KR101531645B1 - 이차전지의 제조방법 - Google Patents

이차전지의 제조방법 Download PDF

Info

Publication number
KR101531645B1
KR101531645B1 KR1020120127105A KR20120127105A KR101531645B1 KR 101531645 B1 KR101531645 B1 KR 101531645B1 KR 1020120127105 A KR1020120127105 A KR 1020120127105A KR 20120127105 A KR20120127105 A KR 20120127105A KR 101531645 B1 KR101531645 B1 KR 101531645B1
Authority
KR
South Korea
Prior art keywords
vacuum
secondary battery
electrolyte
electrode
pressure
Prior art date
Application number
KR1020120127105A
Other languages
English (en)
Other versions
KR20140060617A (ko
Inventor
김창수
유승재
구대근
김민수
이향목
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020120127105A priority Critical patent/KR101531645B1/ko
Publication of KR20140060617A publication Critical patent/KR20140060617A/ko
Application granted granted Critical
Publication of KR101531645B1 publication Critical patent/KR101531645B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

본 발명은 전지 케이스에 전극조립체가 내장되어 있는 이차전지를 제조하는 방법으로서, (a) 전지케이스에 전극조립체를 장착한 상태에서, 진공 분위기에서 가열한 전해액을 주입하는 과정; 및 (b) 대기압 이상의 압력과 진공을 순차적으로 인가하여 상기 전해액을 전극에 함침시키는 과정;을 포함하는 이차전지의 제조방법을 제공한다.

Description

이차전지의 제조방법 {Method of Secondary Battery}
본 발명은 전지 케이스에 전극조립체가 내장되어 있는 이차전지를 제조하는 방법으로서, (a) 전지케이스에 전극조립체를 장착한 상태에서, 진공 분위기에서 가열한 전해액을 주입하는 과정; 및 (b) 대기압 이상의 압력과 진공을 순차적으로 인가하여 상기 전해액을 전극에 함침시키는 과정;을 포함하는 이차전지의 제조방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 되어 있다.
리튬 이차전지는 전류 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 비수계 전해질이 함침되어 있는 구조로 이루어져 있다. 상기 비수계 전해질이 전극에 충분히 함침되지 못하면 전기화학 반응이 일어나지 않으므로 용량이 감소하거나 전기화학적 성능이 저하될 수 있다.
따라서, 이차전지의 제조 과정에서 전해액을 주입하고 함침시키는 과정이 매우 중요하다. 실제로, 함침 과정에서 충분한 시간을 투입하여 이차전지의 성능을 최대한 발휘할 수 있도록 하고 있다. 하지만, 이는 제조 과정에서의 병목 현상을 초래할 수도 있으므로, 보다 빠른 시간에 전해액의 주입과 함침을 완료하는 것이 필요하다. 다시 말하면, 동일한 시간이라도 더욱 전해액의 주액 및 함침이 원활한 이차전지의 제조방법에 대한 필요성이 매우 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 발명의 목적은 가열한 전해액을 진공 분위기에서 주입하고, 대기압 이상의 압력의 가압 및 진공을 순차적으로 인가하여 전해액을 전극에 함침시킴으로써, 전해액 주입 및 함침 공정을 보다 신속하고 효과적으로 행하기 위한 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기와 같은 방법을 사용하여 제조되는 이차전지를 제공하는 것이다.
따라서, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 이차전지의 제조방법은, 전지 케이스에 전극조립체가 내장되어 있는 이차전지를 제조하는 방법으로서,
(a) 전지케이스에 전극조립체를 장착한 상태에서, 진공 분위기에서 가열한 전해액을 주입하는 과정; 및
(b) 대기압 이상의 압력과 진공을 순차적으로 인가하여 상기 전해액을 전극에 함침시키는 과정;
을 포함하는 것으로 구성되어 있다.
일반적으로, 전해액을 주입하는 과정은 상온에서 별도의 압력 변화 없이 이루어지고, 함침시키는 과정에서 진공을 인가해주는 방법을 사용하고 있다.
본 발명의 방법을 사용하는 경우, 전해액을 가열함으로써 전해액의 점도가 감소되고 흐름성이 좋아지므로 주액 시 전해액의 이동이 유리해지는 장점이 있다. 또한, 주액 단계에서 진공을 인가함으로써 전극의 다공층의 공기를 제거할 수 있으므로 함침을 보다 유리하도록 하는 장점이 있다.
상기 전해액의 가열은 공정 조건에 따라 적절하게 선택할 수 있으나, 바람직한 하나의 예에서, 40 내지 60℃의 범위로 가열하는 것을 들 수 있다. 전해액의 가열 온도가 40℃ 미만인 경우, 상온에서의 점도와 큰 차이가 나지 않아 흐름성 향상 효과를 충분히 발휘하기 어려우므로 바람직하지 않고, 반대로 60℃ 초과로 가열하는 경우, 가열 시간이 오래 걸리고 에너지 소모가 많으며 여러 장치의 내구성 등에 영향을 미칠 수 있으므로 바람직하지 않다.
상기와 같은 주액 환경에서 전해액이 주입되고, 압력을 대기압 이상의 압력으로 가압함으로써 전해액이 전극의 내부 다공층까지 보다 잘 함침될 수 있도록 한다. 상기와 같은 가압 이후에 순차적으로 진공을 인가함으로써 전극 내부에 남아있는 기체를 제거함으로써 보다 효과적인 전해액 함침을 도모할 수 있다.
하나의 바람직한 예에서, 상기 대기압 이상의 압력과 진공을 순차적으로 인가하는 것은 각각 1회 이상으로 행할 수 있다. 이러한 회수가 증가할수록 상기에서 설명한 효과가 향상될 수 있으나, 공정 시간이 증가할 수 있으므로 5회 이하로 하는 것이 바람직하다.
상기 전지케이스는 특별히 한정되지는 않지만, 수지층과 금속층을 포함하는 라미네이트 시트, 원통형 금속 캔, 및 각형 금속 캔으로 이루어진 군에서 선택되는 하나 이상일 수 있다. 이차전지의 자체 중량을 고려할 경우, 라미네이트 시트로 이루어진 전지케이스를 사용하는 것이 바람직하다. 모바일 제품 또는 중대형 디바이스의 전원으로 사용되는 이차전지의 경우 중량이 가벼울 것이 요구되고 있다.
하나의 바람직한 예에서, 상기 라미네이트 시트는 외부 수지층, 공기 및 수분차단성 금속층, 및 열융착성 내부 수지층의 적층 구조로 이루어질 수 있다.
상기 외부 수지층은 외부 환경에 대해 우수한 내성을 가져야 하므로, 소정 이상의 인장강도와 내후성이 필요하다. 이러한 측면에서 외부 피복층의 고분자 수지는 인장강도 및 내후성이 우수한 폴리에틸렌 나프탈레이트(PEN), 폴리에틸렌 테레프탈레이트(PET) 또는 연신 나일론을 포함할 수 있다.
또한, 상기 외부 피복층은 폴리에틸렌 나프탈레이트(PEN)로 이루어져 있거나 및/또는 상기 외부 피복층의 외면에 폴리에틸렌 테레프탈레이트(PET)층이 구비되어 있는 구조로 이루어질 수 있다.
상기 폴리에틸렌 나프탈레이트(PEN)는 폴리에틸렌 테레프탈레이트 (PET)와 비교하여 얇은 두께에서도 우수한 인장강도와 내후성을 가지므로 외부 피복층으로 사용하기에 바람직하다.
상기 내부 수지층의 고분자 수지로는 열융착성(열접착성)을 가지고, 전해액의 침입을 억제하기 위해 전해액에 대한 흡습성이 낮으며, 전해액에 의해 팽창하거나 침식되지 않는 고분자 수지가 사용될 수 있으며, 더욱 바람직하게는 무연신 폴리프로필렌 필름(CPP)으로 이루어질 수 있다.
하나의 바람직한 예에서, 본 발명에 따른 라미네이트 시트는, 상기 외부 피복층의 두께가 5 내지 40 ㎛이고, 상기 베리어층의 두께가 20 내지 150 ㎛이며, 상기 내부 실란트층의 두께가 10 내지 50 ㎛인 구조로 이루어질 수 있다. 상기 라미네이트 시트의 각 층들의 두께가 너무 얇은 경우에는 물질에 대한 차단 기능과 강도 향상을 기대하기 어렵고, 반대로 너무 두꺼우면 가공성이 떨어지고 시트의 두께 증가를 유발하므로 바람직하지 않다.
상기 전극조립체는 권취형 구조, 스택형 구조, 또는 스택/폴딩형 구조 등 다양한 구조로 이루어질 수 있다.
전극조립체는 이차전지를 구성하는 양극/분리막/음극으로 구성되고, 일반적으로 그것의 구조에 따라 크게 젤리-롤형(권취형)과 스택형(적층형)으로 구분된다. 젤리-롤형 전극조립체는, 집전체로 사용되는 금속 호일에 전극 활물질 등을 코팅하고 건조 및 프레싱한 후, 소망하는 폭과 길이의 밴드 형태로 재단하고 분리막을 사용하여 음극과 양극을 격막한 후 나선형으로 감아 제조된다. 젤리-롤형 전극조립체는 원통형 전지에는 적합하지만, 각형 또는 파우치형 전지에 적용함에 있어서는 전극 활물질의 박리 문제, 낮은 공간 활용성 등의 단점을 가지고 있다. 반면에, 스택형 전극조립체는 다수의 양극 및 음극 단위체들을 순차적으로 적층한 구조로서, 각형의 형태를 얻기가 용이한 장점이 있지만, 제조과정이 번잡하고 충격이 가해졌을 때 전극이 밀려서 단락이 유발되는 단점이 있다.
이러한 문제점을 해결하기 위하여 상기 젤리-롤형과 스택형의 혼합 형태인 진일보한 구조의 전극조립체로서, 일정한 단위 크기의 양극/분리막/음극 구조의 풀셀(full cell) 또는 양극(음극)/분리막/음극(양극)/분리막/양극(음극) 구조의 바이셀(bicell)을 긴 길이의 연속적인 분리막 필름을 이용하여 폴딩한 구조의 전극조립체가 개발되었고, 상기 구조의 전극조립체를 스택/폴딩형 전극조립체라고 한다.
상기 풀셀은 양극/분리막/음극의 단위 구조로 이루어져 있는 셀로서, 셀의 양측에 각각 양극과 음극이 위치하는 셀이다. 이러한 풀셀은 가장 기본적인 구조의 양극/분리막/음극 셀과 양극/분리막/음극/분리막/양극/분리막/음극 등을 들 수 있다.
또한, 상기 바이셀은 양극/분리막/음극/분리막/양극의 단위 구조 및 음극/분리막/양극/분리막/음극의 단위구조와 같이 셀의 양측에 동일한 전극이 위치하는 셀이다. 본 명세서에서는 양극/분리막/음극/분리막/양극 구조의 셀을 “C형 바이셀”로서 칭하고, 음극/분리막/양극/분리막/음극 구조의 셀을 “A형 바이셀”로서 칭한다. 즉, 양측에 양극이 위치하는 셀을 C형 바이셀이라 하고, 양측에 음극이 위치하는 셀을 A형 바이셀이라 한다.
이러한 바이셀들은 셀 양측의 전극이 동일한 구조라면 그것을 이루는 양극 및 음극과 분리막의 수가 특별히 제한되는 것은 아니다.
풀셀과 바이셀은 양극 및 음극을 그 사이에 분리막을 개재시킨 상태에서 상호 결합시켜 제조된다. 이러한 결합 방법의 바람직한 예로는 열융착 방식을 들 수 있다.
본 발명은 또한, 상기 제조방법으로 제조되는 이차전지를 제공한다. 상기 이차전지는 양극과 음극 사이에 분리막이 개재된 구조의 전극조립체에 리튬염 함유 비수계 전해액이 함침되어 있는 구조로 이루어진 리튬 이차전지일 수 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질을 포함하고 있는 양극 합제를 도포한 후 건조하여 제조되며, 상기 양극 합제에는, 필요에 따라, 바인더, 도전재, 충진재 등이 선택적으로 더 포함될 수도 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 양극 집전체는, 상기 음극 집전체에서와 마찬가지로, 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은 전기화학적 반응을 일으킬 수 있는 물질로서, 리튬 전이금속 산화물로서, 2 이상의 전이금속을 포함하고, 예를 들어, 1 또는 그 이상의 전이금속으로 치환된 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물; 1 또는 그 이상의 전이금속으로 치환된 리튬 망간 산화물; 화학식 LiNi1-yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B, Cr, Zn 또는 Ga 이고 상기 원소 중 하나 이상의 원소를 포함, 0.01≤y≤0.7 임)으로 표현되는 리튬 니켈계 산화물; Li1+zNi1/3Co1/3Mn1/3O2, Li1+zNi0.4Mn0.4Co0.2O2 등과 같이 Li1+zNibMncCo1-(b+c+d)MdO(2-e)Ae (여기서, -0.5≤z≤0.5, 0.1≤b≤0.8, 0.1≤c≤0.8, 0≤d≤0.2, 0≤e≤0.2, b+c+d<1 임, M = Al, Mg, Cr, Ti, Si 또는 Y 이고, A = F, P 또는 Cl 임)으로 표현되는 리튬 니켈 코발트 망간 복합산화물; 화학식 Li1+xM1-yM’yPO4-zXz(여기서, M = 전이금속, 바람직하게는 Fe, Mn, Co 또는 Ni 이고, M’ = Al, Mg 또는 Ti 이고, X = F, S 또는 N 이며, -0.5≤x≤+0.5, 0≤y≤0.5, 0≤z≤0.1 임)로 표현되는 올리빈계 리튬 금속 포스페이트 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합제 등을 들 수 있다.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 포함하고 있는 음극 합제를 도포한 후 건조하여 제조되며, 상기 음극 합제에는, 필요에 따라, 앞서 설명한 바와 같은 도전재, 바인더, 충진제 등의 성분들이 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 바인더와 도전재 및 필요에 따라 첨가되는 성분들은 음극에서의 설명과 동일하다.
경우에 따라서는, 음극의 팽창을 억제하는 성분으로서 충진제가 선택적으로 첨가될 수 있다. 이러한 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
또한, 점도 조절제, 접착 촉진제 등의 기타의 성분들이 선택적으로 또는 둘 이상의 조합으로서 더 포함될 수 있다.
상기 점도 조절제는 전극 합제의 혼합 공정과 그것의 집전체 상의 도포 공정이 용이할 수 있도록 전극 합제의 점도를 조절하는 성분으로서, 음극 합제 전체 중량을 기준으로 30 중량%까지 첨가될 수 있다. 이러한 점도 조절제의 예로는, 카르복시메틸셀룰로우즈, 폴리비닐리덴 플로라이드 등이 있지만, 이들만으로 한정되는 것은 아니다. 경우에 따라서는, 앞서 설명한 용매가 점도 조절제로서의 역할을 병행할 수 있다.
상기 접착 촉진제는 집전체에 대한 활물질의 접착력을 향상시키기 위해 첨가되는 보조성분으로서, 바인더 대비 10 중량% 이하로 첨가될 수 있으며, 예를 들어 옥살산 (oxalic acid), 아디프산(adipic acid), 포름산(formic acid), 아크릴산(acrylic acid) 유도체, 이타콘산(itaconic acid) 유도체 등을 들 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 바람직한 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
본 발명은 또한, 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.
상기 전지팩은 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이상에서 설명한 바와 같이, 본 발명에 따른 이차전지의 제조방법은 주액하는 전해액을 가열하여 이동성을 향상시키고, 진공을 인가하여 전극 내부 기체를 제거하며, 주액 후 가압과 진공을 순차적으로 인가함으로써 함침 성능을 향상시킬 수 있다.
도 1은 종래의 전해액 주입 및 함침 과정의 시간에 대한 인가되는 압력의 관계를 나타내는 그래프이다;
도 2는 본 발명의 하나의 실시예에 따른 전해액 주입 및 함침 과정의 시간에 대한 인가되는 압력의 관계를 나타내는 그래프이다.
이하 실시예를 통해 본 발명의 내용을 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<비교예 1>
파우치형 전지케이스에 전극조립체가 내장되어 있는 상태에서, 상압에서 상온의 전해액을 주입한 후, 챔버 내부를 진공으로 20분간 유지하고 상압으로 복귀하고 다시 진공으로 20분간 유지하여 전해액을 함침시켰다. 상기 과정의 시간에 대한 인가되는 압력의 관계를 도 1에 그래프로 나타내었다.
<실시예 1>
파우치형 전지케이스에 비교예 1과 동일한 전극조립체가 내장되어 있는 상태에서, 진공을 인가한 상태에서 50℃로 가열한 전해액을 주입한 후, 챔버 내부 압력을 200 Mpa로 가압하여 10분간 유지하고 진공으로 10분간 유지하여 전해액을 함침시켰다. 상기 과정의 시간에 대한 인가되는 압력의 관계를 도 2에 그래프로 나타내었다.
<실험예 1>
상기 실시예 1 및 비교예 1의 이차전지의 전극조립체를 꺼내어 각각의 무게를 측정하여 비교하였다. 상기 실시예 1 및 비교예 1의 전극조립체는 전해액이 함침되기 전에 동일한 무게를 가지는 것을 사용하였다. 상기 실험 결과를 하기 표 1에 무게의 상대 비율로 나타내었다.
<실험예 2>
상기 실시예 1 및 비교예 1의 이차전지의 전극조립체를 꺼내어 전해액이 함침되어 있는 면적을 측정하였다. 상기 실험 결과를 하기 표 1에 상대 비율로 나타내었다.
비교예 1 실시예 1
전극조립체 무게 100% 120%
전해액 함침 면적 100% 125%

본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (12)

  1. 전지 케이스에 전극조립체가 내장되어 있는 이차전지를 제조하는 방법으로서,
    (a) 전지케이스에 전극조립체를 장착한 상태에서, 진공 분위기에서 가열한 전해액을 주입하는 과정; 및
    (b) 대기압 이상의 압력과 진공을 순차적으로 인가하여 상기 전해액을 전극에 함침시키는 과정;
    을 포함하고,
    상기 대기압 이상의 압력과 진공은 각각 1회 이상 인가하며,
    상기 과정(a)의 진공 압력에 비해 과정(b)의 진공 압력이 더 낮은 것을 특징으로 하는 이차전지의 제조방법.
  2. 제 1 항에 있어서, 상기 가열은 40 내지 60℃의 범위로 이루어지는 것을 특징으로 하는 이차전지의 제조방법.
  3. 삭제
  4. 제 1 항에 있어서, 상기 전지케이스는 수지층과 금속층을 포함하는 라미네이트 시트, 원통형 금속 캔, 및 각형 금속 캔으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 이차전지의 제조방법.
  5. 제 4 항에 있어서, 상기 라미네이트 시트는 외부 수지층, 공기 및 수분 차단성 금속층, 및 열융착성 내부 수지층의 적층 구조로 이루어진 것을 특징으로 하는 이차전지의 제조방법.
  6. 제 1 항에 있어서, 상기 전극조립체는 권취형 구조, 스택형 구조, 또는 스택/폴딩형 구조로 이루어진 것을 특징으로 하는 이차전지의 제조방법.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
KR1020120127105A 2012-11-12 2012-11-12 이차전지의 제조방법 KR101531645B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120127105A KR101531645B1 (ko) 2012-11-12 2012-11-12 이차전지의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120127105A KR101531645B1 (ko) 2012-11-12 2012-11-12 이차전지의 제조방법

Publications (2)

Publication Number Publication Date
KR20140060617A KR20140060617A (ko) 2014-05-21
KR101531645B1 true KR101531645B1 (ko) 2015-06-25

Family

ID=50889852

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120127105A KR101531645B1 (ko) 2012-11-12 2012-11-12 이차전지의 제조방법

Country Status (1)

Country Link
KR (1) KR101531645B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102261487B1 (ko) * 2017-02-21 2021-06-07 주식회사 엘지에너지솔루션 이차전지의 전해액 함침 방법
KR102439773B1 (ko) * 2017-12-20 2022-09-02 주식회사 엘지에너지솔루션 이차 전지의 제조 방법 및 이차 전지의 함침 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014950A (ko) * 2000-08-19 2002-02-27 김종선 배터리 전해액의 주입장치
JP2004241222A (ja) * 2003-02-05 2004-08-26 Matsushita Electric Ind Co Ltd 非水電解液電池の製造方法
JP2010267407A (ja) * 2009-05-12 2010-11-25 Nissan Motor Co Ltd 積層体への電解液浸潤装置及び浸潤方法
KR20110032848A (ko) * 2009-09-24 2011-03-30 삼성에스디아이 주식회사 이차전지 전해액 주입용 진공가압 장치 및 이를 이용한 전해액 주입 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014950A (ko) * 2000-08-19 2002-02-27 김종선 배터리 전해액의 주입장치
JP2004241222A (ja) * 2003-02-05 2004-08-26 Matsushita Electric Ind Co Ltd 非水電解液電池の製造方法
JP2010267407A (ja) * 2009-05-12 2010-11-25 Nissan Motor Co Ltd 積層体への電解液浸潤装置及び浸潤方法
KR20110032848A (ko) * 2009-09-24 2011-03-30 삼성에스디아이 주식회사 이차전지 전해액 주입용 진공가압 장치 및 이를 이용한 전해액 주입 방법

Also Published As

Publication number Publication date
KR20140060617A (ko) 2014-05-21

Similar Documents

Publication Publication Date Title
KR101545886B1 (ko) 다층구조 전극 및 그 제조방법
KR101793270B1 (ko) 전극 및 이를 포함하는 이차전지
KR101611195B1 (ko) 레이트 특성이 향상된 리튬 이차전지
KR101547819B1 (ko) 이차전지 제조 방법
KR101542052B1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
KR101527748B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR101445602B1 (ko) 안전성이 강화된 이차전지
KR101502832B1 (ko) 성능이 우수한 리튬 이차전지
KR101495302B1 (ko) 다층구조 전극 및 그 제조방법
KR101506451B1 (ko) 이차전지용 음극
KR20130117719A (ko) 전극조립체 및 이를 포함하는 리튬 이차전지
KR101517885B1 (ko) 이차전지의 제조방법 및 이를 사용하여 제조되는 이차전지
KR101514303B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR101506452B1 (ko) 이차전지용 양극
KR101451193B1 (ko) 성능이 우수한 리튬 이차전지
KR101507450B1 (ko) 성능이 우수한 리튬 이차전지
KR101445600B1 (ko) 안전성이 강화된 이차전지
KR101531645B1 (ko) 이차전지의 제조방법
KR20130116513A (ko) 전지케이스 및 이를 포함하는 이차전지
KR101514297B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR101493255B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR101470334B1 (ko) 기계적 특성이 향상된 부직포 분리막의 제조방법 및 이를 사용하여 제조되는 부직포 분리막
KR101497348B1 (ko) 리튬 이차전지용 일체형 전극조립체의 제조방법 및 이를 사용하여 제조되는 일체형 전극조립체
KR20130118243A (ko) 이차전지용 전극
KR20130115768A (ko) 다층구조 전극 및 그 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 5