KR101530487B1 - Method of preparing polyolefins using the same - Google Patents

Method of preparing polyolefins using the same Download PDF

Info

Publication number
KR101530487B1
KR101530487B1 KR1020140091921A KR20140091921A KR101530487B1 KR 101530487 B1 KR101530487 B1 KR 101530487B1 KR 1020140091921 A KR1020140091921 A KR 1020140091921A KR 20140091921 A KR20140091921 A KR 20140091921A KR 101530487 B1 KR101530487 B1 KR 101530487B1
Authority
KR
South Korea
Prior art keywords
group
polyolefin
chemical formula
dichloride
cyclopentadienyl
Prior art date
Application number
KR1020140091921A
Other languages
Korean (ko)
Other versions
KR20140114310A (en
Inventor
이동길
황산악
권혁주
박철영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020140091921A priority Critical patent/KR101530487B1/en
Publication of KR20140114310A publication Critical patent/KR20140114310A/en
Application granted granted Critical
Publication of KR101530487B1 publication Critical patent/KR101530487B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 폴리올레핀의 제조방법에 관한 것으로서, 본 발명에 따르면 시클로펜타디에닐리간드 화합물 및 유기 알루미늄 화합물을 반응시켜 제조된 유기 금속 착화합물을 폴리올레핀 중합체의 제조방법에서 분자량 조절제로 사용함으로써 분자량이 향상된 폴리올레핀 중합체를 얻는 유기 금속 착화합물을 이용한 폴리올레핀의 제조방법에 관한 것이다.The present invention relates to a process for producing a polyolefin. According to the present invention, an organometallic complex prepared by reacting a cyclopentadienyl ligand compound and an organoaluminum compound is used as a molecular weight modifier in the process for producing a polyolefin polymer, The present invention relates to a method for producing a polyolefin using an organic metal complex compound.

Description

폴리올레핀 중합체의 제조방법{Method of preparing polyolefins using the same}TECHNICAL FIELD The present invention relates to a method for preparing a polyolefin polymer,

본 발명은 폴리올레핀의 제조방법에 관한 것으로서, 더욱 상세하게는 시클로펜타디에닐리간드 화합물 및 유기 알루미늄 화합물을 반응시켜 제조된 유기 금속 착화합물을 폴리올레핀 중합체의 제조방법에서 분자량 조절제로 사용함으로써 분자량이 향상된 폴리올레핀 중합체를 얻는 유기 금속 착화합물을 이용한 폴리올레핀의 제조방법에 관한 것이다.The present invention relates to a process for producing a polyolefin, and more particularly, to a process for producing a polyolefin having improved molecular weight by using an organometallic complex prepared by reacting a cyclopentadienyl ligand compound and an organoaluminum compound as a molecular weight modifier in a process for producing a polyolefin polymer The present invention relates to a method for producing a polyolefin using an organic metal complex compound.

4족 전이금속을 이용한 메탈로센은 여러 가지 유기촉매 반응 및 다양한 올레핀의 고분자 반응에 널리 이용되어 왔다. 특히 올레핀의 고분자 반응에 대한 이용의 경우 단일 활성점 촉매라는 점에서 구조 변경에 대한 연구가 꾸준히 진행되어온 바, 기존의 지글러-나타 촉매에 비하여 매우 우수한 촉매 활성 및 분자량, 분자량 분포 등을 제어하기 쉬운 관계로 많은 산업적인 응용 연구가 되어 왔다.Metallocenes have been widely used for various organic catalytic reactions and polymer reactions of various olefins. Particularly, in the case of the use of olefin for polymer reaction, the research on the structural modification has been carried out steadily in view of being a single active site catalyst, and it is very easy to control the catalytic activity, molecular weight and molecular weight distribution There have been many industrial applications in relation to this.

메탈로센을 공정에 적용하기 위해서는 몇 가지 선행 개선되어야 할 문제가 있으며 중요한 연구 관심사 중의 하나는 고분자량 폴리올레핀 제조 기술이다. 대다수의 고분자량 제품을 만들어내는 촉매 시스템의 경우 복잡한 리간드 합성 과정을 수행하여야 하며, 공정 조건을 조정하지 않는 이상 중합 활성이 떨어지는 단점을 같이 가지고 있다. 이러한 문제를 해결하고 메탈로센 촉매의 활성 및 분자량을 증가시키기 위해 조촉매 및 담지 조건, 첨가제 조절이 수행될 수 있으며 특히 첨가제 조절의 경우 아직까지는 실제 공정에서 한정된 종류의 물질만을 적용하고 있다. 기존에 공정에 투입하는 첨가제로 알킬알루미늄이 대표적이며 이 물질의 경우 공정상의 수분과 같은 불순물을 제거하기 위해 사용이 되며 일정한 수준 이상을 사용할 경우 메탈로센 촉매의 활성이 감소되는 단점을 가지고 있다.There are some prior art challenges to applying metallocenes to the process, and one of the major research concerns is the production of high molecular weight polyolefins. In the case of a catalyst system which produces a large number of high molecular weight products, a complicated ligand synthesis process must be performed and the polymerization activity is lowered unless the process conditions are adjusted. In order to solve these problems and to increase the activity and the molecular weight of the metallocene catalyst, cocatalyst, carrier condition, and additive control can be performed. In the case of additive control, only a limited number of materials are used in actual processes. Alkylaluminum is a typical additive to the process. This material is used to remove impurities such as moisture in the process and has a disadvantage in that the activity of the metallocene catalyst decreases when a certain level or more is used.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 고안된 것으로서, 분자량을 향상시킬 수 있으며 손쉽게 사용이 가능하고 또한 제조가 용이한 분자량 조절제(chain propagation agent, CPA)를 제공하기 위한 것이다.SUMMARY OF THE INVENTION The present invention has been made in order to solve the problems of the prior art as described above, and it is an object of the present invention to provide a chain propagation agent (CPA) which can improve the molecular weight and is easy to use and easy to manufacture.

본 발명의 상기 목적은 하기 설명되는 본 발명에 의하여 모두 달성 될 수 있다.The above object of the present invention can be achieved by the present invention described below.

상기 목적을 달성하기 위하여, 본 발명에 의한 폴리올레핀 중합체의 제조방법은 메탈로센 담지 촉매 하에 폴리올레핀 중합체를 제조하는 방법에 있어서, 유기 금속 착화합물을 분자량 조절제로서 포함하되, 상기 착화합물의 금속과 상기 촉매의 금속간 당량비가 0.2 내지 1.0인 것을 특징으로 한다. In order to accomplish the above object, the present invention provides a process for preparing a polyolefin polymer under metallocene supported catalyst, which process comprises the step of introducing an organometallic complex as a molecular weight regulator, Metal equivalent ratio is from 0.2 to 1.0.

본 발명에 의한 유기 금속 착화합물 및 유기 이금속 착화합물은 분자량이 향상된 폴리올레핀을 중합하는 데에 있어서 분자량 조절제로 사용될 수 있다. 상기 화합물은 제조 및 사용이 용이하다는 장점이 있다.The organometallic complexes and organometallic complexes according to the present invention can be used as molecular weight modifiers in polymerizing polyolefins having improved molecular weight. These compounds have the advantage of being easy to manufacture and use.

이하 본 발명을 자세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 메탈로센 담지 촉매 하에 폴리올레핀 중합체를 제조하는 방법에 있어서, 유기 금속 착화합물을 분자량 조절제로서 포함하되, The present invention relates to a method for producing a polyolefin polymer under a metallocene supported catalyst, which comprises the organometallic complex as a molecular weight regulator,

상기 착화합물의 금속과 상기 촉매의 금속간 당량비가 0.2 내지 1.0인 것을 특징으로 하는 폴리올레핀 중합체의 제조방법을 제공한다.
Wherein the metal to metal ratio of the metal to the catalyst is 0.2 to 1.0.

상기 유기 금속 착화합물은 하기 화학식 1로 표현되는 시클로펜타디에닐리간드 화합물 및 하기 화학식 2로 표현되는 유기 알루미늄 화합물을 반응시켜 제조된 것을 특징으로 할 수 있다.The organometallic complex may be prepared by reacting a cyclopentadienyl ligand compound represented by the following formula (1) and an organoaluminum compound represented by the following formula (2).

[화학식 1][Chemical Formula 1]

Cp 1Cp 2MX2 C p 1 C p 2 MX 2

상기 화학식 1에서 Cp 1 및 Cp 2는 독립적으로 시클로펜타디에닐기, 인데닐기, 플루오레닐기에서 선택된 시클로펜타디에닐기를 지닌 리간드이고, M는 주기율표상의 IV족 원소이고, X는 할로겐 원소이다.Wherein C p 1 and C p 2 are independently a ligand having a cyclopentadienyl group selected from a cyclopentadienyl group, an indenyl group and a fluorenyl group, M is a Group IV element on the periodic table, and X is a halogen element .

[화학식 2](2)

R1R2R3AlR 1 R 2 R 3 Al

상기 화학식 2에서 R1, R2 및 R3는 독립적으로 C1~C20 알킬기, 수소 또는 할로겐이되, R1, R2 및 R3 중 적어도 하나는 알킬기이다.Wherein R 1 , R 2 and R 3 are independently a C 1 -C 20 alkyl group, hydrogen or halogen, and at least one of R 1 , R 2 and R 3 is an alkyl group.

또한, 본 발명은 하기 화학식 3, 4, 5, 6, 7 또는 8로 나타내어지는 유기 금속 착화합물 또는 유기 금속 착화합물 분자량 조절제를 제공한다.The present invention also provides an organometallic complex or organometallic complex molecular weight control agent represented by the following general formula (3), (4), (5), (6), (7)

[화학식 3](3)

Cp 1Cp 2MAC p 1 C p 2 MA

[화학식 4][Chemical Formula 4]

Cp 1Cp 2MAXC p 1 C p 2 MAX

[화학식 5][Chemical Formula 5]

Cp 1Cp 2MABC p 1 C p 2 MAB

[화학식 6][Chemical Formula 6]

Cp 1Cp 2M (L)AlR1R2R3 C p 1 C p 2 M (L) AlR 1 R 2 R 3

[화학식 7](7)

Cp 1Cp 2M X(L)AlR1R2 C p 1 C p 2 MX (L) AlR 1 R 2

[화학식 8][Chemical Formula 8]

Cp 1Cp 2M (X)(L)AlR1R2R3 C p 1 C p 2 M (X) (L) AlR 1 R 2 R 3

상기 화학식에서 Cp 1 및 Cp 2는 독립적으로 시클로펜타디에닐기, 인데닐기, 플루오레닐기에서 선택된 시클로펜타디에닐기를 지닌 리간드이고, M는 주기율표상의 IV족 원소이며, A, B 및 X는 M과 결합되어 있는 기능기이며, X는 할로겐 원소이고, A 및 B는 독립적으로 C1~C20 알킬기 또는 수소이며, (L)는 M 및 Al에 양쪽으로 결합되어 있는 탄소 사슬 알킬렌을 의미하고, R1, R2 및 R3는 독립적으로 C1~C20 알킬기, 수소 또는 할로겐이다.In the above formulas, C p 1 and C p 2 are independently a ligand having a cyclopentadienyl group selected from a cyclopentadienyl group, an indenyl group and a fluorenyl group, M is a Group IV element on the periodic table, A, B and X are M is a functional group bonded to M, X is a halogen element, A and B are independently a C 1 to C 20 alkyl group or hydrogen, and (L) means a carbon chain alkylene bonded to both M and Al And R 1 , R 2, and R 3 are independently a C 1 to C 20 alkyl group, hydrogen, or halogen.

상기 유기 금속 착화합물은 하기 화학식 9로 나타내어지는 유기 알루미늄과 혼합물의 형태로 존재할 수 있으며, 재결정을 통하여 분리를 하면 상기 화학식 3 내지 8의 유기 금속 착화합물을 얻을 수 있으며, 이는 분자량 조절제로 사용가능하다.
[화학식 9]
R1R2R3Al
상기 화학식 9에서 R1,R2 및 R3는 독립적으로 C1~C20알킬기 또는 할로겐이며, 상기 C1~C20알킬기는 헤테로 원소를 포함할 수 있다.
The organometallic complex may exist in the form of a mixture with organoaluminum represented by the following general formula (9). When the organometallic complex is separated through recrystallization, the organometallic complexes of the general formulas (3) to (8) can be obtained.
[Chemical Formula 9]
R 1 R 2 R 3 Al
In Formula 9, R 1 , R 2, and R 3 are independently a C 1 to C 20 alkyl group or a halogen, and the C 1 to C 20 alkyl group may include a heteroatom.

이렇게 생성된 분자량 조절제는 4족 전이금속과 유기 알루미늄의 유기 금속(organometallic) 또는 유기 이금속 착화합물(organobimetallic complex)일 수 있으며, 상기 화학식 1 및 화학식 2의 초기 화학 구조 및 특성이 변형된 조성물이며 치환체에 따라서 다양한 구조를 이룬다.The molecular weight regulator thus formed may be an organometallic or an organobimetallic complex of a transition metal of Group 4 and organoaluminum, and is a composition modified from the initial chemical structures and characteristics of Formulas (1) and (2) And the like.

또한, 상기 중심금속은 +2 내지 +4의 산화수로 환원되며, 특히 +3가로 환원되는 것이 바람직하다.In addition, it is preferable that the center metal is reduced to an oxidation number of +2 to +4, particularly preferably +3.

상기 시클로펜타디에닐 리간드 화합물은 비스시클로펜타디에닐티타늄 디클로라이드, 비스시클로펜타디에닐지르코늄 디클로라이드, 비스시클로펜타디에닐하프늄 디클로라이드, 비스인데닐티타늄 디클로라이드 및 비스플로레닐티타늄 디클로라이드로 이루어진 군으로부터 선택되는 것이 바람직하며, 이 중 비스시클로펜타디에닐티타늄 디클로라이드가 더욱 바람직하다.The cyclopentadienyl ligand compound is preferably selected from the group consisting of biscyclopentadienyl titanium dichloride, biscyclopentadienyl zirconium dichloride, biscyclopentadienyl hafnium dichloride, bisindenyl titanium dichloride and bis-fluorenyl titanium dichloride. , And among them, biscyclopentadienyltitanium dichloride is more preferable.

상기 유기 알루미늄 화합물은 트리메틸 알루미늄, 트리에틸 알루미늄, 트리프로필알루미늄, 트리이소프로필알루미늄, 트리이소부틸 알루미늄, 트리헥실알루미늄, 트리옥틸 알루미늄, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디프로필알루미늄 클로라이드, 디이소부틸알루미늄 클로라이드, 디헥실알루미늄 클로라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 프로필알루미늄 디클로라이드, 및 이소부틸알루미늄 디클로라이드로 이루어진 군으로부터 선택되는 것이 바람직하다.The organoaluminum compound is selected from the group consisting of trimethylaluminum, triethylaluminum, tripropylaluminum, triisopropylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, It is preferably selected from the group consisting of butyl aluminum chloride, dihexyl aluminum chloride, methyl aluminum dichloride, ethyl aluminum dichloride, propyl aluminum dichloride, and isobutyl aluminum dichloride.

상기 유기 금속 착화합물은 상기 화학식 1로 표현되는 시클로펜타디에닐리간드 화합물 및 상기 화학식 2로 표현되는 유기 알루미늄 화합물을 반응시켜 제조한다.The organometallic complex is prepared by reacting the cyclopentadienyl ligand compound represented by Formula 1 and the organoaluminum compound represented by Formula 2.

상기 반응은 -200 내지 300℃의 온도 및 0.01 내지 200시간 동안 진행된다. 더욱 바람직하게는 -80 내지 50℃의 온도 및 0.5 내지 72시간 동안 진행된다. 상기 범위의 온도 범위보다 낮은 온도에서 반응을 시킬 경우 반응이 더디게 진행되거나 교반 및 온도 조절 과정이 복잡해질 수 있으며, 높은 온도에서 반응을 시킬 경우 최종 생성물의 구조에 영향을 줄 수 있다. 또한 상기 범위의 시간보다 짧은 시간에 반응시킬 경우 원하는 구조가 생성되기 전에 반응이 종료될 수 있으며 더욱 길게 반응시킬 경우 반응이 종결된 이후 시간을 소모하게 되므로 비효율적이다.The reaction is carried out at a temperature of -200 to 300 ° C and for 0.01 to 200 hours. More preferably -80 to 50 < 0 > C and for 0.5 to 72 hours. When the reaction is carried out at a temperature lower than the above temperature range, the reaction may proceed slowly or complicate the stirring and temperature control process, and if the reaction is carried out at a high temperature, the structure of the final product may be affected. In addition, when the reaction is performed in a time shorter than the above range, the reaction may be terminated before the desired structure is formed. If the reaction is performed longer, the reaction time is consumed since the reaction is terminated.

상기 시클로펜타디에닐리간드 화합물과 유기 알루미늄 화합물의 함량비는 1:0.1 내지 1:100 인 것을 바람직하다. 상기 범위보다 적은 양의 유기 알루미늄 화합물을 사용할 경우 활성 및 분자량에 대한 최적의 첨가제 투입 효과들을 보지 못할 수 있으며, 더 많이 사용할 경우 제조 비용이 올라가 비효율적이다.The content ratio of the cyclopentadienyl ligand compound to the organoaluminum compound is preferably 1: 0.1 to 1: 100. When the organoaluminum compound is used in an amount less than the above range, it may not be possible to see the optimum additive effect on the activity and the molecular weight, and if it is used more, the manufacturing cost increases and it is inefficient.

반응용매로는 톨루엔, 크실렌, 모노클로로벤젠, 벤젠 등의 방향족, 펜탄, 헥산, 헵탄, 옥탄 등의 탄화수소류, 디에틸에테르, 메틸부틸에테르, 디메틸글리콜, 테트라히드로퓨란 등의 에테르류, 디클로로에탄, 트리클로로에탄, 클로로메탄, 디클로로메탄, 트리클로로메탄, 클로로포름 등의 할로겐류로 이루어진 군에서 선택되어 사용되나, 이에 한정되는 것은 아니다.Examples of the reaction solvent include aromatic hydrocarbons such as toluene, xylene, monochlorobenzene and benzene, hydrocarbons such as pentane, hexane, heptane and octane, ethers such as diethylether, methylbutylether, dimethylglycol and tetrahydrofuran, , Trichloroethane, chloromethane, dichloromethane, trichloromethane, chloroform and the like, but is not limited thereto.

상기 유기 금속 착화합물의 제조방법에서 톨루엔, 크실렌, 모노클로로벤젠, 벤젠 등의 방향족, 펜탄, 헥산, 헵탄, 옥탄 등의 탄화수소류, 디에틸에테르, 메틸부틸에테르, 디메틸글리콜, 테트라히드로퓨란 등의 에테르류, 디클로로에탄, 트리클로로에탄, 클로로메탄, 디클로로메탄, 트리클로로메탄, 클로로포름 등의 할로겐류로 이루어진 군에서 선택된 용매로 재결정 및 세척하는 단계를 더욱 포함하여 이루어지는 것이 바람직하다.In the process for producing an organometallic complex, there can be mentioned aromatic hydrocarbons such as toluene, xylene, monochlorobenzene and benzene, hydrocarbons such as pentane, hexane, heptane and octane, ethers such as diethylether, methylbutylether, dimethylglycol and tetrahydrofuran Recrystallization and washing with a solvent selected from the group consisting of dichloromethane, dichloroethane, trichloroethane, chloromethane, dichloromethane, trichloromethane, and chloroform.

상기 제조된 유기 금속 착화합물은 폴리올레핀 중합체를 제조하는 공정에 사용된다.The organometallic complexes thus prepared are used in a process for producing a polyolefin polymer.

공정에 투입하는 유기 금속 착화합물의 M의 함량은 공정에서 생성되는 폴리올레핀 1kg에 대하여 0.001 내지 10μmol 비율이 되도록 첨가되는 것이 바람직하다. 상기 범위보다 적은 양을 투입할 경우 분자량 조절 효과가 미미하게 나타날 수 있으며 상기 범위보다 많은 양을 투입할 경우 생산량이 줄고 비용이 증가할 수 있다.It is preferable that the content of M in the organometallic complex compound added to the step is 0.001-10 μmol per 1 kg of the polyolefin produced in the step. If the amount is less than the above range, the effect of controlling the molecular weight may be insignificant. If the amount is larger than the above range, the production amount may be decreased and the cost may increase.

적용 가능한 폴리올레핀 중합 공정은 벌크 중합, 현탁 중합, 가스상 중합, 임계 유체를 이용한 중합 등의 형태로 이용할 수 있다. 중합에는 추가적으로 수분 제거 및 대전 방지 등의 목적으로 기타 첨가제를 투입할 수 있다.Applicable polyolefin polymerization processes can be used in the form of bulk polymerization, suspension polymerization, gas phase polymerization, polymerization using a critical fluid, and the like. Other additives may be added to the polymerization for the purpose of removing water and preventing electrification.

본 발명은 상기 유기 금속 착화합물을 분자량 조절제로 사용하여 제조한 폴리올레핀 중합체를 제공한다.
The present invention provides a polyolefin polymer prepared by using the organometallic complex as a molecular weight modifier.

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope and spirit of the invention as disclosed in the accompanying claims. Changes and modifications may fall within the scope of the appended claims.

[실시예][Example]

<분자량 조절제의 제조>&Lt; Preparation of molecular weight regulator &

실시예 1Example 1

250ml 둥근바닥 플라스크에 비스(사이클로펜타디에닐)티타늄 디클로라이드(bis(cyclopentadienyl)titanium dichloride) 1.25g을 넣고 톨루엔 10ml를 넣은 후 교반하였다. 여기에 트리이소부틸 알루미늄(triisobutyl aluminum, 1M in hexane) 10ml를 투입하고 상온에서 3일 동안 교반하였다. 용매를 진공으로 제거한 후 푸른 액상혼합물을 얻었다. 이를 통해 티타노센(titanocene)이 +3가로 환원된 것을 알 수 있었으며, 이 물질은 혼합물 상태에서 산화되거나 색이 변하지 않았다.1.25 g of bis (cyclopentadienyl) titanium dichloride was added to a 250 ml round-bottomed flask, 10 ml of toluene was added, and the mixture was stirred. 10 ml of triisobutyl aluminum (1 M in hexane) was added thereto, and the mixture was stirred at room temperature for 3 days. The solvent was removed in vacuo to give a blue liquid mixture. As a result, it was found that titanocene was reduced to +3, which was not oxidized or changed in color in the mixture state.

분리를 위해 50~60℃에서 진공으로 날아가는 물질들을 제거하고 소량의 헥산에서 -78℃에서 재결정하여 유기 알루미늄 물질이 대부분 제거되고 이소부틸기가 치환된 티타노센의 물질을 얻을 수 있었다.For separation, the material which was blown off at 50 ~ 60 ℃ was removed and recrystallized in a small amount of hexane at -78 ℃ to remove most of the organoaluminum material and to obtain the material of titanocene substituted with isobutyl group.

1H NMR (CDCl3, 500MHz): 7.26(br s, 10H), 1.96(m, 2H), 1.35(m, 1H), 1.16(m, 2H), 1.00(m,1H), 0.90(m, 2H), 0.41(d, 2H) 1 H NMR (CDCl 3, 500MHz ): 7.26 (br s, 10H), 1.96 (m, 2H), 1.35 (m, 1H), 1.16 (m, 2H), 1.00 (m, 1H), 0.90 (m, 2H), 0.41 (d, 2H)

실시예 2Example 2

250ml 둥근바닥 플라스크에 비스(사이클로펜타디에닐)티타늄 디클로라이드(bis(cyclopentadienyl)titanium dichloride) 1.25g을 넣고 톨루엔 10ml를 넣은 후 교반하였다. 여기에 트리이소부틸 알루미늄 (triisobutyl aluminum, 1M in hexane) 10ml를 투입하고 상온에서 3일 동안 교반하였다. 용매를 진공으로 제거한 후 푸른 액상혼합물을 얻었다. 이를 통해 티타노센(titanocene)이 +3가로 환원된 것을 알 수 있었으며, 이 물질은 혼합물 상태에서 산화되거나 색이 변하지 않았다. 이 물질을 톨루엔에 0.5mM로 희석시킨 후 그대로 사용하였다.1.25 g of bis (cyclopentadienyl) titanium dichloride was added to a 250 ml round-bottomed flask, 10 ml of toluene was added, and the mixture was stirred. 10 ml of triisobutyl aluminum (1 M in hexane) was added thereto, and the mixture was stirred at room temperature for 3 days. The solvent was removed in vacuo to give a blue liquid mixture. As a result, it was found that titanocene was reduced to +3, which was not oxidized or changed in color in the mixture state. This material was diluted to 0.5 mM in toluene and used as is.

실시예 3Example 3

실시예 2에서 트리이소부틸 알루미늄 (1M in hexane)을 5ml 사용한 것을 제외하고는 실시예 2와 동일하게 실시하였다.The procedure of Example 2 was repeated, except that 5 ml of 1 M in hexane was used in Example 2.

실시예 4Example 4

실시예 2에서 트리이소부틸 알루미늄 (1M in hexane)을 20ml 사용한 것을 제외하고는 실시예 2와 동일하게 실시하였다.Example 2 was carried out in the same manner as in Example 2, except that 20 ml of triisobutylaluminum (1M in hexane) was used.

실시예 5Example 5

250ml 둥근바닥 플라스크에 비스(사이클로펜타디에닐)티타늄 디클로라이드(bis(cyclopentadienyl)titanium dichloride) 1.25g을 넣고 톨루엔 10ml를 넣은 후 교반하였다. 여기에 트리에틸 알루미늄(triethyl aluminum, 1M in hexane) 10ml를 투입하고 상온에서 3일 동안 교반하였다. 용매를 진공으로 제거한 후 나온 물질을 톨루엔에 0.5mM로 희석시킨 후 그대로 사용하였다.1.25 g of bis (cyclopentadienyl) titanium dichloride was added to a 250 ml round-bottomed flask, 10 ml of toluene was added, and the mixture was stirred. 10 ml of triethyl aluminum (1M in hexane) was added thereto, and the mixture was stirred at room temperature for 3 days. The solvent was removed in vacuo and the resulting material was diluted to 0.5 mM in toluene and used as is.

실시예 6Example 6

실시예 5에서 트리메틸알루미늄 (2M in hexane)을 5ml 사용한 것을 제외하고는 실시예 5와 동일하게 실시하였다.The procedure of Example 5 was repeated except that 5 ml of trimethylaluminum (2M in hexane) was used in Example 5.

실시예 7Example 7

250ml 둥근바닥 플라스크에 비스(사이클로펜타디에닐)티타늄 디클로라이드(bis(cyclopentadienyl)titanium dichloride) 1.25g을 넣고 톨루엔 10ml를 넣은 후 교반하였다. 여기에 트리옥틸 알루미늄(trioctyl aluminum, 1M in hexane) 10ml를 투입하고 상온에서 3일 동안 교반하였다. 용매를 진공으로 제거한 후 푸른 액상 혼합물을 얻었다. 이를 통해 티타노센(titanocene)이 +3가로 환원된 것을 알 수 있었으며, 이 물질은 혼합물 상태에서 산화되거나 색이 변하지 않았다. 이 물질을 톨루엔에 0.5mM로 희석시킨 후 그대로 사용하였다.1.25 g of bis (cyclopentadienyl) titanium dichloride was added to a 250 ml round-bottomed flask, 10 ml of toluene was added, and the mixture was stirred. 10 ml of trioctyl aluminum (1M in hexane) was added thereto, and the mixture was stirred at room temperature for 3 days. The solvent was removed in vacuo to give a blue liquid mixture. As a result, it was found that titanocene was reduced to +3, which was not oxidized or changed in color in the mixture state. This material was diluted to 0.5 mM in toluene and used as is.

1H NMR을 통해 비스(사이클로펜타디에닐)옥틸티타늄(bis(cyclopentadienyl)octyltitanium)과 디옥틸알루미늄클로라이드(dioctylaluminum chloride), 트리옥틸알루미늄(trioctylaluminum)의 혼합물인 것을 확인할 수 있었다. It was confirmed by 1 H NMR that the mixture of bis (cyclopentadienyl) octyltitanium, dioctylaluminum chloride and trioctylaluminum was a mixture of bis (cyclopentadienyl) octyltitanium and dioctylaluminum chloride.

1H NMR (CDCl3, 500MHz): 7.31(br s, 10H), 2.43(d, 4H), 1.95~1.2(m, 28H), 1.2~0.9(m, 19H)
1 H NMR (CDCl 3 , 500 MHz): 7.31 (br s, 10H), 2.43 (d, 4H), 1.95-1.2

<촉매의 제조>&Lt; Preparation of catalyst >

실시예 8Example 8

실리카겔(Sylopol 2212, Grace Davison) 3g을 반응기에 넣고 톨루엔 10ml를 넣은 후 70℃에서 교반시켰다. 여기에 MAO 15ml(10wt% in toluene)을 넣고 2시간 동안 반응시킨 후 톨루엔으로 미반응물을 씻어내었다. 여기에 [tBu-O-(CH2)6-C5H4]2ZrCl2 화합물 0.54mmol 및 [메틸(6-t-부톡시헥실)실릴(η5-테트라메틸Cp)(t-부틸아미도)]TiCl2 화합물 0.18mmol을 톨루엔에 녹여 투입하였고 50℃에서 1시간 동안 교반시킨 후 톨루엔으로 씻어내었다. 여기에 트리틸 테트라키스(펜타플루오로페닐)보레이트(trityl tetrakis (pentafluorophenyl)borate)를 0.9mmol 투입하고 50℃에서 1시간 동안 반응시킨 후 톨루엔으로 세척하였다. 동일 조건에서 진공 건조하여 건조된 최종 촉매 5.6g을 제조하였다.3 g of silica gel (Sylopol 2212, Grace Davison) was charged into the reactor, and 10 ml of toluene was added thereto, followed by stirring at 70 ° C. 15 ml of MAO (10 wt% in toluene) was added thereto, and the reaction was allowed to proceed for 2 hours. Then, the unreacted material was washed with toluene. To this was added 0.54 mmol of [tBu-O- (CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 and [methyl (6-t-butoxyhexyl) silyl (η 5 -tetramethyl C p ) Amido)] TiCl 2 compound was dissolved in toluene, and the mixture was stirred at 50 ° C for 1 hour and then washed with toluene. 0.9 mmol of trityl tetrakis (pentafluorophenyl) borate was added thereto, reacted at 50 ° C for 1 hour, and then washed with toluene. Vacuum drying under the same conditions yielded 5.6 g of the dried final catalyst.

<중합체의 제조>&Lt; Preparation of Polymer &

실시예 9Example 9

2l 고압 반응기를 60℃에서 1시간 동안 질소로 교환해 준 후 여기에 정제된 헥산 1l를 투입하였다. 수분 제거 용도의 트리에틸알루미늄(1M in hexane) 0.6ml를 주입하고 이어 상기 실시예 8에서 제조된 촉매 5mg(0.65μmol 전이금속 함량)을 헥산에 현탁하고 반응기에 연결된 샘플 용기를 통해 투입하였다. 이어서 실시예 1에서 제조한 시약을 0.5mM Ti 농도로 톨루엔에 희석시킨 용액 0.26ml(0.13μmol Ti 함량)을 투입하였다. 이후 80℃에서 에틸렌을 연속적으로 투입하여 9bar의 압력을 유지하면서 2시간 동안 중합하였다. 반응기 내 에틸렌을 제거하고 분리 및 건조하여 최종 중합체를 얻었다.2 l The high-pressure reactor was exchanged with nitrogen for 1 hour at 60 ° C, and then 1 l of purified hexane was added thereto. 0.6 ml of triethylaluminum (1M in hexane) for water removal was injected, and 5 mg (0.65 μmol transition metal content) of the catalyst prepared in Example 8 was suspended in hexane and introduced through a sample container connected to the reactor. Subsequently, 0.26 ml (0.13 μmol Ti content) of the solution prepared in Example 1 and diluted in toluene at a concentration of 0.5 mM Ti was added. Thereafter, ethylene was continuously charged at 80 DEG C and polymerization was carried out for 2 hours while maintaining the pressure at 9 bar. Ethylene in the reactor was removed, separated and dried to obtain a final polymer.

실시예 10Example 10

실시예 1에서 제조된 시약 대신에 실시예 2에서 제조된 시약 0.5mM 농도의 것을 1.3ml(0.65μmol Ti 함량) 투입한 것을 제외하고는 실시예 9와 동일하게 실시하였다.The procedure of Example 9 was repeated except that 1.3 ml (0.65 μmol Ti content) of the reagent prepared in Example 2 and having a concentration of 0.5 mM was added instead of the reagent prepared in Example 1.

실시예 11Example 11

실시예 1에서 제조된 시약 대신에 실시예 2에서 제조된 시약 0.5mM 농도의 것을 0.26ml(0.13μmol Ti 함량) 투입한 것을 제외하고는 실시예 9와 동일하게 실시하였다.The procedure of Example 9 was repeated except that 0.26 ml (0.13 탆 ol Ti content) of the reagent prepared in Example 2 at a concentration of 0.5 mM was added instead of the reagent prepared in Example 1.

실시예 12Example 12

실시예 1에서 제조된 시약 대신에 실시예 3에서 제조된 시약을 동량(0.13μmol Ti 함량) 투입한 것을 제외하고는 실시예 9와 동일하게 실시하였다.The procedure of Example 9 was repeated except that the reagent prepared in Example 3 was added in the same amount (0.13 μmol Ti content) instead of the reagent prepared in Example 1.

실시예 13Example 13

실시예 1에서 제조된 시약 대신에 실시예 4에서 제조된 시약을 동량(0.13μmol Ti 함량) 투입한 것을 제외하고는 실시예 9와 동일하게 실시하였다.The procedure of Example 9 was repeated except that the reagent prepared in Example 4 was replaced by the same amount (0.13 mu mol Ti content) of the reagent prepared in Example 1.

실시예 14Example 14

실시예 2에서 제조된 시약 대신에 실시예 5에서 제조된 시약을 동량(0.13μmol Ti 함량) 투입한 것을 제외하고는 실시예 10과 동일하게 실시하였다.The procedure of Example 10 was repeated, except that the reagent prepared in Example 5 was added in the same amount (0.13 μmol Ti content) instead of the reagent prepared in Example 2.

실시예 15Example 15

실시예 2에서 제조된 시약 대신에 실시예 5에서 제조된 시약을 동량(0.65μmol Ti 함량) 투입한 것을 제외하고는 실시예 11과 동일하게 실시하였다.The procedure of Example 11 was repeated except that the reagent prepared in Example 5 was added in the same amount (0.65 μmol Ti content) instead of the reagent prepared in Example 2.

실시예 16Example 16

실시예 2에서 제조된 시약 대신에 실시예 6에서 제조된 시약을 동량(0.13μmol Ti 함량) 투입한 것을 제외하고는 실시예 10과 동일하게 실시하였다.The procedure of Example 10 was repeated except that the reagent prepared in Example 6 was added in the same amount (0.13 μmol Ti content) instead of the reagent prepared in Example 2.

실시예 17Example 17

실시예 2에서 제조된 시약 대신에 실시예 6에서 제조된 시약을 동량(0.65μmol Ti 함량)투입한 것을 제외하고는 실시예 11과 동일하게 실시하였다.The procedure of Example 11 was repeated except that the reagent prepared in Example 6 was added in the same amount (0.65 μmol Ti content) instead of the reagent prepared in Example 2.

실시예 18Example 18

실시예 2에서 제조된 시약 대신에 실시예 7에서 제조된 시약을 동량(0.13μmol Ti 함량) 투입한 것을 제외하고는 실시예 10과 동일하게 실시하였다.The procedure of Example 10 was repeated except that the reagent prepared in Example 7 was replaced by the same amount (0.13 mu mol Ti content) of the reagent prepared in Example 2.

실시예 19Example 19

실시예 2에서 제조된 시약 대신에 실시예 7에서 제조된 시약을 동량(0.65μmol Ti 함량) 투입한 것을 제외하고는 실시예 11과 동일하게 실시하였다.The procedure of Example 11 was repeated, except that the reagent prepared in Example 7 was added in the same amount (0.65 μmol Ti content) instead of the reagent prepared in Example 2.

비교예 1Comparative Example 1

2l 고압반응기를 60℃에서 1시간 동안 질소로 교환해 준 후 여기에 정제된 헥산 1l를 투입하였다. 수분 제거 용도의 트리에틸알루미늄(1M in hexane) 0.6ml를 주입하고 이어 상기 실시예 8에서 제조된 촉매 5mg(0.65μmol 전이금속 함량)을 헥산에 현탁하고 반응기에 연결된 샘플 용기를 통해 투입하였다. 이후 80℃에서 에틸렌을 연속적으로 투입하여 9bar의 압력을 유지하면서 2시간 동안 중합하였다. 반응기 내 에틸렌을 제거하고 분리 및 건조하여 최종 중합체를 얻었다.
2 l The high-pressure reactor was exchanged with nitrogen for 1 hour at 60 ° C, and then 1 l of purified hexane was added thereto. 0.6 ml of triethylaluminum (1M in hexane) for water removal was injected, and 5 mg (0.65 μmol transition metal content) of the catalyst prepared in Example 8 was suspended in hexane and introduced through a sample container connected to the reactor. Thereafter, ethylene was continuously charged at 80 DEG C and polymerization was carried out for 2 hours while maintaining the pressure at 9 bar. Ethylene in the reactor was removed, separated and dried to obtain a final polymer.

비교예 2Comparative Example 2

2l 고압반응기를 60℃에서 1시간 동안 질소로 교환해 준 후 여기에 정제된 헥산 1l를 투입하였다. 수분 제거 용도의 트리에틸알루미늄(1M in hexane) 0.6ml를 주입하고 이어 상기 실시예 1에서 제조한 시약을 0.5mM Ti 농도로 톨루엔에 희석시킨 용액 0.26ml(0.13μmol Ti 함량)을 투입하였다. 이후 80℃에서 에틸렌을 연속적으로 투입하여 9bar의 압력을 유지하면서 2시간 동안 중합하였다. 반응기 내에는 폴리에틸렌이 생성되지 않았다.
2 l The high-pressure reactor was exchanged with nitrogen for 1 hour at 60 ° C, and then 1 l of purified hexane was added thereto. 0.6 ml of triethylaluminum (1M in hexane) for water removal was injected, and then 0.26 ml (0.13 μmol Ti content) of the reagent prepared in Example 1 and diluted in toluene at a concentration of 0.5 mM Ti was added. Thereafter, ethylene was continuously charged at 80 DEG C and polymerization was carried out for 2 hours while maintaining the pressure at 9 bar. No polyethylene was produced in the reactor.

비교예 3Comparative Example 3

2l 고압반응기를 60℃에서 1시간 동안 질소로 교환해 준 후 여기에 정제된 헥산 1l를 투입하였다. 수분 제거 용도의 트리에틸알루미늄(1M in hexane) 0.6ml를 주입하고 이어 상기 실시예 1에서 제조한 시약을 0.5mM Ti 농도로 톨루엔에 희석시킨 용액 0.26ml(0.13μmol Ti 함량), 트리틸테트라키스(펜타플루오로페닐)보레이트(trityl tetrakis (pentafluorophenyl) borate)를 0.8μmol을 투입하였다. 이후 80℃에서 에틸렌을 연속적으로 투입하여 9bar의 압력을 유지하면서 2시간 동안 중합하였다. 반응기 내 에틸렌을 제거하고 분리 및 건조하여 0.4g의 최종 중합체를 얻었다.
2 l The high-pressure reactor was exchanged with nitrogen for 1 hour at 60 ° C, and then 1 l of purified hexane was added thereto. 0.6 ml of triethylaluminum (1 M in hexane) for water removal was injected, and then 0.26 ml (0.13 탆 mol Ti content) of the reagent prepared in Example 1 and diluted in toluene at a concentration of 0.5 mM Ti, (Pentafluorophenyl) borate (trityl tetrakis (pentafluorophenyl) borate). Thereafter, ethylene was continuously charged at 80 DEG C and polymerization was carried out for 2 hours while maintaining the pressure at 9 bar. Ethylene in the reactor was removed, separated and dried to obtain 0.4 g of final polymer.

[실험예][Experimental Example]

* MI(Melting Index): ASTM D1238 방법에 의거하여 측정하였다.* MI (Melting Index): Measured according to the ASTM D1238 method.

구분division 촉매catalyst 착화합물 제조Complex formation 중합예Polymerization Example 유기금속
착화합물
Organic metal
Complex
유기 Al 화합물Organic Al compound 착화합물/촉매 금속당량비Complex / catalyst metal equivalent ratio 활성(Kg PE/g cat)Active (Kg PE / g cat) MI(21.6Kg)
(g/10min)
MI (21.6 Kg)
(g / 10 min)
실시예 9Example 9 실시예 8Example 8 실시예 1Example 1 TIBA1) TIBA 1) 0.20.2 3434 3.723.72 실시예 10Example 10 실시예 8Example 8 실시예 2Example 2 TIBATIBA 0.20.2 3636 3.413.41 실시예 11Example 11 실시예 8Example 8 실시예 2Example 2 TIBATIBA 1.01.0 3535 0.930.93 실시예 12Example 12 실시예 8Example 8 실시예 3Example 3 TIBA
(0.5배)
TIBA
(0.5 times)
0.20.2 3434 3.53.5
실시예 13Example 13 실시예 8Example 8 실시예 4Example 4 TIBA
(2배)
TIBA
(Twice)
0.20.2 3737 3.23.2
실시예 14Example 14 실시예 8Example 8 실시예 5Example 5 TEA2) TEA 2) 0.20.2 3737 1.491.49 실시예 15Example 15 실시예 8Example 8 실시예 5Example 5 TEATEA 1.01.0 1818 0.000.00 실시예 16Example 16 실시예 8Example 8 실시예 6Example 6 TMA3) TMA 3) 0.20.2 3636 1.161.16 실시예 17Example 17 실시예 8Example 8 실시예 6Example 6 TMATMA 1.01.0 2424 0.150.15 실시예 18Example 18 실시예 8Example 8 실시예 7Example 7 TOA4) TOA 4) 0.20.2 3939 5.475.47 실시예 19Example 19 실시예 8Example 8 실시예 7Example 7 TOATOA 1.01.0 3535 1.61.6 비교예 1Comparative Example 1 실시예 8Example 8 -- -- -- 3939 14.514.5 비교예 2Comparative Example 2 -- 실시예 1Example 1 TIBATIBA -- 00 -- 비교예 3Comparative Example 3 실시예 1Example 1 TIBATIBA -- 0 (0.4g)0 (0.4 g) 6565

* 주* Day

1) TIBA: 트리이소부틸 알루미늄(triisobutyl aluminum)1) TIBA: triisobutyl aluminum

2) TEA: 트리에틸 알루미늄(triethyl aluminum)2) TEA: triethyl aluminum

3) TMA: 트리메틸 알루미늄(trimethyl aluminum)3) TMA: trimethyl aluminum

4) TOA: 트리옥틸 알루미늄(trioctyl aluminum)4) TOA: trioctyl aluminum

상기 표 1에서 보는 바와 같이, 본원 발명에 의하여 제조된 착화합물의 금속과 상기 촉매의 금속간 당량비가 0.2 내지 1.0인 착화합물 또는 조성물을 분자량 조절제로 사용하여 폴리올레핀 중합체를 제조하는 경우, 이것을 사용하지 않고 폴리올레핀 중합체를 제조하는 경우(비교예 1)에 비하여 촉매의 활성을 저하시키지 않으면서 용융지수가 낮은 값을 보이며 그에 따라 높은 중량평균 분자량을 갖는 폴리올레핀이 제조되는 것을 알 수 있습니다. 또한 착화합물 제조시 사용하는 알킬알루미늄의 종류를 바꾸는 경우에도 중합에 있어서 투입량을 변화시킬 경우 충분히 분자량 조절제로서 효과를 보여줌을 알 수 있다. 비교예 2 및 3에서 보듯이 중합시 담지촉매를 넣지 않고 중합을 할 경우 본원의 착화합물만으로는 아무런 물질이 제조가 되지 않으며, 보레이트 조촉매를 투입하여 나온 미량의 생성물은 저분자량을 갖는 것으로 보아 본원의 착화합물은 자체로는 고분자량 물질을 생성하지 않고 올레핀 중합 촉매 또는 올레핀 중합 담지촉매와 함께 쓰이는 첨가제 역할을 함을 알 수 있다.
As shown in Table 1, when a polyolefin polymer is prepared by using a complex or a composition having a metal equivalent ratio of the metal of the complex prepared by the present invention and the catalyst of 0.2 to 1.0 as a molecular weight modifier, the polyolefin It can be seen that when the polymer is prepared (Comparative Example 1), the melt index shows a low value without lowering the activity of the catalyst, and accordingly, a polyolefin having a high weight average molecular weight is produced. In addition, even when changing the type of alkylaluminum used in the preparation of the complex, it can be seen that when the amount of the alkylaluminum is changed in the polymerization, the molecular weight is sufficiently controlled. As shown in Comparative Examples 2 and 3, when the polymerization was carried out without adding the supported catalyst during the polymerization, no material was prepared using only the complex compound of the present invention, and a trace amount of the product obtained by introducing the borate promoter had a low molecular weight. It can be seen that the complexes themselves do not produce a high molecular weight substance but serve as an additive to be used together with the olefin polymerization catalyst or the olefin polymerization supported catalyst.

Claims (7)

메탈로센 담지 촉매 하에 폴리올레핀 중합체를 제조하는 방법에 있어서, 유기 금속 착화합물을 분자량 조절제로서 포함하되,
상기 착화합물의 금속과 상기 촉매의 금속간 당량비가 0.2 내지 1.0이고,
상기 유기 금속 착화합물은 폴리올레핀의 메탈로센 촉매 중합용 분자량 조절제로서, 하기 화학식 1로 표현되는 시클로펜타디에닐리간드 화합물 및 하기 화학식 2로 표현되는 유기 알루미늄 화합물을 반응시켜 제조된 것으로, 상기 유기 금속 착화합물은 하기 화학식 9로 나타내어지는 유기 알루미늄과의 혼합물의 형태로 존재하는 것을 특징으로 하는 폴리올레핀 중합체의 제조방법
[화학식 1]
Cp 1Cp 2MX2
[화학식 2]
R1R2R3Al
상기 화학식들에서 Cp 1및 Cp 2는 독립적으로 시클로펜타디에닐기, 인데닐기, 플루오레닐기에서 선택된 시클로펜타디에닐기를 지닌 리간드이고, M는 주기율표상의 IV족 원소이며, A는 M과 결합되어 있는 기능기이며, X는 할로겐 원소이고, A는 C1~C20알킬기 또는 수소이며, R1,R2및 R3는 독립적으로 C1~C20알킬기, 수소 또는 할로겐이다.
[화학식 9]
R1R2R3Al
상기 화학식 9에서 R1,R2 및 R3는 독립적으로 C1~C20알킬기 또는 할로겐이며, 상기 C1~C20알킬기는 헤테로 원소를 포함할 수 있다.
A method for producing a polyolefin polymer under a metallocene supported catalyst, the method comprising, as a molecular weight regulator, an organometallic complex,
The metal to metal ratio of the metal of the complex compound to the metal is 0.2 to 1.0,
The organometallic complex is a molecular weight modifier for metallocene catalyzed polymerization of a polyolefin, which is prepared by reacting a cyclopentadienyl ligand compound represented by the following formula (1) and an organoaluminum compound represented by the following formula (2) Is present in the form of a mixture with an organoaluminum represented by the following formula (9)
[Chemical Formula 1]
C p 1 C p 2 MX 2
(2)
R 1 R 2 R 3 Al
In the above formulas, C p 1 and C p 2 are independently a ligand having a cyclopentadienyl group selected from a cyclopentadienyl group, an indenyl group and a fluorenyl group, M is a Group IV element on the periodic table, A is a bond X is a halogen element, A is a C 1 -C 20 alkyl group or hydrogen, and R 1 , R 2, and R 3 are independently a C 1 -C 20 alkyl group, hydrogen, or halogen.
[Chemical Formula 9]
R 1 R 2 R 3 Al
In Formula 9, R 1 , R 2, and R 3 are independently a C 1 to C 20 alkyl group or a halogen, and the C 1 to C 20 alkyl group may include a heteroatom.
제1항에 있어서,
상기 메탈로센 담지 촉매는 담체에 알킬 알루미녹센 조촉매를 투입한 다음 메탈로센 화합물을 투입하고, 보레이트 조촉매를 투입하여 제조된 담지 촉매인 것을 특징으로 하는 폴리올레핀 중합체의 제조방법.
The method according to claim 1,
Wherein the metallocene supported catalyst is a supported catalyst prepared by charging an alkylaluminoxane co-catalyst to a carrier, then introducing a metallocene compound, and introducing a borate co-catalyst.
제1항에 있어서,
상기 유기 금속 착화합물은 하기 화학식 3, 4, 5, 6, 7 또는 8로 나타내어지는 것을 특징으로 하는 폴리올레핀 중합체의 제조방법
[화학식 3]
Cp 1Cp 2MA
[화학식 4]
Cp 1Cp 2MAX
[화학식 5]
Cp 1Cp 2MAB
[화학식 6]
Cp 1Cp 2M(L)AlR1R2R3
[화학식 7]
Cp 1Cp 2MX(L)AlR1R2
[화학식 8]
Cp 1Cp 2M(X)(L)AlR1R2R3
상기 화학식들에서 Cp 1및 Cp 2는 독립적으로 시클로펜타디에닐기, 인데닐기, 플루오레닐기에서 선택된 시클로펜타디에닐기를 지닌 리간드이고, M는 주기율표상의 IV족 원소이며, A, B 및 X는 M과 결합되어 있는 기능기이며, X는 할로겐 원소이고, A 및 B는 독립적으로 C1~C20알킬기 또는 수소이며, (X)는 M 및 Al에 양쪽으로 결합되어 있는 할로겐을 의미하고, (L)는 M 및 Al에 양쪽으로 결합되어 있는 탄소 사슬 알킬렌을 의미하고, R1,R2및 R3는 독립적으로 C1~C20알킬기, 수소 또는 할로겐이다.
The method according to claim 1,
Wherein the organometallic complex is represented by the following Chemical Formula 3, 4, 5, 6, 7 or 8
(3)
C p 1 C p 2 MA
[Chemical Formula 4]
C p 1 C p 2 MAX
[Chemical Formula 5]
C p 1 C p 2 MAB
[Chemical Formula 6]
C p 1 C p 2 M (L) AlR 1 R 2 R 3
(7)
C p 1 C p 2 MX (L) AlR 1 R 2
[Chemical Formula 8]
C p 1 C p 2 M (X) (L) AlR 1 R 2 R 3
In the above formulas, C p 1 and C p 2 are independently a ligand having a cyclopentadienyl group selected from a cyclopentadienyl group, an indenyl group and a fluorenyl group, M is a Group IV element on the periodic table, A, B and X Is a functional group bonded to M, X is a halogen element, A and B are independently a C 1 -C 20 alkyl group or hydrogen, (X) means a halogen bonded to both M and Al, (L) means a carbon chain alkylene bonded to both M and Al, and R 1 , R 2 and R 3 are independently a C 1 to C 20 alkyl group, hydrogen or halogen.
제 1항에 있어서,
상기 시클로펜타디에닐 리간드 화합물은 비스시클로펜타디에닐티타늄 디클로라이드, 비스시클로펜타디에닐지르코늄 디클로라이드, 비스시클로펜타디에닐하프늄 디클로라이드, 비스인데닐티타늄 디클로라이드 및 비스플로레닐티타늄 디클로라이드로 이루어진 군으로부터 선택되는 것을 특징으로 하는 폴리올레핀 중합체의 제조방법.
The method according to claim 1,
The cyclopentadienyl ligand compound is preferably selected from the group consisting of biscyclopentadienyl titanium dichloride, biscyclopentadienyl zirconium dichloride, biscyclopentadienyl hafnium dichloride, bisindenyl titanium dichloride and bis-fluorenyl titanium dichloride. Lt; RTI ID = 0.0 &gt; polyolefin &lt; / RTI &gt; polymer.
제 1항에 있어서,
상기 유기 알루미늄 화합물은 트리메틸 알루미늄, 트리에틸 알루미늄, 트리프로필알루미늄, 트리이소프로필알루미늄, 트리이소부틸 알루미늄, 트리헥실알루미늄, 트리옥틸 알루미늄, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디프로필알루미늄 클로라이드, 디이소부틸알루미늄 클로라이드, 디헥실알루미늄 클로라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 프로필알루미늄 디클로라이드, 및 이소부틸알루미늄 디클로라이드로 이루어진 군으로부터 선택되는 것을 특징으로 하는 폴리올레핀 중합체의 제조방법.
The method according to claim 1,
The organoaluminum compound is selected from the group consisting of trimethylaluminum, triethylaluminum, tripropylaluminum, triisopropylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, Wherein the polyolefin is selected from the group consisting of butyl aluminum chloride, dihexyl aluminum chloride, methyl aluminum dichloride, ethyl aluminum dichloride, propyl aluminum dichloride, and isobutyl aluminum dichloride.
삭제delete 제1항에 있어서,
상기 유기 금속 착화합물의 M의 함량이 생성되는 폴리올레핀 1kg에 대하여 0.001 내지 10μmol의 비율이 되도록 첨가되는 것을 특징으로 하는 폴리올레핀 중합체의 제조방법.
The method according to claim 1,
Wherein the content of M of the organometallic complex compound is added in a proportion of 0.001 to 10 mu mol per 1 kg of the produced polyolefin.
KR1020140091921A 2014-07-21 2014-07-21 Method of preparing polyolefins using the same KR101530487B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140091921A KR101530487B1 (en) 2014-07-21 2014-07-21 Method of preparing polyolefins using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140091921A KR101530487B1 (en) 2014-07-21 2014-07-21 Method of preparing polyolefins using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020110027888A Division KR20120110187A (en) 2011-03-29 2011-03-29 Organometallic/organobimetallic complex, method of preparing the same, and method of preparing polyolefins using the same

Publications (2)

Publication Number Publication Date
KR20140114310A KR20140114310A (en) 2014-09-26
KR101530487B1 true KR101530487B1 (en) 2015-06-19

Family

ID=51758126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140091921A KR101530487B1 (en) 2014-07-21 2014-07-21 Method of preparing polyolefins using the same

Country Status (1)

Country Link
KR (1) KR101530487B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204469A1 (en) * 2015-06-15 2016-12-22 주식회사 엘지화학 Method for producing metallocene-supported catalyst
KR101795748B1 (en) 2015-06-15 2017-12-01 주식회사 엘지화학 Method for preparing polyolefin
KR101850985B1 (en) 2015-06-15 2018-04-20 주식회사 엘지화학 Method for preparing supported metallocene catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814540A (en) * 1986-11-13 1989-03-21 Idemitsu Kosan Company Limited Process for producing propylene oligomers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814540A (en) * 1986-11-13 1989-03-21 Idemitsu Kosan Company Limited Process for producing propylene oligomers

Also Published As

Publication number Publication date
KR20140114310A (en) 2014-09-26

Similar Documents

Publication Publication Date Title
EP1874828B1 (en) Catalysts for olefin polymerization
JP5671750B2 (en) Method for producing supported metallocene catalyst and method for producing polyolefin using the same
KR101412118B1 (en) Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR101709688B1 (en) Method for preparing polyolfin and polyolefin prepared therefrom
KR101116699B1 (en) Hybrid Supported Metallocene Catalyst, Method for Preparing the Same, and Method for Preparing Polyolefin using the Same
KR101618460B1 (en) Supported catalyst for olefin polymerization and process for preparing polyolefin using the same
US7410927B2 (en) Catalysts for olefin polymerization
KR20110043464A (en) Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR101850985B1 (en) Method for preparing supported metallocene catalyst
KR20090063799A (en) Supported hybrid metallocene catalyst, method for preparing the same, and the method for preparing polyolefin using the supported hybrid metallocene catalyst
KR101116701B1 (en) Supported Metallocene Catalyst, Method for Preparing the Same, and Method for Preparing Polyolefin using the Same
KR102028736B1 (en) Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR20140049452A (en) Novel metallocene compound, catalyst composition comprising the same, and method for preparing olefin-based polymers using the same
KR101725351B1 (en) Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR20150057974A (en) Method for preparing polyolfin and polyolefin prepared therefrom
KR20110117736A (en) Method for preparing supported multi-site metallocene catalyst and method for preparing polyolefin using the same
KR20160147640A (en) Method for preparing polyolefin
KR101412846B1 (en) Method For Preparing Polyolefin And Polyolefin Therefrom
KR101530487B1 (en) Method of preparing polyolefins using the same
KR101725349B1 (en) Supported hybrid catalyst and method for preparing olefin polymer using the same
KR20160067803A (en) Supported catalyst and method for preparing olefin polymer using the same
KR20120061029A (en) Method for preparing supported hybride metallocene catalyst
KR20160140783A (en) Catalyst composition, methods of preparation and use in a polymerization process
KR101835993B1 (en) Catalyst for olefin polymerization and method for preparing polyolefin using the same
KR101862444B1 (en) Method for preparing polyolefin and polyolefin prepared therefrom

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 5