-527 (Entinostat)와 같은 여러 다른 HDAC 억제제가 현재 여러 단계의 임상 시험 중에 있다.The HDAC inhibitors developed so far range from short chain fatty acids such as butyrate, phenylbutyrate or valproic acid to various forms of hydroxamic acid, or benzamide . Of these, vorinostat (Zolinza®) (also known as SAHA or suberoylanilide hydroxamic acid) is the first of its kind approved by the US FDA in October 2006 for the treatment of skin T-cell lymphoma (CTCL) HDAC inhibitors. The second FDA-approved HDAC inhibitor, romidepsin (Istodax®), was approved by the US FDA in 2009. Recently, panobinostat (LBH-589, trade name Farydak®) has been approved by the US FDA in February 2015 for the treatment of multiple myeloma [16] and chidamide (product name: Epidaza® ) Received approval from the FDA of China for relapsed or refractory peripheral T cell lymphoma. In addition, several other HDAC inhibitors, such as PXD-01 (Belinostat) and MS-27-527 (Entinostat), are currently in various stages of clinical trials.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

Nam, N.H.; Parang, K. Current targets for anticancer drugs discovery. Curr. Drugs Targets 2003, 4, 159-179.Nam, N. H .; Parang, K. Current targets for anticancer drugs discovery. Curr. Drugs Targets 2003, 4, 159-179. Witt, O.; Deubzer, H.E.; Milde, T.; Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett. 2009, 277, 8-21. Witt, O .; Deubzer, H. E .; Milde, T .; Oehme, I. HDAC family: What are cancer relevant targets? Cancer Lett. 2009, 277, 8-21. De Ruijter, A.J.M.; Gennip, A.H.V.; Caron, H.N.; Kemp, S.; Kuilenburg, A.B.P.V. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J., 2003, 370, 737-739.De Ruijter, A. J. M .; Gennip, A.H.V .; Caron, H. N .; Kemp, S .; Kuilenburg, A.B.P.V. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370, 737-739. Zwergel C,Valente S,Jacob C,Mai A. Emerging approaches forhistonedeacetylaseinhibitor drug discovery. Expert Opin. Drug Discov.2015, 10, 599-613. Zwergel C, Valente S, Jacob C, Mai A. Emerging approaches forhistonedeacetylaseinhibitor drug discovery. Expert Opin. Drug Discov.2015, 10, 599-613. West, A.C.; Johnstone, R.W. New and emerging HDACinhibitorsfor cancer treatment. J. Clin. Invest., 2014, 124, 30-39.West, A. C .; Johnstone, R.W. New and emerging HDACinhibitors for cancer treatment. J. Clin. Invest., 2014, 124, 30-39. Hamm, C.A., Costa, F.F. Epinomes as therapeutic targets. Pharmacol Ther.2015, 151, 72-86.. Hamm, C. A., Costa, F. F. Epinomes as therapeutic targets. Pharmacol Ther., 201, 151, 72-86. Glaser, K.B. HDAC inhibitors: clinical update and mechanism-based potential. Biochem. Pharmacol., 2007, 74, 659-671.Glaser, K.B. HDAC inhibitors: clinical update and mechanism-based potential. Biochem. Pharmacol., 2007, 74, 659-671. Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006, 5, 769-784.Bolden, J. E .; Peart, M.J .; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006, 5, 769-784. Dallavalle, S.; Cincinelli, R.; Nannei, R.; Merlini, L.; Morini, G.; Penco, S.; Pisano, C.; Vesci, L.; Barbarino, M.; Zuco, V.; De Cesare, M.; Zunino, F. Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur J. Med. Chem., 2009, 44, 1900-1912.Dallavalle, S .; Cincinelli, R .; Nannei, R .; Merlini, L .; Morini, G .; Penco, S .; Pisano, C .; Vesci, L .; Barbarino, M .; Zuco, V .; De Cesare, M .; Zunino, F. Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur J. Med. Chem., 2009, 44, 1900-1912. Bracker, T.U., Sommer, A., Fichtner, I., Faus, H., Haendler, B., Hess-Stumpp, H. Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int. J. Oncol., 2009, 35, 909-920.Bracker, TU, Sommer, A., Fichtner, I., Faus, H., Haendler, B., Hess-Stumpp, H. Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, . Int. J. Oncol., 2009, 35, 909-920. Barbarotta L.,Hurley K. Romidepsin for the Treatment of Peripheral T-Cell Lymphoma. J. Adv. Pract. Oncol.2015, 6, 22-36.Barbarotta L., Hurley K. Romidepsin for the Treatment of Peripheral T-Cell Lymphoma. J. Adv. Pract. Oncol. 2015, 6, 22-36. Valente, S.; Mai, A. Small-moleculeinhibitorsofhistonedeacetylasefor the treatment of cancer and non-cancer diseases: a patent review (2011-2013). Expert. Opin. Ther. Pat.,2014, 24, 401-415. Valente, S .; Mai, A. Small-molecule inhibitors of histone deacetylasefor the treatment of cancer and non-cancer diseases: a patent review (2011-2013). Expert. Opin. Ther. Pat., 2014, 24, 401-415. Li, J.; Li, G.; Xu, X. Histone deacetylase inhibitors: an attractive strategy for cancer therapy. Curr. Med. Chem. 2013, 20, 1858-1886.Li, J .; Li, G .; Xu, X. Histone deacetylase inhibitors: an attractive strategy for cancer therapy. Curr. Med. Chem. 2013, 20, 1858-1886. Ververis, K.; Hiong, A.; Karagiannis, T.C.; Licciardi, P.V. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 2013, 7, 47-60.Ververis, K .; Hiong, A .; Karagiannis, T. C .; Licciardi, P.V. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 2013, 7, 47-60. Qiu T, Zhou L, Zhu W, Wang T, Wang J, Shu Y, Liu P. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol., 2013, 9, 255-269. Qiu T, Zhou L, Zhu W, Wang T, Wang J, Shu Y, Liu P. Effects of treatment with histone deacetylase inhibitors on solid tumors: a review based on 30 clinical trials. Future Oncol., 2013, 9, 255-269. "FDA approves Farydak for treatment of multiple myeloma".fda.gov. Retrieved 6 October2015."FDA approves Farydak for treatment of multiple myeloma" .fda.gov. Retrieved 6 October2015. Malini G. HDAC inhibitors still need a home run, despite recent approval.Nature Reviews Drug Dis. 2015, 14, 225-226.Malini G. HDAC inhibitors still need a home run, yet recent approval.Nature Reviews Drug Dis. 2015, 14, 225-226. Oanh, D.T.K.; Hai, H.V.; Hue, V.T.M.; Park, S.H.,; Kim, H.J.; Han, B.W.; Kim, H.S.; Hong, J.T.; Han, S.B.; Nam, N.H. Benzothiazole-containing hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorg. Med. Chem. Lett., 2011, 21, 7509-7512.Oanh, D.T.K .; Hai, H. V .; Hue, V.T.M .; Park, S. H.,; Kim, H. J .; Han, B. W .; Kim, H. S .; Hong, J.T .; Han, S.B .; Nam, N.H. Benzothiazole-containing hydroxamic acids such as histone deacetylase inhibitors and antitumor agents. Bioorg. Med. Chem. Lett., 2011, 21, 7509-7512. Tung, T.T.; Oanh, D.T.; Dung, P.T.; Hue, V.T.; Park, S.H.; Han, B.W.; Kim, Y.; Hong, J.T.; Han, S.B.; Nam, N.H. New benzothiazole/thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents. Med. Chem. 2013, 9, 1051-1057.Tung, T.T .; Oanh, D.T .; Dung, P. T .; Hue, V.T .; Park, S. H .; Han, B. W .; Kim, Y .; Hong, J.T .; Han, S.B .; Nam, N.H. New benzothiazole / thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents. Med. Chem. 2013, 9, 1051-1057. Nam, N.H.; Huong, T.L.; Dung, D.T.M.; Oanh, D.T.K.; Dung, P.T.P.; Kim, K.R.; Han, B.W.; Kim, Y.S.; Hong, J.T.; Han, S.B. Synthesis, bioevaluation and docking study of 5-substitutedphenyl-1,3,4-thiadiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. J. Enzyme Inhib. Med. Chem. (2013) (published online, doi:10.3109/14756366.2013.832238).Nam, N. H .; Huong, T. L .; Dung, D.T.M .; Oanh, D.T.K .; Dung, P. T. P .; Kim, K. R .; Han, B. W .; Kim, Y.S .; Hong, J.T .; Han, S.B. Synthesis, bioevaluation and docking studies of 5-substitutedphenyl-1,3,4-thiadiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. J. Enzyme Inhib. Med. Chem. (2013) (published online, doi: 10.3109 / 14756366.2013.832238). Nam, N.H.; Huong, T.L.; Dung, D.T.M.; Oanh, D.T.K.; Dung, P.T.P.; Quyen, D.; Kim, K.R.; Han, B.W.; Kim, Y.S.; Hong, J.T.; Han, S.B. Novel isatin-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Eur. J. Med. Chem., 2013, 70, 477-486.Nam, N. H .; Huong, T. L .; Dung, D.T.M .; Oanh, D.T.K .; Dung, P. T. P .; Quyen, D .; Kim, K. R .; Han, B. W .; Kim, Y.S .; Hong, J.T .; Han, S.B. Novel isatin-based hydroxamic acids such as histone deacetylase inhibitors and antitumor agents. Eur. J. Med. Chem., 2013, 70, 477-486. Skehan, P.; Storeng, R.; Scudiero, D.; Monk, A.; MacMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd. M.R. New colorimetric cytotoxicity assay for anticancer drug screening. J. Natl. Cancer Inst., 1990, 82, 1107-1112.Skehan, P .; Storeng, R .; Scudiero, D .; Monk, A .; MacMahon, J .; Vistica, D .; Warren, J.T .; Bokesch, H .; Kenney, S .; Boyd. M.R. New colorimetric cytotoxicity assay for anticancer drug screening. J. Natl. Cancer Inst., 1990, 82, 1107-1112. You, Y.J.; Kim, Y.; Nam, N.H.; Bang, S.C.; Ahn, B.Z. Alkyl and carboxylalkyl esters of 4′-demethyl-4-deoxypodophyllotoxin: synthesis, cytotoxic, and antitumor activity. Eur. J. Med. Chem., 2004, 39, 189-193.You, Y.J .; Kim, Y .; Nam, N. H .; Bang, S. C .; Ahn, B.Z. Alkyl and carboxylate esters of 4'-demethyl-4-deoxypodophyllotoxin: synthesis, cytotoxic, and antitumor activity. Eur. J. Med. Chem., 2004, 39, 189-193. Kim, Y.; You, Y.J.; Nam, N.H.;, Ahn, B.Z. Prodrugs of 4′-demethyl-4-deoxypodophyllotoxin: synthesis and evaluation of the antitumor activity. Bioorg. Med. Chem. Lett., 2002, 12, 3435-3438.Kim, Y .; You, Y.J .; Nam, N. H. ;; Ahn, B.Z. Prodrugs of 4'-demethyl-4-deoxypodophyllotoxin: synthesis and evaluation of the antitumor activity. Bioorg. Med. Chem. Lett., 2002, 12, 3435-3438. Wu, L.; Smythe, A.M.; Stinson, S.F.; Mullendore, L.A.; Monks, A.; Scudiero, D.A.; Paull, K.D.; Koutsoukos, A.D.; Rubinstein, L.V.; Boyd, M.R.; Shoemaker, R.H. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res., 1992, 52, 3029-3034.Wu, L .; Smythe, A. M .; Stinson, S. F .; Mullendore, L.A .; Monks, A .; Scudiero, D.A .; Paull, K. D .; Koutsoukos, A.D .; Rubinstein, L. V .; Boyd, M. R .; Shoemaker, R.H. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res., 1992, 52, 3029-3034. Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.Trott, O .; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461. Lauffer, B.E.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D.F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C.M.; Lupardus, P.J.; Kaminker, J.S.; Heise, C.E.; Steiner, P. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability, J. Biol. Chem., 2013, 288, 26926-26943.Lauffer, B. E .; Mintzer, R .; Fong, R .; Mukund, S .; Tam, C .; Zilberleyb, I .; Flicke, B .; Ritscher, A .; Fedorowicz, G .; Vallero, R .; Ortwine, D. F .; Gunzner, J .; Modrusan, Z .; Neumann, L .; Koth, C. M .; Lupardus, P.J .; Kaminker, J. S .; Heise, C. E .; Steiner, P. histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability, J. Biol. Chem., 2013, 288, 26926-26943. Schuttelkopf, A.W.; van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta crystallographica. Section D, Biological crystallography 2004, 60, 1355-1363.Schuttelkopf, A. W .; van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta crystallographica. Section D, Biological crystallography 2004, 60, 1355-1363. Pelzel, H.R.; Schlamp, C.L.; Nickells, R.W. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neuroscience 2010, 11, 62 Pelzel, H. R .; Schlamp, C. L .; Nickells, R.W. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neuroscience 2010, 11, 62

본 발명자들은 히스톤 탈아세틸화 효소(HDAC)와 항암제의 잠재적인 억제제로서 새로운 히드록삼산을 개발하고자 예의 연구 노력하였다. 그 결과 1-((1H-1,2,3-트리아졸-4-일)메틸)-3-치환된-인돌린-2-온 성분(moiety)을 포함하는 신규한 히드록삼산(hydroxamic acids)이 매우 강력한 HDAC 저해 활성뿐만 아니라 암세포에 대한 세포 독성을 가진다는 것을 규명함으로써 본 발명을 완성하게 되었다. The present inventors have made extensive efforts to develop new hydroxamic acid as a potential inhibitor of histone deacetylase (HDAC) and anticancer drugs. As a result, a novel hydroxamic acid containing 1 - ((1 H -1,2,3-triazol-4-yl) methyl) -3-substituted-indolin- acids have not only very strong HDAC inhibitory activity but also cytotoxicity against cancer cells.

따라서, 본 발명의 목적은 하기 화학식 1로 표시되는 히드록삼산 계 화합물을 제공하는데 있다.Accordingly, an object of the present invention is to provide a hydroxamic acid-based compound represented by the following formula (1).

본 발명의 다른 목적은 하기 화학식 1로 표시되는 히드록삼산 계 화합물, 이의 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 암의 치료 및 예방용 약제학적 조성물을 제공하는데 있다.Another object of the present invention is to provide a pharmaceutical composition for the treatment and prevention of cancer comprising a hydroxamic acid compound represented by the following formula (1), an isomer thereof or a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명의 또 다른 목적은 하기 화학식 1로 표시되는 히드록삼산 계 화합물, 이의 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 히스톤 탈아세틸화 효소 억제제를 제공하는데 있다.Another object of the present invention is to provide a histone deacetylase inhibitor comprising a hydroxamic acid compound represented by the following formula (1), an isomer thereof or a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 하기 화학식 1로 표시되는 히드록삼산 계 화합물을 제공한다:According to one aspect of the present invention, there is provided a hydroxamic acid-based compound represented by the following Formula 1:

[화학식 1][Chemical Formula 1]

Figure 112016125326336-pat00001
Figure 112016125326336-pat00001

상기 식에서 R은 수소원자, 할로겐원자, C1-6 저급 알킬기 및 C1-6 저급 알콕시기로 구성된 군으로부터 선택된 치환기이고, 상기 n은 0 내지 5의 정수이다.Wherein R is a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a C 1-6 lower alkyl group and a C 1-6 lower alkoxy group, and n is an integer of 0-5.

상기 화학식 1로 표시되는 화합물 군은 구체적으로 R이 수소원자, 할로겐원자, C1-3 저급 알킬기 및 C1-3 저급 알콕시기로 구성된 군으로부터 선택된 치환기인 화합물 군을 포함할 수 있다.The compound group represented by Formula 1 may specifically include a group of compounds wherein R is a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a C 1-3 lower alkyl group, and a C 1-3 lower alkoxy group.

상기 화학식 1로 표시되는 화합물 군은 보다 구체적으로 상기 R이 수소원자, 할로겐원자, 메틸기 및 메톡시기로 구성된 군으로부터 선택된 치환기인 화합물 군을 포함할 수 있다.More specifically, the group of compounds represented by Formula 1 may include a compound group in which R is a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a methyl group, and a methoxy group.

상기 화학식 1로 표시되는 화합물 군 중에 가장 구체적인 화합물로서,As the most specific compound among the group of compounds represented by the above formula (1)

상기 n이 0인 화합물로는 N-히드록시-3-(4-((3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)프로판아마이드 (4a), 3-(4-((5-플루오로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시프로판아마이드 (4b), 또는 3-(4-((5-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시프로판아마이드 (4c)이 있고;N is 0 to the compound is N-hydroxy-3- (4 - ((3- (hydroxyimino) -2-oxo-in turned-1-yl) methyl) -1 H -1,2,3- triazol-1-yl) propanoic amide (4a), 3- (4 - (( 5-fluoro-3- (hydroxyimino) -2-oxo-in turned-1-yl) methyl) -1 H -1 , 2,3-triazol-1-yl) - N - hydroxy-propanoic amide (4b), or 3- (4- (5-chloro-3- (hydroxyimino) -2-oxoindolin-1-yl) methyl) -1 H -1,2,3- triazol- -yl) - N-hydroxy-propanoic amide (4c);

상기 n이 1인 화합물로는 N-히드록시-4-(4-((3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)부탄아마이드 (5a), 4-(4-((5-Fluoro-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시부탄아마이드 (5b), 4-(4-((5-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시부탄아마이드 (5c), 4-(4-((5-브로모-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시부탄아마이드 (5d), N-히드록시-4-(4-((3-(히드록시이미노)-5-메틸-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)부탄아마이드 (5e), N-히드록시-4-(4-((3-(히드록시이미노)-5-메톡시-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)부탄아마이드 (5f), 또는 4-(4-((7-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시부탄아마이드 (5g)이 있으며;In which the n 1 the compound is N-hydroxy-4- (4 - ((3- (hydroxyimino) -1-yl-2-oxo-turned in) methyl) -1 H -1,2,3- triazol-1-yl) butane amide (5a), 4- (4 - ((5-Fluoro-3- ( hydroxyimino) -1-yl) methyl-2-oxo-turned in) -1 H -1, (5-chloro-3- (hydroxyimino) -2-oxoindolin-1-yl) - N -hydroxybutanamide ) methyl) -1 H -1,2,3- triazol-1-yl) - N - hydroxy-butane amide (5c), 4- (4 - ((5- bromo-3- (hydroxyimino) 2-oxo-in turned-1-yl) methyl) -1 H -1,2,3- triazol-1-yl) - N - hydroxy-butane amide (5d), N - hydroxy-4- (4 - ((3- (hydroxyimino) -5-methyl-2-oxoindolin-1-yl) methyl) -1 H -1,2,3- triazol- 1- yl) butanamide (5e) N-hydroxy-4- (4 - ((3- (hydroxyimino) -5-methoxy-2-oxo-in turned-1-yl) methyl) -1 H -1,2,3- triazol- 1- yl) butane amide (5f), or 4- (4 - ((7-chloro-3- (hydroxyimino) -1-yl-2-oxo-turned in) methyl) -1 H -1,2, 3 -Triazol-l-yl) -N -hydroxybutanamide (5 g);

상기 n이 2인 화합물로는 N-히드록시-5-(4-((3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)펜탄아마이드 (6a), 5-(4-((5-플루오로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시펜탄아마이드 (6b), 5-(4-((5-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시펜탄아마이드 (6c), 5-(4-((5-브로모-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시펜탄아마이드 (6d), N-히드록시-5-(4-((3-(히드록시이미노)-5-메틸-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)펜탄아마이드 (6e), N-히드록시-5-(4-((3-(히드록시이미노)-5-메톡시-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)펜탄아마이드 (6f), 또는 5-(4-((7-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시펜탄아마이드 (6g)가 있다.In which the n 2 is the compound N- hydroxy-5- (4 - ((3- (hydroxyimino) -2-oxo-in turned-1-yl) methyl) -1 H -1,2,3- Triazol-1-yl) pentanamide (6a), 5- (4 - ((5- fluoro-3- (hydroxyimino) -2-oxoindolin-1-yl) methyl) -1 H -1,2,3- triazol- - yl) -N -hydroxypentanamide (6b), 5- (4 - ((5- chloro-3- (hydroxyimino) -2-oxo-in turned-1-yl) methyl) -1 H -1,2,3- triazol-1- Yl) -N -hydroxypentanamide (6c), 5- (4- (5-bromo-3- (hydroxyimino) -2-oxoindolin-1-yl) methyl) -1 H -1,2,3- triazol- - yl) -N -hydroxypentanamide (6d), N-hydroxy-5- (4 - ((3- (hydroxyimino) -1-yl) methyl-2-oxo-5-turn) -1 H -1,2,3- Triazol-1-yl) pentanamide (6e), N-hydroxy-5- (4 - ((3- (hydroxyimino) -5-methoxy-2-oxo-in turned-1-yl) methyl) -1 H -1,2,3 -Triazol-1-yl) pentanamide (6f), or 5- (4 - ((7-chloro-3- (hydroxyimino) -2-oxo-in turned-1-yl) methyl) -1 H -1,2,3- triazol -1 - yl) -N -hydroxypentanamide (6g).

상기 화학식 1로 표시되는 본 발명의 화합물들은 당해 기술분야에서 통상적인 방법에 따라 약학적으로 허용가능한 염 및 용매화물로 제조될 수 있다. The compounds of the present invention represented by the above formula (1) can be prepared as pharmaceutically acceptable salts and solvates according to conventional methods in the art.

염으로는 약학적으로 허용가능한 유리산(free acid)에 의해 형성된 산부가염이 유용하다. 산 부가염은 통상의 방법, 예를 들면 화합물을 과량의 산 수용액에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들면 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조한다. 동 몰량의 화합물 및 물 중의 산 또는 알코올 (예, 글리콜 모노메틸에테르)을 가열하고 이어서 상기 혼합물을 증발시켜서 건조시키거나, 또는 석출된 염을 흡인 여과시킬 수 있다.Salts are useful as acid addition salts formed by pharmaceutically acceptable free acids. The acid addition salt is prepared by a conventional method, for example, by dissolving the compound in an excess amount of an acid aqueous solution and precipitating the salt using a water-miscible organic solvent such as methanol, ethanol, acetone or acetonitrile. The molar amount of the compound and the acid or alcohol (e.g., glycol monomethyl ether) in water may be heated and then the mixture may be evaporated to dryness, or the precipitated salt may be subjected to suction filtration.

이 때, 유리산으로는 유기산과 무기산을 사용할 수 있으며, 무기산으로는 염산, 인산, 황산, 질산, 주석산 등을 사용할 수 있고 유기산으로는 메탄술폰산, p-톨루엔술폰산, 아세트산, 트리플루오로아세트산, 시트르산, 말레인산(maleic acid), 숙신산, 옥살산, 벤조산, 타르타르산, 푸마르산, 만데르산, 프로피온산(propionic acid), 구연산(citric acid), 젖산 (lactic acid), 글리콜산(glycollic acid), 글루콘산(gluconic acid), 갈락투론산, 글루탐산, 글루타르산(glutaric acid), 글루쿠론산(glucuronic acid), 아스파르트산, 아스코르브산, 카본산, 바닐릭산, 히드로 아이오딕산 등을 사용할 수 있다.As the free acid, organic acids and inorganic acids can be used. As the inorganic acids, hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, tartaric acid and the like can be used. Examples of the organic acids include methanesulfonic acid, p- toluenesulfonic acid, acetic acid, trifluoroacetic acid, Citric acid, lactic acid, glycollic acid, gluconic acid, citric acid, maleic acid, succinic acid, oxalic acid, benzoic acid, tartaric acid, fumaric acid, mandelic acid, propionic acid, citric acid, gluconic acid, galacturonic acid, glutamic acid, glutaric acid, glucuronic acid, aspartic acid, ascorbic acid, carbonic acid, vanillic acid, hydroiodic acid and the like.

또한, 염기를 사용하여 약학적으로 허용가능한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리토 금속염은, 예를 들면 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리토금속 수산화물 용액 중에 용해하고, 비용해 화합물염을 여과한 후 여액을 증발, 건조시켜 얻는다. 이 때, 금속염으로서는 특히 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하며, 또한 이에 대응하는 은염은 알칼리 금속 또는 알칼리토 금속염을 적당한 은염 (예, 질산은)과 반응시켜 얻는다.In addition, bases can be used to make pharmaceutically acceptable metal salts. The alkali metal or alkaline earth metal salt is obtained, for example, by dissolving the compound in an excess amount of an alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and evaporating and drying the filtrate. At this time, it is preferable for the metal salt to produce sodium, potassium or calcium salt in particular, and the corresponding silver salt is obtained by reacting an alkali metal or alkaline earth metal salt with a suitable silver salt (for example, silver nitrate).

상기의 화학식 1의 구조를 갖는 본 발명의 히드록삼산 계 화합물의 약학적으로 허용가능한 염은, 달리 지시되지 않는 한, 화학식 1의 구조를 갖는 히드록삼산 계 화합물에 존재할 수 있는 산성 또는 염기성기의 염을 포함한다. 예를 들면, 약학적으로 허용가능한 염으로는 히드록시기의 나트륨, 칼슘 및 칼륨 염이 포함되며, 당업계에서 알려진 염의 제조방법이나 제조과정을 통하여 제조될 수 있다.The pharmaceutically acceptable salt of the hydroxamic acid compound of the present invention having the structure of the above formula (1), unless otherwise indicated, is an acidic or basic group which may exist in the hydroxamic acid compound having the structure of formula ≪ / RTI > For example, pharmaceutically acceptable salts include the sodium, calcium and potassium salts of hydroxy groups and can be prepared by methods or processes known in the art for the preparation of salts.

또한, 상기 화학식 1의 구조를 갖는 히드록삼산 계 화합물의 모든 광학 이성질체 및 R 또는 S형 입체 이성질체 및 이들의 혼합물도 본 발명의 범주 내에 포함되는 것으로 한다. 본 발명은 라세미체, 하나 이상의 거울상 이성질체 형태, 하나 이상의 부분 입체 이성질체 형태 또는 이들의 혼합물의 용도를 포함하며, 당업계에서 알려진 이성질체의 분리 방법이나 제조과정을 포함한다.All optical isomers and R or S stereoisomers of the hydroxamic acid compound having the structure of Formula 1 and mixtures thereof are also included in the scope of the present invention. The present invention includes the use of racemates, one or more enantiomeric forms, one or more diastereoisomeric forms, or mixtures thereof, and includes methods and processes for the isolation and isomerization of isomers known in the art.

본 발명의 다른 목적은 상기 화학식 1의 구조를 갖는 화합물의 제조방법을 제공하는 것으로, 하기의 반응식들에 도시된 방법에 의해 화학적으로 합성될 수 있지만, 이들 예로만 한정되는 것은 아니다. Another object of the present invention is to provide a method for preparing a compound having the structure of Formula 1, which can be chemically synthesized by the method shown in the following reaction formulas, but is not limited thereto.

하기의 반응식들은 본 발명의 대표적인 화합물들의 제조방법을 제조 단계별로 나타내는 것으로 본 발명의 여러 화합물들은 반응식 1의 합성과정에서 사용되는 시약, 용매 및 반응 순서를 바꾸는 등의 작은 변경으로 제조될 수 있다. The following reaction schemes show the preparation of representative compounds of the present invention according to the preparation steps. Various compounds of the present invention can be prepared by a small modification such as changing reagents, solvents and reaction sequence used in the synthesis of Scheme 1.

본 발명의 몇몇 화합물들은 반응식들의 범주에 포함되지 않는 과정에 따라 합성되었으며, 이러한 화합물들에 대한 상세한 합성 과정은 이들 각각의 실시예에 설명되어 있다.Some of the compounds of the present invention were synthesized according to procedures not included in the scope of the reaction formulas, and detailed synthesis procedures for these compounds are described in each of these examples.

[반응식 1] [Reaction Scheme 1]

1-((11 - ((1 HH -1,2,3--1,2,3- 트리아졸Triazole -4-일)Yl) 메틸methyl )-3-치환된-) -3-substituted- 인돌린Indolin -2--2- 온을On 포함하는 본 발명의  Of the present invention 히드록삼산(hydroxamic acids)의Of hydroxamic acids 합성 synthesis

Figure 112016125326336-pat00002
Figure 112016125326336-pat00002

본 발명의 히드록삼산 계 화합물(4-6)은 반응식 1에 예시 된 바와 같이 3 단계 경로를 통해 합성되었다. The hydroxamic acid compound (4-6) of the present invention was synthesized through a three-step route as illustrated in Scheme 1.

제 1 단계의 반응은 1-프로파르길이사틴(2)를 생성하기 위하여 촉매량의 KI를 포함하는 디메틸포름아미드(DMF, dimethylformamide) 중에서 염기성 조건 (K2CO3)하에 이루어진 이사틴(1)과 프로파르길 브로마이드 간의 친핵성 치환반응이다. The reaction of the first step is carried out in the presence of a mixture of isatin (1) and ( 2 ) in basic form (K 2 CO 3 ) in dimethylformamide (DMF) containing a catalytic amount of KI to produce 1-propargine- Nucleophilic substitution reaction between propargyl bromide.

제 2 단계에서, 프로파르길 화합물(2)과 각각의 메틸 아지도알카노에이트 (메틸 3-아지도프로파노에이트, 메틸 4-아지도부타노에이트, 메틸 5-아지도발레레이트, 메틸 6-아지도헥사노에이트 및 메틸 7-아지도헵타노에이트를 포함함)는 중간체 에스테르(3)을 생성한다. 이 반응은 아세토니트릴을 용매로 하고, 요오드화 구리를 촉매로 하여 원활하게 진행된다. 대부분의 경우, 상기 에스테르 중간체는 아세토니트릴을 증발시켜 얻은 반응 잔류물을 냉수로 적정하여 침전시킨다. In the second step, the propargyl compound (2) and the respective methyl azide alkanoate (methyl 3-azidopropanoate, methyl 4-azidobutanoate, methyl 5-azidovalerate, methyl 6 -Azid hexanoate and methyl 7-azidoheptanoate) yields the intermediate ester (3). This reaction proceeds smoothly using acetonitrile as a solvent and using copper iodide as a catalyst. In most cases, the ester intermediate is precipitated by titration of the reaction residue obtained by evaporating acetonitrile with cold water.

마지막 제 3 단계는 히드록실아민 염산염과 에스테르(3)의 친핵성 아실 치환반응을 포함한다. 이 반응은 테트라하이드로퓨란(tetrahydrofurane)과 메탄올을 포함하는 용매 혼합물 내에서 0-5 ℃에서 염기성 조건 하에 일어나며, 상기한 반응을 통하여 본 발명의 히드록삼산 화합물(4-6)을 수득할 수 있다. 본 발명의 목적 화합물(4-6)의 전반적인 수율은 보통이었다.The final third step involves the nucleophilic acyl substitution reaction of the hydroxylamine hydrochloride with the ester (3). This reaction takes place under basic conditions at 0-5 ° C in a solvent mixture comprising tetrahydrofurane and methanol. Through the above reaction, the hydroxamic acid compound (4-6) of the present invention can be obtained . The overall yield of the objective compound (4-6) of the present invention was normal.

따라서 본 발명에서는 상기 화학식 1로 표시되는 히드록삼산 계 화합물을 제조하는 방법을 제공한다.Accordingly, the present invention provides a process for preparing the hydroxamic acid compound represented by the above formula (1).

본 발명의 발명자들은 상기 제조방법으로 얻어진 화학식 1의 화합물들이 히스톤 탈아세틸화 효소(HDAC, histone deacetylase)에 대한 강력한 억제작용을 나타냄을 확인함으로써 암을 치료 또는 예방할 수 있는 치료제로서의 유용함을 확인하였다.The inventors of the present invention have confirmed that the compounds of the formula (1) obtained by the above-described method exhibit a strong inhibitory action on histone deacetylase (HDAC), thus being useful as therapeutic agents for treating or preventing cancer.

본 발명에서 상기 암은 간암, 위암, 뇌암, 방광암, 자궁경부암, 난소암, 대장암, 전립선암, 췌장암, 및 폐암 등을 포함하나 반드시 이에 제한되는 것은 아니다.In the present invention, the cancer includes, but is not necessarily limited to, liver cancer, stomach cancer, brain cancer, bladder cancer, cervical cancer, ovarian cancer, colon cancer, prostate cancer, pancreatic cancer and lung cancer.

따라서, 본 발명의 다른 일 양태에 따르면, 본 발명은 상기 화학식 1로 표시되는 히드록삼산 계 화합물, 이의 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 암의 치료 및 예방용 약제학적 조성물을 제공한다.Accordingly, in accordance with another aspect of the present invention, there is provided a pharmaceutical composition for the treatment and prevention of cancer comprising the hydroxynate compound represented by Formula 1, an isomer thereof or a pharmaceutically acceptable salt thereof as an active ingredient Lt; / RTI >

또한, 본 발명의 또 다른 일 양태에 따르면, 본 발명은 상기 화학식 1로 표시되는 히드록삼산 계 화합물, 이의 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 히스톤 탈아세틸화 효소 억제제를 제공한다.According to another aspect of the present invention, there is provided a histone deacetylase inhibitor comprising the hydroxamic acid compound represented by Formula 1, an isomer thereof or a pharmaceutically acceptable salt thereof as an active ingredient, to provide.

본 명세서에서 용어 “히스톤 탈아세틸화 효소 억제제(HDAC inhibitor, HDACi, histone deaceylase inhibitor)”는 히스톤의 ε-N-아세틸 라이신 아미노산에서 아세틸 그룹(O=C-CH3)을 제거하여 히스톤이 DNA를 더 단단히 감쌀 수 있도록 하는 효소군인 히스톤 탈아세틸화 효소(HDAC, histone deaceylase)를 억제하는 화합물을 말한다. 히스톤 탈아세틸화 효소 억제제는 신경 안정제와 항 경련제와 같은 정신과 및 신경계에서 오랫동안 사용되어 왔으나, 최근에는 암, 기생충성 질환 및 염증성 질환에 대한 가능한 치료제로서 사용되고 있다. As used herein, the term " HDAC inhibitor (HDACi), histone deacylase inhibitor " refers to a histone deacylase inhibitor that removes the acetyl group (O = C-CH 3 ) from the ε- Refers to a compound that inhibits histone deacetylase (HDAC), an enzyme group that allows it to be wrapped more tightly. Histone deacetylase inhibitors have been used for a long time in psychiatric and nervous systems such as neurotransmitters and anticonvulsants, but they have recently been used as possible treatments for cancer, parasitic diseases and inflammatory diseases.

이와 관련하여 많은 연구들에서 암세포에서 유전자 지놈 수준에서 단일 아세틸화와 삼중 메틸화의 전체적인 감소가 나타나고, 암 종양에서 HDAC의 비정상적 발현이 발견되며 HDAC1, 5, 7이 종양의 바이오마커로 이용되었다는 결과를 나타내고 있다. 또한 여러 암종(전립선, 대장암, 유방암, 폐암, 간암, 위암 등)에서 HDAC 과발현이 무병율(disease-free), 전체 생존율(overall survival)을 상당히 감소시켰고, 예후가 상당히 좋지 않다는 결과들이 제시되고 있다. 따라서 히스톤의 탈아세틸화는 다양한 암종의 발병에 중요한 메커니즘으로 인식되고 있으며, 이의 활성을 억제하는 히스톤 탈아세틸화 효소 억제제(HDACi)는 다양한 암종의 항암제로서 사용될 수 있음이 일반적으로 인식되고 있다. 히스톤 탈아세틸화 효소 억제제 화합물이 작용하여 암을 치료 및 예방하는 정확한 기작은 아직까지 분명하지 않지만, 후성(epigenetic) 유전학적 경로가 제안된다. 히스톤 탈아세틸화 효소 억제제는 p53 종양 억제 인자 활성의 조절자인 p21 (WAF1) 발현을 유도 할 수 있는 것으로 알려져 있다. 최근 자료에 따르면 HDAC 및 DNA 메틸화를 매개로하는 염색질 불활성화가 인간 유방암 세포에서 ERα 사일런싱(ERα silencing)의 중요한 구성 요소임을 나타낸다.In this regard, many studies have shown a global decrease in single acetylation and triple methylation at the gene genome level in cancer cells, abnormal expression of HDAC in cancerous tumors, and the use of HDAC1, 5, and 7 as tumor biomarkers Respectively. In addition, HDAC overexpression significantly reduced disease-free and overall survival in several types of carcinoma (prostate, colorectal, breast, lung, liver, stomach, etc.) have. Therefore, deacetylation of histone is recognized as an important mechanism for the development of various carcinomas. It is generally recognized that a histone deacetylase inhibitor (HDACi) that inhibits its activity can be used as an anticancer agent for various carcinomas. The exact mechanism by which a histone deacetylase inhibitor compound acts to treat and prevent cancer is not yet clear, but an epigenetic genetic pathway is proposed. Histone deacetylase inhibitors are known to induce the expression of p21 (WAF1), a modulator of p53 tumor suppressor activity. Recent data indicate that chromatin inactivation mediated by HDAC and DNA methylation is an important component of ERα silencing in human breast cancer cells.

"고전적(Classical)" 히스톤 탈아세틸화 효소 억제제는 HDAC의 아연 함유 촉매 도메인에 결합함으로써 클래스 I, II 및 클래스 IV HDAC에서만 독점적으로 작용한다. 이러한 고전적 HDI는 아연 이온에 결합하는 화학적 부분에 따라 여러 그룹으로 분류할 수 있고(티올 그룹으로 아연 이온에 결합하는 고리 형 테트라 펩타이드 제외), 전형적인 아연 결합 친화력이 감소하는 순서의 일부 예로는 다음과 같은 것들이 있다:&Quot; Classical " histone deacetylase inhibitors act exclusively in Class I, II and Class IV HDACs by binding to the zinc-containing catalytic domain of HDAC. These classical HDIs can be classified into several groups depending on the chemical moiety that binds to the zinc ion (except the cyclic tetrapeptide bound to the zinc ion as a thiol group), and some examples of the order in which the typical zinc binding affinity decreases are as follows: There are the same things:

1. 히드록시 아마이드 산 (또는 히드록삼산), 예컨대 트리코 스타틴 A1. Hydroxyamide acid (or hydroxamic acid), such as tricostatin A

2. 시클릭 테트라 펩타이드 (트라톡신 B 등) 및 뎁시펩티드,2. Cyclic tetrapeptides (such as tratoxin B) and depsipeptide,

3. 벤즈아미드,3. Benzamide,

4. 친전자성 케톤 및4. Electrophilic ketones and

5. 페닐 부티레이트 및 발프로익 산과 같은 지방산 화합물.5. Fatty acid compounds such as phenyl butyrate and valproic acid.

"2 세대" 히스톤 탈아세틸화 효소 억제제는 히드록삼산인 보리노스타트 (SAHA), 베리노스타트 (PXD101), LAQ824 및 파노비노스타트 (LBH589); 및 벤즈아미드인 엔티노스타트 (MS-275), CI994, 및 모세티노스타트 (MGCD0103) 등이 있다."Second generation" histone deacetylase inhibitors include hydroxamic acids, borinostat (SAHA), verinostat (PXD101), LAQ824 and panovinostat (LBH589); And benzamide, entinostat (MS-275), CI994, and mosetinostat (MGCD0103).

또한, 시르투인 클래스 III HDAC는 NAD+에 의존적이어서 니코틴아미드 뿐만 아니라 NAD, 다이히드로쿠마린(dihydrocoumarin), 나프토피라논(naphthopyranone) 및 2- 시드록시나프트알데하이드(hydroxynaphthaldehydes)의 유도체에 의해 저해되는 것으로 알려져 있다.In addition, sirtuin class III HDAC is dependent on NAD + and is inhibited by nicotinamide as well as derivatives of NAD, dihydrocoumarin, naphthopyranone and 2-cydoxynaphthaldehydes It is known.

본 명세서에서 용어 “예방”이란 본 발명의 히드록삼산 계 화합물을 포함하는 조성물의 투여로 암의 발병을 억제시키거나 발병을 지연하는 모든 행위를 말하며, "치료"란 상기 약제학적 조성물의 투여로 암을 호전시키거나 이롭게 변경하는 모든 행위를 의미한다.As used herein, the term " prevention " refers to all actions that inhibit the onset or delay the onset of cancer by administration of a composition containing the hydroxamic acid-based compound of the present invention. It means any act that improves or alters the cancer.

본 발명의 히드록삼산 계 화합물을 포함하는 약학적 조성물은 인간뿐만 아니라 암이 발병할 수 있는 소, 말, 양, 돼지, 염소, 낙타, 영양, 개, 고양이 등의 포유동물에게도 사용될 수 있다. The pharmaceutical compositions containing the hydroxamic acid compound of the present invention can be used not only for humans but also for mammals such as cows, horses, sheep, pigs, goats, camels, nutrition, dogs, cats and the like which can develop cancer.

본 발명의 화합물을 포함하는 조성물은 통상의 방법에 따른 적절한 담체, 부형제 또는 희석제를 더 포함할 수 있다. The compositions comprising the compounds of the present invention may further comprise suitable carriers, excipients or diluents according to conventional methods.

본 발명의 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. Examples of carriers, excipients and diluents that can be included in the composition of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methylcellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.

본 발명의 화합물을 포함하는 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 또는 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. The composition containing the compound of the present invention can be formulated in the form of powders, granules, tablets, capsules, oral preparations such as suspensions, emulsions, syrups and aerosols, external preparations, suppositories or sterilized injection solutions, Can be used.

상세하게는, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스(sucrose), 락토오스(lactose), 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는 데, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제 및 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜 (propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.More specifically, when formulating the composition, it can be prepared using a diluent or an excipient such as a filler, an extender, a binder, a wetting agent, a disintegrant, a surfactant, and the like. Solid formulations for oral administration include tablets, pills, powders, granules, capsules and the like, which may contain at least one excipient such as starch, calcium carbonate, sucrose ), Lactose, gelatin and the like. In addition to simple excipients, lubricants such as magnesium stearate and talc may also be used. Examples of the liquid preparation for oral use include suspensions, solutions, emulsions, syrups and the like, and various excipients such as wetting agents, sweeteners, fragrances, preservatives, etc. in addition to commonly used diluents such as water and liquid paraffin . Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations and suppositories. Examples of the suspending agent include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like. Examples of the suppository base include witepsol, macrogol, tween 61, cacao paper, laurin, glycerogelatin and the like.

본 발명의 화합물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나, 바람직한 효과를 위해서, 본 발명의 화합물은 0.0001 ~ 100mg/kg으로, 바람직하게는 0.001 ~ 100mg/kg의 양을 일일 1회 내지 수회로 나누어 투여할 수 있다. 조성물에서 본 발명의 화합물은 전체 조성물 총 중량에 대하여 0.0001 ~ 10 중량%, 바람직하게는 0.001 ~ 1 중량%의 양으로 존재하여야 한다. The preferred dosage of the compound of the present invention varies depending on the condition and the weight of the patient, the degree of disease, the type of drug, the route of administration and the period of time, but can be appropriately selected by those skilled in the art. However, for the desired effect, the compound of the present invention may be administered in an amount of 0.0001 to 100 mg / kg, preferably 0.001 to 100 mg / kg, once or several times a day. In the composition, the compound of the present invention should be present in an amount of 0.0001 to 10% by weight, preferably 0.001 to 1% by weight, based on the total weight of the entire composition.

또한, 본 발명의 화합물의 약학적 투여 형태는 이들의 약학적 허용가능한 염의 형태로도 사용될 수 있고, 또한 단독으로 또는 타 약학적 활성 화합물과 결합뿐만 아니라 적당한 집합으로 사용될 수 있다. In addition, the pharmaceutical dosage forms of the compounds of the present invention may be used in the form of their pharmaceutically acceptable salts, and may be used alone or in combination with other pharmaceutically active compounds, as well as in suitable aggregates.

본 발명의 약학 조성물은 쥐, 마우스, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁내 경막 또는 뇌혈관내 (intracerebroventricular) 주사에 의해 투여될 수 있다. The pharmaceutical composition of the present invention can be administered to mammals such as rats, mice, livestock, humans, and the like in various routes. All modes of administration may be expected, for example, by oral, rectal or intravenous, intramuscular, subcutaneous, intra-uterine or intracerebroventricular injections.

본 발명은 히스톤 탈아세틸화 효소 억제제로 유용한 신규한 히드록삼산 계 화합물 및 이를 포함하는 조성물을 제공하는 것으로, 본 발명에 따른 화합물은 암의 치료 및 예방을 위한 약제로 유용하게 사용할 수 있다.The present invention provides a novel hydroxamic acid compound useful as a histone deacetylase inhibitor and a composition containing the same, and the compound according to the present invention can be used as a medicine for treating and preventing cancer.

도 1은 현재까지 알려진 HDAC 억제제의 종류를 나타낸 도이다.
도 2는 HDAC2의 결합 부위에서의 화합물 5a-g 및 SAHA의 결합 모드의 중첩에 대한 입체적 형상을 나타낸 도이다. 화합물은 스틱 모델로 표현하였으며, SAHA는 굵은 자주색 스틱으로 표현하였다.
도 3은 SAHA의 실제 결합 포즈 및 HDAC2에 대한 화합물 5a 및 5f의 시뮬레이션된 도킹 포즈의 입체적 형상을 나타낸 도이다. 화합물 5a 및 5f는 진한 주황색 및 밝은 주황색으로 표시된 막대 모델로 각각 나타내었다. 효소가 이 화합물들과 상호 작용을 하기 위해 가장 중요한 부분을 탄소, 질소 및 산소가 각각 회색, 청색 및 적색으로 표현된 스틱 모델로 나타내었다. Zn2 + 이온은 밝은 회색 구체로 표시하였다.
FIG. 1 is a view showing the kind of HDAC inhibitors known so far.
Fig. 2 is a diagram showing a three-dimensional shape for the overlapping of the binding modes of the compound 5a-g and the SAHA at the binding site of HDAC2. The compound was expressed as a stick model and the SAHA was expressed as a thick purple stick.
Figure 3 is a diagram showing the actual bonding pose of SAHA and the three-dimensional shape of the simulated docking pose of compounds 5a and 5f for HDAC2. Compounds 5a and 5f are shown as dark orange and bright orange bars, respectively. The most important parts for the enzyme to interact with these compounds are represented by stick models in which carbon, nitrogen and oxygen are expressed in gray, blue and red, respectively. Zn 2 + ions are represented by light gray spheres.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

실험재료Experimental material

화학시약 및 장비Chemical reagents and equipment

모든 시약 및 용제는 시그마 알드리치사, 플루카 케미컬사(Fluka Chemical Corp., Milwaukee,WI,USA) 또는 머크사(Merck)에서 구입하였다. 용매는 달리 명시하지 않은 한 구매한 그대로 사용하였다. 박막 크로마토그래피는 Whatman® 250 μm Silica Gel GF Uniplates를 사용하여 수행하였고, 254 및 365 nm의 자외선 하에서 가시화하여 반응의 진행 및 화합물의 동질성(homogeneity)에 대해 예비 평가하였다. 모든 경우에서, 생성된 화합물은 HPLC 방법으로 추정한 결과 97 % 이상의 순도를 달성하였다. 융점(melting point)은 Gallenkamp Melting Point Apparatus (LabMerchant, London, United Kingdom)를 사용하여 측정하였으며 보정하지 않았다. 화합물의 정제는 결정화 방법 및/또는 머크 실리카 겔 60 (240 내지 400 메쉬)을 고정상으로 사용하는 오픈 플래쉬 실리카 겔 칼럼 크로마토그래피를 사용하여 수행하였다. 핵 자기공명 스펙트럼 (1H NMR)은 달리 명시하지 않는 한, 용매로 DMSO-d6을 사용하여 Bruker 500 MHz 분광기상에서 기록하였으며, 테트라메틸실란(tetramethylsilane)을 내부 표준으로 사용하였다. 화학적 이동(chemical shift)은 테트라메틸실란을 기준으로 백만 분의 1(ppm) 단위로 보고하였다. 전자 이온화 (EI, electron ionization), 전자 스프레이 이온화 (ESI, electrospray ionization)를 포함하는, 서로 다른 이온화 방식에 따른 질량스펙트럼(mass spectra)은 PE Biosystems API2000 (Perkin Elmer, Palo Alto, CA, USA)과 Mariner® (Azco Biotech, Inc.Oceanside, CA, USA) 질량 분석기(mass spectrometer)를 각각 사용하여 기록하였다.All reagents and solvents were purchased from Sigma-Aldrich, Fluka Chemical Corp., Milwaukee, WI, USA or Merck. Solvents were used as purchased unless otherwise noted. Thin-film chromatography was performed using Whatman® 250 μm Silica Gel GF Uniplates and visualized under ultraviolet light at 254 and 365 nm to pre-evaluate the progress of the reaction and the homogeneity of the compounds. In all cases, the resulting compound had a purity of at least 97% as estimated by the HPLC method. Melting points were measured using a Gallenkamp Melting Point Apparatus (LabMerchant, London, United Kingdom) and not calibrated. Purification of the compound was carried out using crystallization method and / or open flash silica gel column chromatography using Merck silica gel 60 (240-400 mesh) as a stationary phase. Nuclear magnetic resonance spectra ( 1 H NMR) were recorded on a Bruker 500 MHz spectrometer using DMSO-d 6 as solvent, unless otherwise stated, and tetramethylsilane was used as the internal standard. The chemical shifts are reported in parts per million (ppm) based on tetramethylsilane. Mass spectra according to different ionization schemes, including EI, electron ionization (ESI) and electrospray ionization (ESI), were measured using PE Biosystems API 2000 (Perkin Elmer, Palo Alto, Were recorded using a Mariner® (Azco Biotech, Inc. Oceanside, CA, USA) mass spectrometer.

실험방법Experimental Method

본 발명의 화합물 4-6의 합성Synthesis of Compound 4-6 of the present invention

Figure 112016125326336-pat00003
Figure 112016125326336-pat00003

1 mmol의 이사틴(isatin) 화합물 1a-g를 DMF(diemethylformamide) (3 mL)에 용해시킨 용액에 K2CO3 (165.5 mg, 1.2 mmol)를 첨가 하였다. 생성된 혼합물을 80 ℃에서 1시간 동안 교반한 후, KI (8.3 mg, 0.05 mmol)를 첨가하였다. 추가로 15분 동안 교반한 후, 80% 농도의 프로파르길 브로마이드 톨루엔 용액 0.15 ml를 천천히 상기 혼합물에 적하하였다. 반응 혼합물을 60 ℃에서 3 시간 동안 교반하였다. 교반이 끝난 후, 생성된 혼합물을 냉각시키고, 얼음물에 부은 다음, pH 약 4로 산성화시켰다. 형성된 오렌지색 고체를 여과하고 건조시켜 프로파르길화 된 이사틴(propargylated isatin) 화합물 2를 얻었으며, 이를 추가 정제없이 다음 단계에 사용하였다.K 2 CO 3 (165.5 mg, 1.2 mmol) was added to a solution of 1 mmol of isatin compound 1a-g in DMF (diethylformamide) (3 mL). The resulting mixture was stirred at 80 < 0 > C for 1 hour and then KI (8.3 mg, 0.05 mmol) was added. After stirring for an additional 15 minutes, 0.15 ml of an 80% strength propargyl bromide toluene solution was added slowly to the mixture. The reaction mixture was stirred at 60 < 0 > C for 3 hours. After the stirring was completed, the resulting mixture was cooled, poured into ice water, and then acidified to a pH of about 4. The orange solid formed was filtered off and dried to give propargylated isatin compound 2 which was used in the next step without further purification.

상기 각각의 화합물 2 및 1 mmol의 메틸 아지도에스테르(methyl azidoester)를 아세토니트릴(2 mL)에 용해시킨 용액을 실온에서 10분 동안 교반한 다음, CuI (19.1 mg, 0.1 mmol)를 첨가하였다. 반응이 완료될 때까지(12-24 시간) 혼합물을 50 ℃에서 교반하였다. 생성된 혼합물을 감압 하에 증발시켜 잔류물을 수득하고, 이를 50 ml의 DCM(dichloromethane)에 재용해시켰다. 혼합물을 여과하고 DCM 층을 감압 하에 증발시켜 중간체 에스테르 화합물 3을 수득하였다. 화합물 3을 메탄올/테트라하이드로퓨란 (2/1, 5 ml)의 혼합 용액에 용해시켰다. 이어서, 히드록실아민·HCl (685 mg, 10 mmol)을 첨가한 후, NaOH 용액 (1 mL의 물 중 400 mg)을 적하하였다. 반응이 완료될 때까지 혼합물을 실온에서 교반하였다. 생성된 혼합물을 얼음물에 넣고, pH 약 7로 중화시킨 뒤, HCl 5 % 용액을 적하함으로써 산성화시켜 침전을 유도하였다. 침전물을 여과하고, 건조한 뒤, 메탄올로부터 재결정화하여 본 발명의 화합물 4-6을 수득하였다.A solution of each of the above compounds 2 and 1 mmol of methyl azidoester in acetonitrile (2 mL) was stirred at room temperature for 10 minutes and then CuI (19.1 mg, 0.1 mmol) was added. The mixture was stirred at 50 < 0 > C until the reaction was complete (12-24 h). The resulting mixture was evaporated under reduced pressure to give a residue which was redissolved in 50 ml of dichloromethane. The mixture was filtered and the DCM layer was evaporated under reduced pressure to give the intermediate ester compound 3. [ Compound 3 was dissolved in a mixed solution of methanol / tetrahydrofuran (2/1, 5 ml). Then, hydroxylamine-HCl (685 mg, 10 mmol) was added, and then NaOH solution (400 mg in 1 mL of water) was added dropwise. The mixture was stirred at room temperature until the reaction was complete. The resulting mixture was poured into ice water, neutralized to a pH of about 7, and acidified by dropping 5% HCl solution to induce precipitation. The precipitate was filtered, dried and then recrystallized from methanol to obtain the compound 4-6 of the present invention.

상기 화합물 4-6의 화합물명 및 이들의 물성은 다음과 같다.The compound names of the compound 4-6 and the physical properties thereof are as follows.

NN -- HydroxyHydroxy -3-(4-((3-(-3- (4 - ((3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )) propanamide프로탄 나드 (4a) (4a)

Yellow solid; Yield: 64%. mp: 185.5-186.0oC. R f = 0.40 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3423 (NH), 3287, 3197 (OH), 3064 (C-H, aren), 2895 (CH, CH2),1723,1672(C=O),1609,1549(C=C),1462(C-N).ESI-MS (m/z): 353 [M+Na]­+. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 10.47 (1H, s, NH); 8.82 (1H, s, OH); 8.02 (1H, s, H-5’); 7.99 (1H, d, J = 7.0 Hz, H-4”); 7.39 (1H, t, J = 8.0 Hz, H-6”); 7.11 (1H, t, J = 8.5 Hz, H-5”); 7.07 (1H, d, J = 7.5 Hz, H-7”); 4.96 (2H, s, H-6’a, H-6’b); 4.51 (2H, t, J = 7.0 Hz, H-3a, H-3b); 2.57 (2H, t, J = 7.0 Hz, H-2a, H-2b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 165.82, 162.75, 143.39, 142.54, 141.69, 131.88, 126.77, 123.51, 122.69, 115.27, 109.62, 45.58, 34.57, 32.49. Anal. Calcd. For C14H14N6O4(330.30):C, 50.91; H, 4.27; N, 25.44. Found: C, 50.94; H, 4.31; N, 25.47. Yellow solid; Yield: 64%. mp: 185.5-186.0 o C. R f = 0.40 (DCM: MeOH: AcOH = 90: 5: 1). IR (KBr, cm -1): 3423 (NH), 3287, 3197 (OH), 3064 (CH, aren), 2895 (CH, CH 2), 1723,1672 (C = O), 1609,1549 (C = C), 1462 (CN). ESI-MS ( m / z): 353 [M + Na] < + >. 1 H-NMR ( 500 MHz, DMSO- d 6 , ppm) :? 10.47 (1H, s, NH); 8.82 (1H, s, OH); 8.02 (1H, s, H-5 '); 7.99 (1H, d, J = 7.0 Hz, H-4 "); 7.39 (1H, t, J = 8.0 Hz, H-6 "); 7.11 (1H, t, J = 8.5 Hz, H-5 "); 7.07 (1H, d, J = 7.5 Hz, H-7 "); 4.96 (2H, s, H-6'a, H-6'b); 4.51 (2H, t, J = 7.0 Hz, H-3a, H-3b); 2.57 (2H, t, J = 7.0 Hz, H-2a, H-2b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 165.82, 162.75, 143.39, 142.54, 141.69, 131.88, 126.77, 123.51, 122.69, 115.27, 109.62, 45.58, 34.57, 32.49. Anal. Calcd. For C 14 H 14 N 6 O 4 (330.30): C, 50.91; H, 4.27; N, 25.44. Found: C, 50.94; H, 4.31; N, 25.47.

3-(4-((5-3- (4 - ((5- FluoroFluoro -3-(-3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )-) - NN -hydroxypropanamide-hydroxypropanamide (4b)(4b)

Yellow solid; Yield: 63%. mp: 187.5-188.5oC. R f = 0.42 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3293 (OH), 3069 (C-H, aren), 2921, 2856 (CH, CH2),1719(C=O),1616(C=C),1480,1439(C-N).ESI -MS (m/z): 347 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 10.38 (1H, s, NH); 8.05 (1H, s, H-5’); 7.74 (1H, dd, J = 8.0 Hz, J’ = 2.0 Hz,H-4”);7.28(1H,td,J = 8.5 Hz, J’ = 2.0 Hz, H-6”); 7.13 (1H, dd, J = 8.5 Hz, J’ = 4.0 Hz, H-7”); 4.97 (2H, s, H-6’a, H-6’b); 4.53-4.48 (2H, m, H-3a, H-3b); 2.86 (1H, t, J = 6.75 Hz, H-2a) 2.57 (2H, t, J = 6.75 Hz, H-2b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 165.85, 162.64, 157.06, 143.07, 141.55, 138.90, 123.62, 118.15, 115.77, 113.78, 110.77, 45.65, 34.72, 32.55. Anal. Calcd. For C14H13FN6O4(348.29):C, 48.28; H, 3.76; N, 24.13. Found: C, 48.31; H, 3.75; N, 24.15. Yellow solid; Yield: 63%. mp: 187.5-188.5 o C. R f = 0.42 (DCM: MeOH: AcOH = 90: 5: 1). IR (KBr, cm -1): 3293 (OH), 3069 (CH, aren), 2921, 2856 (CH, CH 2), 1719 (C = O), 1616 (C = C), 1480,1439 (CN ). ESI- MS ( m / z): 347 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 10.38 (1H, s, NH); 8.05 (1H, s, H-5 '); 7.74 (1H, dd, J = 8.0 Hz, J = 2.0 Hz, H-4 "); 7.28 (1H, td, J = 8.5 Hz, J = 2.0 Hz, H-6"); 7.13 (1H, dd, J = 8.5 Hz, J = 4.0 Hz, H-7 "); 4.97 (2H, s, H-6 ' a, H-6 'b); 4.53-4.48 (2H, m, H-3a, H-3b); 2.86 (1H, t, J = 6.75 Hz, H-2a) 2.57 (2H, t, J = 6.75 Hz, H-2b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 165.85, 162.64, 157.06, 143.07, 141.55, 138.90, 123.62, 118.15, 115.77, 113.78, 110.77, 45.65, 34.72, 32.55. Anal. Calcd. For C 14 H 13 FN 6 O 4 (348.29): C, 48.28; H, 3.76; N, 24.13. Found: C, 48.31; H, 3.75; N, 24.15.

3-(4-((5-3- (4 - ((5- ChloroChloro -3-(-3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )-) - NN -hydroxypropanamide-hydroxypropanamide (4c)(4c)

Yellow solid; Yield: 63%. mp: 187.0-189.0oC. R f = 0.41 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3420 (NH), 3255, 3151 (OH), 3035 (C-H, aren), 2851 (CH, CH2),1713,1647(C=O),1609(C=C),1464(C-N).ESI -MS (m/z): 365 [M+H]­+. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 14.70 (1H, s, NH); 10.48 (1H, s, NH); 8.83 (1H, s, OH); 8.03 (1H, s, H-5’); 7.96 (1H, d, J = 1.75 Hz, H-4”); 7.48 (1H, dd, J = 8.5 Hz, J’ = 1.75 Hz, H-6”); 7.14 (1H, d, J = 8.5 Hz, H-7”); 4.98 (2H, s, H-6’a, H-6’b); 4.52 (2H, t, J = 6.75 Hz, H-3a, H-3b); 2.57 (2H, t, J = 6.75 Hz, H-2a, H-2b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 165.83, 162.40, 142.66, 141.43, 141.31, 131.37, 126.55, 126.08, 123.59, 116.40, 111.27, 45.62, 34.72, 32.51. Anal. Calcd. For C14H13ClN6O4(364.74):C, 46.10; H, 3.59; N, 23.04. Found: C, 46.13; H, 3.62; N, 23.07. Yellow solid; Yield: 63%. mp: 187.0-189.0 o C. R f = 0.41 (DCM: MeOH: AcOH = 90: 5: 1). IR (KBr, cm -1): 3420 (NH), 3255, 3151 (OH), 3035 (CH, aren), 2851 (CH, CH 2), 1713,1647 (C = O), 1609 (C = C ), 1464 (CN). ESI- MS ( m / z): 365 [M + H] < + >. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 14.70 (1H, s, NH); 10.48 (1H, s, NH); 8.83 (1H, s, OH); 8.03 (1H, s, H-5 '); 7.96 (1H, d, J = 1.75 Hz, H-4 "); 7.48 (1H, dd, J = 8.5 Hz, J = 1.75 Hz, H-6 "); 7.14 (1H, d, J = 8.5 Hz, H-7 "); 4.98 (2H, s, H-6'a, H-6'b); 4.52 (2H, t, J = 6.75 Hz, H-3a, H-3b); 2.57 (2H, t, J = 6.75 Hz, H-2a, H-2b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 165.83, 162.40, 142.66, 141.43, 141.31, 131.37, 126.55, 126.08, 123.59, 116.40, 111.27, 45.62, 34.72, 32.51. Anal. Calcd. For C 14 H 13 ClN 6 O 4 (364.74): C, 46.10; H, 3.59; N, 23.04. Found: C, 46.13; H, 3.62; N, 23.07.

NN -- HydroxyHydroxy -4-(4-((3-(-4- (4 - ((3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )) butanamidebutanamide (5a) (5a)

Yellow solid; Yield: 68%. mp: 181.0-182.5oC. R f = 0.45 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3135 (OH), 3022 (C-H, aren), 2918, 2856 (CH, CH2),1721,1640(C=O),1608(C=C),1463(C-N).ESI -MS (m/z): 343 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 13.58 (1H, s, NH); 10.52 (1H, s, OH); 10.40 (1H, s, NH); 8.12 (1H, s, H-5’); 7.97 (1H, d, J = 7.5 Hz, H-4”); 7.39 (1H, td, J = 8.0 Hz, J’ = 1.0 Hz, H-6”); 7.11 (1H, d, J = 7.5 Hz, H-7”); 7.07 (1H, t, J = 7.5 Hz, H-5”); 4.97 (2H, s, H-6’a, H-6’b); 4.29 (2H, t, J = 6.5 Hz, H-4a, H-4b); 1.99-1.95 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 CNMR(125MHz,DMSO-d 6 , ppm): δ 168.16, 162.83, 143.36, 142.60, 141.87, 131.94, 126.83, 123.39, 122.77, 115.32, 109.68, 48.93, 34.67, 29.01, 25.85. Anal. Calcd. For C15H16N6O4(344.33):C, 52.32; H, 4.68; N, 24.41. Found: C, 52.37; H, 4.71; N, 24.38. Yellow solid; Yield: 68%. mp: 181.0-182.5 o C. R f = 0.45 (DCM: MeOH: AcOH = 90: 5: 1). IR (KBr, cm -1): 3135 (OH), 3022 (CH, aren), 2918, 2856 (CH, CH 2), 1721,1640 (C = O), 1608 (C = C), 1463 (CN ). ESI- MS ( m / z): 343 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 13.58 (1H, s, NH); 10.52 (1H, s, OH); 10.40 (1H, s, NH); 8.12 (1H, s, H-5 '); 7.97 (1H, d, J = 7.5 Hz, H-4 "); 7.39 (1H, td, J = 8.0 Hz, J = 1.0 Hz, H-6 "); 7.11 (1H, d, J = 7.5 Hz, H-7 "); 7.07 (1H, t, J = 7.5 Hz, H-5 "); 4.97 (2H, s, H-6 ' a, H-6 'b); 4.29 (2H, t, J = 6.5 Hz, H-4a, H-4b); 1.99-1.95 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 C NMR (125 MHz, DMSO-d 6 , ppm) :? 168.16, 162.83, 143.36, 142.60, 141.87, 131.94, 126.83, 123.39, 122.77, 115.32, 109.68, 48.93, 34.67, 29.01, 25.85. Anal. Calcd. For C 15 H 16 N 6 O 4 (344.33): C, 52.32; H, 4.68; N, 24.41. Found: C, 52.37; H, 4.71; N, 24.38.

4-(4-((5-4- (4 - ((5- FluoroFluoro -3-(-3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )-) - NN -hydroxybutanamide (5b)-hydroxybutanamide (5b)

Yellow solid; Yield: 72%. mp: 180.0-182.0oC. R f = 0.43 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3441 (NH), 3208, 3137 (OH), 3029 (C-H, aren), 2872 (CH, CH2),1722,1640(C=O),1477(C-N).ESI -MS (m/z): 361 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ10.40(1H,s,NH);8.72(1H,s,OH);8.11(1H,s,H-5’);7.75(1H,dd,J = 7.5 Hz, J’ = 2.5 Hz,H-4”);7.28(1H,td,J = 8.5 Hz, J’ = 2.5 Hz, H-6”); 7.13 (1H, dd, J = 8.5 Hz, J’ = 4.0 Hz, H-7”); 4.98 (2H, s, H-6’a, H-6’b); 4.32-4.29 (2H, m, H-4a, H-4b); 1.99-1.92 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.05, 162.64, 157.06, 143.13, 141.72, 138.92, 123.43, 118.14, 115.79, 113.80, 110.75, 48.91, 34.79, 28.96, 25.77. Anal. Calcd. For C15H15FN6O4(362.32):C, 49.72; H, 4.17; N, 23.20. Found: C, 49.75; H, 4.21; N, 23.24. Yellow solid; Yield: 72%. mp: 180.0-182.0 o C. R f = 0.43 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3441 (NH), 3208, 3137 (OH), 3029 (CH, aren), 2872 (CH, CH 2 ), 1722, 1640 (C = O), 1477 (CN). ESI- MS ( m / z): 361 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ10.40 (1H, s, NH); 8.72 (1H, s, OH); 8.11 (1H, s, H-5 '); 7.75 (1H , dd, J = 7.5 Hz, J = 2.5 Hz, H-4 "); 7.28 (1H, td, J = 8.5 Hz, J = 2.5 Hz, H-6"); 7.13 (1H, dd, J = 8.5 Hz, J = 4.0 Hz, H-7 "); 4.98 (2H, s, H-6'a, H-6'b); 4.32-4.29 (2H, m, H-4a, H-4b); 1.99-1.92 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 168.05, 162.64, 157.06, 143.13, 141.72, 138.92, 123.43, 118.14, 115.79, 113.80, 110.75, 48.91, 34.79, 28.96, 25.77. Anal. Calcd. For C 15 H 15 FN 6 O 4 (362.32): C, 49.72; H, 4.17; N, 23.20. Found: C, 49.75; H, 4.21; N, 23.24.

4-(4-((5-4- (4 - ((5- ChloroChloro -3-(-3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )-) - NN -hydroxybutanamide (5c)-hydroxybutanamide (5c)

Yellow solid; Yield: 64%. mp: 187.5-188.5oC. R f = 0.42 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3417 (NH), 3219, 3138 (OH), 3044 (C-H, aren), 2874 (CH, CH2),1720,1643(C=O),1610(C=C),1463(C-N).ESI -MS (m/z): 401 [M+Na]­+. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 13.82 (1H, s, NH); 10.38 (1H, s, NH); 8.71 (1H, s, OH); 8.10 (1H, s, H-5’); 7.96 (1H, d, J = 1.75 Hz, H-4”); 7.47 (1H, dd, J = 7.5 Hz, J’ = 1.75 Hz, H-6”); 7.14 (1H, d, J = 8.5 Hz, H-7”); 4.98 (2H, s, H-6’a, H-6’b); 4.30 (2H, t, J = 6.5 Hz, H-4a, H-4b); 2.00-1.92 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 CNMR(125MHz,DMSO-d 6 , ppm): δ 168.05, 162.41, 142.71, 141.63, 141.38, 131.40, 126.56, 126.12, 123.33, 116.43, 111.28, 48.92, 34.82, 28.96, 25.76. Anal. Calcd. For C15H15ClN6O4(378.77):C, 47.56; H, 3.99; N, 22.19. Found: C, 47.61; H, 3.95; N, 22.22. Yellow solid; Yield: 64%. mp: 187.5-188.5 o C. R f = 0.42 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3417 (NH), 3219, 3138 (OH), 3044 (CH, aren), 2874 (CH, CH 2 ), 1720,1643 ), 1463 (CN). ESI- MS ( m / z): 401 [M + Na] < + >. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 13.82 (1H, s, NH); 10.38 (1H, s, NH); 8.71 (1H, s, OH); 8.10 (1H, s, H-5 '); 7.96 (1H, d, J = 1.75 Hz, H-4 "); 7.47 (1H, dd, J = 7.5 Hz, J = 1.75 Hz, H-6 "); 7.14 (1H, d, J = 8.5 Hz, H-7 "); 4.98 (2H, s, H-6'a, H-6'b); 4.30 (2H, t, J = 6.5Hz, H-4a, H-4b); 2.00-1.92 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 CNMR (125MHz, DMSO-d 6, ppm): δ 168.05, 162.41, 142.71, 141.63, 141.38, 131.40, 126.56, 126.12, 123.33, 116.43, 111.28, 48.92, 34.82, 28.96, 25.76. Anal. Calcd. For C 15 H 15 ClN 6 O 4 (378.77): C, 47.56; H, 3.99; N, 22.19. Found: C, 47.61; H, 3.95; N, 22.22.

4-(4-((5-4- (4 - ((5- BromoBromo -3-(-3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )-) - NN -hydroxybutanamide (5d)-hydroxybutanamide (5d)

Yellow solid; Yield: 68%. mp: 188.5-189.5oC. R f = 0.47 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3407 (NH), 3138 (OH), 3023 (C-H, aren), 2968, 2853 (CH, CH2),1731,1704(C=O),1606(C=C),1463(C-N).ESI -MS (m/z): 421 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 10.42 (1H, s, NH); 8.72 (1H, s, OH); 8.10 (1H, s, H-5’); 8.08 (1H, d, J = 1.5 Hz, H-4”); 7.60 (1H, dd, J = 8.25 Hz, J’ = 1.5 Hz, H-6”); 7.10 (1H, d, J = 8.25 Hz, H-7”); 4.98 (2H, s, H-6’a, H-6’b); 4.30 (2H, t, J = 6.5 Hz, H-4a, H-4b); 2.00-1.94 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.07, 162,34, 142.52, 141.72, 141.60, 134.17, 128.76, 123.35, 116.88, 114.20, 111.78, 48.92, 34.79, 28.97, 25.78. Anal. Calcd. For C15H15BrN6O4(422.23):C, 42.57; H, 3.57; N, 19.86. Found: C, 42.59; H, 3.61; N, 19.85. Yellow solid; Yield: 68%. mp: 188.5-189.5 o C. R f = 0.47 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3407 (NH), 3138 (OH), 3023 (CH, aren), 2968, 2853 (CH, CH 2 ), 1731,1704 ), 1463 (CN). ESI- MS ( m / z): 421 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 10.42 (1H, s, NH); 8.72 (1H, s, OH); 8.10 (1H, s, H-5 '); 8.08 (1H, d, J = 1.5 Hz, H-4 "); 7.60 (1H, dd, J = 8.25 Hz, J = 1.5 Hz, H-6 "); 7.10 (1H, d, J = 8.25 Hz, H-7 "); 4.98 (2H, s, H-6'a, H-6'b); 4.30 (2H, t, J = 6.5Hz, H-4a, H-4b); 2.00-1.94 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 C NMR ( 125MHz, DMSO- d 6 , ppm) :? 168.07, 162.34, 142.52, 141.72, 141.60, 134.17, 128.76, 123.35, 116.88, 114.20, 111.78, 48.92, 34.79, 28.97, 25.78. Anal. Calcd. For C 15 H 15 BrN 6 O 4 (422.23): C, 42.57; H, 3.57; N, 19.86. Found: C, 42.59; H, 3.61; N, 19.85.

NN -- HydroxyHydroxy -4-(4-((3-(-4- (4 - ((3- ( hydroxyiminohydroxyimino )-5-methyl-2-) -5-methyl-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1-yl)butanamide (5e)-1-yl) butanamide < / RTI > (5e)

Yellow solid; Yield: 71%. mp: 179.5-181.0oC. R f = 0.41 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3280 (NH), 3184 (OH), 3068 (C-H, aren), 2908 (CH, CH2),1713,1673(C=O),1624,1552(C=C),1476(C-N).ESI -MS (m/z): 381 [M+Na]­+. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 13.44 (1H, s, NH); 10.38 (1H, s, NH); 8.71 (1H, s, OH); 8.08 (1H, s, H-5’); 7.83 (1H, s, H-4”); 7.20 (1H, d, J = 8.0 Hz, H-7”); 6.99 (1H, d, J = 8.0 Hz, H-6”); 4.95 (2H, s, H-6’a, H-6’b); 4.30 (2H, t, J = 6.5 Hz, H-4a, H-4b); 2.27 (3H, s, -CH3);1.98-1.93(4H,m,H-3a,H-3b,H-2a,H-2b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.08, 162.77, 143.59, 141.93, 140.39, 132.14, 131.77, 127.38, 123.26, 115.35, 109.42, 48.89, 34.67, 28.97, 25.78, 20.51. Anal. Calcd. For C16H18N6O4(358.35):C, 53.63; H, 5.06; N, 23.45. Found: C, 53.67; H, 5.11; N, 23.42. Yellow solid; Yield: 71%. mp: 179.5-181.0 o C. R f = 0.41 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3280 (NH), 3184 (OH), 3068 (CH, aren), 2908 (CH, CH 2 ), 1713,1673 ), 1476 (CN). ESI- MS ( m / z): 381 [M + Na] < + >. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 13.44 (1H, s, NH); 10.38 (1H, s, NH); 8.71 (1H, s, OH); 8.08 (1H, s, H-5 '); 7.83 (1H, s, H-4 "); 7.20 (1H, d, J = 8.0 Hz, H-7 "); 6.99 (1H, d, J = 8.0 Hz, H-6 "); 4.95 (2H, s, H-6'a, H-6'b); 4.30 (2H, t, J = 6.5Hz, H-4a, H-4b); 2.27 (3H, s, -CH 3 ); 1.98-1.93 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 168.08, 162.77, 143.59, 141.93, 140.39, 132.14, 131.77, 127.38, 123.26, 115.35, 109.42, 48.89, 34.67, 28.97, 25.78, 20.51. Anal. Calcd. For C 16 H 18 N 6 O 4 (358.35): C, 53.63; H, 5.06; N, 23.45. Found: C, 53.67; H, 5.11; N, 23.42.

NN -- HydroxyHydroxy -4-(4-((3-(-4- (4 - ((3- ( hydroxyiminohydroxyimino )-5-) -5- methoxy메틸oxy -2--2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1-yl)butanamide (5f)-1-yl) butanamide (5f)

Yellow solid; Yield: 60%. mp: 180.0-182.0oC. R f = 0.45 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3281 (NH), 3187 (OH), 3071 (C-H, aren), 2916 (CH, CH2),1711,1673(C=O),1630,1596(C=C),1552,1480(C-N).ESI-MS (m/z): 373 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 13.53 (1H, s, NH); 10.40 (1H, s, NH); 8.09 (1H, s, H-5’); 7.58 (1H, d, J = 2.5 Hz, H-4”); 7.04-6.98 (2H, m, , H-6”,H-7”); 4.94 (2H, s, H-6’a, H-6’b); 4.30 (2H, t, J = 7.0 Hz, H-4a, H-4b); 3.72 (3H, s, -OCH3);2.00-1.92(4H,m,H-3a,H-3b,H-2a,H-2b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.05, 162.62, 155.21, 143.68, 141.94, 136.24, 123.28, 116.86, 115.85, 113.09, 110.26, 55.65, 48.90, 34.70, 28.97, 25.78. Anal. Calcd. For C16H18N6O5(374.35):C, 51.33; H, 4.85; N, 22.45. Found: C, 51.35; H, 4.89; N, 22.42. Yellow solid; Yield: 60%. mp: 180.0-182.0 o C. R f = 0.45 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3281 (NH), 3187 (OH), 3071 (CH, aren), 2916 (CH, CH 2 ), 1711, 1673 ), 1552, 1480 (CN). ESI-MS ( m / z): 373 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 13.53 (1H, s, NH); 10.40 (1H, s, NH); 8.09 (1H, s, H-5 '); 7.58 (1H, d, J = 2.5 Hz, H-4 "); 7.04-6.98 (2H, m, H-6 ", H-7 "); 4.94 (2H, s, H-6'a, H-6'b); 4.30 (2H, t, J = 7.0Hz, H-4a, H-4b); 3.72 (3H, s, -OCH 3 ); 2.00-1.92 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 168.05, 162.62, 155.21, 143.68, 141.94, 136.24, 123.28, 116.86, 115.85, 113.09, 110.26, 55.65, 48.90, 34.70, 28.97, 25.78. Anal. Calcd. For C 16 H 18 N 6 O 5 (374.35): C, 51.33; H, 4.85; N, 22.45. Found: C, 51.35; H, 4.89; N, 22.42.

4-(4-((7-4- (4 - ((7- ChloroChloro -3-(-3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )-) - NN -hydroxybutanamide (5g)-hydroxybutanamide (5 g)

Yellow solid; Yield: 70%. mp: 187.5-188.5oC. R f = 0.43 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3517, 3378 (NH), 3248 (OH), 3030 (C-H, aren), 2897 (CH, CH2),1717,1664(C=O),1634,1608(C=C),1441(C-N).ESI-MS (m/z): 377 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 10.41 (1H, s, NH); 8.72 (1H, s, OH); 8.07 (1H, dd, J = 7.75 Hz,J = 1.0 Hz, H-4”); 8.06 (1H, s, H-5’); 7.39 (1H, dd, J = 7.75 Hz, J’ = 1.0 Hz, H-6”); 7.11 (1H, t, J = 7.75 Hz, H-5”); 5.31 (2H, s, H-6’a, H-6’b); 4.29 (2H, t, J = 6.5 Hz, H-4a, H-4b); 2.00-1.92 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.07, 163.64, 143.38, 142.19, 138.46, 133.78, 125.84, 124.23, 122.49, 118.30, 114.80, 48.88, 37.06, 28.96, 25.84. Anal. Calcd. For C15H15ClN6O4(378.77):C, 47.56; H, 3.99; N, 22.19. Found: C, 47.55; H, 3.97; N, 22.17. Yellow solid; Yield: 70%. mp: 187.5-188.5 o C. R f = 0.43 (DCM: MeOH: AcOH = 90: 5: 1). IR (KBr, cm -1): 3517, 3378 (NH), 3248 (OH), 3030 (CH, aren), 2897 (CH, CH 2), 1717,1664 (C = O), 1634,1608 (C = C), 1441 (CN). ESI-MS ( m / z): 377 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 10.41 (1H, s, NH); 8.72 (1H, s, OH); 8.07 (1H, dd, J = 7.75 Hz, J '= 1.0 Hz, H-4 "); 8.06 (1H, s, H-5 '); 7.39 (1H, dd, J = 7.75 Hz, J = 1.0 Hz, H-6 "); 7.11 (1H, t, J = 7.75 Hz, H-5 "); 5.31 (2H, s, H-6'a, H-6'b); 4.29 (2H, t, J = 6.5 Hz, H-4a, H-4b); 2.00-1.92 (4H, m, H-3a, H-3b, H-2a, H-2b). 13 C NMR ( 125MHz, DMSO- d 6 , ppm) :? 168.07, 163.64, 143.38, 142.19, 138.46, 133.78, 125.84, 124.23, 122.49, 118.30, 114.80, 48.88, 37.06, 28.96, 25.84. Anal. Calcd. For C 15 H 15 ClN 6 O 4 (378.77): C, 47.56; H, 3.99; N, 22.19. Found: C, 47.55; H, 3.97; N, 22.17.

N-N- HydroxyHydroxy -5-(4-((3-(-5- (4 - ((3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )) pentanamidepentanamide (6a)(6a)

Yellow solid; Yield: 68%. mp: 189.0-191.5oC. R f = 0.48 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3399, 3312 (NH), 3196 (OH), 3059 (C-H, aren), 2876 (CH, CH2),1714,1678(C=O),1608(C=C),1455(C-N).ESI -MS (m/z): 357 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 13.45 (1H, s, NH); 10.35 (1H, s, NH); 8.67 (1H, s, OH); 8.09 (1H, s, H-5’); 7.98 (1H, d, J = 7.5 Hz, H-4”); 7.40 (1H, t, J = 7.5 Hz, H-6”); 7.12-7.06 (2H, m, H-5”, H-7”); 4.98 (2H, s, H-6’a, H-6’b); 4.29 (2H, t, J = 7.0 Hz, H-5a, H-5b); 1.95 (2H, t, J = 7.5 Hz, H-2a, H-2b); 1.79-1.71 (2H, m, H-4a, H-4b); 1.45-1.39 (2H, m, H-3a, H-3b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.68, 162.74, 143.44, 142.61, 141.80, 131.95, 126.85, 123.26, 122.73, 115.28, 109.64, 49.05, 34.67, 29.22, 22.04. Anal. Calcd. For C16H18N6O4(358.35):C, 53.63; H, 5.06; N, 23.45. Found: C, 53.67; H, 5.09; N, 23.41. Yellow solid; Yield: 68%. mp: 189.0-191.5 o C. R f = 0.48 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3399, 3312 (NH), 3196 (OH), 3059 (CH 2 ), 2876 (CH 2 CH 2 ), 1714, 1678 ), 1455 (CN). ESI- MS ( m / z): 357 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 13.45 (1H, s, NH); 10.35 (1H, s, NH); 8.67 (1H, s, OH); 8.09 (1H, s, H-5 '); 7.98 (1H, d, J = 7.5 Hz, H-4 "); 7.40 (1H, t, J = 7.5 Hz, H-6 "); 7.12-7.06 (2H, m, H-5 ", H-7 "); 4.98 (2H, s, H-6'a, H-6'b); 4.29 (2H, t, J = 7.0Hz, H-5a, H-5b); 1.95 (2H, t, J = 7.5 Hz, H-2a, H-2b); 1.79-1.71 (2H, m, H-4a, H-4b); 1.45-1.39 (2H, m, H-3a, H-3b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 168.68, 162.74, 143.44, 142.61, 141.80, 131.95, 126.85, 123.26, 122.73, 115.28, 109.64, 49.05, 34.67, 29.22, 22.04. Anal. Calcd. For C 16 H 18 N 6 O 4 (358.35): C, 53.63; H, 5.06; N, 23.45. Found: C, 53.67; H, 5.09; N, 23.41.

5-(4-((5-5- (4 - ((5- FluoroFluoro -3-(-3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )-) - NN -hydroxypentanamide-hydroxypentanamide (6b)(6b)

Yellow solid; Yield: 69%. mp: 194.5-196.0oC. R f = 0.48 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3396, 3320 (NH), 3172 (OH), 3058 (C-H, aren), 2876 (CH, CH2),1715,1680(C=O),1630(C=C),1477(C-N).ESI -MS (m/z): 375 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 13.76 (1H, s, NH); 10.34 (1H, s, NH); 8.67 (1H, s, OH); 8.08 (1H, s, H-5’); 7.75 (1H, dd, J = 8.0 Hz, J’ = 2.5 Hz, H-4”); 7.28 (1H, td, J = 8.75 Hz, J’ = 2.5 Hz, H-6”); 7.12 (1H, dd, J = 8.75 Hz, J’ = 4.0 Hz, H-7”); 4.98 (2H, s, H-6’a, H-6’b); 4.29 (2H, t, J = 7.0 Hz, H-5a, H-5b); 1.95 (2H, t, J = 7.5 Hz, H-2a, H-2b); 1.76-1.73 (2H, m, H-4a, H-4b); 1.45-1.40 (2H, m, H-3a, H-3b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.68, 162.61, 158.00, 143.16, 141.64, 138.93, 123.29, 118.15, 115.77, 113.83, 110.72, 49.06, 34.79, 31.51, 29.19, 22.03. Anal. Calcd. For C16H17FN6O4(376.34):C, 51.06; H, 4.55; N, 22.33. Found: C, 51.09; H, 4.59; N, 22.30. Yellow solid; Yield: 69%. mp: 194.5-196.0 o C. R f = 0.48 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3396, 3320 (NH), 3172 (OH), 3058 (CH, aren), 2876 (CH, CH 2 ), 1715, 1680 ), 1477 (CN). ESI -MS (m / z): 375 [MH] -. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 13.76 (1H, s, NH); 10.34 (1H, s, NH); 8.67 (1H, s, OH); 8.08 (1H, s, H-5 '); 7.75 (1H, dd, J = 8.0 Hz, J = 2.5 Hz, H-4 "); 7.28 (1H, td, J = 8.75 Hz, J = 2.5 Hz, H-6 "); 7.12 (1H, dd, J = 8.75 Hz, J = 4.0 Hz, H-7 "); 4.98 (2H, s, H-6'a, H-6'b); 4.29 (2H, t, J = 7.0Hz, H-5a, H-5b); 1.95 (2H, t, J = 7.5 Hz, H-2a, H-2b); 1.76-1.73 (2H, m, H-4a, H-4b); 1.45-1.40 (2H, m, H-3a, H-3b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 168.68, 162.61, 158.00, 143.16, 141.64, 138.93, 123.29, 118.15, 115.77, 113.83, 110.72, 49.06, 34.79, 31.51, 29.19, 22.03. Anal. Calcd. For C 16 H 17 FN 6 O 4 (376.34): C, 51.06; H, 4.55; N, 22.33. Found: C, 51.09; H, 4.59; N, 22.30.

5-(4-((5-5- (4 - ((5- ChloroChloro -3-(-3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1-yl)--1-yl) - NN -hydroxypentanamide-hydroxypentanamide (6c)(6c)

Yellow solid; Yield: 69%. mp: 194.5-196.0oC. R f = 0.48 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3286 (NH), 3143 (OH), 3042 (C-H, aren), 2851 (CH, CH2),1708,1647(C=O),1608(C=C),1461(C-N).ESI -MS (m/z): 391 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 10.36 (1H, s, NH); 8.68 (1H, s, OH); 8.08 (1H, s, H-5’); 7.95 (1H, s, H-4”); 7.48 (1H, d, J = 8.0 Hz, H-6”); 7.14 (1H, d, J = 8.0 Hz, H-7”); 4.98 (2H, s, H-6’a, H-6’b); 4.29 (2H, t, J = 7.0 Hz, H-5a, H-5b); 1.95 (2H, t, J = 7.5 Hz, H-2a, H-2b); 1.77-1.72 (2H, m, H-4a, H-4b); 1.45-1.40 (2H, m, H-3a, H-3b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.73, 162.44, 142.71, 141.57, 141.38, 131.42, 126.59, 126.14, 123.31, 116.44, 111.29, 49.09, 34.84, 31.53, 29.22, 22.06. Anal. Calcd. For C16H17ClN6O4(392.80):C, 48.92; H, 4.36; N, 21.40. Found: C, 48.95; H, 4.34; N, 21.44. Yellow solid; Yield: 69%. mp: 194.5-196.0 o C. R f = 0.48 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3286 (NH), 3143 (OH), 3042 (CH, aren), 2851 (CH, CH 2 ), 1708, 1647 1461 (CN). ESI- MS ( m / z): 391 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 10.36 (1H, s, NH); 8.68 (1H, s, OH); 8.08 (1H, s, H-5 '); 7.95 (1H, s, H-4 "); 7.48 (1H, d, J = 8.0 Hz, H-6 "); 7.14 (1H, d, J = 8.0 Hz, H-7 "); 4.98 (2H, s, H-6'a, H-6'b); 4.29 (2H, t, J = 7.0Hz, H-5a, H-5b); 1.95 (2H, t, J = 7.5 Hz, H-2a, H-2b); 1.77-1.72 (2H, m, H-4a, H-4b); 1.45-1.40 (2H, m, H-3a, H-3b). 13 C NMR ( 125 MHz, DMSO- d 6 , ppm) :? 168.73, 162.44, 142.71, 141.57, 141.38, 131.42, 126.59, 126.14, 123.31, 116.44, 111.29, 49.09, 34.84, 31.53, 29.22, Anal. Calcd. For C 16 H 17 ClN 6 O 4 (392.80): C, 48.92; H, 4.36; N, 21.40. Found: C, 48.95; H, 4.34; N, 21.44.

5-(4-((5-5- (4 - ((5- BromoBromo -3-(-3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )-) - NN -hydroxypentanamide-hydroxypentanamide (6d)(6d)

Yellow solid; Yield: 74%. mp: 201.5-203.0oC. R f = 0.51 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3420, 3289 (NH), 3147 (OH), 3031 (C-H, aren), 2862 (CH, CH2),1708,1646(C=O),1606(C=C),1462(C-N).ESI -MS (m/z): 437 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 10.34 (1H, s, NH); 8.67 (1H, s, OH); 8.08 (2H, s, H-5’, H-4”); 7.60 (1H, d, J = 7.75 Hz, H-6”); 7.09 (1H, d, J = 7.75 Hz, H-7”); 4.98 (2H, s, H-6’a, H-6’b); 4.29 (2H, t, J = 6.0 Hz, H-5a, H-5b); 1.95 (2H, t, J = 6.5 Hz, H-2a, H-2b); 1.75-1.73 (2H, m, H-4a, H-4b); 1.45-1.41 (2H, m, H-3a, H-3b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.68, 162.31, 142.57, 141.73, 141.54, 134.20, 128.79, 123.27, 116.86, 114.21, 111.76, 49.07, 34.80, 31.51, 29.20, 22.04. Anal. Calcd. For C16H17BrN6O4(437.25):C, 43.95; H, 3.92; N, 19.22. Found: C, 43.91; H, 3.94; N, 19.25. Yellow solid; Yield: 74%. mp: 201.5-203.0 o C. R f = 0.51 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3420,3289 (NH), 3147 (OH), 3031 (CH, aren), 2862 (CH, CH 2 ), 1708, 1646 ), 1462 (CN). ESI- MS ( m / z): 437 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 10.34 (1H, s, NH); 8.67 (1H, s, OH); 8.08 (2H, s, H-5 ', H-4''); 7.60 (1H, d, J = 7.75 Hz, H-6 "); 7.09 (1H, d, J = 7.75 Hz, H-7 "); 4.98 (2H, s, H-6'a, H-6'b); 4.29 (2H, t, J = 6.0Hz, H-5a, H-5b); 1.95 (2H, t, J = 6.5 Hz, H-2a, H-2b); 1.75-1.73 (2H, m, H-4a, H-4b); 1.45-1.41 (2H, m, H-3a, H-3b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 168.68, 162.31, 142.57, 141.73, 141.54, 134.20, 128.79, 123.27, 116.86, 114.21, 111.76, 49.07, 34.80, 31.51, 29.20, 22.04. Anal. Calcd. For C 16 H 17 BrN 6 O 4 (437.25): C, 43.95; H, 3.92; N, 19.22. Found: C, 43.91; H, 3.94; N, 19.25.

NN -- HydroxyHydroxy -5-(4-((3-(-5- (4 - ((3- ( hydroxyiminohydroxyimino )-5-methyl-2-) -5-methyl-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1-yl)pentanamide-1-yl) pentanamide (6e)(6e)

Yellow solid; Yield: 75%. mp: 199.5-201.6oC. R f = 0.46 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3317 (NH), 3188 (OH), 3061 (C-H, aren), 2879 (CH, CH2),1713,1680(C=O),1622(C=C),1460(C-N).ESI -MS (m/z): 371 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 13.43 (1H, s, NH); 10.34 (1H, s, NH); 8.66 (1H, s, OH); 8.06 (1H, s, H-5’); 7.83 (1H, s, H-4”); 7.21 (1H, s, H-6”); 6.99 (1H, d, J = 6.0 Hz, H-7”); 4.94 (2H, s, H-6’a, H-6’b); 4.29 (2H, s, H-5a, H-5b); 2.27 (3H, s, -CH3);1.95(2H,s,H-2a,H-2b);1.74(2H,s,H-4a,H-4b);1.42(2H,s,H-3a,H-3b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.25, 163.25, 144.08, 142.45, 140.86, 132.61, 132.25, 127.86, 123.74, 115.83, 109.89, 49.54, 35.17, 32.00, 29.69, 22.52, 20.97. Anal. Calcd. For C17H20N6O4(372.38):C, 54.83; H, 5.41; N, 22.57. Found: C, 54.86; H, 5.44; N, 22.55. Yellow solid; Yield: 75%. mp: 199.5-201.6 o C. R f = 0.46 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3317 (NH), 3188 (OH), 3061 (CH, aren), 2879 (CH, CH 2 ), 1713, 1680 1460 (CN). ESI- MS ( m / z): 371 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 13.43 (1H, s, NH); 10.34 (1H, s, NH); 8.66 (1H, s, OH); 8.06 (1H, s, H-5 '); 7.83 (1H, s, H-4 "); 7.21 (1H, s, H-6 "); 6.99 (1H, d, J = 6.0 Hz, H-7 "); 4.94 (2H, s, H-6'a, H-6'b); 4.29 (2H, s, H-5a, H-5b); 2.27 (3H, s, -CH 3 ); 1.95 (2H, s, H-2a, H-2b); 1.74 (2H, s, H-4a, H-4b); 1.42 (2H, s, H-3a , H-3b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 168.25, 163.25, 144.08, 142.45, 140.86, 132.61, 132.25, 127.86, 123.74, 115.83, 109.89, 49.54, 35.17, 32.00, 29.69, 22.52, 20.97. Anal. Calcd. For C 17 H 20 N 6 O 4 (372.38): C, 54.83; H, 5.41; N, 22.57. Found: C, 54.86; H, 5.44; N, 22.55.

NN -- HydroxyHydroxy -5-(4-((3-(-5- (4 - ((3- ( hydroxyiminohydroxyimino )-5-) -5- methoxy메틸oxy -2--2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1-yl)pentanamide-1-yl) pentanamide (6f)(6f)

Yellow solid; Yield: 64%. mp: 196.0-197.5oC. R f = 0.48 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3421 (NH), 3134 (OH), 3047 (C-H, aren), 2929, 2838 (CH, CH2),1718,1628(C=O),1598(C=C),1480(C-N).ESI -MS (m/z): 387 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 10.35 (1H, s, NH); 8.67 (1H, s, OH); 8.05 (1H, s, H-5’); 7.57 (1H, d, J = 2.5 Hz, H-4”); 7.03-6.98 (2H, m, H-6”, H-7”); 4.94 (2H, s, H-6’a, H-6’b); 4.29 (2H, t, J = 7.0 Hz, H-5a, H-5b); 3.72 (3H, s, -OCH3);1.95(2H,t,J = 7.0 Hz, H-2a, H-2b); 1.75-1.72 (2H, m, H-4a, H-4b); 1.45-1.40 (2H, m, H-3a, H-3b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.74, 162.66, 155.25, 143.71, 141.87, 136.25, 123.24, 116.90, 115.87, 113.14, 110.28, 55.68, 49.07, 34.73, 31.54, 29.22, 22.06. Anal. Calcd. For C17H20N6O5(388.38):C, 52.57; H, 5.19; N, 21.64. Found: C, 52.61; H, 5.21; N, 21.67. Yellow solid; Yield: 64%. mp: 196.0-197.5 o C. R f = 0.48 (DCM: MeOH: AcOH = 90: 5: 1). IR ( KBr , cm -1 ): 3421 (NH), 3134 (OH), 3047 (CH, aren), 2929, 2838 (CH, CH 2 ), 1718, 1628 ), 1480 (CN). ESI- MS ( m / z): 387 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 10.35 (1H, s, NH); 8.67 (1H, s, OH); 8.05 (1H, s, H-5 '); 7.57 (1H, d, J = 2.5 Hz, H-4 "); 7.03-6.98 (2H, m, H-6 ", H-7 "); 4.94 (2H, s, H-6'a, H-6'b); 4.29 (2H, t, J = 7.0Hz, H-5a, H-5b); 3.72 (3H, s, -OCH 3 ); 1.95 (2H, t, J = 7.0 Hz, H-2a, H-2b); 1.75-1.72 (2H, m, H-4a, H-4b); 1.45-1.40 (2H, m, H-3a, H-3b). 13 CNMR (125MHz, DMSO -d 6 , ppm): δ 168.74, 162.66, 155.25, 143.71, 141.87, 136.25, 123.24, 116.90, 115.87, 113.14, 110.28, 55.68, 49.07, 34.73, 31.54, 29.22, 22.06. Anal. Calcd. For C 17 H 20 N 6 O 5 (388.38): C, 52.57; H, 5.19; N, 21.64. Found: C, 52.61; H, 5.21; N, 21.67.

5-(4-((7-5- (4 - ((7- ChloroChloro -3-(-3- ( hydroxyiminohydroxyimino )-2-)-2- oxoindolinoxoindolin -1--One- ylyl )methyl)-1) methyl) -1 HH -1,2,3--1,2,3- triazoltriazole -1--One- ylyl )-) - NN -hydroxypentanamide-hydroxypentanamide (6g)(6g)

Yellow solid; Yield: 73%. mp: 198.5-201.0oC. R f = 0.47 (DCM : MeOH : AcOH = 90 : 5 : 1). IR ( KBr , cm -1 ): 3422 (NH), 3165 (OH), 3057 (C-H, aren), 2959, 2866 (CH, CH2),1724,1618(C=O),1608(C=C),1469(C-N).ESI -MS (m/z): 391 [M-H]­-. 1 H-NMR( 500MHz,DMSO -d 6 , ppm): δ 13.83 (1H, s, NH); 10.34 (1H, s, NH); 8.66 (1H, s, OH); 8.07 (1H, d, J = 7.0 Hz, H-4”); 8.03 (1H, s, H-5’); 7.39(1H,d,J = 8.0 Hz, H-6”); 7.11 (1H, t, J = 7.5 Hz, H-5”); 5.31 (2H, s, H-6’a, H-6’b); 4.29 (2H, t, J = 7.0 Hz, H-5a, H-5b); 1.95 (2H, t, J = 7.25 Hz, H-2a, H-2b); 1.77-1.71 (2H, m, H-4a, H-4b); 145-1.39 (2H, m, H-3a, H-3b). 13 CNMR ( 125MHz,DMSO -d 6 , ppm): δ 168.67, 163.63, 143.26, 142.20, 138.45, 133.77, 125.84, 124.22, 122.44, 118.29, 114.80, 49.01, 37.06, 31.50, 29.24, 22.01. Anal. Calcd. For C16H17ClN6O4(392.80):C, 48.92; H, 4.36; N, 21.40. Found: C, 48.93; H, 4.39; N, 21.42. Yellow solid; Yield: 73%. mp: 198.5-201.0 o C. R f = 0.47 (DCM: MeOH: AcOH = 90: 5: 1). IR (KBr, cm -1): 3422 (NH), 3165 (OH), 3057 (CH, aren), 2959, 2866 (CH, CH 2), 1724,1618 (C = O), 1608 (C = C ), 1469 (CN). ESI- MS ( m / z): 391 [MH] <">. 1 H-NMR (500MHz, DMSO -d 6, ppm): δ 13.83 (1H, s, NH); 10.34 (1H, s, NH); 8.66 (1H, s, OH); 8.07 (1H, d, J = 7.0 Hz, H-4 "); 8.03 (1H, s, H-5 '); 7.39 (1H, d, J = 8.0 Hz, H-6 "); 7.11 (1H, t, J = 7.5 Hz, H-5 "); 5.31 (2H, s, H-6'a, H-6'b); 4.29 (2H, t, J = 7.0Hz, H-5a, H-5b); 1.95 (2H, t, J = 7.25 Hz, H-2a, H-2b); 1.77-1.71 (2H, m, H-4a, H-4b); 145-139 (2H, m, H-3a, H-3b). 13 CNMR ( 125 MHz, DMSO- d 6 , ppm) :? 168.67, 163.63, 143.26, 142.20, 138.45, 133.77, 125.84, 124.22, 122.44, 118.29, 114.80, 49.01, 37.06, 31.50, 29.24, Anal. Calcd. For C 16 H 17 ClN 6 O 4 (392.80): C, 48.92; H, 4.36; N, 21.40. Found: C, 48.93; H, 4.39; N, 21.42.

상기 최종 생성물의 구조는 IR, MS, 1H NMR 및 13C NMR을 포함한 분광법을 사용하여 직접 결정하였다. The structure of the final product was determined directly using spectroscopy including IR, MS, 1 H NMR and 13 C NMR.

세포독성 시험 방법(Cytotoxicity assay)Cytotoxicity assay

SW620 (결장암), PC3 (전립선 암) 및 AsPC-1 (췌장암)을 포함하는 세 가지 인간 암 세포주에 대하여 합성된 본 발명의 화합물 4-6의 세포 독성을 평가하였다. 상기 세포주는 한국생명공학연구원 (KRIBB)의 암세포 은행 (Cancer Cell Bank)에서 구입하였다. 세포 배양에 사용된 배지, 혈청 및 기타 시약은 GIBCO Co. Ltd. (Grand Island, New York, USA)에서 입수하였다. 상기 세포들은 콘플루언시(confluency)를 이룰 때까지 DMEM (Dulbecco 's Modified Eagle Medium) 배지에서 배양하였다. 그 다음, 세포를 트립신 처리하고 3x104 세포/mL의 개수로 세포 배양 배지에 현탁시켰다. 0일째에, 96-웰 플레이트의 각 웰에 180 μL의 세포 현탁액을 분주하였다. 그런 다음 96-웰 플레이트를 5% CO2 배양기에서 37 ℃에서 24 시간 동안 배양하였다. 화합물(4a-c, 5a-g 및 6a-g)는 초기에 DMSO(dimethyl sulfoxide)에 용해시킨 뒤, 배양 배지(DMEM)를 이용해 적절한 농도로 희석시켜 준비하였다. 그런 다음 세포현탁액을 접종하여 24 시간 동안 배양한 96-웰 플레이트의 각 웰에 준비한 각 화합물 시료 20 μL를 다양한 농도로 첨가하였다. 96-웰 플레이트는 48 시간 동안 추가 배양하였다. 화합물의 세포 독성은 선행문헌에서 사용한 방법을 약간 변형한 비색법(colorimetric method)에 의해 측정하였다 [21, 23-24]. IC50 값은 Probits 방법 [27]을 사용하여 계산하였고 세 가지 독립적인 측정 값의 평균값(SD ≤ 10 %)이었다.Cytotoxicity of the inventive compounds 4-6 synthesized against three human cancer cell lines including SW620 (colon cancer), PC3 (prostate cancer) and AsPC-1 (pancreatic cancer) was evaluated. The cell line was purchased from the Cancer Cell Bank of Korea Research Institute of Bioscience and Biotechnology (KRIBB). The medium, serum and other reagents used for cell culture were obtained from GIBCO Co. Ltd. (Grand Island, New York, USA). The cells were cultured in DMEM (Dulbecco's Modified Eagle Medium) medium until confluency was achieved. The cells were then trypsinized and suspended in cell culture medium at a number of 3x10 4 cells / mL. On day 0, 180 μL of cell suspension was dispensed into each well of a 96-well plate. The 96-well plate was then incubated in a 5% CO 2 incubator at 37 ° C for 24 hours. The compounds (4a-c, 5a-g and 6a-g) were initially dissolved in dimethyl sulfoxide (DMSO) and diluted to the appropriate concentration using a culture medium (DMEM). Then, 20 μL of each compound sample prepared in each well of a 96-well plate cultured for 24 hours inoculated with the cell suspension was added at various concentrations. 96-well plates were further incubated for 48 hours. The cytotoxicity of the compounds was determined by the colorimetric method with a slight modification of the method used in the previous literature [21, 23-24]. IC 50 values were calculated using the Probits method [27] and the mean value of three independent measurements (SD ≤ 10%).

HDAC2 효소 시험 방법(HDAC2 enzyme assay)HDAC2 enzyme assay (HDAC2 enzyme assay)

HDAC2 효소는 BPS Bioscience (San Diego, CA, USA)에서 구입하였다. HDAC 효소 시험은 Fluorogenic HDAC Assay Kit (BPS Bioscience)를 사용하여 제조업체의 지침에 따라 수행하였다. HDAC2 효소를 비히클과 함께 또는 분석된 샘플이나 SAHA의 다양한 농도에서 HDAC 형광측정용 기질(fluorimetric substrate)의 존재 하에 37 ℃에서 30 분간 배양하였다. HDAC assay developer(반응 혼합물에서 형광물질을 생성)를 첨가하고 VICTOR3 (PerkinElmer, Waltham, MA, USA)을 사용하여 360 nm에서 여기하고, 460 nm에서 방출되는 형광을 측정하였다. 측정된 활성을 비히클-처리된 대조군 효소 활성도에서 뺀 다음, GraphPad Prism (GraphPad Software, San Diego, CA, USA)을 사용하여 IC50 값을 계산하였다.HDAC2 enzyme was purchased from BPS Bioscience (San Diego, CA, USA). HDAC enzyme assays were performed using the Fluorogenic HDAC Assay Kit (BPS Bioscience) according to the manufacturer's instructions. The HDAC2 enzyme was incubated with the vehicle or at various concentrations of the analyzed sample or SAHA for 30 min at 37 [deg.] C in the presence of a HDAC fluorimetric substrate. The HDAC assay developer (producing a fluorescent substance in the reaction mixture) was added and excited at 360 nm using VICTOR3 (PerkinElmer, Waltham, MA, USA) and fluorescence emitted at 460 nm was measured. The measured activity was subtracted from the vehicle-treated control enzyme activity and IC 50 values were calculated using GraphPad Prism (GraphPad Software, San Diego, Calif., USA).

도킹 시험 방법(Docking studies)Docking studies

도킹 시험은 AutoDock Vina 프로그램 [26] (Scripps Research Institute, CA, USA)을 사용하여 수행하였다. SAHA와 복합체를 이룬 HDAC2 단백질의 3차원 결정 구조는 Protein Data Bank (PDB ID : 4LXZ)에서 입수하였다. Docking tests were performed using the AutoDock Vina program [26] (Scripps Research Institute, CA, USA). The three-dimensional crystal structure of the HDAC2 protein complexed with SAHA was obtained from the Protein Data Bank (PDB ID: 4LXZ).

화합물의 배위(coordinate)는 GlycoBioChem PRODRG2 서버 (http://davapc1.bioch.dundee.ac.uk/prodrg/) [28]를 사용하여 생성하였다. 도킹 시험에서 그리드 맵은 SAHA 결합 사이트의 중심에 있었고, 이전의 선행문헌[18-21]에서 기술된 것과 같이 SAHA를 복합체 구조로부터 제거한 후 1.0 Å의 간격을 가진 26 X 26 X 22 포인트을 포함하였다. AutoDock Vina 프로그램은 8-방향 멀티스레딩(8-way multithreading)을 사용하여 수행되었으며 다른 매개 변수는 기본 설정으로 하였다.The coordinates of the compounds were generated using the GlycoBioChem PRODRG2 server (http://davapc1.bioch.dundee.ac.uk/prodrg/) [28]. In the docking test, the grid map was at the center of the SAHA binding sites and contained 26 X 26 X 22 points with 1.0 A spacing after removing the SAHA from the composite structure as described in the previous prior art [18-21]. The AutoDock Vina program was implemented using 8-way multithreading, with the other parameters defaulted.

실험결과Experiment result

본 발명의 화합물의 HDAC2 억제 및 세포독성 결과HDAC2 inhibition and cytotoxicity of the compounds of the present invention

합성된 화합물은 HDAC2를 사용하여 히스톤 탈아세틸화 효소 억제효과에 대해 평가하였고, 이와 동시에 SW620 (결장암), PC3 (전립선암), AsPC-1 (췌장암) 및 NCI-H23 (폐선암종)을 포함하는 4 개의 인간 암 세포주에 대한 세포 독성을 평가 하였다. The synthesized compounds were evaluated for their histone deacetylase inhibitory effect using HDAC2 and at the same time were evaluated for their ability to inhibit histone deacetylase inhibition in a dose-dependent manner, including SW620 (colorectal cancer), PC3 (prostate cancer), AsPC-1 (pancreatic cancer) and NCI- Cytotoxicity to four human cancer cell lines was evaluated.

결과는 표 1에 나타내었다.The results are shown in Table 1.

Figure 112016125326336-pat00004
Figure 112016125326336-pat00004

Figure 112016125326336-pat00005
Figure 112016125326336-pat00005

<합성된 화합물의 HDAC2 활성 저해 및 암세포 주에 대한 세포독성><Inhibition of HDAC2 activity of synthesized compounds and cytotoxicity against cancer cells>

1ChemDraw 9.0 소프트웨어로 계산함; 2효소 활성 또는 세포 성장을 50 % 감소시키는 화합물의 농도 (mM)는 10 % 미만의 편차를 갖는 3 회의 실험의 평균 결과를 나타낸다. 3세포주 : SW620, 결장암; PC3, 전립선암; AsPC-1, 췌장암; 4SAHA, suberoylanilide acid, 양성 대조군. 1 Calculated with ChemDraw 9.0 software; The concentration (mM) of the 2 enzyme activity or 50% reduction in cell growth represents the average result of three experiments with deviations of less than 10%. 3 cell line: SW620, colon cancer; PC3, prostate cancer; AsPC-1, pancreatic cancer; 4 SAHA, suberoylanilide acid, positive control.

상기 표 1에 나타낸 바와 같이, 화합물 5f만이 SAHA에 비하여 HDAC2 저해의 관점에서 유사한 효능을 나타내는 것으로 나타났다. 다른 모든 화합물들은 HDAC2 억제 분석 결과 SAHA보다 억제 효능이 약한 것으로 나타났다.As shown in Table 1 above, only Compound 5f showed similar efficacy in terms of HDAC2 inhibition compared to SAHA. All other compounds showed less inhibitory effect than SAHA as a result of HDAC2 inhibition assay.

화합물 5a-g는 HDAC2 억제와 화합물의 암세포에 대한 세포독성 간에 상관관계가 비교적 높은 것으로 나타났다.Compound 5a-g showed a relatively high correlation between HDAC2 inhibition and cytotoxicity of the compound to cancer cells.

화합물 5의 계열 중, 가장 강한 HDAC2 억제 효능을 가지는 것으로 나타난 화합물 5d 및 5e는 시험한 상기 3가지 종류의 암세포에 모두에 대해 가장 강한 세포독성을 가진다는 것을 확인할 수 있었다. 이와 대조적으로 가장 약한 HDAC2 억제 효능을 나타낸 화합물 5b 및 5g는 가장 약한 세포독성을 가지는 것으로 나타났다. 화합물 5의 계열 중에서는 화합물 5e가 시험한 상기 3가지 종류의 암세포 모두에서 SAHA보다 최대 8배 더 강한 세포독성을 가져 가장 가능성이 높은 후보물질이었다.Compounds 5d and 5e, which exhibited the strongest HDAC2 inhibitory effect among the compounds of the compound 5, were found to have the strongest cytotoxicity against all three types of cancer cells tested. In contrast, compounds 5b and 5g, which exhibited the weakest HDAC2 inhibitory potency, showed the weakest cytotoxicity. Of the series of compounds 5, compound 5e was the most likely candidate with up to 8 times stronger cytotoxicity than SAHA in all three cancer cell types tested.

이들 화합물을 설계함에 있어서, 본 발명의 발명자들은 처음에 트리아졸 잔기가 2-옥소인돌린과 히드록삼산 잔기 사이의 링커의 일부로서 여전히 작용하면서 HDAC의 활성 결합 부위(active binding site)에서 아미노산 영역과 보다 강한 수소 결합을 유도할 것이라고 예상했다. 또한 C-C 결합에 비해 C=N 및 C-N 결합의 길이가 더 짧기 때문에, 트리아졸 및 히드록삼산 사이에 2C만이 존재한다면(화합물 4a-c) 2-옥소인돌린과 히드록삼산 부분 사이의 링커가 SAHA의 6C 링커보다 짧을 것이라고 예측했다. In designing these compounds, the inventors of the present invention have found that initially the triazole moieties still act as part of the linker between the 2-oxo-doline and the hydroxamic acid moiety, and at the active binding site of the HDAC, And a stronger hydrogen bond. Also, since there is only 2C between the triazole and the hydroxamic acid (compound 4a-c), the linker between the 2-oxoindoline and the hydroxamic acid moiety is less than SAHA's 6C linker.

따라서, 본 발명자들은 목표 화합물로서 n = 1 인 5a-g 화합물을 설계하기로 결정했다. C를 추가로 한 개 더 갖는(n = 2) 6a-g 화합물도 5a-g 화합물들과 비교하기 위해 합성하였다. 결과는 일반적으로 화합물 5a-g가 화합물 6a-g과 비교하여 세포 독성의 관점에서 더 강한 것으로 확인되었다. Therefore, the present inventors decided to design a 5a-g compound having n = 1 as a target compound. (N = 2) 6a-g compounds with one additional C were also synthesized for comparison with 5a-g compounds. The results were generally confirmed that compound 5a-g was stronger in terms of cytotoxicity compared to compound 6a-g.

HDAC2 억제의 관점에서는 화합물 5a-g 중 3 개 이상의 화합물(5c, 5e 및 5f)들이 화합물 6a-g 보다 더 강력하였다.From the viewpoint of HDAC2 inhibition, three or more compounds (5c, 5e and 5f) in compound 5a-g were more potent than compound 6a-g.

도킹 시험 결과Docking test result

히스톤 -H3 및 히스톤 -H4 탈 아세틸화는 주로 HDAC2와 HDAC3에 의해 조절된다는 것이 입증된 바 있으므로 [29], 본원발명의 히드록삼산 화합물들과 HDAC 결합 부위 사이의 상호 작용에 대하여 알아보기 위하여 HDAC2와의 도킹 시험을 수행하였다. SAHA (PDB ID : 4LXZ)와 복합체를 이루는 HDAC2의 결정 구조가 기존에 보고된 바 있어(Lauffer et al. [26]), SAHA와 복합체를 이루는 HDAC2의 결정 구조를 도킹 템플릿으로 사용하였다. SAHA를 복합체 구조로부터 제거한 후, SAHA를 HDAC2의 결정구조에 대조군으로서 도킹시키는 것은 기존에 보고된 연구방법[18-21]을 따랐다. Since histone-H3 and histone-H4 deacetylation have been proven to be regulated mainly by HDAC2 and HDAC3 [29], in order to investigate the interaction between the hydroxamic acid compounds and the HDAC binding site of the present invention, HDAC2 Docking test was performed. The crystal structure of HDAC2 complexed with SAHA (PDB ID: 4LXZ) has been previously reported (Lauffer et al. [26]), and the crystal structure of HDAC2 complexed with SAHA was used as a docking template. Following the removal of SAHA from the complex structure, the SAHA was docked to the crystal structure of HDAC2 as a control, following the previously reported method [18-21].

결과는 표 2 및 도 2와 도 3에 나타내었다.The results are shown in Table 2 and Fig. 2 and Fig.

Figure 112016125326336-pat00006
Figure 112016125326336-pat00006

<본 발명의 화합물 4-6의 HDAC2에 대한 결합 친화성>&Lt; Binding Affinity for HDAC2 of Compound 4-6 of the Present Invention >

*SAHA: suberoylanilide hydroxamic acid.* FIELD: suberoylanilide hydroxamic acid.

상기 표 2에 나타낸 바와 같이, 본 발명의 합성된 모든 히드록삼산은 SAHA의 안정화 에너지와 비교하여 비교적 또는 상당히 낮은 정도인 -6.7 ~ -8.1 kcal/mol 범위의 안정화 에너지를 나타내었고, SAHA보다 높은 결합친화성을 가지며 HDAC 효소의 활성부위에 위치하는 것으로 나타났다. 예컨대, SAHA와 HDAC2의 예상 결합모드의 안정화 에너지는 7.4 kcal/mol (결정 구조 내 오리지널 SAHA로부터의 r.m.s.d. 거리: 0.609 / 2.056A) 이었지만, 화합물 5e 및 5f에 대해 계산된 값은 -8.1 및 7.4 kcal/mol이었다. As shown in Table 2, all of the synthesized hydroxamic acids exhibited a stabilization energy in the range of -6.7 to -8.1 kcal / mol, which is comparatively or significantly lower than that of SAHA, and higher than that of SAHA Binding affinity and is located at the active site of the HDAC enzyme. For example, the stabilization energy of the predicted binding mode of SAHA and HDAC2 was 7.4 kcal / mol (rmsd distance from the original SAHA in the crystal structure: 0.609 / 2.056 A), but the calculated values for compounds 5e and 5f were -8.1 and 7.4 kcal / mol.

화합물 5e 및 5f는 HDAC2 저해 효능에 있어서 IC50 값이 1.28 및 0.91 μM으로 나타나 SAHA (양성 대조군)에 대해 보고된 1.06 μM 과 비교하여 가장 강력한 HDAC2 저해 효능을 나타내었다. Compound 5e and 5f showed the IC 50 value of 1.28 μM and 0.91 show the strongest compared to the 1.06 μM reported for SAHA (positive control) HDAC2 inhibitory potency in inhibiting HDAC2 efficacy.

상기의 도킹 시험으로부터, 아연 이온(회색 구체)이 Asp181, His183 및 Asp269를 포함하는 HDAC2의 세 개의 아미노산 잔기에 의해 배위됨을 발견하였다. 본 발명에서 합성된 모든 히드록삼산은 SAHA와 유사한 방식으로 아연 이온과 상호 작용했다. 본 발명의 합성된 화합물들은 인돌린과 히드록삼산 잔기 사이의 1-알킬-4- 메틸-1H-1,2,3-트리아졸 링커가 효소의 Phe155 및 Phe210 아미노산 잔기 사이에 단단히 적층됨(stacking)이 확인되었으며(도 2 및 도 3), 이러한 적층 상호작용(stacking interaction)은 본 발명의 화합물이 HDAC2와의 우수한 결합 친화력에 기여하는 핵심 요소일 수 있다.From the above docking test it was found that zinc ions (gray spheres) were coordinated by three amino acid residues of HDAC2, including Asp181, His183 and Asp269. All hydroxamic acids synthesized in the present invention interacted with zinc ions in a manner similar to SAHA. The synthesized compounds of the present invention are characterized in that a 1-alkyl-4-methyl- 1H -1,2,3-triazole linker between the indoline and the hydroxy acid residue is tightly laminated between the Phe155 and Phe210 amino acid residues of the enzyme Stacking has been identified (Figures 2 and 3), and this stacking interaction may be a key contributor to the compounds of the present invention that contribute to good binding affinity with HDAC2.

그러나, 이러한 도킹 시험에서 인돌린 부분은 효소와 미미하게 상호 작용하는 것으로 밝혀졌다. 결과적으로, 상이한 치환기를 갖는 화합물들 사이의 결합 친화력의 변화가 거의 관찰되지 않았다. 일부 예에서, 화합물의 예상 결합 친화력은 HDAC2 억제 분석으로부터 수득된 실험데이터와 용이하게 상관되지 않았다. 예를 들어, 화합물 5b 및 5c의 HDAC2에 대한 예상 결합모드의 안정화 에너지는 각각 -7.7 및 7.8 kcal/mol로 상당히 유사한 것으로 나타났다. 이러한 결과는 화합물 5b 및 5c 간에 나타나는 5배의 HDAC2 억제 효능 차이를 설명하기 어려웠다. 그러나, SAHA (-7.4 kcal/mol)와 동일한 안정화 에너지를 갖는 화합물 5f는 HDAC2 억제에서 SAHA와 유사한 효능을 나타내는 것으로 나타났다 (화합물 5f의 IC50 값은 0.91 μM 이고, SAHA는 1.06 μM).However, in these docking studies, the indolin moiety was found to interact negatively with the enzyme. As a result, little change in the binding affinity between the compounds having different substituents was observed. In some instances, the predicted binding affinity of the compounds was not readily correlated with the experimental data obtained from the HDAC2 inhibition assay. For example, the stabilization energies of the expected binding modes for HDAC2 of compounds 5b and 5c were found to be quite similar to -7.7 and 7.8 kcal / mol, respectively. These results were difficult to explain the 5-fold difference in HDAC2 inhibitory effect between compounds 5b and 5c. However, Compound 5f with the same stabilization energy as SAHA (-7.4 kcal / mol) showed similar SAHA-like potency in HDAC2 inhibition (Compound 5f has an IC 50 value of 0.91 μM and SAHA of 1.06 μM).

상기 결과로부터, 본 발명자들은 1-알킬-4-메틸-1H-1,2,3- 트리아졸 링커를 포함하는 2종의 “3-히드록시이미노-2-옥소인돌-” 구조에 기반한 히드록삼산이 강한 HDAC2 억제 효과와 SW620 (인간 결장암), PC-3 (전립선암) 및 AsPC-1 (췌장암)을 포함하는 몇몇 인간 암세포 주에 대하여 강한 세포독성 효과를 나타냄을 확인하였다.From the above results, the inventors "3-hydroxyimino-2-oxo-indole -" of the second species, including 1-alkyl-4-methyl -1 H -1,2,3- triazol-linker hydroxide based on the structure It has been shown that rock acid has strong cytotoxic effects against several human cancer cell lines including strong HDAC2 inhibitory effect and SW620 (human colon cancer), PC-3 (prostate cancer) and AsPC-1 (pancreatic cancer).

또한, 본 발명자들은 상기 결과로부터 3-히드록시이미노-2-옥소인돌린이 히드록삼산 HDAC 억제제의 캡 그룹으로서 잘 작용할 수 있음을 재확인하였다. 뿐만 아니라, 3-히드록시이미노-2-옥소인돌린 부분의 벤젠고리상의 치환체의 종류는 생성된 화합물의 HDAC 억제 및 세포 독성 모두에 실질적으로 영향을 미칠 수 있음을 확인하였다.Further, the present inventors confirmed from the above results that 3-hydroxyimino-2-oxoindolin can function well as a cap group of a hydroxamic acid HDAC inhibitor. In addition, it has been found that the type of substituent on the benzene ring of the 3-hydroxyimino-2-oxoindoline moiety can substantially affect both HDAC inhibition and cytotoxicity of the resulting compound.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

하기 화학식 1로 표시되는 히드록삼산(hydroxamic acid) 계 화합물:
[화학식 1]

Figure 112016125326336-pat00007

상기 식에서 R은 수소원자, 할로겐원자, C1-6 저급 알킬기 및 C1-6 저급 알콕시기로 구성된 군으로부터 선택된 치환기이고, 상기 n은 0 내지 5의 정수이다.
A hydroxamic acid-based compound represented by the following formula (1): &lt; EMI ID =
[Chemical Formula 1]

Figure 112016125326336-pat00007

Wherein R is a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a C 1-6 lower alkyl group and a C 1-6 lower alkoxy group, and n is an integer of 0-5.
제 1 항에 있어서, 상기 R은 수소원자, 할로겐원자, 메틸기 및 메톡시기로 구성된 군으로부터 선택된 치환기인 것을 특징으로 하는 화합물.
The compound according to claim 1, wherein R is a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a methyl group and a methoxy group.
제 1 항에 있어서, 상기 화합물은 N-히드록시-3-(4-((3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)프로판아마이드 (4a), 3-(4-((5-플루오로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시프로판아마이드 (4b), 및 3-(4-((5-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시프로판아마이드 (4c)로 이루어진 군으로부터 선택된 것을 특징으로 하는 화합물.
According to claim 1, wherein the compound is N-hydroxy-3- (4-1-yl) methyl turn of ((3- (hydroxyimino) -2-oxo) -1 H -1,2,3 -triazol-1-yl) propanoic amide (4a), 3- (4 - (( 5-fluoro-3- (hydroxyimino) -2-oxo-in turned-1-yl) methyl) -1 H- 1,2,3-triazol-1-yl) -N -hydroxypropanamide (4b), and 3- (4 - ((5-chloro-3- (hydroxyimino) -2-oxo-in turned-1-yl) methyl) -1 H -1,2,3- triazol -1 -yl) - N-hydroxy-propanoic amide (4c). &Lt; / RTI &gt;
제 1 항에 있어서, 상기 화합물은 N-히드록시-4-(4-((3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)부탄아마이드 (5a), 4-(4-((5-Fluoro-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시부탄아마이드 (5b), 4-(4-((5-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시부탄아마이드 (5c), 4-(4-((5-브로모-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시부탄아마이드 (5d), N-히드록시-4-(4-((3-(히드록시이미노)-5-메틸-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)부탄아마이드 (5e), N-히드록시-4-(4-((3-(히드록시이미노)-5-메톡시-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)부탄아마이드 (5f), 및 4-(4-((7-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시부탄아마이드 (5g)로 이루어진 군으로부터 선택된 것을 특징으로 하는 화합물.
According to claim 1, wherein the compound is N-hydroxy-4- (4-1-yl) methyl turn of ((3- (hydroxyimino) -2-oxo) -1 H -1,2,3 (5-Fluoro-3- (hydroxyimino) -2-oxoindolin-1-yl) methyl) - 1 H- (5-chloro-3- (hydroxyimino) -2-oxoindolin-1-yl) - N -hydroxybutanamide (5b) yl) methyl) -1 H -1,2,3- triazol-1-yl) - N - hydroxy-butane amide (5c), 4- (4 - ((5- bromo-3- (hydroxyimino ) -2-oxo-in turned-1-yl) methyl) -1 H -1,2,3- triazol-1-yl) - N - hydroxy-butane amide (5d), N - hydroxy-4- ( 4 - ((3- (hydroxyimino) -5-methyl-2-oxo-in turned-1-yl) methyl) -1 H -1,2,3- triazol-1-yl) butane amide (5e) , N-hydroxy-4- (4 - ((3- (hydroxyimino) -5-methoxy-2-oxo-in turned-1-yl) methyl) -1 H -1,2,3- triazole (4-chloro-3- (hydroxyimino) -2-oxoindolin-1-yl) methyl) -1 H -1,2,3-triazol-1-yl) -N -hydroxybutanamide (5 g).
제 1 항에 있어서, 상기 화합물은 N-히드록시-5-(4-((3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)펜탄아마이드 (6a), 5-(4-((5-플루오로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시펜탄아마이드 (6b), 5-(4-((5-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시펜탄아마이드 (6c), 5-(4-((5-브로모-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시펜탄아마이드 (6d), N-히드록시-5-(4-((3-(히드록시이미노)-5-메틸-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)펜탄아마이드 (6e), N-히드록시-5-(4-((3-(히드록시이미노)-5-메톡시-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)펜탄아마이드 (6f), 및 5-(4-((7-클로로-3-(히드록시이미노)-2-옥소인돌린-1-일)메틸)-1H-1,2,3-트리아졸-1-일)-N-히드록시펜탄아마이드 (6g)로 이루어진 군으로부터 선택된 것을 특징으로 하는 화합물.
The compound according to claim 1, wherein the compound isN-Hydroxy-5- (4 - ((3- (hydroxyimino) -2-oxoindolin-1-yl) methyl)H-1,2,3-triazol-1-yl) pentanamide (6a), 5- (4- ((5-fluoro-3- (hydroxyimino) -2-oxoindolin-HL, 2,3-triazol-l-yl) -N- hydroxypentanamide (6b), 5- (4- (5-chloro-3- (hydroxyimino) -2-oxoindolin-HL, 2,3-triazol-l-yl) -N- hydroxypentanamide (6c), 5- (4- (5-bromo-3- (hydroxyimino) -2-oxoindolin-HL, 2,3-triazol-l-yl) -N- hydroxypentanamide (6d),N- (4 - ((3- (hydroxyimino) -5-methyl-2-oxoindolin-1-yl) methyl) -1H-1,2,3-triazol-1-yl) pentanamide (6e),N(4 - ((3- (hydroxyimino) -5-methoxy-2-oxoindolin-1-yl) methyl) -1H-1,2,3-triazol-1-yl) pentanamide (6f) and 5- (4 - ((7-chloro-3- (hydroxyimino) -2-oxoindolin-HL, 2,3-triazol-l-yl) -N- hydroxypentanamide (6g). &Lt; / RTI &gt;
제 1 항 내지 제 5 항 중 어느 한 항의 화합물, 이의 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물.
A pharmaceutical composition for preventing or treating cancer comprising the compound of any one of claims 1 to 5, an isomer thereof or a pharmaceutically acceptable salt thereof as an active ingredient.
제 6 항에 있어서, 상기 암은 간암, 위암, 뇌암, 방광암, 자궁경부암, 난소암, 대장암, 전립선암, 췌장암, 및 폐암으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 조성물.
7. The composition of claim 6, wherein the cancer is selected from the group consisting of liver cancer, stomach cancer, brain cancer, bladder cancer, cervical cancer, ovarian cancer, colon cancer, prostate cancer, pancreatic cancer and lung cancer.
삭제delete
KR1020160175023A 2016-12-20 2016-12-20 Novel Hydroxamic Acids and Uses Thereof KR101900575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160175023A KR101900575B1 (en) 2016-12-20 2016-12-20 Novel Hydroxamic Acids and Uses Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160175023A KR101900575B1 (en) 2016-12-20 2016-12-20 Novel Hydroxamic Acids and Uses Thereof

Publications (2)

Publication Number Publication Date
KR20180071890A KR20180071890A (en) 2018-06-28
KR101900575B1 true KR101900575B1 (en) 2018-09-19

Family

ID=62780054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160175023A KR101900575B1 (en) 2016-12-20 2016-12-20 Novel Hydroxamic Acids and Uses Thereof

Country Status (1)

Country Link
KR (1) KR101900575B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180136323A (en) * 2017-06-14 2018-12-24 충북대학교 산학협력단 Novel 3-substituted-2-oxoindoline-based hydroxamic acids compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180136323A (en) * 2017-06-14 2018-12-24 충북대학교 산학협력단 Novel 3-substituted-2-oxoindoline-based hydroxamic acids compound
KR101996871B1 (en) * 2017-06-14 2019-10-01 충북대학교 산학협력단 Novel 3-substituted-2-oxoindoline-based hydroxamic acids compound

Also Published As

Publication number Publication date
KR20180071890A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP4405602B2 (en) Histone deacetylase inhibitor
Nam et al. Novel isatin-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents
JP2021120420A (en) Methods of treating cancer
Thanh Tung et al. New benzothiazole/thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents
JP5329439B2 (en) Novel derivatives of samapurine A, methods for their synthesis, and their use for the prevention or treatment of cancer
EP1613622A1 (en) Oxime derivatives and their use as pharmaceutically active agents
TW201625620A (en) Heterocyclic hydroxamic acids as protein deacetylase inhibitors and dual protein deacetylase-protein kinase inhibitors and methods of use thereof
EP2694475A1 (en) Hydroxyphenyl pyrrole compounds containing an hydroxamic acid as hdac inhibitors and medicinal applications thereof
Huan et al. Novel N-hydroxybenzamides incorporating 2-oxoindoline with unexpected potent histone deacetylase inhibitory effects and antitumor cytotoxicity
Do Dung et al. Novel 3-substituted-2-oxoindoline-based N-hydroxypropenamides as histone deacetylase inhibitors and antitumor agents
CN114539267B (en) Evodiamine derivative and application thereof
Dung et al. Exploration of novel 5′(7′)-substituted-2′-oxospiro [1, 3] dioxolane-2, 3′-indoline-based N-hydroxypropenamides as histone deacetylase inhibitors and antitumor agents
KR101624344B1 (en) Novel 3-Substituted-2-Oxoindoline-Based N-hydroxypropenamides Having Activity of Inhibiting Histone Deacetylase and Antitumor Composition Comprising the Same
KR101900575B1 (en) Novel Hydroxamic Acids and Uses Thereof
KR102063286B1 (en) Novel Hydroxamic Acid Incorporating Quinazolin-4(3H)-ones as Histone Deacetylase Inhibitors and Anticancer Composition Comprising the Same
KR102055369B1 (en) Novel 3/4-((Substitutedbenzamidophenoxy)methyl)-N-hydroxybenzamides/propenamides and its use
KR101900574B1 (en) Novel N-hydroxybenzamide and Use Thereof
KR102330072B1 (en) Novel Indirubin-based N-Hydroxybenzamides, N-Hydroxypropenamides and N-Hydroxyheptanamides and its use
KR102000035B1 (en) Novel hydroxamic acids or N-hydroxybenzamides Incorporating Quinazoline as Histone Deacetylase Inhibitors and Anticancer Composition Comprising the Same
KR20130118612A (en) Novel aminopyridine derivatives and use thereof
Thi Lan Huong et al. 5-Aryl-1, 3, 4-thiadiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents: synthesis, bioevaluation and docking study
MX2010010015A (en) Novel method for the production of sulphonylpyrroles as hdac inhibitors.
KR102385742B1 (en) Novel 4-Oxoquinazoline-Based N-Hydroxypropenamides and its use
KR101586045B1 (en) Novel Phenylthiazole-Based Hydroxamic Acids and Anti-Cancer Composition Comprising the Same As Active Ingredient
KR101964810B1 (en) Novel N-Hydroxybenzamides or N-Hydroxypropenamides Incorporating Quinazolin-4(3H)-ones as Histone Deacetylase Inhibitors and Anticancer Composition Comprising the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant