KR101535578B1 - Redox rebalancing method in e. coli strain for maximizing fermentation product production and recombinant e. coli strain for producing n-butanol product with high productivity using the method - Google Patents

Redox rebalancing method in e. coli strain for maximizing fermentation product production and recombinant e. coli strain for producing n-butanol product with high productivity using the method Download PDF

Info

Publication number
KR101535578B1
KR101535578B1 KR1020130150645A KR20130150645A KR101535578B1 KR 101535578 B1 KR101535578 B1 KR 101535578B1 KR 1020130150645 A KR1020130150645 A KR 1020130150645A KR 20130150645 A KR20130150645 A KR 20130150645A KR 101535578 B1 KR101535578 B1 KR 101535578B1
Authority
KR
South Korea
Prior art keywords
gene
coli strain
seq
fdh1
butanol
Prior art date
Application number
KR1020130150645A
Other languages
Korean (ko)
Other versions
KR20150065384A (en
Inventor
정규열
임재형
서상우
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020130150645A priority Critical patent/KR101535578B1/en
Publication of KR20150065384A publication Critical patent/KR20150065384A/en
Application granted granted Critical
Publication of KR101535578B1 publication Critical patent/KR101535578B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0051Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y108/00Oxidoreductases acting on sulfur groups as donors (1.8)
    • C12Y108/01Oxidoreductases acting on sulfur groups as donors (1.8) with NAD+ or NADP+ as acceptor (1.8.1)
    • C12Y108/01004Dihydrolipoyl dehydrogenase (1.8.1.4), i.e. lipoamide-dehydrogenase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 대장균 균주 내 발효산물 생산을 극대화하기 위한 산화환원 상태의 재균형 방법 및 상기 방법을 이용하여 개발된 고 생산성 발효산물 생산용 대장균 균주에 관한 것으로서, 더욱 구체적으로 본 발명은 (1) 발현량 조절이 가능하도록 5'UTR 서열을 조절한 효모의 fdh1 유전자를 대장균 균주 내로 도입 및/또는 (2) 대장균 균주에서 PDH 복합체를 조절함으로써 산화환원 상태의 균형을 맞춰 대장균 균주 내에서 발효산물인 부탄올의 생산량을 극대화하는 방법 및 상기 방법을 이용하여 제조된 부탄올 생산용 대장균 균주에 관한 것이다. 본 발명에 따른 대장균 균주 내 발효산물 생산량 극대화 방법은 fdh1 유전자의 발현량 조절 및/또는 FDH1 복합체의 발현량 조절을 통해 유도물질 없이도 고효율로 발효산물을 생산할 수 있기 때문에 실제 산업에 적용할 수 있는 효과가 있다.The present invention relates to a method of re-balancing a redox state to maximize production of a fermentation product in an E. coli strain and an E. coli strain for producing a highly productive fermentation product developed using the method. More specifically, the present invention relates to (1) (2) introducing the fdh1 gene of the yeast whose 5'UTR sequence is regulated into the E. coli strain and / or (2) regulating the PDH complex in the E. coli strain to balance the redox state so that the fermentation product, And an E. coli strain for producing butanol produced by using the above method. The method for maximizing fermentation product production in E. coli strains according to the present invention is characterized in that fdh1 It is possible to produce a fermented product with high efficiency without controlling the expression level of the gene and / or by controlling the expression level of the FDH1 complex.

Description

대장균 균주에서 발효산물 생산을 극대화하기 위한 산화환원 상태의 재균형 방법 및 상기 방법을 이용한 고 생산성 부탄올 생산용 균주의 개발{REDOX REBALANCING METHOD IN E. COLI STRAIN FOR MAXIMIZING FERMENTATION PRODUCT PRODUCTION AND RECOMBINANT E. COLI STRAIN FOR PRODUCING N-BUTANOL PRODUCT WITH HIGH PRODUCTIVITY USING THE METHOD}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of re-balancing a redox state to maximize production of fermentation products in E. coli strains, and to a method of producing a strain for producing high productivity butanol by using the above method (REDOX REBALANCING METHOD IN E. COLI STRAIN FOR MAXIMIZING FERMENTATION PRODUCT PRODUCTION AND RECOMBINANT E. COLI STRAIN FOR PRODUCING N-BUTANOL PRODUCT WITH HIGH PRODUCTIVITY USING THE METHOD}

본 발명은 대장균 내에서 발효산물 생산을 극대화하기 위한 산화환원 상태의 재균형 방법 및 상기 방법을 이용하여 개발된 고 생산성 부탄올 생산용 대장균 균주에 관한 것으로서, 더욱 구체적으로 본 발명은 발효산물 생산 극대화를 위해 균주 내 산화환원 상태의 재균형을 통해 대사경로를 최적화시키는 방법 및 상기 방법을 이용하여 제조된 발효산물 생산용 대장균 균주에 관한 것이다.
The present invention relates to a method of re-balancing a redox state to maximize the production of fermentation products in E. coli and an E. coli strain for producing high-productivity butanol using the method. More specifically, the present invention relates to a method for maximizing fermentation product production A method for optimizing the metabolic pathway through rebalancing of the redox state in the strain, and an E. coli strain for producing fermentation products produced using the method.

석유 자원 고갈 및 지구 온난화로 인해 친환경적이고 지속가능한 미생물을 이용하여 화합물, 연료, 의약품 등의 고부가가치 화학제품을 생산하기 위한 연구가 전 세계적으로 활발하다. 특히 생물학적 공정의 경제성 확보를 위해서 대사공학 및 합성생물학을 통한 높은 수율과 생산성을 가지는 균주 개발이 이루어지고 있으나, 인위적인 균주 개발은 종종 미생물 대사 경로의 불균형을 초래하여 높은 수율 및 생산성을 얻는데 많은 어려움이 있다.Due to depletion of petroleum resources and global warming, researches for the production of high value-added chemical products such as compounds, fuels and pharmaceuticals using environmentally friendly and sustainable microorganisms are active all over the world. In particular, in order to secure the economic efficiency of the biological process, a strain having high yield and productivity through metabolic engineering and synthetic biology has been developed. However, an artificial strain development often causes an imbalance of the microbial metabolic pathway, have.

이러한 대사적 불균형 (metabolic imbalance) 중에서 특히 세포 내부의 산화환원 상태는 이화 작용 (catabolism) 및 동화 작용 (anabolism)을 지속시키기 위해 반드시 필요하기 때문에 재설계된 대사경로에 따라 재균형을 이루도록 하는 것이 중요하다. 특히 니코틴아마이드 조효소 NAD(P)의 경우 세포 대사 중 300개가 넘는 산화환원 반응에 관여하기 때문에 산화환원 상태의 중요성을 짐작할 수 있다.Among these metabolic imbalances, it is important to rebalance according to the redesigned metabolic pathway, especially since the redox state within the cell is indispensable for sustaining catabolism and anabolism . In particular, the nicotinamide coenzyme NAD (P) is involved in more than 300 redox reactions in cell metabolism, so it can be assumed that the redox state is important.

일반적으로 산소를 최종 전자 수용체로 이용하여 에너지를 만들어 이용하는 호기 조건에서의 세포 대사과정과는 달리, 혐기 조건에서는 에탄올, 젖산, 숙신산 등과 같은 발효산물(대사산물)들을 적절하게 생산함으로써 환경에 따른 최적화된 산화환원 상태의 균형을 이루고 세포의 성장 속도와 균체량 및 ATP 수율을 극대화 한다. 따라서 전통적인 대사공학적 접근법을 통한 (특정 유전자의 결실 및 증폭) 세포 대사과정의 변경은 이러한 산화환원 상태의 불균형을 초래하여 산화환원 상태에 따라 대사산물들의 생산 패턴이 바뀌거나 심지어 혐기 조건에서 세포 성장을 보이지 않게 된다.Unlike cellular metabolism in aerobic conditions, where oxygen is used as a final electron acceptor, it is possible to produce fermentation products (metabolites) such as ethanol, lactic acid and succinic acid in anaerobic conditions, Thereby maximizing the rate of cell growth, amount of cells and ATP yield. Therefore, changes in cellular metabolism through the traditional metabolic engineering approach (deletion and amplification of specific genes) can result in imbalance of these redox states, leading to changes in the production patterns of metabolites depending on the redox state, or even in cell growth under anaerobic conditions It becomes invisible.

이에, 재설계된 세포 대사 경로에 따른 산화 환원 상태의 최적화를 통하여 발효산물의 수율 및 생산성을 극대화할 수 있는 균주 설계 방법의 개발이 필요한 실정이다.
Therefore, it is necessary to develop a method for designing a strain capable of maximizing the yield and productivity of the fermentation product through optimization of the redox state depending on the redesigned cell metabolic pathway.

본 발명자들은 종래기술의 문제점을 극복하기 위해, 대장균 균주의 세포 대사경로를 재설계하여 산화환원 상태를 최적화함으로써 발효산물인 부탄올을 고효율로 생산하는 방법을 개발하고 본 발명을 완성하였다.In order to overcome the problems of the prior art, the present inventors have developed a method for efficiently producing butanol as a fermentation product by redesigning the cell metabolic pathway of the Escherichia coli strain to optimize the redox state, and completed the present invention.

따라서 본 발명의 목적은 5'-UTR 서열이 조절된 fdh1 유전자를 대장균 균주 내로 도입하여 세포 내 산화환원 균형을 맞추는 단계를 포함하는 대장균 균주를 이용하여 부탄올을 생산하는 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for producing butanol using an Escherichia coli strain comprising a step of introducing the fdh1 gene whose 5'-UTR sequence is regulated into a Escherichia coli strain to adjust an intracellular redox balance.

본 발명의 다른 목적은 상기 방법을 이용하여 제조되는 부탄올 생산용 대장균 균주를 제공하는 것이다.Another object of the present invention is to provide an Escherichia coli strain for producing butanol produced using the above method.

그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 5'-UTR 서열이 조절된 fdh1 유전자를 대장균 균주 내로 도입하여 세포 내 산화환원 균형을 맞추는 단계를 포함하는 대장균 균주를 이용하여 부탄올을 생산하는 방법을 제공한다.In order to accomplish the object of the present invention as described above, the present invention provides a method for producing butanol using an Escherichia coli strain comprising the step of introducing the 5'-UTR sequence-regulated fdh1 gene into a Escherichia coli strain to adjust an intracellular redox balance . ≪ / RTI >

본 발명의 일실시예에 있어서, 상기 방법은 PDH 복합체를 조절하는 다음의 단계를 추가로 포함하는 것일 수 있다: a) 부위 특이적 돌연변이(site-directed mutagenesis) 방법으로 균주 내 염색체상의 lpd 유전자에서 혐기성 조절 부위를 제거하는 단계; 및 b) 내인성 유전자 aceEF 를 과발현시키는 단계.In one embodiment of the invention, the method may further comprise the following steps of modulating the PDH complex: a) site-directed mutagenesis in which the lpd gene on the intrachromosomal chromosome Removing the anaerobic regulatory region; And b) overexpressing the endogenous gene aceEF .

본 발명의 다른 실시예에 있어서, 상기 5'-UTR 서열은 서열번호 2 내지 서열번호 6의 염기서열로 이루어진 군으로부터 선택되는 하나의 서열일 수 있다.In another embodiment of the present invention, the 5'-UTR sequence may be a sequence selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 2 to 6.

본 발명의 또 다른 실시예에 있어서, 상기 부위 특이적 돌연변이는 서열번호 15 및 16의 염기서열로 표시되는 프라이머를 이용하여 수행되는 것일 수 있다.In another embodiment of the present invention, the site-specific mutation may be performed using a primer represented by the nucleotide sequences of SEQ ID NOS: 15 and 16.

본 발명의 또 다른 실시예에 있어서, 상기 a) 단계는 lpd 유전자에 의하여 코딩되는 서열번호 1로 표시되는 아미노산 서열의 354번째 아미노산을 라이신(Lysine)으로 치환함으로써 혐기성 조절 부위를 제거하는 것일 수 있다.In another embodiment of the present invention, the step (a) may be to remove the anaerobic regulatory region by replacing the 354th amino acid of the amino acid sequence of SEQ ID NO: 1 encoded by the lpd gene with lysine .

본 발명의 또 다른 실시예에 있어서, 상기 과발현은 서열번호 13 및 14의 염기서열로 표시되는 프라이머를 이용하여 수행될 수 있다.In another embodiment of the present invention, Overexpression can be carried out using primers represented by the nucleotide sequences of SEQ ID NOS: 13 and 14.

본 발명의 또 다른 실시예에 있어서, 상기 도입은 5'-UTR 서열이 조절된 fdh1 유전자와 작동가능하게 연결한 서열번호 49의 염기서열로 표시되는 항시발현 프로모터를 포함하는 재조합 벡터를 이용하여 수행될 수 있다.In another embodiment of the invention, the introduction is carried out using a recombinant vector comprising a full- length expression promoter represented by the nucleotide sequence of SEQ ID NO: 49 operatively linked to the 5'-UTR sequence-regulated fdhl gene .

본 발명의 또 다른 실시예에 있어서, 상기 방법은 화학적 유도물질을 필요로 하지 않는 것일 수 있다.In another embodiment of the present invention, the method may be one that does not require a chemical inducing agent.

또한, 본 발명은 상기 방법을 이용하여 제조되는 것을 특징으로 하는 부탄올 생산용 대장균 균주를 제공한다.In addition, the present invention provides a strain of E. coli for producing butanol, which is produced using the above method.

이에 더하여, 본 발명은 대장균 균주를 배양액에 접종하는 단계; 상기 배양액에 질소 가스를 살포하며 배양하는 단계; 및 상기 배양액으로부터 부탄올을 수득하는 단계를 포함하는 대장균을 이용한 부탄올 생산 방법을 제공한다.In addition, the present invention relates to a method for producing a recombinant Escherichia coli strain, Culturing the culture solution by spraying with nitrogen gas; And a step of obtaining butanol from the culture solution.

본 발명의 일실시예에 있어서, 상기 배양액은 TB(Terrific broth), LB(Luria Bertani), M9 minimal, 2x YT, 또는 NZCYM 일 수 있다.In one embodiment of the present invention, the culture medium may be TB (terrific broth), LB (Luria Bertani), M9 minimal, 2x YT, or NZCYM.

본 발명의 다른 실시예에 있어서, 상기 배양액은 스트렙토마이신 (streptomycin) 또는 카나마이신 (Kanamycin) 항생제를 추가로 첨가한 것일 수 있다.
In another embodiment of the present invention, the culture may be addition of streptomycin or kanamycin antibiotic.

본 발명에 따른 대장균 균주를 이용하여 발효산물을 생산하는 방법은 산화환원 균형을 맞추기 위해 5'-UTR 염기서열의 맞춤 설계를 통해 발현량을 극대화한 fdh1 유전자의 도입하고, 항시발현 프로모터를 이용함으로써 화학적 유도물질 없이도 고효율로 발효산물을 생산할 수 있는 장점이 있다.The method of producing the fermentation product using the E. coli strain according to the present invention is characterized in that the fdh1 gene maximizing the expression amount is introduced through custom design of the 5'-UTR base sequence to match the redox balance, and the expression promoter It is possible to produce fermentation products with high efficiency even without a chemical inducer.

또한, 산화환원 인자 대사경로를 재설계함으로써 고수율·고생산성으로 부탄올을 생산할 수 있기 때문에 실제 산업에 바로 적용 가능한 장점이 있다.In addition, redesigning the metabolic pathways of redox factors can produce butanol with high yield and high productivity.

이에 더하여, 본 발명에 따른 산화 환원 상태의 재균형 방법을 이용하면 대장균으로부터 부탄올뿐만 아니라 다른 발효산물을 고수율 및 고 생산성으로 발효하는 데에도 광범위하게 적용할 수 있을 것으로 기대된다.
In addition, it is expected that the present invention can be widely applied to fermentation of not only butanol but also other fermentation products from E. coli in high yield and high productivity by using the re-equilibration method in the redox state according to the present invention.

도 1은 대장균 내 부탄올 생산경로를 개략적으로 나타낸 것으로서, X 는 유전자 결실을 의미하고, 굵은 화살표는 상동 재조합 또는 재조합 단백질을 통한 유전자의 증폭을 나타내며, 점선으로 처리된 화살표는 산화환원 상태의 균형을 위해 발현량을 조절한 유전자를 의미한다(PEP, phosphoenolpyruvate; CA, C. acetobutylicum; EC, E. coli; SC, Sacharomyces cerevisiae; TD, T. denticola).
도 2는 본 발명에서 제조한 대장균 균주 JHL60의 시간에 따른 발효 곡선을 나타낸 것이다.
도 3은 본 발명에서 제조한 대장균 균주 JHL60 및 JHL61 (돌연변이 PDH 복합체) 간의 발효 결과를 비교한 그래프이다.
도 4의 (A)는 FDH1 변이체의 5'-UTR 통한 단백질 발현 예측량과 FDH1 specific enzyme activity 간의 비교 결과를 나타낸 것이고, (B)는 상기 5'-UTR 통한 단백질 발현 예측값과 실제 단백질 활성의 선형 상관관계를 그래프로 나타낸 것이다.
도 5의 (A)는 FDH1 변이체 도입 후 24시간 동안 포도당 혐기 발효 결과를 나타낸 것이고, (B)는 산화환원 인자가 최적화되도록 본 발명에서 제조한 대장균 균주 JHL85의 회분식 발효(batch fermentation) 양상을 나타낸 것이다.
도 6은 FDH1 변이체 도입 후 60시간 동안 갈락토오즈 혐기 발효 결과를 나타낸 것이다.
FIG. 1 schematically shows the production route of butanol in E. coli, wherein X represents gene deletion, a bold arrow represents amplification of the gene through homologous recombination or recombinant protein, and the dotted arrow represents the balance of redox state (PEP, phosphoenolpyruvate; CA, C. acetobutylicum ; EC, E. coli ; SC, Sacharomyces cerevisiae ; TD, T. denticola ).
FIG. 2 shows the fermentation curve of the E. coli strain JHL60 according to the present invention over time.
FIG. 3 is a graph comparing the fermentation results of E. coli strains JHL60 and JHL61 (mutant PDH complexes) prepared in the present invention.
Figure 4 (A) shows the results of FDH1 mutant's predicted protein expression through 5'-UTR and FDH1 specific enzyme activity, (B) shows the linear relationship between the protein expression predicted by 5'-UTR and actual protein activity The relationship is shown graphically.
Fig. 5 (A) shows the results of anaerobic fermentation of glucose for 24 hours after introduction of the FDH1 mutant, and Fig. 5 (B) shows the batch fermentation pattern of the E. coli strain JHL85 prepared in the present invention so as to optimize the redox factor will be.
Fig. 6 shows the result of anaerobic fermentation of galactose for 60 hours after introduction of the FDH1 mutant.

본 발명은 5'-UTR 서열이 조절된 fdh1 유전자를 대장균 균주 내로 도입하여 세포 내 산화환원 균형을 맞추는 단계를 포함하는 대장균 균주를 이용하여 부탄올을 생산하는 방법을 제공함에 그 특징이 있다.The present invention provides a method for producing butanol using an Escherichia coli strain comprising a step of introducing the 5'-UTR sequence-regulated fdh1 gene into a Escherichia coli strain to adjust an intracellular redox balance.

본 발명자들은 고수율로 부탄올을 생산할 수 있는 대장균을 제조하기 위해 연구하던 중, 부탄올 생산경로가 되는 외래 유전자(hbd, crt, ter, adhE2)를 도입시키고, 관련 내인성 유전자(atoB)는 증폭시키며, 산화 환원 인자 대사경로와 관련된 유전자(atoDA, adhE, ldhA, paaFGH, frdABCD, pta)는 결실시킴으로써 부탄올만이 최종 전자 수용체 역할을 하도록 한 재조합 대장균 균주에서, 탄소 흐름 및 세포 내부의 NADH 공급을 강화하기 위해 PDH(pyruvate dehydrogenase) 복합체의 혐기성 조절(anaerobic regulation) 부위를 제거한 다음 관련 유전자(aceEF) 과발현을 통해 발현량을 증가시키고, 발현량이 조절되도록 인위적으로 맞춤제작한 5'-UTR 서열과 연결한 효모 유래 포름산탈수소효소(formate dehydrogenase: fdh1) 유전자를 도입하여 세포가 필요로 하는 만큼의 NADH를 정밀하게 추가적으로 공급할 수 있도록 한 대장균 균주 및 상기 균주의 설계 방법을 최초로 규명하였다.( Hbd , crt , ter , adhE2 ) which is a butanol production pathway is introduced and the endogenous gene ( ato B) is amplified In the recombinant E. coli strain in which only butanol acts as a final electron acceptor by deleting the genes associated with the pathway for redox metabolism ( ato DA, adh E, ldh A, paa FGH, and frd ABCD, pta ) ( AceEF ) overexpression to remove the anaerobic regulation site of the pyruvate dehydrogenase (PDH) complex to enhance the NADH supply of the 5'- more precisely of NADH as by introducing: (fdh1 formate dehydrogenase) gene as a yeast-derived cells have to connect and UTR sequence formate dehydrogenase One to supply the E. coli strain and was identified a method of designing the first strain.

즉, 본 발명의 일실시예에서 본 발명자들은 대장균에 외래 유전자인 클로스트리듐 아세토부틸리쿰(C. acetobutylicum) 유래 hbd, crt, adhE2 유전자, 및 트렙포네마 덴티콜라 (T. denticola) 유래 ter 유전자를 각 유전자에 맞춤 제작한 5'-UTR 서열과 연결하여 도입하고 과발현시켰다. 그리고 대장균 내 endogeneous atoB를 과발현시킴으로써 atoB 유전자로부터 발생하는 대사 중간체인 아세토아세틸(acetoacetyl)-CoA가 n-Butanol로 전환되도록 하였다. 또한, 부탄올의 전구체를 경쟁적으로 이용하는 대사과정 관련 유전자 atoDA pta, 그리고 NADP를 보조인자로 이용한다고 알려진 paaFGH 유전자를 결실시켜 오직 hbd , crt , ter , adhE2 유전자를 통한 부탄올 생산 경로를 만들고, 대장균 내 산화 환원 인자의 재생산과 관련된 대사경로 유전자 adhE, ldhA, frdABCD 를 결실시킴으로써 부탄올이 혐기조건에서 유일한 최종 전자 수용체가 되도록 한 대장균 균주(JHL60)를 일차적으로 제작하였다. 이후 상기 JHL 60 균주의 산화 환원 보조인자의 불균형을 해소하기 위해, 상동재조합 방법으로 서열번호 1로 표시되는 lpd 유전자의 혐기성 조절(anaerobic regulation) 부위를 제거하여 돌연변이 PDH 복합체를 만들고, 상기 돌연변이 PDH 복합체의 발현량을 증가시키기 위해 PDH 복합체의 서브유닛인 aceEF 유전자를 과발현시킨 대장균 균주(JHL61)를 이차 제작하였다. 그리고 상기 JHL61 균주에서 사용가능한 NADH의 양을 충족시킬 수 있도록 NADH를 추가 공급할 수 있는 효모 유래 fdh1 유전자를 발현량의 조절이 가능하도록 맞춤 제작한 다섯 가지 5'-UTR 서열과 각각 연결하여 대장균 내로 도입함으로써 고 수율로 부탄올을 생성할 수 있는 대장균 균주를 제조하였다(실시예 1 참조).That is, one embodiment the present inventors in the examples of foreign genes in E. coli, Clostridium acetonitrile unit Tilikum (C. acetobutylicum) of the present invention derived from hbd, crt, adhE2 gene, and bit reppo nematic denti coke (T. denticola) derived ter The gene was introduced and overexpressed in conjunction with the 5'-UTR sequence tailored to each gene. Overexpression of endogenous atoB in E. coli resulted in the conversion of the metabolic intermediate, acetoacetyl-CoA, from the atoB gene to n-butanol. In addition, a metabolite-related gene ato that competitively utilizes a precursor of butanol , Pta , and pAa FGH gene, which is known to use NADP as a cofactor , to produce the butanol production pathway through only the hbd , crt , ter , and adhE2 genes, and the metabolic pathway genes adh E, ldh A, frd ABCD to produce the first E. coli strain (JHL60), in which butanol is the only final electron acceptor in anaerobic conditions. Then, in order to solve the unbalance of the redox cofactor of the JHL 60 strain, anaerobic regulation site of the lpd gene represented by SEQ ID NO: 1 is removed by homologous recombination method to prepare a mutant PDH complex, (JHL61), which overexpresses the aceEF gene, a subunit of the PDH complex, was prepared in order to increase the expression level of the E. coli strain. The yeast-derived fdh1 gene, which can additionally supply NADH to meet the amount of NADH available in the JHL61 strain, is linked to five 5'-UTR sequences custom-tailored to control the expression level and introduced into E. coli Thereby producing an E. coli strain capable of producing butanol at a high yield (see Example 1).

따라서, 본 발명은 5'-UTR 서열이 조절된 fdh1 유전자를 대장균 균주 내로 도입하여 세포 내 산화환원 균형을 맞추는 단계를 포함하는 대장균 균주를 이용하여 부탄올을 생산하는 방법을 제공할 수 있다. 이때, 상기 도입은 5'-UTR 서열이 조절된 fdh1 유전자와 작동가능하게 연결한 항시발현 프로모터를 포함하는 재조합 벡터를 이용하여 수행될 수 있다.Therefore, the present invention can provide a method for producing butanol using an Escherichia coli strain comprising a step of introducing the fdh1 gene whose 5'-UTR sequence is regulated into the Escherichia coli strain to adjust an intracellular redox balance. Wherein the introduction can be performed using a recombinant vector comprising a full- length expression promoter operably linked to the 5'-UTR sequence-regulated fdhl gene.

이때, 상기 atoDA 유전자는 atoA 및/또는 atoD 를 의미하는 것이고, 상기 paaFGH 유전자는 paaF, paaG, 및/또는 paaH를 의미하는 것이며, 상기 frdABCD 유전자는 frdA, frdB, frdC, 및/또는 frdD를 의미하는 것이고, aceEF 유전자는 aceE 및/또는 aceF를 의미하는 것으로, 본 발명이 목적하는 활성을 나타낼 수 있도록 상기 유전자들은 일부 또는 모두 결실 및/또는 과발현시킬 수 있다.At this time, the ato DA gene is ato A and / or ato D , And the paa FGH gene means paa F, paa G, and / or paa H, and the frd ABCD gene means frd A, frd B, frd C , and / or frd D, The aceEF gene means aceE and / or aceF , and the genes may be partially or completely deleted and / or overexpressed so that the present invention exhibits the desired activity.

본 발명에서 fdh1 유전자를 얻기 위한 효모는 NAD+ 의존성 포름산 탈수소효소를 가지는 효모라면 모두 사용 가능하며, 바람직하게는 칸디다 속(Candida sp.) 균주일 수 있고, 가장 바람직하게는 사카로미세스 세레비시아(Saccharomyces cerevisiae)일 수 있으나 이에 한정되는 것은 아니다.In the present invention, the yeast for obtaining the fdh1 gene may be any yeast having an NAD + dependent formate dehydrogenase, preferably Candida sp., And most preferably Saccharomyces cerevisiae Saccharomyces cerevisiae ), but is not limited thereto.

또한, 본 발명의 부탄올 생산 방법은 PDH 복합체를 조절하는 하기 단계를 추가로 포함할 수 있다:The method for producing butanol of the present invention may further comprise the following step of controlling the PDH complex:

a) 부위 특이적 돌연변이(site-directed mutagenesis) 방법으로 균주 내 염색체상의 lpd 유전자에서 혐기성 조절 부위를 제거하는 단계; 및a) removing the anaerobic regulatory region from the lpd gene on the chromosome in the strain by a site-directed mutagenesis method; And

b) 내인성 유전자 aceEF 를 과발현시키는 단계.b) Overexpressing the endogenous gene aceEF .

본 발명의 재조합 대장균 균주에서 부탄올 생산경로를 설계하기 위하여 도입된 외래 유전자는 본 발명의 일실시예에 따라 hbd , crt , ter , adhE2 유전자일 수 있으나, 아세토아세틸-CoA를 n-부탄올로 전환시키는 경로에 관여하는 유전자라면 이에 제한하지 않고 도입될 수 있다. 또한, 상기 재조합 대장균 균주는 아세틸-CoA를 아세토아세틸-CoA로 전환시키기 위해 내인성 atoB 유전자를 과발현시킬 수 있으나, 아세틸-CoA를 아세토아세틸-CoA로 전환시킬 수 있는 것이라면 이에 제한되지 않고 과발현시키거나 외래에서 도입될 수 있다. 상기에서 hbd , crt , ter 및/또는 adhE2 유전자는 서열번호 37의 이탤릭체로 표시되는 5'-UTR 서열과 연결된 hbd 유전자, 서열번호 45의 이탤릭체로 표시되는 5'-UTR 서열과 연결된 crt 유전자, 서열번호 47의 이탤릭체로 표시되는 5'-UTR 서열과 연결된 ter 유전자, 서열번호 23의 이탤릭체로 표시되는 5'-UTR 서열과 연결된 adhE2 유전자일 수 있다.The foreign gene introduced to design the butanol production pathway in the recombinant E. coli strain of the present invention may be the hbd , crt , ter , or adhE2 gene according to an embodiment of the present invention, but it is also possible to convert acetoacetyl-CoA to n-butanol Any gene involved in the pathway may be introduced without limitation. In addition, the recombinant E. coli strain may overexpress the endogenous ato B gene to convert acetyl-CoA into acetoacetyl-CoA. However, the recombinant Escherichia coli strain may overexpress the endogenous ato B gene if it can convert acetyl-CoA to acetoacetyl- Can be introduced from abroad. In the hbd, crt, ter and / or adhE2 gene crt gene sequence is associated with the 5'-UTR sequence shown in italics in the hbd gene, SEQ ID NO: 45 is associated with the 5'-UTR sequence shown in italics in SEQ ID NO: 37 A ter gene linked to the 5'-UTR sequence represented by the italic number 47, and an adhE2 gene linked with the 5'-UTR sequence represented by the italicized sequence of SEQ ID NO: 23.

본 발명에서 상기 유전자의 도입, 과발현, 결실은 재조합 플라스미드 벡터를 대장균 내로 형질전환(transformation)시킴으로써 이루어졌으며, 상기 재조합 플라스미드 벡터로 바람직하게는 pCOLADuet, pCDFDuet, pETDuet, 또는 pRSFDuet 등을 사용할 수 있으나 이에 제한되는 것은 아니다. 이때, 상기 결실의 경우 상동 재조합 (homologous recombination) 효율을 증가시키기 위해 네 가지의 서로 다른 priming site를 가지는 플라스미드(pFRT)를 사용하여 이루어질 수 있다.In the present invention, the introduction, overexpression and deletion of the gene are performed by transforming a recombinant plasmid vector into E. coli. Preferably, pCOLADuet, pCDDuet, pETDuet, or pRSFDuet is used as the recombinant plasmid vector. It is not. In this case, in order to increase homologous recombination efficiency, the plasmid pFRT having four different priming sites may be used.

또한, 상기 lpd 유전자의 부위 특이적 돌연변이는 가장 바람직하게 서열번호 15 및 16의 염기서열로 표시되는 프라이머를 이용하여 수행될 수 있으며, 상기 내인성 유전자 aceEF 의 과발현은 가장 바람직하게 서열번호 13 및 14의 염기서열로 표시되는 프라이머를 이용하여 수행될 수 있으나, 이는 가장 바람직한 예일 뿐 상기 서열에 한정되는 것은 아니다.In addition, site-specific mutations of the lpd gene can be most preferably performed using primers represented by the nucleotide sequences of SEQ ID NOS: 15 and 16, Overexpression of the endogenous gene aceEF can most preferably be carried out using primers represented by the nucleotide sequences of SEQ ID NOs: 13 and 14, but this is the most preferred example and is not limited to the above sequence.

이에 더하여, 상기 lpd 유전자에서 혐기성 조절 부위를 제거하는 단계는 lpd 유전자에 의하여 코딩되는 서열번호 1로 표시되는 아미노산 서열의 354번째 아미노산을 글루타민(Glutamine)에서 라이신(Lysine)으로 치환함으로써 수행되는 것일 수 있으나, 당업자에 의해 혐기성 조절에 관련하는 아미노산이 적절하게 치환됨으로써 이에 제한되지 않고 이루어질 수 있다.In addition, removing the anaerobic regulatory region in the lpd gene can be performed by substituting the lysine (Lysine) the 354th amino acid of the amino acid sequence shown in SEQ ID NO: 1 encoded by the lpd gene in the glutamine (Glutamine) But can be made without limitation by the appropriate substitution of amino acids involved in anaerobic regulation by those skilled in the art.

또한, 본 발명에서 5'-UTR 서열은 서열번호 2 내지 서열번호 6의 염기서열로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 상기 5'-UTR 서열을 포함하는 프라이머를 이용하여 증폭함으로써 fdh1 유전자에 연결할 수 있다. 이때, 상기 증폭은 서열번호 7 내지 11의 염기서열로 이루어진 군으로부터 선택되는 하나의 정방향 프라이머 및 서열번호 12의 염기서열로 표시되는 역방향 프라이머를 이용하여 중합효소연쇄반응(PCR)을 수행함으로써 이루어질 수 있다. 또한, 본 발명에서 상기 항시발현 프로모터는 서열번호 49로 표시되는 항시발현 프로모터일 수 있다. 그러나 상기 서열들은 가장 바람직한 예일 뿐 이에 한정되는 것은 아니며, 상기 서열과 적어도 60%, 바람직하게는 70%, 보다 바람직하게는 80% 이상의 서열 상동성을 갖는 것으로 실질적으로 동질의 역할을 수행할 수 있는 것이라면 당 분야의 전문가들에 의해 적절하게 부가, 결실, 또는 치환되어 사용될 수 있다.Also, in the present invention, the 5'-UTR sequence may be any one selected from the group consisting of the nucleotide sequences of SEQ ID NO: 2 to SEQ ID NO: 6, and the primers containing the 5'-UTR sequence are used to amplify the fdh1 gene Lt; / RTI > Here, the amplification may be performed by performing a PCR using a forward primer selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 7 to 11 and a reverse primer represented by the nucleotide sequence of SEQ ID NO: 12 have. Also, in the present invention, the all-time expression promoter may be an all-time expression promoter represented by SEQ ID NO: 49. However, the above sequences are the most preferred examples, and are not limited thereto. The sequences may have a homology of at least 60%, preferably 70%, more preferably 80% May be appropriately added, deleted, or substituted by experts in the field.

아울러 본 발명의 부탄올 생산 방법에 따르면 화학적 유도물질을 첨가하지 않고도(inducer-free) 고수율로 부탄올을 생산할 수 있다. 즉, 대장균 균주 내 외래 대사경로에 일반적으로 균주개량을 위해 사용하는 IPTG 같은 화학적 유도물질을 이용하지 않았기 때문에, 세포의 대사과정을 통틀어 우수한 효율로 부탄올 생산이 가능하며, 이는 부탄올 생산 경로가 대장균 내의 대사 회로와 조화를 이루어야만 가능한 것임이 자명하다.According to the butanol production method of the present invention, butanol can be produced in a high yield without inducing a chemical inducer. In other words, since no chemical inducing substance such as IPTG is generally used in the pathway for exogenous metabolism in the Escherichia coli strain, it is possible to produce butanol with excellent efficiency throughout the metabolism of cells, It is obvious that it is necessary to harmonize with the metabolic circuit.

나아가 본 발명은 본 발명에 따른 부탄올 생산 방법을 이용하여 제조되는 것을 특징으로 하는 부탄올 생산용 대장균 균주를 제공할 수 있다.
Further, the present invention provides a strain of E. coli for producing butanol, which is produced using the butanol production method according to the present invention.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.

[[ 재료예Material example ]]

본 발명에서 이용한 대장균 균주 및 플라스미드는 하기 표 1에 기재한 바와 같으며, 본 발명에 사용된 올리고뉴클레오티드는 Genotech (Daejeon, Korea) 에서 합성하였고 하기 표 2에 나타내었다. Phusion polymerase와 제한효소들은 각각 TaKaRa, New England Biolabs에서 구매하였고, 증폭된 플라스미드는 AccuPrep Nano-Plus Plasmid Mini Extraction kits (Bioneer, Daejeon, Korea) 를 이용하였으며, 제한 효소 처리한 DNA 산물은 GeneAll Expin Gel SV kit (GeneAll Biotechnology, Seoul, Korea)를 이용하여 정제하였다. 모든 배양액 제조를 위한 재료들은 모두 BD (Sparks, MD, USA) 사의 제품을 이용하였으며, 기타 화학물질들은 모두 Sigma (St. Louis, MO, USA)에서 구매하여 사용하였다.The E. coli strains and plasmids used in the present invention are shown in Table 1 below. The oligonucleotides used in the present invention were synthesized in Genotech (Daejeon, Korea) and shown in Table 2 below. Phusion polymerase and restriction enzymes were purchased from TaKaRa and New England Biolabs. The amplified plasmids were AccuPrep Nano-Plus Plasmid Mini Extraction kits (Bioneer, Daejeon, Korea) and the restriction enzyme-treated DNA products were GeneAll Expin Gel SV kit (GeneAll Biotechnology, Seoul, Korea). All of the materials used for the culture were purchased from BD (Sparks, MD, USA) and other chemicals were purchased from Sigma (St. Louis, MO, USA).

본 발명에서 유전자의 도입 및 과발현은 pCDF-BuOH, pACYC-SP 또는 pBASP 플라스미드를 이용하였고, 염색체상의 유전자 과발현 및 결실을 위한 유전자 조작은 pKD46 및 pCP20 플라스미드를 이용한 Red 재조합 방법(Red recombination system)을 이용하여 수행되었으며 (Datsenko & Wanner, 2000), 이때 상기 과발현은 프로모터를 강력한 항시발현 프로모터 (constitutive promoter, BBa_J23100)로 교체하고, 대장균 내 번역(translation)을 극대화할 수 있도록 재설계된 5'-UTR를 이용함으로써 이루어졌다.In the present invention, pCDF-BuOH, pACYC-SP or pBASP plasmid was used for gene introduction and overexpression, and gene manipulation for gene overexpression and deletion on the chromosome was performed using a red recombination system using pKD46 and pCP20 plasmids (Datsenko & Wanner, 2000), wherein the overexpression replaces the promoter with a strong constitutive promoter (BBa_J23100) and uses a redesigned 5'-UTR to maximize translation in E. coli .

또한, 상동 재조합 (homologous recombination) 효율을 증가시키기 위하여 서로 다른 priming site를 가지는 플라스미드(pFRT)를 사용하였다. 그리고 추가적으로 FLP-recombinase 인식 서열이 다른 변이체 (pFRT72variant)를 상동 재조합에 이용하였다.
In addition, plasmids (pFRT) with different priming sites were used to increase homologous recombination efficiency. In addition, variants (pFRT72 variant ) with additional FLP-recombinase recognition sequences were used for homologous recombination.

관련 특성Related characteristics 균주Strain Mach1-T1R Mach1-T1 R F- φ80(lacZ)ΔM15 ΔlacX74 hsdR(rk -mk +recA1398 endA1 tonAF - φ80 (lac Z) ΔM15 Δ lac X74 hsd R (r k - m k +) Δ rec A1 end A1398 ton A W3110W3110 F- λ- rph -1 IN(rrnD , rrnE)1 F - ? - rph -1 IN ( rrnD , rrnE ) 1 JHL58JHL58 W3110 ΔatoDA ΔadhE ΔldhA ΔpaaFGH ΔfrdABCD Δpta P ato B::BBa_J23100W3110 Δ ato Δ adhE Δ A Δ ldh paa FGH Δ Δ frd ABCD pta P ato B :: BBa_J23100 JHL14JHL14 JHL58/ P lpd ::BBa_J23100 lpd(G1060A)JHL58 / P lpd :: BBa_J23100 lpd (G1060A) JHL59JHL59 JHL14/ P aceEF ::BBa_J23100JHL14 / P aceEF :: BBa_J23100 JHL60JHL60 JHL58/ pCDF-BuOHJHL58 / pCDF-BuOH JHL61JHL61 JHL59/ pCDF-BuOHJHL59 / pCDF-BuOH JHL80JHL80 JHL59/ pCDF-BuOH, pCOLADuetJHL59 / pCDF-BuOH, pCOLADuet JHL81JHL81 JHL59/ pCDF-BuOH, pCOLA-F1JHL59 / pCDF-BuOH, pCOLA-F1 JHL82JHL82 JHL59/ pCDF-BuOH, pCOLA-F2JHL59 / pCDF-BuOH, pCOLA-F2 JHL83JHL83 JHL59/ pCDF-BuOH, pCOLA-F3JHL59 / pCDF-BuOH, pCOLA-F3 JHL84JHL84 JHL59/ pCDF-BuOH, pCOLA-F4JHL59 / pCDF-BuOH, pCOLA-F4 JHL85JHL85 JHL59/ pCDF-BuOH, pCOLA-F5JHL59 / pCDF-BuOH, pCOLA-F5 플라스미드Plasmid pKD4pKD4 Template plasmid for FRT-flanked kanamycin resistance gene; AmpR,KmR Template plasmid for FRT-flanked kanamycin resistance gene; Amp R , Km R pKD46pKD46 Red recombinase expression vector; AmpR Red recombinase expression vector; Amp R pCP20pCP20 FLP expression vector; AmpR FLP expression vector; Amp R pCDFDuetpCDFDuet Expression vector, SmR,cloDF13oriExpression vector, Sm R , cloDF13ori pCOLADuetpCOLADuet Expression vector, KmR,ColAoriExpression vector, Km R , ColAori pCR2.1-TOPOpCR2.1-TOPO Cloning vector, AmpR,KmR Cloning vector, Amp R , Km R pMD20-TpMD20-T Cloning vector, AmpR Cloning vector, Amp R pFRT2pFRT2 From pGEM T-Easy, FRT- Kan R -FRT(2)From pGEM T-Easy, FRT - Kan R - FRT (2) pFRT3pFRT3 From pGEM T-Easy, FRT- Kan R -FRT(3)From pGEM T-Easy, FRT - Kan R - FRT (3) pFRT5pFRT5 From pGEM T-Easy, FRT- Kan R -FRT(5)From pGEM T-Easy, FRT - Kan R - FRT (5) pFRT6pFRT6 From pGEM T-Easy, FRT- Kan R -FRT(6)From pGEM T-Easy, FRT - Kan R - FRT (6) pFRT7pFRT7 From pGEM T-Easy, FRT- Kan R -FRT(7)From pGEM T-Easy, FRT - Kan R - FRT (7) pFRT72variant pFRT72 variant From pMD20-T, mutant FRT- Kan R -FRTFrom pMD20-T, mutant FRT - Kan R - FRT pAdhE2WT pAdhE2 WT From pCR 2.1-TOPO, PJ23100::adhE2 CA From pCR 2.1-TOPO, P J23100 :: adhE2 CA pAdhE2m pAdhE2 m From pCR 2.1-TOPO, PJ23100::adhE2 CA(T1794C) From pCR 2.1-TOPO, P J23100 :: adhE2 CA (T1794C) pLpdWT pLpd WT From pMD20-T, PJ23100::lpd EC From pMD20-T, P J23100 :: lpd EC pLpdm pLpd m From pMD20-T, PJ23100::lpd fbr (E354K)EC From pMD20-T, P J23100 :: lpd fbr (E354K) EC pCDF-SPpCDF-SP cloDF13 ori, SmR,PJ23100::crt- PJ23100::hbd- PJ23100::ter cloDF13 ori, Sm R, P J23100 :: crt - P J23100 :: hbd - P J23100 :: ter pCDF-BuOHpCDF-BuOH cloDF13 ori, SmR,PJ23100::crt- PJ23100::hbd- PJ23100::ter- PJ23100::adhE2 cloDF13 ori, Sm R, P J23100 :: crt - P J23100 :: hbd - P J23100 :: ter - P J23100 :: adhE2 pCOLA-F1pCOLA-F1 ColA ori, KmR ,PJ23100::F1UTR-fdh1 SC ColA ori, Km R , P J23100 :: F1 UTR - FDH1 SC pCOLA-F2pCOLA-F2 ColA ori, KmR ,PJ23100::F2UTR-fdh1 SC ColA ori, Km R , P J23100 :: F2 UTR - FDH1 SC pCOLA-F3pCOLA-F3 ColA ori, KmR ,PJ23100::F3UTR-fdh1 SC ColA ori, Km R , P J23100 :: F3 UTR - FDH1 SC pCOLA-F4pCOLA-F4 ColA ori, KmR ,PJ23100::F4UTR-fdh1 SC ColA ori, Km R , P J23100 :: F4 UTR - FDH1 SC pCOLA-F5pCOLA-F5 ColA ori, KmR ,PJ23100::F5UTR-fdh1 SC ColA ori, Km R , P J23100 :: F5 UTR - FDH1 SC

명칭designation 서열(5'-3')The sequence (5'-3 ') 서열번호SEQ ID NO: fdh1(F1)_Ffdh1 (F1) _F gccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagcgctgat attgcaaggagcagagcatgtcgaagggaaaggttttgctgccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagc gctgat attgcaaggagcagagc atgtcgaagggaaaggttttgct 77 fdh1(F2)_Ffdh1 (F2) _F gccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagcggctgatgttccaaggaggagagcatgtcgaagggaaaggttttgctgccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagc ggctgatgttccaaggaggagagc atgtcgaagggaaaggttttgct 88 fdh1(F3)_Ffdh1 (F3) _F gccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagcgctgat gttcgaaggaggagagcatgtcgaagggaaaggttttgctgccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagc gctgat gttcgaaggaggagagc atgtcgaagggaaaggttttgct 99 fdh1(F4)_Ffdh1 (F4) _F gccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagcagaaac acaataaggaggctaagatgtcgaagggaaaggttttgctgccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagc agaaac acaataaggaggctaag atgtcgaagggaaaggttttgct 1010 fdh1(F5)_Ffdh1 (F5) _F gccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagcgctgat attagaaggaggaaagcatgtcgaagggaaaggttttgctgccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagc gctgat attagaaggaggaaagc atgtcgaagggaaaggttttgct 1111 fdh1_Rfdh1_R gccGGTACCttatttcttctgtccataagctctggccGGTACCttatttcttctgtccataagctctg 1212 aceEF_over72_FaceEF_over72_F gcgtcgtctggagcaacgaaagaattagtgatttttctggtaaaaattatgc atgaccggcgcgatgc gcgtcgtctggagcaacgaaagaattagtgatttttctggtaaaaattat gc atgaccggcgcgatgc 1313 aceEF_over72_RaceEF_over72_R gtcgcgagtttcgatcggatccacgtcatttgggaaacgttctgacatcttgacctccttatctacagcgctagcactgtacctaggactgagctagccgtcaagctcagcggatctcatgcgc gtcgcgagtttcgatcggatccacgtcatttgggaaacgttctgacat cttgacctccttatctacagc gctagcactgtacctaggactgagctagccgtcaa gctcagcggatctcatgcgc 1414 lpd_G1060A_Flpd_G1060A_F gtccatcgcctataccaaaccagaagttgcatggtccatcgcctataccaaaccagaagttgcatg 1515 lpd_G1060A_Rlpd_G1060A_R catgcaacttctggtttggtataggcgatggaccatgcaacttctggtttggtataggcgatggac 1616 lpd_del3_Flpd_del3_F aacaacacgctgtctgacattcgccgtctggtgatgtaagtaaaagagccgt tagcccgtctgtcccaac aacaacacgctgtctgacattcgccgtctggtgatgtaagtaaaagagcc gt tagcccgtctgtcccaac 1717 lpd_del3_Rlpd_del3_R acgtctctctgaacgtggagcaagaagactggaaaggtaaattgcagacgca tactcgctcttgggtcgg acgtctctctctgaacgtggagcaagaagactggaaaggtaaattgcagacg ca tactcgctcttgggtcgg 1818 C-aceEF_FC-aceEF_F gcgaagcatcgcatcgccatcgcgaagcatcgcatcgccatc 1919 C-aceEF_RC-aceEF_R cggggatggtgttgatgtagttgccggggatggtgttgatgtagttgc 2020 C-lpd_FC-lpd_F cggtgctgatggtgcccgttcggtgctgatggtgcccgtt 2121 C-lpd_RC-lpd_R caggagagccgcccacaacgcaggagagccgcccacaacg 2222 adhE2_FadhE2_F gccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagcgcaaagcgattaaggagtacaatatgaaagttacaaatcaaaaagaactaaaacgccGCGGCCGCttgacggctagctcagtcctaggtacagtgctagc gcaaagcgattaaggagtacaat atgaaagttacaaatcaaaaagaactaaaac 2323 adhE2_RadhE2_R gccGGTACCtagtctatgtgcttcatgaagctaatgccGGTACCtagtctatgtgcttcatgaagctaat 2424 adhE2_T1794C_FadhE2_T1794C_F cctacaactgctggcaccggttcagaggccctacaactgctggcaccggttcagaggc 2525 adhE2_T1794C_RadhE2_T1794C_R gcctctgaaccggtgccagcagttgtagggcctctgaaccggtgccagcagttgtagg 2626 FRT2_FFRT2_F cgatgcctcatccgcttctcgaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc cgatgcctcatccgcttctc gaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc 2727 FRT2_RFRT2_R gcaacgcagtagctggagtcagttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg gcaacgcagtagctggagtc agttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg 2828 FRT3_FFRT3_F gttagcccgtctgtcccaacgaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc gttagcccgtctgtcccaac gaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc 2929 FRT3_RFRT3_R catactcgctcttgggtcggagttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg catactcgctcttgggtcgg agttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg 3030 FRT5_FFRT5_F cgttgctcctgacatggctcgaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc cgttgctcctgacatggctc gaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc 3131 FRT5_RFRT5_R gatgtcgagagcccgttgacagttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg gatgtcgagagcccgttgac agttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg 3232 FRT6_FFRT6_F gtagcaccgagtcgtaccaggaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc gtagcaccgagtcgtaccag gaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc 3333 FRT6_RFRT6_R ttcggttggcctaacgcactagttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg ttcggttggcctaacgcact agttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg 3434 FRT7_FFRT7_F gatcgtgcgaacgacctgctgaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc gatcgtgcgaacgacctgct gaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc 3535 FRT7_RFRT7_R cagtactcgagtcgctccgaagttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg cagtactcgagtcgctccga agttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg 3636 FRT72v_FFRT72 v _F gcatgaccggcgcgatgcgaagttcctatactttctacagaataggaacttctcaagatcccctcacgctgccg gcatgaccggcgcgatgc gaagttcctatactttctacagaataggaacttctcaagatcccctcacgctgccg 3737 FRT72v_RFRT72 v _R gctcagcggatctcatgcgcgaagttcctattctgtagaaagtataggaacttcagagcgcttttgaagctggggtgg gctcagcggatctcatgcgc gaagttcctattctgtagaaagtataggaacttcagagcgcttttgaagctggggtgg 3838 lpd_Flpd_F gttgacggctagctcagtcctaggtacagtgctagcgaacatcaaagggtaa ggaggatagaacatgagtactgaaatcaaaactcaggtcggttgacggctagctcagtcctaggtacagtgctagc gaacatcaaagggtaa ggaggatagaac atgagtactgaaatcaaaactcaggtcg 3939 lpd_Rlpd_R tgcagacgtaaaaaaagcggcgtggtgcagacgtaaaaaaagcggcgtgg 4040 lpd_over_Flpd_over_F aacaacacgctgtctgacattcgccgtctggtgatgtaagtaaaagagccgttgacggctagctcagtcctaggaacaacacgctgtctgacattcgccgtctggtgatgtaagtaaaagagccgttgacggctagctcagtcctagg 4141 lpd_over_Rlpd_over_R cgtctctctgaacgtggagcaagaagactggaaaggtaaattgcagacgtaaaaaaagcggcgtggcgtctctctgagaacgtggagcaagaagactggaaaggtaaattgcagacgtaaaaaaagcggcgtgg 4242 crt_Fcrt_F aGGATCCttgacggctagctcagtcctaggtacagtgctagctcattctaaa aaaggagcatctgtgatggaactaaacaatgtcatccttgaGGATCCttgacggctagctcagtcctaggtacagtgctagc tcattctaaa aaaggagcatctgtg atggaactaaacaatgtcatccttg 4343 crt_Rcrt_R aGTCGACtcactatctatttttgaagccttcaataGTCGACtcactatctatttttgaagccttcaat 4444 hbd_Fhbd_F gccGTCGACttgacggctagctcagtcctaggtacagtgctagctggcaagtctaaaggagcatcacgaatgaaaaaggtatgtgttataggtggccGTCGACttgacggctagctcagtcctaggtacagtgctagc tggcaagtctaaaggagcatcacga atgaaaaaggtatgtgttataggtg 4545 hbd_Rhbd_R aCTCGAGttattttgaataatcgtagaaacctaCTCGAGttattttgaataatcgtagaaacct 4646 ter_Fter_F gccCTCGAGttgacggctagctcagtcctaggtacagtgctagctacattaa ggaggaagccgatggccCTCGAGttgacggctagctcagtcctaggtacagtgctagc tacattaa ggaggaagccg atg 4747 ter_Rter_R gccTTAATTAAGAGCTCatgccctggcgttctagattgcc TTAATTAA GAGCTCatgccctggcgttctagatt 4848 - "C" 로 시작하는 프라이머는 상동 재조합 결과를 확인하기 위해 디자인한 것이다.
- 대문자는 제한효소 인식 서열을 나타낸다.
- 밑줄 친 알파벳은 상동 재조합 효율을 증가시키기 위해 설계한 서로 다른 priming 서열을 나타낸다.
- 이탤릭체로 표기된 알파벳은 각각의 유전자를 극대화하기 위해 맞춤 설계한 5'-UTR 염기서열이다
- Primers starting with "C" are designed to confirm homologous recombination results.
- Upper case represents restriction enzyme recognition sequence.
- The underlined alphabets represent different priming sequences designed to increase homologous recombination efficiency.
- The italicized alphabet is a 5'-UTR base sequence designed to maximize each gene

부탄올Butanol 생산용 재조합 대장균 균주의 제작 Production of recombinant E. coli strain for production

본 발명자들은 하기 실시예 <1-1> 내지 <1-3>과 같이, 부탄올 생산 경로를 재설계함으로써 부탄올을 고효율로 생산하는 재조합 대장균 균주를 제작하였다.As shown in the following Examples <1-1> to <1-3>, the inventors of the present invention produced a recombinant E. coli strain producing butanol with high efficiency by redesigning the butanol production pathway.

하기 실시예에서 부탄올 생성능 및 세포 성장 속도 측정을 위하여, Terrific broth (TB) (12 g tryptone, 24 g yeast extract, 2.31 g KH2PO4, 12.54 g K2HPO4, 1 리터 당, 4ml glycerol)에 25g/L 의 포도당 또는 갈락토오즈를 첨가하고, 복수의 플라스미드를 유지하기 위해 25 ug/ml 의 스트렙토마이신 (streptomycin) 및 15 ug/ml 의 카나마이신 (Kanamycin) 항생제를 첨가한 배양액(단일 플라스미드를 필요로 하는 실험에서는 50 ug/ml 의 스트렙토마이신 항생제 첨가)을 이용하였으며, 다음과 같은 순서로 실험을 진행하였다. 단일 콜로니를 3ml의 LB에서 overnight culture를 진행한 다음 이 Seed를 상기 TB 배지 20ml에 OD600 값이 0.05가 되도록 접종하여 37℃에서 250rpm 으로 24시간 동안 배양하였으며, 60ml 세럼병 (serum bottle)을 이용하여 상층부 및 배지 속에 질소 가스를 살포함으로써 혐기 조건을 형성해주었다. 그리고 따로 언급하지 않은 경우를 제외하고는 배양액의 pH를 7.2 부근으로 보정하기 위하여 10M의 NaOH를 24시간 간격으로 넣어주었다.In the following examples, Terrific broth (TB) (12 g tryptone, 24 g yeast extract, 2.31 g KH 2 PO 4 , 12.54 g K 2 HPO 4 , 4 ml glycerol per liter) , 25 g / ml of streptomycin and 15 ug / ml of kanamycin antibiotics were added to maintain a plurality of plasmids (a single plasmid was added to each well) 50 μg / ml of streptomycin antibiotics was used in the experiments required). The experiment was carried out in the following order. A single colony was inoculated in 3 ml of LB and seeded in 20 ml of the TB medium to inoculate OD 600 value of 0.05. The cells were cultured at 37 ° C and 250 rpm for 24 hours. Using a 60 ml serum bottle And an anaerobic condition was formed by spraying nitrogen gas in the upper layer and the medium. Unless otherwise noted, 10 M NaOH was added at 24-hour intervals to calibrate the pH of the culture to about 7.2.

그리고 배지에 존재하는 탄소원 및 대사산물의 양을 분석하기 위해 Aminex HPX-87H column (Bio-Rad Laboratories, Richmond, CA, USA)을 이용한 high-performance liquid chromatography (HPLC)방법으로 측정을 수행하였으며, 이때, 5 mM H2SO4가 이동상으로 사용되었고, 유속은 0.6ml/min, 오븐의 온도는 14℃로 설정하였다. 탄소원 및 대사산물의 신호(signal)는 Shodex RI-101 refractive index detector (Shodex, Klokkerfaldet, Denmark)와 UV-VIS diode array detector (at 210 nm) 를 이용하여 측정하였다.
Performance was determined by high performance liquid chromatography (HPLC) using an Aminex HPX-87H column (Bio-Rad Laboratories, Richmond, CA, USA) to analyze the amount of carbon source and metabolites present in the medium. , 5 mM H 2 SO 4 was used as the mobile phase, the flow rate was set at 0.6 ml / min, and the oven temperature was set at 14 ° C. Signals of carbon source and metabolite were measured using Shodex RI-101 refractive index detector (Shodex, Klokkerfaldet, Denmark) and UV-VIS diode array detector (at 210 nm).

<1-1> <1-1> 부탄올Butanol 생산을 위한 대사경로 재설계 Metabolic path redesign for production

대장균은 자연적으로 부탄올 생산하지 못하므로 부탄올 생산경로를 완성하기 위한 외래 유전자의 도입이 필요하다. 이에, 본 발명자들은 먼저 부탄올을 최종 전자 수용체로 가지는 대장균의 대사경로를 도 1에 나타낸 바와 같이 재설계하였다.Since Escherichia coli can not produce butanol naturally, it is necessary to introduce an exogenous gene to complete the butanol production pathway. The present inventors first redesigned the metabolic pathway of E. coli having butanol as a final electron acceptor as shown in FIG.

즉, 5'-UTR 서열을 해당 유전자의 염기서열에 따라 인위적으로 맞춤 제작한 클로스트리듐 아세토부틸리쿰(C. acetobutylicum) 유래 hbd (encoding 3-hydroxybutyryl-CoA dehydrogenase) 유전자, adhE2 (encoding bifunctional aldehyde/alcohol dehydrogenase) 유전자, 및 crt (encoding crotonase) 유전자와 트렙포네마 덴티콜라 (T. denticola) 유래 ter (encoding trans-enoyl-CoA reductase) 유전자를 삽입한 pCDF-BuOH 플라스미드 벡터를 대장균 내로 도입하고, 대장균 염색체상의 atoB(endogeneous atoB) 유전자를 과발현시켰다. 이때 상기 각각의 유전자들은 IPTG 같은 화학적 유도물질 없이도 세포 내 효소 발현을 증가시킬 수 있도록 플라스미드를 이용하여 프로모터를 서열번호 49로 표시되는 강력한 항시발현 프로모터 (constitutive promoter, BBa_J23100)로 교체함으로써, 부탄올 생산경로를 극대화함과 동시에 유도물질없이(inducer-free)도 우수한 발효시스템을 갖도록 하였다. 다음으로 탄소 흐름을 부탄올 생산경로로 재분배하기 위해 PCR 산물을 이용한 one step inactivation 방법 (Warner et al., (2000) PNAS, 97(12), 6640-6645)을 이용하여 염색체 상에 존재하는 내인성 유전자 atoAD(encoding acetoacetyl-CoA transferase, convert acetoacetyl-CoA into acetoacetate) 및 pta (encoding phosphate acetyltransferase, acetyl-CoA into acetate)를 대장균에서 결실시켰다. 그리고 nicotinamide adenine dinucleotide phosphate (NADP)를 보조인자로 이용한다고 알려진 paaFGH (encoding the enzymes enoyl-CoA hydratase-isomerase, acyl-CoA hydratase and 3-hydroxybutyryl-CoA dehydrogenase, convert acetoacetyl-CoA into crotonyl-CoA) 유전자를 대장균에서 결실시켜, 오직 hbd, adhE2 , crt , ter 유전자를 통한 부탄올 생산 경로를 완성하였다. 또한, 대장균 내의 산화환원 인자의 재생산과 관련된 대사경로인 adhE (encoding alcohol dehydrogenase), ldhA (encoding lactate dehydrogenase) 및 frdABCD (encoding fumarate reductase) 유전자들을 대장균에서 결실시킴으로써 부탄올 생산을 위한 대장균 균주을 제작하였다. 이때, 상기 adhE2 유전자는 adhE2_F와 adhE2_R 프라이머를 이용하여 PCR 증폭한 후 pCR2.1-TOPO 벡터에 TA 클로닝을 수행하여 pAdhE2WT 플라스미드를 구축하고, adhE2 유전자 내의 KpnI 제한효소 인지 서열을 제거하기 위해 adhE2_T1794C_F와 adhE2_T1794C_R 프라이머를 이용하여 site-directed mutagenesis를 수행함으로써 pAdhE2m 플라스미드를 구축하였다. 그리고 crt, hbd, ter 유전자 단편은 pCDF-SP 플라스미드와 BamHI 및 SacI 제한효소 처리를 통해 준비하였으며, adhE2 유전자 단편은 pAdhE2m 플라스미드와 NotI 및 KpnI 제한효소 처리를 통해 준비하였다. 상기 제한 효소 처리된 단편들을 pCDFDuet 벡터의 상응하는 cloning site에 각각 넣어줌으로써 최종적으로 부탄올 생산경로를 가지는 pCDF-BuOH 플라스미드를 완성하였으며, 상기 플라스미드로 대장균 균주를 형질전환(transformation)시켜 이론적으로 부탄올 생산이 가능한 대장균 균주 JHL60를 제작하였다.That is, the 5'-UTR sequence was cloned into a hbd vector derived from C. acetobutylicum , which was artificially tailored to the base sequence of the corresponding gene (encoding 3-hydroxybutyryl-CoA dehydrogenase) gene, adhE2 (encoding bifunctional aldehyde / alcohol dehydrogenase) gene, and crt (encoding crotonase) gene and T. denticola- derived ter pCDF-BuOH plasmid vector into which the gene encoding trans-enoyl-CoA reductase was inserted was introduced into E. coli and overexpressed the atoB (endogenous atoB ) gene on the E. coli chromosome. In this case, by replacing the promoter with a strong constitutive promoter (BBa_J23100) shown in SEQ ID NO: 49 by using a plasmid so as to increase the expression of the intracellular enzyme without the use of chemical inducers such as IPTG, And inducer-free fermentation system. Next, to redistribute the carbon flow to the butanol production pathway, one step inactivation method using PCR products (Warner et al., (2000) PNAS, 97 (12), 6640-6645) atoAD (encoding acetoacetyl-CoA transferase, convert acetoacetyl-CoA into acetoacetate) and pta (encoding phosphate acetyltransferase, acetyl-CoA into acetate) were deleted in E. coli. And nicotinamide adenine dinucleotide phosphate (NADP) as a cofactor, paaFGH (encoding the enzymes enoyl-CoA hydratase -isomerase, acyl-CoA hydratase and 3-hydroxybutyryl-CoA dehydrogenase, convert acetoacetyl-CoA into crotonyl-CoA) by deleting the gene in E. coli, only hbd, adhE2, crt, via ter gene Butanol production route was completed. Escherichia coli strains for the production of butanol were prepared by deletion of the genes for encoding metabolism dehydrogenase ( adhE ), encoding lactate dehydrogenase ( ldhA ), and encoding genes for frdABCD (encoding fumarate reductase), which are involved in the regeneration of redox factors in E. coli. At this time, the adhE2 gene was PCR amplified using adhE2_F and adhE2_R primers, TA cloning was performed on pCR2.1-TOPO vector to construct pAdhE2WT plasmid, and adhE2_T1794C_F and adhE2_T1794C_R were constructed to remove the KpnI restriction enzyme recognition sequence in the adhE2 gene The pAdhE2m plasmid was constructed by site-directed mutagenesis using primers. And c rt , hbd , The ter gene fragment was prepared by pCDF-SP plasmid and BamHI and SacI restriction enzymes. The adhE2 gene fragment was prepared by pAdhE2m plasmid and NotI and KpnI restriction enzymes. The pCDF-BuOH plasmid having the butanol production pathway was finally obtained by inserting the restriction enzyme-treated fragments into the corresponding cloning site of the pCDFDuet vector. The pCDF-BuOH plasmid was finally transformed into the E. coli strain by the transformation of the plasmid, A possible E. coli strain JHL60 was prepared.

JHL60의 부탄올 생성능을 검증하기 위해 48시간 동안 혐기발효를 진행한 결과, 도 2에 나타낸 바와 같이, 농도 5.02 g/L (생산성 0.11 g/L/h)의 부탄올이 생산됨을 확인하였다. 도 2에서 왼쪽 y-축은 OD600을 log 단위로 나타낸 것이고, 왼쪽 offset y-축은 포도당의 농도를 나타낸 것이며, x-축은 발효 시간을 나타낸 것이고, 오른쪽 y-축은 대사산물의 농도를 나타낸 것이며, 오차막대는 2번 반복 실험한 결과의 표준편차를 나타낸 것이다(Symbols: 원, 포도당; 사각형, OD600; 삼각형, 부탄올; 다이아몬드형, 에탄올; 육각형 부티레이트(butyrate)).
In order to verify the butanol production ability of JHL60, anaerobic fermentation was conducted for 48 hours. As a result, it was confirmed that butanol having a concentration of 5.02 g / L (productivity: 0.11 g / L / h) was produced as shown in FIG. In FIG. 2, the left y-axis represents OD 600 in log units, the left offset y-axis represents glucose concentration, the x-axis represents the fermentation time, the right y-axis represents the concentration of the metabolite, The bar shows the standard deviation of the results of two repeated experiments (circle, glucose, square, OD 600 , triangle, butanol, diamond type, ethanol, hexagonal butyrate).

그러나 이론적으로 포도당 1몰로부터 부탄올 1몰을 생산하기 위해서는 4몰의 NADH를 필요로 하는데, 상기 JHL60 균주는 해당과정을 통해 포도당 1몰로부터 2몰의 NADH 만을 생산가능하기 때문에 화학양론적으로 산화환원 보조인자의 균형이 맞지 않는 문제가 있다.
However, theoretically, in order to produce 1 mole of butanol from 1 mole of glucose, 4 moles of NADH is required. Since the JHL60 strain can produce only 2 moles of NADH from 1 mole of glucose through the corresponding process, There is a problem that the cofactors are not balanced.

<1-2> <1-2> PDHPDH 복합체( Complex complexcomplex ) 재설계Redesign

상기 실시예 <1-1>에서 파악한 산화환원 보조인자의 불균형을 해소하기 위하여, 산화환원 보조인자 추가적 공급과 더불어 부탄올로의 탄소흐름을 강화시키기 위한 전략으로 PDH 복합체(complex)를 조작하였다. PDH 복합체는 pyruvate decarboxylase (encoded by aceE), dihydrolipoamide acetyltransferase (encoded by aceF) 및 dihydrolipoamide dehydrogenase (encoded by lpd)로 이루어진 세 가지 단백질 서브유닛으로 구성되어 있다. dihydrolipoamide dehydrogenase (LPD) 서브유닛은 혐기 조건에서 NADH에 의한 활성 억제를 받아 전체 PDH 복합체 활성이 나타나지 않기 때문에 LPD 서브유닛의 활성부위 재설계를 통하여 NADH에 의한 억제를 덜 받을 수 있다. 이에, 본 발명자들은 대장균 염색체 상에서 상동 재조합 기법을 이용하여 혐기 조건에서 활성을 보이는 돌연변이 PDH 복합체를 포함하도록 한 대장균 균주 JHL61를 상기 표 1에 나타낸 바와 같이 설계하여 제작하였는데, 먼저, 대장균 염색체상의 야생형 lpd 유전자를 lpd_F와 lpd_R 프라이머를 이용하여 PCR로 증폭한 다음 pMD20-T 벡터에 TA 클로닝을 진행하여 pLpdWT 플라스미드를 구축하였다. 돌연변이 lpd 유전자 (pLpdm 플라스미드)는 상기 pLpdWT 플라스미드를 주형으로 lpd_G1060A_F와 lpd_G1060A_R 프라이머를 이용하여 site-directed mutagenesis를 수행하였다. 돌연변이 PDH 복합체는 대장균 염색체상의 lpd 유전자를 돌연변이 lpd fbr (E354K)로 대체하는 상동 재조합을 수행하여 구축하였으며, 상동 재조합을 위한 PCR 산물은 pLpdm 플라스미드를 주형으로 lpd_over_F와 lpd_over_R 프라이머를 이용하여 준비하였다. 이후 돌연변이 PDH 복합체의 발현량을 증가시키기 위하여 대장균 염색체상의 aceEF 유전자를 과발현시켰으며, 이러한 조작은 pFRT72variant를 주형으로 aceEF_over72_F와 aceEF_over72_R 프라이머를 이용해 PCR 증폭함으로써 이루어졌다.In order to solve the imbalance of the redox cofactor identified in the above Example <1-1>, the PDH complex was manipulated as a strategy for supplementing the redox cofactor with carbon flow to butanol. The PDH complex consists of three protein subunits consisting of pyruvate decarboxylase (encoded by aceE ), dihydrolipoamide acetyltransferase (encoded by aceF ) and dihydrolipoamide dehydrogenase (encoded by lpd ). The dihydrolipoamide dehydrogenase (LPD) subunit is less inhibited by NADH through the redesign of the active site of the LPD subunit because it is inhibited by NADH under anaerobic conditions and does not exhibit the entire PDH complex activity. Thus, the present inventors designed and constructed E. coli strain JHL61, which includes a mutant PDH complex showing an activity under anaerobic conditions, using a homologous recombination technique on an E. coli chromosome, as shown in Table 1. First, the wild type lpd The gene was amplified by PCR using lpd_F and lpd_R primers and TA cloned into pMD20-T vector to construct pLpd WT plasmid. The mutant lpd gene (pLpd m plasmid) was subjected to site-directed mutagenesis using the above-described pLpd WT plasmid as a template using lpd_G1060A_F and lpd_G1060A_R primers. The mutant PDH complex was constructed by homologous recombination in which the lpd gene on the E. coli chromosome was replaced with the mutant lpd fbr (E354K). For the homologous recombination, the pLpd m plasmid was used as a template and lpd_over_F and lpd_over_R primers were used. We then overexpressed the aceEF gene on the E. coli chromosome in order to increase the expression of the mutant PDH complex. This manipulation was accomplished by PCR amplification of the pFRT72 variant as a template using aceEF_over72_F and aceEF_over72_R primers.

그리고 JHL61의 부탄올 생성능을 검증하기 위해 24시간동안 혐기 발효를 진행한 결과, 도 3에 나타낸 바와 같이, JHL61 균주는 JHL60 균주에 비해 17.4% 향상된 균체량 및 12% 향상된 부탄올 생산능을 보였다. 이때, 도 3의 오차막대는 2번 반복한 실험의 표준편차를 나타낸다.
As shown in FIG. 3, the JHL61 strain showed 17.4% higher cell mass and 12% higher butanol productivity than the JHL60 strain by anaerobic fermentation for 24 hours to verify the butanol production ability of JHL61. In this case, the error bars in FIG. 3 represent standard deviations of the experiments repeated twice.

그러나 JHL61 균주가 향상된 부탄올 발효 및 균체량 증가를 보이고 있음에도 여전히 세포의 중간 대사산물인 pyruvate가 pyruvate formate lyase(PFL)를 통해 formate와 acetyl-CoA로 전환가능하기 때문에 산화환원 상태의 불균형을 가지는 문제가 있다.
However, even though the JHL61 strain exhibits improved butanol fermentation and increased cell mass, pyruvate, an intermediate metabolite of the cell, can be converted to formate and acetyl-CoA through pyruvate formate lyase (PFL) .

<1-3> 산화환원 상태의 균형을 위한 설계<1-3> Design for balance of redox state

대장균의 내생 단백질인 formate hydrogen lyase(FHL)와는 달리 효모 유래 formate dehydrogenase(FDH1)는 상기 언급한 PFL에서 발생하는 formate로부터 추가적인 NADH 공급이 가능하기 때문에 세포 내부의 NADH availability를 증가시키기 위한 전략으로 많이 사용된다. 그러나 본 발명자들은 이러한 FDH1의 발현량을 정량적으로 조절하여 세포 내부에서 필요로 하는 양만큼의 NADH를 공급 가능하도록 함으로써 궁극적으로 산화환원 상태의 재균형을 이루게 하였다.Unlike formate hydrogen lyase (FHL), which is an endogenous protein of Escherichia coli, yeast-derived formate dehydrogenase (FDH1) is widely used as a strategy for increasing NADH availability in the cell because additional NADH can be supplied from formate generated from PFL do. However, the present inventors quantitatively regulated the expression level of FDH1 to enable the NADH to be supplied in an amount necessary for the cell, ultimately rebalancing the redox state.

FDH1 발현량을 조절하기 위해, 본 발명자들은 UTR designer를 이용하여 fdh1 유전자의 염기서열에 따라 다섯 가지 종류의 5'-UTR 서열을 인위적으로 맞춤 제작하였으며, 상기 5'-UTR 서열들을 포함하는 각기 다른 정방향 프라이머 (fdh1(F1내지F5)_F)와 역방향 프라이머 fdh1_R을 이용하여 Saccharomyces cerevisiae 유전체에서 해당 유전자 서열을 증폭하였다. 이후 증폭된 산물을 NotI 와 KpnI 제한효소 처리를 통해 pCOLADuet 벡터에 상응하는 자리에 클로닝 함으로써 인위적으로 제작한 5'-UTR 서열에 의해 다섯 가지 서로 다른 발현량을 가지는 FDH1 변이체를 포함하는 pCOLA-F1, -F2, -F3, -F4, 및 -F5 플라스미드를 구축하였다(표 1 참조).In order to control the expression level of FDH1, the present inventors artificially tailored five kinds of 5'-UTR sequences according to the fdh1 gene sequence using the UTR designer, and found that 5'-UTR sequences Using the forward primer (fdh1 (F1 to F5) _F) and the reverse primer fdh1_R, Saccharomyces The corresponding gene sequence was amplified in the S. cerevisiae genome. Subsequently, the amplified product was cloned into a site corresponding to the pCOLADuet vector through NotI and KpnI restriction enzyme treatments, whereby pCOLA-F1 containing the FDH1 mutant having five different expression amounts by the artificially created 5'-UTR sequence, -F2, -F3, -F4, and-F5 plasmids (see Table 1).

또한, 본 발명자들은 상기 FDH1의 변이체의 세포 내부의 활성을 측정하기 위해 특이적 활성(specific activity)을 측정하였다. 먼저, 먼저 혐기 조건에서 mid-log phase에 있는 대장균을 수합하여 차가운 phosphate-buffered saline (PBS) 버퍼로 세척하고, cell pellet만 수득하여 protease inhibitor cocktail (Sigma)을 첨가한 Bug Buster Master Mix (EMD Bioscience, San Diego, CA, USA)를 이용해 resuspension 및 용해과정을 진행하였다. FDH1의 활성은 340nm 파장에서 NAD+의 NADH로의 환원을 VICTOR3 1420 Multilabel Counter (PerkinElmer, Waltham, MA, USA)를 이용하여 흡광도를 측정함으로써 이루어졌다. 측정을 위한 반응용액은 종래에 사용된 방법(Slusarczyk et al., 2000)으로 준비하였는데, 간략하게는, 162mM sodium formate와 1.62mM NAD+를 100mM potassium phosphate buffer (pH 7.5)에 첨가하고, 상기에서 준비한 cell lysate를 첨가함으로써 반응을 진행시켰다. Cell lysate의 전체 단백질 농도는 Bradford assay-based Bio-Rad Protein Assay Dye (Bio-Rad, Hercules, CA, USA)를 이용하여 bovine serum albumen (BSA) 단백질 정량곡선을 통해 환산하여 계산하였다. FDH1 활성은 Cell lysate 안의 전체 단백질의 양으로 normalized 하여 specific FDH1 activity (U/mg) 으로 나타내었다.In addition, the present inventors measured the specific activity to measure the intracellular activity of the FDH1 mutant. First, the E. coli in the mid-log phase under anaerobic conditions were combined and washed with cold phosphate-buffered saline (PBS) buffer. Cell pellet was obtained and the Bug Buster Master Mix (EMD Bioscience) supplemented with protease inhibitor cocktail , San Diego, CA, USA) for resuspension and dissolution. The activity of FDH1 was determined by measuring the absorbance of NAD + to NADH at 340 nm using VICTOR3 1420 Multilabel Counter (PerkinElmer, Waltham, Mass., USA). Briefly, 162 mM sodium formate and 1.62 mM NAD + were added to 100 mM potassium phosphate buffer (pH 7.5), and the solution prepared as described above The cell lysate was added to proceed the reaction. The total protein concentration of the cell lysate was calculated using the Bradford assay-based Bio-Rad Protein Assay Dye (Bio-Rad, Hercules, Calif., USA) using bovine serum albumin (BSA) FDH1 activity was normalized to the total amount of protein in cell lysate and expressed as specific FDH1 activity (U / mg).

그 결과, 도 4에 나타낸 바와 같이, 높은 상관관계 (R2 -=0.96)를 보이는 것을 알 수 있었다.
As a result, it was found that a high correlation (R 2 - = 0.96) was shown as shown in FIG.

또한, 포도당을 탄소원으로 이용하는 TB 배지에 상기 FDH1 변이체를 도입한 결과, 도 5A에 나타낸 바와 같이, FDH1 발현량이 증가함에 따라 JHL80 균주에 비해 JHL85 균주가 35.4%의 생산성 증가를 보이는 것을 알 수 있었으며, FDH1 발현량 조절을 통해 세포 내부의 산화환원 상태의 최적화가 이루어진 JHL85 균주의 발효 양상(fermentation profile)을 확인한 결과, 도 5B에 나타낸 바와 같이, 최종 농도 6.8 g/L로 부탄올 (생산성 0.26g/L/h) 생산이 가능함을 알 수 있었다. 상기 회분식 발효(batch fermentation) 결과는 종래 기술에 따른 유가식 발효(fed-batch fermentation) 결과(Shen et al. (2011) Appl. Environ. Microbiol. 77, 2905-2915)보다 30~44% 향상된 것으로, 본 발명에 따른 산화환원 상태의 재균형이 효과적인 부탄올 생산을 위해서 필수적인 것임을 확인하였다.As shown in FIG. 5A, when the FDH1 mutant was introduced into a TB medium using glucose as a carbon source, the productivity of the JHL85 strain increased by 35.4% as compared with the JHL80 strain as the FDH1 expression level increased. As shown in FIG. 5B, the fermentation profile of the JHL85 strain in which the redox state of the cells was optimized through the regulation of the expression level of FDH1 revealed that butanol (productivity 0.26 g / L / h) production was possible. The results of the batch fermentation were 30 to 44% higher than those of the conventional fed-batch fermentation (Shen et al. (2011) Appl. Environ. Microbiol. 77, 2905-2915) , It was confirmed that rebalancing of the redox state according to the present invention is essential for effective production of butanol.

반대로 대장균이 잘 이용하지는 못하지만 해조류에 많이 포함된 탄소원으로 각광받고 있는 갈락토오즈를 이용하여 FDH1 변이체의 효과를 확인한 결과, 도 6에 나타낸 바와 같이, 최종 부탄올 생산량이 JHL85 균주에 비해 JHL81 균주가 44.6% 증가한 것으로 나타나 포도당 첨가 배지와는 달리 낮은 발현량을 보이는 FDH1 변이체를 이용하였을 때 최적화됨을 알 수 있었다. 이때, 도 5B에서 왼쪽 y-축은 OD600을 log 단위로 나타낸 것이고, 왼쪽 offset y-축은 포도당의 농도를 나타낸 것이며, x-축은 발효 시간을 나타낸 것이고, 오른쪽 y-축은 대사산물의 농도를 나타낸 것이다(Symbols: 원, 포도당; 사각형, OD600; 삼각형, 부탄올; 다이아몬드형, 에탄올; 육각형 부티레이트(butyrate)). 또한, 도 5 및 도 6에서 오차막대는 2번 반복 실험한 결과의 표준편차를 나타낸 것이다
As a result of confirming the effect of the FDH1 mutant by using galactose, which is not well used in Escherichia coli but is found in many seaweeds as a carbon source, JHL81 strain has a final butanol production of 44.6 %, Respectively. Therefore, it was found that FDH1 mutants with low expression levels were optimized when compared with glucose - supplemented medium. In FIG. 5B, the left y-axis represents the OD 600 in log units, the left offset y-axis represents glucose concentration, the x-axis represents the fermentation time, and the right y-axis represents the metabolite concentration (Symbols: circle, glucose, square, OD 600 , triangle, butanol, diamond type, ethanol, hexagonal butyrate). In FIGS. 5 and 6, the error bars show the standard deviation of the results of two repeated experiments

상기로부터, 본 발명에 따라 세포 내부의 탄소흐름에 따른 산화환원 상태의 재분배를 통해 제작된 재조합 대장균 균주(JHL80, 81, 82, 83, 84, 85)가 우수한 효율로 부탄올을 생성할 수 있음을 확인하였으며, 상기 대장균 균주의 부탄올 생성능은 탄소원에 따라 변화할 수 있음을 알 수 있었다.
From the above, it can be seen that the recombinant E. coli strains (JHL80, 81, 82, 83, 84, 85) produced by redistribution of the redox state according to the carbon flow in the cells according to the present invention can produce butanol with excellent efficiency And it was found that the butanol production ability of the E. coli strain can be changed according to the carbon source.

따라서 본 발명을 통해 제안되는 산화환원상태의 재분배 방법을 통해 산화환원 상태가 최적화된 균주를 이용할 경우 탄소원에 따라 극대화된 부탄올 생산 균주를 개발할 수 있다.
Therefore, when a redox state optimized strain is used through the redistribution method proposed by the present invention, a maximized butanol production strain can be developed according to the carbon source.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims . It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

<110> POSTECH Academy-industry Foundation <120> REDOX REBALANCING METHOD IN E. COLI STRAIN FOR MAXIMIZING FERMENTATION PRODUCT PRODUCTION AND RECOMBINANT E. COLI STRAIN FOR PRODUCING N-BUTANOL PRODUCT WITH HIGH PRODUCTIVITY USING THE METHOD <130> PB13-11590 <160> 49 <170> KopatentIn 2.0 <210> 1 <211> 474 <212> PRT <213> Escherichia coli - lpd <400> 1 Met Ser Thr Glu Ile Lys Thr Gln Val Val Val Leu Gly Ala Gly Pro 1 5 10 15 Ala Gly Tyr Ser Ala Ala Phe Arg Cys Ala Asp Leu Gly Leu Glu Thr 20 25 30 Val Ile Val Glu Arg Tyr Asn Thr Leu Gly Gly Val Cys Leu Asn Val 35 40 45 Gly Cys Ile Pro Ser Lys Ala Leu Leu His Val Ala Lys Val Ile Glu 50 55 60 Glu Ala Lys Ala Leu Ala Glu His Gly Ile Val Phe Gly Glu Pro Lys 65 70 75 80 Thr Asp Ile Asp Lys Ile Arg Thr Trp Lys Glu Lys Val Ile Asn Gln 85 90 95 Leu Thr Gly Gly Leu Ala Gly Met Ala Lys Gly Arg Lys Val Lys Val 100 105 110 Val Asn Gly Leu Gly Lys Phe Thr Gly Ala Asn Thr Leu Glu Val Glu 115 120 125 Gly Glu Asn Gly Lys Thr Val Ile Asn Phe Asp Asn Ala Ile Ile Ala 130 135 140 Ala Gly Ser Arg Pro Ile Gln Leu Pro Phe Ile Pro His Glu Asp Pro 145 150 155 160 Arg Ile Trp Asp Ser Thr Asp Ala Leu Glu Leu Lys Glu Val Pro Glu 165 170 175 Arg Leu Leu Val Met Gly Gly Gly Ile Ile Gly Leu Glu Met Gly Thr 180 185 190 Val Tyr His Ala Leu Gly Ser Gln Ile Asp Val Val Glu Met Phe Asp 195 200 205 Gln Val Ile Pro Ala Ala Asp Lys Asp Ile Val Lys Val Phe Thr Lys 210 215 220 Arg Ile Ser Lys Lys Phe Asn Leu Met Leu Glu Thr Lys Val Thr Ala 225 230 235 240 Val Glu Ala Lys Glu Asp Gly Ile Tyr Val Thr Met Glu Gly Lys Lys 245 250 255 Ala Pro Ala Glu Pro Gln Arg Tyr Asp Ala Val Leu Val Ala Ile Gly 260 265 270 Arg Val Pro Asn Gly Lys Asn Leu Asp Ala Gly Lys Ala Gly Val Glu 275 280 285 Val Asp Asp Arg Gly Phe Ile Arg Val Asp Lys Gln Leu Arg Thr Asn 290 295 300 Val Pro His Ile Phe Ala Ile Gly Asp Ile Val Gly Gln Pro Met Leu 305 310 315 320 Ala His Lys Gly Val His Glu Gly His Val Ala Ala Glu Val Ile Ala 325 330 335 Gly Lys Lys His Tyr Phe Asp Pro Lys Val Ile Pro Ser Ile Ala Tyr 340 345 350 Thr Glu Pro Glu Val Ala Trp Val Gly Leu Thr Glu Lys Glu Ala Lys 355 360 365 Glu Lys Gly Ile Ser Tyr Glu Thr Ala Thr Phe Pro Trp Ala Ala Ser 370 375 380 Gly Arg Ala Ile Ala Ser Asp Cys Ala Asp Gly Met Thr Lys Leu Ile 385 390 395 400 Phe Asp Lys Glu Ser His Arg Val Ile Gly Gly Ala Ile Val Gly Thr 405 410 415 Asn Gly Gly Glu Leu Leu Gly Glu Ile Gly Leu Ala Ile Glu Met Gly 420 425 430 Cys Asp Ala Glu Asp Ile Ala Leu Thr Ile His Ala His Pro Thr Leu 435 440 445 His Glu Ser Val Gly Leu Ala Ala Glu Val Phe Glu Gly Ser Ile Thr 450 455 460 Asp Leu Pro Asn Pro Lys Ala Lys Lys Lys 465 470 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 5'UTR base seq. of fdh1(F1) <400> 2 gctgatattg caaggagcag agc 23 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 5'UTR base seq. of fdh1(F2) <400> 3 ggctgatgtt ccaaggagga gagc 24 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 5'UTR base seq. of fdh1(F3) <400> 4 gctgatgttc gaaggaggag agc 23 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 5'UTR base seq. of fdh1(F4) <400> 5 agaaacacaa taaggaggct aag 23 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 5'UTR base seq. of fdh1(F5) <400> 6 gctgatatta gaaggaggaa agc 23 <210> 7 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> fdh1(F1)_F <400> 7 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcgctg atattgcaag 60 gagcagagca tgtcgaaggg aaaggttttg ct 92 <210> 8 <211> 93 <212> DNA <213> Artificial Sequence <220> <223> fdh1(F2)_F <400> 8 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcggct gatgttccaa 60 ggaggagagc atgtcgaagg gaaaggtttt gct 93 <210> 9 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> fdh1(F3)_F <400> 9 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcgctg atgttcgaag 60 gaggagagca tgtcgaaggg aaaggttttg ct 92 <210> 10 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> fdh1(F4)_F <400> 10 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcagaa acacaataag 60 gaggctaaga tgtcgaaggg aaaggttttg ct 92 <210> 11 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> fdh1(F5)_F <400> 11 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcgctg atattagaag 60 gaggaaagca tgtcgaaggg aaaggttttg ct 92 <210> 12 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> fdh1_R <400> 12 gccggtacct tatttcttct gtccataagc tctg 34 <210> 13 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> aceEF_over72_F <400> 13 gcgtcgtctg gagcaacgaa agaattagtg atttttctgg taaaaattat gcatgaccgg 60 cgcgatgc 68 <210> 14 <211> 124 <212> DNA <213> Artificial Sequence <220> <223> aceEF_over72_R <400> 14 gtcgcgagtt tcgatcggat ccacgtcatt tgggaaacgt tctgacatct tgacctcctt 60 atctacagcg ctagcactgt acctaggact gagctagccg tcaagctcag cggatctcat 120 gcgc 124 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> lpd_G1060A_F <400> 15 gtccatcgcc tataccaaac cagaagttgc atg 33 <210> 16 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> lpd_G1060A_R <400> 16 catgcaactt ctggtttggt ataggcgatg gac 33 <210> 17 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> lpd_del3_F <400> 17 aacaacacgc tgtctgacat tcgccgtctg gtgatgtaag taaaagagcc gttagcccgt 60 ctgtcccaac 70 <210> 18 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> lpd_del3_R <400> 18 acgtctctct gaacgtggag caagaagact ggaaaggtaa attgcagacg catactcgct 60 cttgggtcgg 70 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> C-aceEF_F <400> 19 gcgaagcatc gcatcgccat c 21 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> C-aceEF_R <400> 20 cggggatggt gttgatgtag ttgc 24 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> C-lpd_F <400> 21 cggtgctgat ggtgcccgtt 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> C-lpd_R <400> 22 caggagagcc gcccacaacg 20 <210> 23 <211> 100 <212> DNA <213> Artificial Sequence <220> <223> adhE2_F <400> 23 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcgcaa agcgattaag 60 gagtacaata tgaaagttac aaatcaaaaa gaactaaaac 100 <210> 24 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> adhE2_R <400> 24 gccggtacct agtctatgtg cttcatgaag ctaat 35 <210> 25 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> adhE2_T1794C_F <400> 25 cctacaactg ctggcaccgg ttcagaggc 29 <210> 26 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> adhE2_T1794C_R <400> 26 gcctctgaac cggtgccagc agttgtagg 29 <210> 27 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT2_F <400> 27 cgatgcctca tccgcttctc gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 28 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT2_R <400> 28 gcaacgcagt agctggagtc agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 29 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT3_F <400> 29 gttagcccgt ctgtcccaac gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 30 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT3_R <400> 30 catactcgct cttgggtcgg agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 31 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT5_F <400> 31 cgttgctcct gacatggctc gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 32 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT5_R <400> 32 gatgtcgaga gcccgttgac agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 33 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT6_F <400> 33 gtagcaccga gtcgtaccag gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 34 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT6_R <400> 34 ttcggttggc ctaacgcact agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 35 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT7_F <400> 35 gatcgtgcga acgacctgct gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 36 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT7_R <400> 36 cagtactcga gtcgctccga agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 37 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> FRT72v_F <400> 37 gcatgaccgg cgcgatgcga agttcctata ctttctacag aataggaact tctcaagatc 60 ccctcacgct gccg 74 <210> 38 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> FRT72v_R <400> 38 gctcagcgga tctcatgcgc gaagttccta ttctgtagaa agtataggaa cttcagagcg 60 cttttgaagc tggggtgg 78 <210> 39 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> lpd_F <400> 39 gttgacggct agctcagtcc taggtacagt gctagcgaac atcaaagggt aaggaggata 60 gaacatgagt actgaaatca aaactcaggt cg 92 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> lpd_R <400> 40 tgcagacgta aaaaaagcgg cgtgg 25 <210> 41 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> lpd_over_F <400> 41 aacaacacgc tgtctgacat tcgccgtctg gtgatgtaag taaaagagcc gttgacggct 60 agctcagtcc tagg 74 <210> 42 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> lpd_over_R <400> 42 cgtctctctg aacgtggagc aagaagactg gaaaggtaaa ttgcagacgt aaaaaaagcg 60 gcgtgg 66 <210> 43 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> crt_F <400> 43 aggatccttg acggctagct cagtcctagg tacagtgcta gctcattcta aaaaaggagc 60 atctgtgatg gaactaaaca atgtcatcct tg 92 <210> 44 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> crt_R <400> 44 agtcgactca ctatctattt ttgaagcctt caat 34 <210> 45 <211> 94 <212> DNA <213> Artificial Sequence <220> <223> hbd_F <400> 45 gccgtcgact tgacggctag ctcagtccta ggtacagtgc tagctggcaa gtctaaagga 60 gcatcacgaa tgaaaaaggt atgtgttata ggtg 94 <210> 46 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> hbd_R <400> 46 actcgagtta ttttgaataa tcgtagaaac ct 32 <210> 47 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> ter_F <400> 47 gccctcgagt tgacggctag ctcagtccta ggtacagtgc tagctacatt aaggaggaag 60 ccgatg 66 <210> 48 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> ter_R <400> 48 gccttaatta agagctcatg ccctggcgtt ctagatt 37 <210> 49 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> constitutive promoter(BBa_J23100) <400> 49 ttgacggcta gctcagtcct aggtacagtg ctagc 35 <110> POSTECH Academy-industry Foundation <120> REDOX REBALANCING METHOD IN E. COLI STRAIN FOR MAXIMIZING          FERMENTATION PRODUCT PRODUCTION AND RECOMBINANT E. COLI STRAIN          FOR PRODUCING N-BUTANOL PRODUCT WITH HIGH PRODUCTIVITY USING THE          METHOD <130> PB13-11590 <160> 49 <170> Kopatentin 2.0 <210> 1 <211> 474 <212> PRT <213> Escherichia coli - lpd <400> 1 Met Ser Thr Glu Ile Lys Thr Gln Val Val Val Leu Gly Ala Gly Pro   1 5 10 15 Ala Gly Tyr Ser Ala Ala Phe Arg Cys Ala Asp Leu Gly Leu Glu Thr              20 25 30 Val Ile Val Glu Arg Tyr Asn Thr Leu Gly Gly Val Cys Leu Asn Val          35 40 45 Gly Cys Ile Pro Ser Lys Ala Leu Leu His Val Ala Lys Val Ile Glu      50 55 60 Glu Ala Lys Ala Leu Ala Glu His Gly Ile Val Phe Gly Glu Pro Lys  65 70 75 80 Thr Asp Ile Asp Lys Ile Arg Thr Trp Lys Glu Lys Val Ile Asn Gln                  85 90 95 Leu Thr Gly Gly Leu Ala Gly Met Ala Lys Gly Arg Lys Val Lys Val             100 105 110 Val Asn Gly Leu Gly Lys Phe Thr Gly Ala Asn Thr Leu Glu Val Glu         115 120 125 Gly Glu Asn Gly Lys Thr Val Ile Asn Phe Asp Asn Ale Ile Ile Ala     130 135 140 Ala Gly Ser Arg Pro Ile Gln Leu Pro Phe Ile Pro His Glu Asp Pro 145 150 155 160 Arg Ile Trp Asp Ser Thr Asp Ala Leu Glu Leu Lys Glu Val Pro Glu                 165 170 175 Arg Leu Leu Val Met Gly Gly Gly Ile Ile Gly Leu Glu Met Gly Thr             180 185 190 Val Tyr His Ala Leu Gly Ser Gln Ile Asp Val Val Glu Met Phe Asp         195 200 205 Gln Val Ile Pro Ala Ala Asp Lys Asp Ile Val Lys Val Phe Thr Lys     210 215 220 Arg Ile Ser Lys Lys Phe Asn Leu Met Leu Glu Thr Lys Val Thr Ala 225 230 235 240 Val Glu Ala Lys Glu Asp Gly Ile Tyr Val Thr Met Glu Gly Lys Lys                 245 250 255 Ala Pro Ala Glu Pro Gln Arg Tyr Asp Ala Val Leu Val Ala Ile Gly             260 265 270 Arg Val Pro Asn Gly Lys Asn Leu Asp Ala Gly Lys Ala Gly Val Glu         275 280 285 Val Asp Asp Arg Gly Phe Ile Arg Val Asp Lys Gln Leu Arg Thr Asn     290 295 300 Val Pro His Ile Phe Ala Ile Gly Asp Ile Val Gly Gln Pro Met Leu 305 310 315 320 Ala His Lys Gly Val His Glu Gly His Val Ala Ala Glu Val Ile Ala                 325 330 335 Gly Lys Lys His Tyr Phe Asp Pro Lys Val Ile Pro Ser Ile Ala Tyr             340 345 350 Thr Glu Pro Glu Val Ala Trp Val Gly Leu Thr Glu Lys Glu Ala Lys         355 360 365 Glu Lys Gly Ile Ser Tyr Glu Thr Ala Thr Phe Pro Trp Ala Ala Ser     370 375 380 Gly Arg Ala Ile Ala Ser Asp Cys Ala Asp Gly Met Thr Lys Leu Ile 385 390 395 400 Phe Asp Lys Glu Ser His Arg Val Ile Gly Gly Ala Ile Val Gly Thr                 405 410 415 Asn Gly Gly Glu Glu Leu Gly Glu Glu Ile Gly Leu Ala Ile Glu Met Gly             420 425 430 Cys Asp Ala Glu Asp Ile Ala Leu Thr Ile His Ala His Pro Thr Leu         435 440 445 His Glu Ser Val Gly Leu Ala Ala Glu Val Phe Glu Gly Ser Ile Thr     450 455 460 Asp Leu Pro Asn Pro Lys Ala Lys Lys Lys 465 470 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 5'UTR base seq. of fdh1 (F1) <400> 2 gctgatattg caaggagcag agc 23 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 5'UTR base seq. of fdh1 (F2) <400> 3 ggctgatgtt ccaaggagga gagc 24 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 5'UTR base seq. of FDH1 (F3) <400> 4 gctgatgttc gaaggaggag agc 23 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 5'UTR base seq. of FDH1 (F4) <400> 5 agaaacacaa taaggaggct aag 23 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 5'UTR base seq. of FDH1 (F5) <400> 6 gctgatatta gaaggaggaa agc 23 <210> 7 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> fdh1 (F1) _F <400> 7 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcgctg atattgcaag 60 gagcagagca tgtcgaaggg aaaggttttg ct 92 <210> 8 <211> 93 <212> DNA <213> Artificial Sequence <220> <223> fdh1 (F2) _F <400> 8 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcggct gatgttccaa 60 ggaggagagc atgtcgaagg gaaaggtttt gct 93 <210> 9 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> fdH1 (F3) _F <400> 9 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcgctg atgttcgaag 60 gaggagagca tgtcgaaggg aaaggttttg ct 92 <210> 10 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> fdh1 (F4) _F <400> 10 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcagaa acacaataag 60 gaggctaaga tgtcgaaggg aaaggttttg ct 92 <210> 11 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> fdh1 (F5) _F <400> 11 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcgctg atattagaag 60 gaggaaagca tgtcgaaggg aaaggttttg ct 92 <210> 12 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> fdh1_R <400> 12 gccggtacct tatttcttct gtccataagc tctg 34 <210> 13 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> aceEF_over72_F <400> 13 gcgtcgtctg gagcaacgaa agaattagtg atttttctgg taaaaattat gcatgaccgg 60 cgcgatgc 68 <210> 14 <211> 124 <212> DNA <213> Artificial Sequence <220> <223> aceEF_over72_R <400> 14 gtcgcgagtt tcgatcggat ccacgtcatt tgggaaacgt tctgacatct tgacctcctt 60 atctacagcg ctagcactgt acctaggact gagctagccg tcaagctcag cggatctcat 120 gcgc 124 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> lpd_G1060A_F <400> 15 gtccatcgcc tataccaaac cagaagttgc atg 33 <210> 16 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> lpd_G1060A_R <400> 16 catgcaactt ctggtttggt ataggcgatg gac 33 <210> 17 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> lpd_del3_F <400> 17 aacaacacgc tgtctgacat tcgccgtctg gtgatgtaag taaaagagcc gttagcccgt 60 ctgtcccaac 70 <210> 18 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> lpd_del3_R <400> 18 acgtctctct gaacgtggag caagaagact ggaaaggtaa attgcagacg catactcgct 60 cttgggtcgg 70 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> C-aceEF_F <400> 19 gcgaagcatc gcatcgccat c 21 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> C-aceEF_R <400> 20 cggggatggt gttgatgtag ttgc 24 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> C-lpd_F <400> 21 cggtgctgat ggtgcccgtt 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> C-lpd_R <400> 22 caggagagcc gcccacaacg 20 <210> 23 <211> 100 <212> DNA <213> Artificial Sequence <220> <223> adhE2_F <400> 23 gccgcggccg cttgacggct agctcagtcc taggtacagt gctagcgcaa agcgattaag 60 gagtacaata tgaaagttac aaatcaaaaa gaactaaaac 100 <210> 24 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> adhE2_R <400> 24 gccggtacct agtctatgtg cttcatgaag ctaat 35 <210> 25 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> adhE2_T1794C_F <400> 25 cctacaactg ctggcaccgg ttcagaggc 29 <210> 26 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> adhE2_T1794C_R <400> 26 gcctctgaac cggtgccagc agttgtagg 29 <210> 27 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT2_F <400> 27 cgatgcctca tccgcttctc gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 28 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT2_R <400> 28 gcaacgcagt agctggagtc agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 29 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT3_F <400> 29 gttagcccgt ctgtcccaac gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 30 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT3_R <400> 30 catactcgct cttgggtcgg agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 31 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT5_F <400> 31 cgttgctcct gacatggctc gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 32 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT5_R <400> 32 gatgtcgaga gcccgttgac agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 33 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT6_F <400> 33 gtagcaccga gtcgtaccag gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 34 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT6_R <400> 34 ttcggttggc ctaacgcact agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 35 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT7_F <400> 35 gatcgtgcga acgacctgct gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 36 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> FRT7_R <400> 36 cagtactcga gtcgctccga agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 37 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> FRT72v_F <400> 37 gcatgaccgg cgcgatgcga agttcctata ctttctacag aataggaact tctcaagatc 60 ccctcacgct gccg 74 <210> 38 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> FRT72v_R <400> 38 gctcagcgga tctcatgcgc gaagttccta ttctgtagaa agtataggaa cttcagagcg 60 cttttgaagc tggggtgg 78 <210> 39 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> lpd_F <400> 39 gttgacggct agctcagtcc taggtacagt gctagcgaac atcaaagggt aaggaggata 60 gaacatgagt actgaaatca aaactcaggt cg 92 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> lpd_R <400> 40 tgcagacgta aaaaaagcgg cgtgg 25 <210> 41 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> lpd_over_F <400> 41 aacaacacgc tgtctgacat tcgccgtctg gtgatgtaag taaaagagcc gttgacggct 60 agctcagtcc tagg 74 <210> 42 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> lpd_over_R <400> 42 cgtctctctg aacgtggagc aagaagactg gaaaggtaaa ttgcagacgt aaaaaaagcg 60 gcgtgg 66 <210> 43 <211> 92 <212> DNA <213> Artificial Sequence <220> <223> crt_F <400> 43 aggatccttg acggctagct cagtcctagg tacagtgcta gctcattcta aaaaaggagc 60 atctgtgatg gaactaaaca atgtcatcct tg 92 <210> 44 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> crt_R <400> 44 agtcgactca ctatctattt ttgaagcctt caat 34 <210> 45 <211> 94 <212> DNA <213> Artificial Sequence <220> <223> hbd_F <400> 45 gccgtcgact tgacggctag ctcagtccta ggtacagtgc tagctggcaa gtctaaagga 60 gcatcacgaa tgaaaaaggt atgtgttata ggtg 94 <210> 46 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> hbd_R <400> 46 actcgagtta ttttgaataa tcgtagaaac ct 32 <210> 47 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> ter_F <400> 47 gccctcgagt tgacggctag ctcagtccta ggtacagtgc tagctacatt aaggaggaag 60 ccgatg 66 <210> 48 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> ter_R <400> 48 gccttaatta agagctcatg ccctggcgtt ctagatt 37 <210> 49 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> constitutive promoter (BBa_J23100) <400> 49 ttgacggcta gctcagtcct aggtacagtg ctagc 35

Claims (9)

5'-UTR 서열이 조절된 fdh1 유전자를 대장균 균주 내로 도입하여 세포 내 산화환원 균형을 맞추는 단계를 포함하는 대장균 균주를 이용하여 부탄올을 생산하는 방법으로,
상기 5'-UTR 서열은 서열번호 2 내지 서열번호 6의 염기서열로 이루어진 군으로부터 선택되는 하나의 서열을 포함하는 것을 특징으로 하는, 방법.
Introducing the fdhl gene whose 5'-UTR sequence is regulated into the E. coli strain, and adjusting the intracellular redox balance, thereby producing butanol by using an E. coli strain.
Wherein the 5'-UTR sequence comprises a sequence selected from the group consisting of the nucleotide sequences of SEQ ID NO: 2 to SEQ ID NO: 6.
제1항에 있어서,
상기 방법은 PDH 복합체를 조절하는 하기 단계를 추가로 포함하는 것을 특징으로 하는, 방법:
a) 부위 특이적 돌연변이(site-directed mutagenesis) 방법으로 균주 내 염색체상의 lpd 유전자에서 혐기성 조절 부위를 제거하는 단계; 및
b) 내인성 유전자 aceEF 를 과발현시키는 단계.
The method according to claim 1,
Wherein the method further comprises the step of modulating the PDH complex.
a) removing the anaerobic regulatory region from the lpd gene on the chromosome in the strain by a site-directed mutagenesis method; And
b) Overexpressing the endogenous gene aceEF .
삭제delete 제2항에 있어서,
상기 부위 특이적 돌연변이는 서열번호 15 및 16의 염기서열로 표시되는 프라이머를 이용하여 수행되는 것을 특징으로 하는, 방법.
3. The method of claim 2,
Wherein the site-specific mutation is carried out using a primer represented by the nucleotide sequences of SEQ ID NOS: 15 and 16.
제2항에 있어서,
상기 a) 단계는 lpd 유전자에 의하여 코딩되는 서열번호 1로 표시되는 아미노산 서열의 354번째 아미노산을 라이신(Lysine)으로 치환함으로써 혐기성 조절 부위를 제거하는 것을 특징으로 하는, 방법.
3. The method of claim 2,
Wherein the step (a) removes the anaerobic regulatory region by replacing the 354th amino acid of the amino acid sequence of SEQ ID NO: 1 encoded by the lpd gene with lysine.
제2항에 있어서,
상기 과발현은 서열번호 13 및 14의 염기서열로 표시되는 프라이머를 이용하여 수행되는 것을 특징으로 하는, 방법.
3. The method of claim 2,
remind Characterized in that overexpression is carried out using primers represented by the nucleotide sequences of SEQ ID NOS: 13 and 14.
제1항에 있어서,
상기 도입은 5'-UTR 서열이 조절된 fdh1 유전자와 작동가능하게 연결한 서열번호 49의 염기서열로 표시되는 항시발현 프로모터를 포함하는 재조합 벡터를 이용하여 수행되는 것을 특징으로 하는, 방법.
The method according to claim 1,
Wherein said introduction is carried out using a recombinant vector comprising a full- length expression promoter represented by the nucleotide sequence of SEQ ID NO: 49 operably linked to the 5'-UTR sequence regulated fdhl gene.
제1항에 있어서,
상기 방법은 화학적 유도물질을 필요로 하지 않는 것을 특징으로 하는, 방법.
The method according to claim 1,
Characterized in that the process does not require a chemical inducing substance.
제1항에 따른 방법을 이용하여 제조되는 것을 특징으로 하는 부탄올 생산용 대장균 균주.An E. coli strain for producing butanol, which is produced using the method according to claim 1.
KR1020130150645A 2013-12-05 2013-12-05 Redox rebalancing method in e. coli strain for maximizing fermentation product production and recombinant e. coli strain for producing n-butanol product with high productivity using the method KR101535578B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130150645A KR101535578B1 (en) 2013-12-05 2013-12-05 Redox rebalancing method in e. coli strain for maximizing fermentation product production and recombinant e. coli strain for producing n-butanol product with high productivity using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130150645A KR101535578B1 (en) 2013-12-05 2013-12-05 Redox rebalancing method in e. coli strain for maximizing fermentation product production and recombinant e. coli strain for producing n-butanol product with high productivity using the method

Publications (2)

Publication Number Publication Date
KR20150065384A KR20150065384A (en) 2015-06-15
KR101535578B1 true KR101535578B1 (en) 2015-07-10

Family

ID=53504315

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130150645A KR101535578B1 (en) 2013-12-05 2013-12-05 Redox rebalancing method in e. coli strain for maximizing fermentation product production and recombinant e. coli strain for producing n-butanol product with high productivity using the method

Country Status (1)

Country Link
KR (1) KR101535578B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090155869A1 (en) * 2006-12-01 2009-06-18 Gevo, Inc. Engineered microorganisms for producing n-butanol and related methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090155869A1 (en) * 2006-12-01 2009-06-18 Gevo, Inc. Engineered microorganisms for producing n-butanol and related methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biochemical and Biophysical Research Communications. 2007, Vol.356, pp.136-141 *
Biochemical and Biophysical Research Communications. 2007, Vol.356, pp.136-141*

Also Published As

Publication number Publication date
KR20150065384A (en) 2015-06-15

Similar Documents

Publication Publication Date Title
US11624057B2 (en) Glycerol free ethanol production
US10961551B2 (en) Process for producing at least one metabolite of interest by conversion of a pentose in a microorganism
Zhou et al. Functional replacement of the Escherichia coli D-(−)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici
Zhang et al. Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae
US20100221800A1 (en) Microorganism engineered to produce isopropanol
EP2505656A1 (en) Method of producing 3-hydroxypropionic acid using malonic semialdehyde reducing pathway
Yu et al. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase
WO2009013157A1 (en) Butanol production in a eukaryotic cell
Wu et al. Improved 1, 3-propanediol production by engineering the 2, 3-butanediol and formic acid pathways in integrative recombinant Klebsiella pneumoniae
Wang et al. Engineering Clostridium saccharoperbutylacetonicum for high level Isopropanol-Butanol-Ethanol (IBE) production from acetic acid pretreated switchgrass using the CRISPR-Cas9 system
JP2016520325A (en) Recombinant microorganisms showing increased flux through the fermentation pathway
KR20190121031A (en) Acid Resistant Yeast Inhibited Ethanol Production and Method for Preparing Lactic Acid Using The Same
Choi et al. Enhanced production of 2, 3‐butanediol in pyruvate decarboxylase‐deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose
EP3744830B1 (en) Methods and organisms with increased carbon flux efficiencies
Saini et al. Effective production of n-butanol in Escherichia coli utilizing the glucose–glycerol mixture
Lu et al. Regulation of carbon flux and NADH/NAD+ supply to enhance 2, 3-butanediol production in Enterobacter aerogenes
US20140134690A1 (en) Microbes and methods for producing 1-propanol
Chen et al. Metabolic engineering of Trichoderma reesei for L-malic acid production
KR101535578B1 (en) Redox rebalancing method in e. coli strain for maximizing fermentation product production and recombinant e. coli strain for producing n-butanol product with high productivity using the method
US9701948B2 (en) Escherichia coli engineered for isobutyraldehyde production
KR101437041B1 (en) Preparation method of succinic acid using recombinant yeast having a resistance to succinic acid
US20140248687A1 (en) Methods for expressing polypeptides in hyperthermophiles
US20210277441A1 (en) Method of selecting a polypeptide of interest
KR20180038404A (en) Recombinant microorganism with regulated glycolytic flux and method of producing compound using the same
US20150275238A1 (en) Genetically engineered microbes and methods for converting organic acids to alcohols

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee