KR101526633B1 - Diruthenium complex and material and method for chemical vapor deposition - Google Patents

Diruthenium complex and material and method for chemical vapor deposition Download PDF

Info

Publication number
KR101526633B1
KR101526633B1 KR1020107020605A KR20107020605A KR101526633B1 KR 101526633 B1 KR101526633 B1 KR 101526633B1 KR 1020107020605 A KR1020107020605 A KR 1020107020605A KR 20107020605 A KR20107020605 A KR 20107020605A KR 101526633 B1 KR101526633 B1 KR 101526633B1
Authority
KR
South Korea
Prior art keywords
film
tetra
ruthenium
group
diruthenium
Prior art date
Application number
KR1020107020605A
Other languages
Korean (ko)
Other versions
KR20100126387A (en
Inventor
다츠야 사카이
산시로 고미야
나오후미 노무라
Original Assignee
제이에스알 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008068102A external-priority patent/JP5293930B2/en
Application filed by 제이에스알 가부시끼가이샤 filed Critical 제이에스알 가부시끼가이샤
Publication of KR20100126387A publication Critical patent/KR20100126387A/en
Application granted granted Critical
Publication of KR101526633B1 publication Critical patent/KR101526633B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/08Acetone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/02Formic acid
    • C07C53/06Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds

Abstract

본 발명은, 테트라(μ-포름에이토)디루테늄(II,II), 테트라(μ-포름에이토)(2수화물)디루테늄(II,II)과 같은 디루테늄 착체 및 이 착체를 포함하는 화학 기상 성장 재료 및 이것을 사용하여 화학 기상 성장법에 의해 루테늄막을 형성하는 방법을 제공한다.The present invention relates to a dithronium complex such as tetra (μ-formoieto) diruthenium (II, II), tetra (μ-formoieto) (dihydrate) diuthenium (II, II) A chemical vapor phase growth material and a method for forming a ruthenium film by a chemical vapor deposition method using the same are provided.

Description

디루테늄 착체 및 화학 기상 성장의 재료 및 방법{DIRUTHENIUM COMPLEX AND MATERIAL AND METHOD FOR CHEMICAL VAPOR DEPOSITION}[0001] DIRUTHENIUM COMPLEX AND MATERIAL AND METHOD FOR CHEMICAL VAPOR DEPOSITION [0002]

본 발명은 신규 디루테늄 착체, 화학 기상 성장 재료 및 화학 기상 성장 방법에 관한 것이다.The present invention relates to novel diuthenium complexes, chemical vapor deposition materials and chemical vapor deposition processes.

DRAM(Dynamic Random Access Memory)로 대표되는 반도체 디바이스는, 그의 고집적화와 미세화에 따라 디바이스를 구성하는 각 금속막, 금속 산화막의 재료 변경이 필요로 되고 있다.BACKGROUND ART [0002] Semiconductor devices represented by dynamic random access memories (DRAMs) have been required to change materials of respective metal films and metal oxide films constituting devices in accordance with their high integration and miniaturization.

그 중에서도, 반도체 디바이스 내의 다층 배선 용도에서의 도전성 금속막의 개량이 요구되고 있으며, 도전성이 높은 구리 배선으로의 변환이 새롭게 진행되고 있다. 이 구리 배선의 도전성을 높이는 목적으로 다층 배선의 층간 절연막 재료에는 저유전율 재료(Low-k 재료)가 사용되고 있지만, 이 저유전율 재료 중에 포함되어 있는 산소 원자가 구리 배선에 쉽게 포입되어 그의 도전성을 낮춘다는 문제점이 발생하고 있다. 그 때문에, 저유전율 재료로부터의 산소의 이동을 방지하는 목적으로, 저유전율 재료와 구리 배선 사이에 배리어막을 형성하는 기술이 검토되고 있다. 이 배리어막 용도로서, 유전체층으로부터의 산소가 포입되기 어려운 재료 및 드라이 에칭에 의해 용이하게 가공할 수 있는 재료로서, 금속 루테늄막이 주목받고 있다. 나아가서는 상기 구리 배선을 도금법으로 매립하는 다마신 성막법에 있어서, 상기 배리어막과 도금 성장막 양쪽의 역할을 동시에 만족시키는 목적으로부터, 금속 루테늄이 주목받고 있다(문헌 [전자 재료 2003년 11월호 PP47-49] 및 [Jpn. J. Appl. Phys., Vol.43, No.6A(2004) PP3315-3319] 참조).Among them, the improvement of the conductive metal film in the use of the multilayer wiring in the semiconductor device is required, and the conversion to the copper wiring with high conductivity is progressing. Although a low dielectric constant material (low-k material) is used for the interlayer insulating film material of the multilayer interconnection for the purpose of enhancing the conductivity of the copper interconnection, the oxygen atoms contained in the low dielectric constant material are easily embedded in the copper interconnection, There is a problem. Therefore, for the purpose of preventing the movement of oxygen from the low dielectric constant material, a technique of forming a barrier film between the low dielectric constant material and the copper wiring has been studied. As the barrier film application, a metal ruthenium film has attracted attention as a material which is difficult to inject oxygen from the dielectric layer and a material which can be easily processed by dry etching. Metal ruthenium has been attracting attention for the purpose of satisfying both the role of both the barrier film and the plating growth film in the damascene film forming method in which the copper wiring is filled by the plating method -49] and [Jpn. J. Appl. Phys., Vol.43, No. 6A (2004) PP3315-3319]).

또한, 반도체 디바이스의 커패시터에서도, 알루미나, 오산화탄탈, 산화하프늄, 티탄산바륨ㆍ스트론튬(BST)과 같은 고유전율 재료의 전극 재료로서, 금속 루테늄막은 그의 높은 내산화성과 높은 도전성으로부터 주목받고 있다(일본 특허 공개 제2003-100909호 공보 참조).Also, as the electrode material of a high dielectric constant material such as alumina, tantalum pentoxide, hafnium oxide, barium oxide / strontium (BST), etc., the metal ruthenium film is also attracting attention because of its high oxidation resistance and high conductivity See JP-A-2003-100909).

상기한 금속 루테늄막의 형성에는 종래 스퍼터링법이 많이 이용되었지만, 최근 보다 미세화한 구조나 박막화, 양산성에 대한 대응으로서 화학 기상 성장법의 검토가 행해지고 있다(일본 특허 공개 제2003-318258호 공보, 일본 특허 공개 제2002-161367호 공보 및 일본 특허 공표 제2002-523634호 공보 참조).Conventionally, the sputtering method has been widely used to form the above-mentioned metal ruthenium film. However, the chemical vapor deposition method has been studied as a response to the structure, thinning, and mass production that have become finer than in recent years (JP-A-2003-318258, Open No. 2002-161367 and Japanese Patent Publication No. 2002-523634).

그러나, 일반적으로 화학 기상 성장법으로 형성한 금속막은 미소결정의 집합 상태가 거칠다는 등 표면 모폴로지가 악화되기 때문에, 상기 모폴로지의 문제점을 해결하는 수단으로서, 비스(디피발로일메타네이트)루테늄이나 루테노센, 비스(알킬시클로펜타디에닐)루테늄을 화학 기상 성장 재료로 사용한 검토가 행해지고 있다(일본 특허 공개 (평)06-283438호 공보, 일본 특허 공개 (평)11-35589호 공보 및 일본 특허 공개 제2002-114795호 공보 참조).However, in general, the metal film formed by the chemical vapor deposition method has surface morphology deteriorated because the aggregation state of the fine crystals is rough. Therefore, as a means for solving the problems of the above-mentioned morphology, Nos., And bis (alkylcyclopentadienyl) ruthenium as chemical vapor phase growth materials have been studied (see JP-A-06-283438, JP-A-11-35589, 2002-114795).

또한, 이들 화학 기상 성장 재료를 제조 공정에서 사용하는 경우, 그의 제조조건 안정의 목적으로부터도 재료의 양호한 보존 안정성이 요구된다. 그러나, 기존의 루테노센이나 비스(알킬시클로펜타디에닐)루테늄 등은 공기의 혼입 등에 의해 단시간에 재료의 산화, 성능 열화가 발생하고, 결과로서 성막한 루테늄의 도전성이 저하되어, 그의 보존 안정성과 공기 중에서의 안정적인 취급성에 문제점이 있다. 또한, 보존 안정성이 양호한 비스(디피발로일메타네이트)루테늄 등을 화학 기상 성장 재료에 사용하면, 성막된 루테늄막 중에 불순물이 많고, 양질인 루테늄막이 얻어지지 않는다는 문제점이 있다. 상기 문제점을 해결하는 수단으로서, 기타 카르보닐 화합물이나 디엔 화합물을 배위자에 가진 루테늄 화합물, 루테늄 (II)가를 사용한 화합물이 검토되었지만(일본 특허 공개 제2002-212112호 공보, 일본 특허 공개 제2003-342286호 공보 및 일본 특허 공개 제2006-241557호 공보 참조), 각각 화합물의 보존 안정성과 성막된 루테늄막 중의 저잔류 불순물의 양립이 곤란하기 때문에, 과제로서 남아 있다.In addition, when these chemical vapor deposition materials are used in the production process, good storage stability of the materials is also demanded for the purpose of stabilizing the production conditions. However, existing ruthenocene, bis (alkylcyclopentadienyl) ruthenium and the like are oxidized and deteriorated in performance in a short period of time due to incorporation of air or the like. As a result, the conductivity of the deposited ruthenium is lowered, There is a problem in stable handling in the air. Further, when bis (dipivaloylmethanate) ruthenium or the like having good storage stability is used for a chemical vapor deposition material, there is a problem that a ruthenium film having a high quality and a high impurity content can not be obtained in the deposited ruthenium film. As a means for solving the above problems, a ruthenium compound having a carbonyl compound or a diene compound as a ligand and a compound using ruthenium (II) have been studied (JP-A-2002-212112, JP-A-2003-342286 Japanese Patent Application Laid-Open No. 2006-241557). However, these problems remain because the storage stability of the compound and the low residual impurities in the formed ruthenium film are difficult to achieve at the same time.

본 발명은 상기 문제를 감안하여 이루어진 것이며, 그 목적은 보존 안정성이 우수하고, 잔류 불순물이 적은 양질인 루테늄막을 얻을 수 있는 신규 디루테늄 착체, 화학적 기상 성장 재료 및 이 화학적 기상 성장 재료를 사용하여 루테늄막을 형성하는 간편한 방법을 제공하는 것에 있다.DISCLOSURE OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel diuthenium complex, a chemical vapor phase growth material, and a chemical vapor phase growth material which can obtain a ruthenium film excellent in storage stability and low in residual impurities, And to provide a simple method of forming a film.

본 발명의 다른 목적 및 이점은 이하의 설명으로부터 명백해질 것이다.Other objects and advantages of the present invention will become apparent from the following description.

본 발명에 따르면, 본 발명의 상기 목적 및 이점은 첫째로, 하기 화학식 1로 표시되는 디루테늄 착체 및 이 착체를 포함하는 화학 기상 성장 재료에 의해 달성된다.According to the present invention, the above objects and advantages of the present invention are achieved firstly by a chemical vapor phase growth material comprising a ruthenium complex represented by the following general formula (1) and the complex.

Figure 112010059863512-pct00001
Figure 112010059863512-pct00001

(식 중, R1, R2, R3 및 R4는 각각 독립적으로 수소 원자, 불소 원자, 탄소수 1 내지 10의 탄화수소기, 탄소수 1 내지 10의 할로겐화 탄화수소기 또는 탄소수 1 내지 10의 알콕시기이고, X 및 Y는 각각 독립적으로 물, 탄소수 1 내지 10의 케톤 화합물, 탄소수 1 내지 10의 에테르 화합물, 탄소수 1 내지 10의 에스테르 화합물, 탄소수 1 내지 6의 니트릴 화합물임)(Wherein R1, R2, R3 and R4 are each independently a hydrogen atom, a fluorine atom, a hydrocarbon group of 1 to 10 carbon atoms, a halogenated hydrocarbon group of 1 to 10 carbon atoms or an alkoxy group of 1 to 10 carbon atoms, X and Y Are each independently water, a ketone compound having 1 to 10 carbon atoms, an ether compound having 1 to 10 carbon atoms, an ester compound having 1 to 10 carbon atoms, or a nitrile compound having 1 to 6 carbon atoms)

본 발명에 따르면, 본 발명의 상기 목적 및 이점은 둘째로, 하기 화학식 2로 표시되는 디루테늄 착체 및 이 착체를 포함하는 화학 기상 성장 재료에 의해 달성된다.According to the present invention, the above objects and advantages of the present invention are achieved secondly by a chemical vapor deposition material comprising a di-ruthenium complex represented by the following general formula (2) and the complex.

Figure 112010059863512-pct00002
Figure 112010059863512-pct00002

(식 중, R5, R6, R7 및 R8은 각각 독립적으로 수소 원자, 불소 원자, 탄소수 1 내지 10의 탄화수소기, 탄소수 1 내지 10의 할로겐화 탄화수소기 또는 탄소수 1 내지 10의 알콕시기임)(Wherein R5, R6, R7 and R8 are each independently a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogenated hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms)

본 발명에 따르면, 본 발명의 상기 목적 및 이점은 셋째로, 상기한 화학 기상 성장 재료로부터 화학 기상 성장법에 의해 루테늄막을 형성하는 방법에 의해 달성된다.According to the present invention, the above objects and advantages of the present invention are achieved by a method of forming a ruthenium film from a chemical vapor deposition material by the chemical vapor deposition method.

도 1은, 실시예 2에서 얻어진 테트라(μ-트리플루오로아세테이토)디(아세톤)디루테늄의 19F-NMR 스펙트럼도이다.
도 2는, 실시예 3에서 얻어진 테트라(μ-펜타플루오로프로피오네이토)디(아세톤)디루테늄의 19F-NMR 스펙트럼도이다.
1 is a 19 F-NMR spectrum diagram of tetra (μ-trifluoroacetate) di (acetone) diruthenium obtained in Example 2. FIG.
2 is a 19 F-NMR spectrum diagram of tetra (μ-pentafluoropropionate) di (acetone) diruthenium obtained in Example 3. FIG.

이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 화학 기상 성장 재료로서 유용한 신규 디루테늄 착체는 상기 화학식 1 및 화학식 2 각각으로 표시된다.The novel diruthenium complexes useful as the chemical vapor deposition material of the present invention are represented by the above-mentioned chemical formulas 1 and 2, respectively.

상기 화학식 1에서, R1, R2, R3 및 R4는 각각 독립적으로 수소 원자, 불소 원자, 탄소수 1 내지 10의 탄화수소기, 탄소수 1 내지 10의 할로겐화 탄화수소기 또는 탄소수 1 내지 10의 알콕시기이다. 여기서, 탄소수 1 내지 10의 탄화수소기로서는 탄소수 1 내지 7의 탄화수소기인 것이 바람직하고, 그의 구체예로서는, 예를 들면 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, t-부틸기, 네오펜틸기, n-헥실기, 시클로헥실기, 페닐기, 벤질기, 메틸페닐기를 들 수 있다. 또한, 탄소수 1 내지 10의 할로겐화 탄화수소기로서는, 탄소수 1 내지 6의 할로겐화 탄화수소기인 것이 바람직하다. 그의 구체예로서는, 예를 들면 클로로메틸기, 디클로로메틸기, 트리클로로메틸기, 플루오로메틸기, 디플루오로메틸기, 트리플루오로메틸기, 2.2.2-트리플루오로-에틸기, 펜타플루오로에틸기, 퍼플루오로프로필기, 퍼플루오로부틸기, 퍼플루오로헥실기, 펜타플루오로페닐기를 들 수 있다. 또한, 탄소수 1 내지 10의 알콕시기로서는 탄소수 1 내지 6의 알콕시기인 것이 바람직하고, 그의 구체예로서는, 예를 들면 메톡시기, 에톡시기, n-프로폭시기, 이소 프로폭시기, n-부톡시기, 이소부톡시기, t-부톡시기, n-헥사옥시기, 페녹시기를 들 수 있다. R1, R2, R3 및 R4의 바람직한 예로서는, 수소 원자, 불소 원자, 메틸기, 에틸기, 이소프로필기, t-부틸기, 네오펜틸기, 트리플루오로메틸기, 펜타플루오로에틸기, 2.2.2-트리플루오로-에틸기, 퍼플루오로헥실기, 메톡시기, 에톡시기, t-부톡시기를 들 수 있다.R 1, R 2, R 3 and R 4 are each independently a hydrogen atom, a fluorine atom, a hydrocarbon group of 1 to 10 carbon atoms, a halogenated hydrocarbon group of 1 to 10 carbon atoms, or an alkoxy group of 1 to 10 carbon atoms. The hydrocarbon group having 1 to 10 carbon atoms is preferably a hydrocarbon group having 1 to 7 carbon atoms. Specific examples thereof include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, a t-butyl group, a neopentyl group, an n-hexyl group, a cyclohexyl group, a phenyl group, a benzyl group and a methylphenyl group. The halogenated hydrocarbon group having 1 to 10 carbon atoms is preferably a halogenated hydrocarbon group having 1 to 6 carbon atoms. Specific examples thereof include a chloromethyl group, a dichloromethyl group, a trichloromethyl group, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a pentafluoroethyl group, A perfluorobutyl group, a perfluorohexyl group, and a pentafluorophenyl group. The alkoxy group having 1 to 10 carbon atoms is preferably an alkoxy group having 1 to 6 carbon atoms, and specific examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, Isobutoxy group, t-butoxy group, n-hexoxy group, and phenoxy group. Preferable examples of R 1, R 2, R 3 and R 4 include a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a neopentyl group, a trifluoromethyl group, a pentafluoroethyl group, A perfluorohexyl group, a methoxy group, an ethoxy group, and a t-butoxy group.

또한, 상기 화학식 1에서, X 및 Y는 각각 독립적으로 물, 탄소수 1 내지 10의 케톤 화합물, 탄소수 1 내지 10의 에테르 화합물, 탄소수 1 내지 10의 에스테르화합물, 탄소수 1 내지 6의 니트릴 화합물이다. 여기서, 탄소수 1 내지 10의 케톤 화합물로서는, 탄소수 1 내지 7의 케톤 화합물이 바람직하고, 그의 구체예로서는 아세톤, 2-부타논, 3-메틸-2-부타논, 2-펜타논, 피나콜론, 3-펜타논, 3-헥사논, 2-헵타논을 들 수 있다. 탄소수 1 내지 10의 에테르 화합물로서는 탄소수 1 내지 6의 에테르 화합물이 바람직하고, 그의 구체예로서는 디메틸에테르, 메틸에틸에테르, 디에틸에테르, 테트라히드로푸란, 디옥산, 디프로필에테르를 들 수 있다. 탄소수 1 내지 10의 에스테르 화합물로서는 탄소수 1 내지 7의 에스테르 화합물이 바람직하고, 그의 구체예로서는 메틸아세테이트, 에틸아세테이트, 프로필아세테이트, 부틸아세테이트, 펜틸아세테이트, 아밀아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 디메틸카르보네이트, 디에틸카르보네이트를 들 수 있다. 탄소수 1 내지 6의 니트릴 화합물의 구체예로서는, 아세토니트릴, 프로피오니트릴을 들 수 있다. X 및 Y의 바람직한 예로서는, 물, 아세톤, 2-부타논, 메틸아세테이트, 메틸프로피오네이트, 디메틸카르보네이트, 디메틸에테르, 디에틸에테르, 테트라히드로푸란, 디옥산, 아세토니트릴을 들 수 있다.In Formula 1, X and Y are each independently water, a ketone compound having 1 to 10 carbon atoms, an ether compound having 1 to 10 carbon atoms, an ester compound having 1 to 10 carbon atoms, or a nitrile compound having 1 to 6 carbon atoms. The ketone compound having 1 to 10 carbon atoms is preferably a ketone compound having 1 to 7 carbon atoms. Specific examples thereof include acetone, 2-butanone, 3-methyl-2-butanone, 2-pentanone, - pentanone, 3-hexanone, and 2-heptanone. The ether compound having 1 to 10 carbon atoms is preferably an ether compound having 1 to 6 carbon atoms, and specific examples thereof include dimethyl ether, methyl ethyl ether, diethyl ether, tetrahydrofuran, dioxane and dipropyl ether. The ester compound having 1 to 10 carbon atoms is preferably an ester compound having 1 to 7 carbon atoms. Specific examples thereof include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, amyl acetate, methyl propionate, Dimethyl carbonate, and diethyl carbonate. Specific examples of the nitrile compound having 1 to 6 carbon atoms include acetonitrile and propionitrile. Preferable examples of X and Y include water, acetone, 2-butanone, methyl acetate, methyl propionate, dimethyl carbonate, dimethyl ether, diethyl ether, tetrahydrofuran, dioxane and acetonitrile.

상기 화학식 2에서, R5, R6, R7 및 R8은 각각 독립적으로 수소 원자, 불소 원자, 탄소수 1 내지 10의 탄화수소기, 탄소수 1 내지 10의 할로겐화 탄화수소기 또는 탄소수 1 내지 10의 알콕시기이다. 여기서, 탄소수 1 내지 10의 탄화수소기로서는 탄소수 1 내지 7의 탄화수소기인 것이 바람직하고, 그의 구체예로서는, 예를 들면 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, t-부틸기, 네오펜틸기, n-헥실기, 시클로헥실기, 페닐기, 벤질기, 메틸페닐기를 들 수 있다. 또한, 탄소수 1 내지 10의 할로겐화 탄화수소기로서는, 탄소수 1 내지 6의 할로겐화 탄화수소기인 것이 바람직하다. 그의 구체예로서는, 예를 들면 클로로메틸기, 디클로로메틸기, 트리클로로메틸기, 플루오로메틸기, 디플루오로메틸기, 트리플루오로메틸기, 2.2.2-트리플루오로-에틸기, 펜타플루오로에틸기, 퍼플루오로프로필기, 퍼플루오로부틸기, 퍼플루오로헥실기, 펜타플루오로페닐기를 들 수 있다.R5, R6, R7 and R8 are each independently a hydrogen atom, a fluorine atom, a hydrocarbon group of 1 to 10 carbon atoms, a halogenated hydrocarbon group of 1 to 10 carbon atoms, or an alkoxy group of 1 to 10 carbon atoms. The hydrocarbon group having 1 to 10 carbon atoms is preferably a hydrocarbon group having 1 to 7 carbon atoms. Specific examples thereof include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, a t-butyl group, a neopentyl group, an n-hexyl group, a cyclohexyl group, a phenyl group, a benzyl group and a methylphenyl group. The halogenated hydrocarbon group having 1 to 10 carbon atoms is preferably a halogenated hydrocarbon group having 1 to 6 carbon atoms. Specific examples thereof include a chloromethyl group, a dichloromethyl group, a trichloromethyl group, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a pentafluoroethyl group, A perfluorobutyl group, a perfluorohexyl group, and a pentafluorophenyl group.

또한, 탄소수 1 내지 10의 알콕시기로서는 탄소수 1 내지 6의 알콕시기인 것이 바람직하고, 그의 구체예로서는, 예를 들면 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, n-부톡시기, 이소부톡시기, t-부톡시기, n-헥사옥시기, 페녹시기를 들 수 있다. R5, R6, R7 및 R8의 바람직한 예로서는, 수소 원자, 불소 원자, 메틸기, 에틸기, 이소프로필기, t-부틸기, 네오펜틸기, 모노플루오로메틸기, 트리플루오로메틸기, 펜타플루오로에틸기, 2.2.2-트리플루오로-에틸기, 퍼플루오로헥실기, 메톡시기, 에톡시기, t-부톡시기를 들 수 있다.The alkoxy group having 1 to 10 carbon atoms is preferably an alkoxy group having 1 to 6 carbon atoms, and specific examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, Isobutoxy group, t-butoxy group, n-hexoxy group, and phenoxy group. Preferred examples of R5, R6, R7 and R8 include a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a neopentyl group, a monofluoromethyl group, a trifluoromethyl group and a pentafluoroethyl group A 2-trifluoro-ethyl group, a perfluorohexyl group, a methoxy group, an ethoxy group, and a t-butoxy group.

상기 화학식 1 및 2로 표시되는 화합물의 합성법은 문헌 [D. Rose and G. Wilkinson, J. Chem. Soc.(A), 1791, (1970)] 및 [A. J. Lindsay and G. Wilkinson, J. Chem. Soc. Dalton Trans., 2321, (1985)]을 참조할 수 있다.The synthesis of the compounds represented by the above formulas (1) and (2) is described in [D. Rose and G. Wilkinson, J. Chem. Soc. (A), 1791, (1970)] and [A. J. Lindsay and G. Wilkinson, J. Chem. Soc. Dalton Trans., 2321, (1985).

상기 화학식 1로 표시되는 디루테늄 착체의 구체예로서는, 예를 들면 테트라(μ-포름에이토)(2수화물)디루테늄(II,II), 테트라(μ-포름에이토)디(아세톤)디루테늄(II,II), 테트라(μ-포름에이토)디(2-부타논)디루테늄(II,II), 테트라(μ-포름에이토)디(디메틸에테르)디루테늄(II,II), 테트라(μ-포름에이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-포름에이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-포름에이토)디(디메틸카르보네이토)디루테늄(II,II), 테트라(μ-포름에이토)디(메틸아세테이토)디루테늄(II,II), 테트라(μ-포름에이토)디(메틸프로피오네이토)디루테늄(II,II), 테트라(μ-포름에이토)디(아세토니트릴)디루테늄(II,II), Specific examples of the di-ruthenium complexes represented by the above-mentioned formula (1) include tetra (μ-formoieto) (dihydrate) di ruthenium (II, II), tetra (μ- (II, II), tetra (u-formato) di (dimethyl ether) diruthenium (II, II) (II, II), tetra (μ-formoieto) di (diethyl ether) diruthenium (II, II) (II, II), tetra (μ-formoieto) di (methyloacetate) diruthenium (II, II), tetra (II, II), tetra (μ-formato) di (acetonitrile) diruthenium (II, II)

테트라(μ-아세테이토)(2수화물)디루테늄(II,II), 테트라(μ-아세테이토)디(아세톤)디루테늄(II,II), 테트라(μ-아세테이토)디(2-부타논)디루테늄(II,II), 테트라(μ-아세테이토)디(디메틸에테르)디루테늄(II,II), 테트라(μ-아세테이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-아세테이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-아세테이토)디(디메틸카르보네이토)디루테늄(II,II), 테트라(μ-아세테이토)디(메틸아세테이토)디루테늄(II,II), 테트라(μ-아세테이토)디(메틸프로피오네이토)디루테늄(II,II), 테트라(μ-아세테이토)디(아세토니트릴)디루테늄(II,II), Tetra (diacetate) (dihydrate) diuthenium (II, II), tetra (acetone) di (acetone) diuthenium (II, II), tetra (II, II), tetra (μ-acetate) di (dimethyl ether) diruthenium (II, II) (II, II), tetra (μ-acetato) di (dimethylcarbonate) diruthenium (II, II) (II, II), tetra (袖 -acetate) di (methylpropionate) diruthenium (II, II), tetra -Acetate) di (acetonitrile) diruthenium (II, II),

테트라(μ-프로피오네이토)(2수화물)디루테늄(II,II), 테트라(μ-프로피오네이토)디(아세톤)디루테늄(II,II), 테트라(μ-프로피오네이토)디(2-부타논)디루테늄(II,II), 테트라(μ-프로피오네이토)디(디메틸에테르)디루테늄(II,II), 테트라(μ-프로피오네이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-프로피오네이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-프로피오네이토)디(디메틸카르보네이토)디루테늄(II,II), 테트라(μ-프로피오네이토)디(메틸프로피오네이토)디루테늄(II,II), 테트라(μ-프로피오네이토)디(아세토니트릴)디루테늄(II,II), Tetra (μ-propionate) (dihydrate) diuthenium (II, II), tetra (μ-propionato) di (acetone) diuthenium (II, II) (II, II), tetra (μ-propionato) di (diethyl ether) diruthenium (II, II) (II, II), tetra (μ-propionato) di (dimethylcarbonate) diruthenium (II, II), tetra (μ-propionato) di (tetrahydrofuran) (II, II), tetra (μ-propionato) di (acetonitrile) diruthenium (II, II)

테트라(μ-모노플루오로아세테이토)(2수화물)디루테늄(II,II), 테트라(μ-모노플루오로아세테이토)디(아세톤)디루테늄(II,II), 테트라(μ-모노플루오로아세테이토)(디2-부타논)디루테늄(II,II), 테트라(μ-모노플루오로아세테이토)디(디메틸에테르)디루테늄(II,II), 테트라(μ-모노플루오로아세테이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-모노플루오로아세테이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-모노플루오로아세테이토)디(디메틸카르보네이토)디루테늄(II,II), 테트라(μ-모노플루오로아세테이토)(디메틸모노플루오로아세테이토)디루테늄(II,II), 테트라(μ-모노플루오로아세테이토)디(아세토니트릴)디루테늄(II,II), Tetra (μ-monofluoroacetate) (dihydrate) diuthenium (II, II), tetra (μ-monofluoroacetate) di (acetone) diruthenium (II, II) (II, II), tetra (μ-monofluoroacetate) di (dimethyl ether) diruthenium (II, II) (II, II), tetra (μ-monofluoroacetate) di (tetrahydrofuran) diruthenium (II, II) (II, II), tetra (u-monofluoroacetate) (dimethylmonofluoroacetate) diuthenium (II, II) Tetra (μ-monofluoroacetate) di (acetonitrile) diruthenium (II, II),

테트라(μ-트리플루오로메틸아세테이토)(2수화물)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디(아세톤)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)(디2-부타논)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디(디메틸에테르)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디(디메틸카르보네이토)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)(디메틸트리플루오로메틸아세테이토)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디(아세토니트릴)디루테늄(II,II), (II, II), tetra (트리 -trifluoromethylacetate) di (acetone) diruthenium (II, II), tetra (II, II), tetra (袖 -trifluoromethylacetate) di (dimethyl ether) diruthenium (II, II) (II, II), tetra (袖 -trifluoromethylacetate) di (tetrahydrofuran) diruthenium (II, II) ), Tetra (u-trifluoromethylacetate) di (dimethylcarbonate) diruthenium (II, II), tetra (u-trifluoromethylacetate) (dimethyltrifluoromethylacetate Di (II, II), tetra (μ-trifluoromethylacetate) di (acetonitrile) diruthenium (II, II)

테트라(μ-테트라플루오로에틸아세테이토)(2수화물)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)디(아세톤)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)(디2-부타논)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)디(디메틸에테르)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)디(디메틸카르보네이토)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)(디메틸테트라플루오로에틸아세테이토)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)디(아세토니트릴)디루테늄(II,II), (II, II), tetra (μ-tetrafluoroethylacetate) di (acetone) diruthenium (II, II), tetra (II, II), tetra (u-tetrafluoroethylacetate) di (dimethyl ether) diruthenium (II, II) (II, II), tetra (μ-tetrafluoroethylacetate) di (tetrahydrofuran) diruthenium (II, II) ), Tetra (p-tetrafluoroethylacetate) di (dimethylcarbonate) diruthenium (II, II), tetra (p-tetrafluoroethylacetate) (dimethyl tetrafluoroethylacetate Di (II, II), tetra (u-tetrafluoroethylacetate) di (acetonitrile) diruthenium (II, II)

테트라(μ-메톡시아세테이토)(2수화물)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디(아세톤)디루테늄(II,II), 테트라(μ-메톡시아세테이토)(디2-부타논)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디(디메틸에테르)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디(디메틸카르보네이토)디루테늄(II,II), 테트라(μ-메톡시아세테이토)(디메틸메톡시아세테이토)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디(아세토니트릴)디루테늄(II,II), Tetra (μ-methoxyacetate) (dihydrate) diuthenium (II, II), tetra (μ-methoxyacetate) di (acetone) (II, II), tetra (袖 -methoxyacetate) di (dimethyl ether) diruthenium (II, II), tetra (袖 -methoxyacetate (II, II), tetra (袖 -methoxyacetate) di (diethyl ether) diruthenium (II, II) Di (ruthenium) di (ruthenium) diuthenium (II, II), tetra (μ-methoxyacetate) (dimethylmethoxyacetate) ) Di (acetonitrile) diruthenium (II, II),

테트라(μ-에톡시아세테이토)(2수화물)디루테늄(II,II), 테트라(μ-에톡시아세테이토)디(아세톤)디루테늄(II,II), 테트라(μ-에톡시아세테이토)(디2-부타논)디루테늄(II,II), 테트라(μ-에톡시아세테이토)디(디메틸에테르)디루테늄(II,II), 테트라(μ-에톡시아세테이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-에톡시아세테이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-에톡시아세테이토)디(디메틸카르보네이토)디루테늄(II,II), 테트라(μ-에톡시아세테이토)(디메틸에톡시아세테이토)디루테늄(II,II), 테트라(μ-에톡시아세테이토)디(아세토니트릴)디루테늄(II,II)Tetra (μ-ethoxyacetate) (dihydrate) diuthenium (II, II), tetra (μ-ethoxyacetate) di (acetone) (II, II), tetra (μ-ethoxyacetate) di (dimethyl ether) diruthenium (II, II), tetra Di (diethyl ether) diruthenium (II, II), tetra (μ-ethoxyacetate) di (tetrahydrofuran) diruthenium (II, II), tetra (μ- ethoxyacetate) Di (ruthenium) di (ruthenium) diuthenium (II, II), tetra (μ-ethoxyacetate) (dimethylethoxyacetate) ) Di (acetonitrile) diuthenium (II, II)

등을 들 수 있다.And the like.

이들 중에서, Among them,

테트라(μ-포름에이토)디(아세톤)디루테늄(II,II), 테트라(μ-포름에이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-포름에이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-포름에이토)디(아세토니트릴)디루테늄(II,II), (II, II), tetra (μ-formoieto) di (acetone) diuthenium (II, II) Di (ruthenium) di (ruthenium) diuluthenium (II, II), tetra (p-formo) di (acetonitrile)

테트라(μ-아세테이토)디(아세톤)디루테늄(II,II), 테트라(μ-아세테이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-아세테이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-아세테이토)디(아세토니트릴)디루테늄(II,II), Tetra (acetone) di (acetone) diuthenium (II, II), tetra (diethyl ether) diuthenium (II, II) (II, II), tetra (acetonitrile) di (acetonitrile) diuthenium (II, II), di (tetrahydrofuran)

테트라(μ-프로피오네이토)디(아세톤)디루테늄(II,II), 테트라(μ-프로피오네이토)디(테트라히드로푸란)디루테늄(II,II), Tetra (μ-propionato) di (acetone) diruthenium (II, II), tetra (μ-propionato) di (tetrahydrofuran)

테트라(μ-트리플루오로메틸아세테이토)디(아세톤)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디(아세토니트릴)디루테늄(II,II), (II, II), tetra (袖 -trifluoromethylacetate) di (diethyl ether) diruthenium (II, II) (II, II), tetra (? -Trifluoromethylacetate) di (acetonitrile) diruthenium (II, II) ,

테트라(μ-테트라플루오로에틸아세테이토)디(아세톤)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)디(디에틸에테르)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-테트라플루오로에틸아세테이토)디(아세토니트릴)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디(아세톤)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디(테트라히드로푸란)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디(아세토니트릴)디루테늄(II,II)(II, II), tetra (μ-tetrafluoroethylacetate) di (diethyl ether) diruthenium (II, II) (II, II), tetra (μ-tetrafluoroethylacetate) di (acetonitrile) diruthenium (II, II) (II, II), tetra (μ-methoxyacetate) di (tetrahydrofuran) diruthenium (II, II), tetra - methoxyacetate) di (acetonitrile) diruthenium (II, II)

이 바람직하다..

상기 화학식 2로 표시되는 디루테늄 착체의 구체예로서는, 예를 들면 테트라(μ-포름에이토)디루테늄(II,II), 테트라(μ-아세테이토)디루테늄(II,II), 테트라(μ-프로피오네이토)디루테늄(II,II), 테트라(μ-모노플루오로아세테이토)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디루테늄(II,II), 테트라(μ-펜타플루오로에틸아세테이토)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디루테늄(II,II), 테트라(μ-에톡시아세테이토)디루테늄(II,II)Specific examples of the di-ruthenium complex represented by the formula (2) include tetra (μ-formoieto) di ruthenium (II, II), tetra (μ- (II, II), tetra (mu -trifluoromethylacetate) diruthenium (II, II), dituronium II), tetra (μ-pentafluoroethylacetate) diluthenium (II, II), tetra (μ-methoxyacetate) ) Di ruthenium (II, II)

등을 들 수 있다. And the like.

이들 중에서, Among them,

테트라(μ-포름에이토)디루테늄(II,II), 테트라(μ-아세테이토)디루테늄(II,II), 테트라(μ-트리플루오로메틸아세테이토)디루테늄(II,II), 테트라(μ-펜타플루오로에틸아세테이토)디루테늄(II,II), 테트라(μ-메톡시아세테이토)디루테늄(II,II)이 바람직하다.(II, II), tetra (μ-formaldehyde) ruthenium (II, II), tetra (μ-acetato) ), Tetra (μ-pentafluoroethylacetate) diruthenium (II, II), and tetra (μ-methoxyacetate) diruthenium (II, II).

이들 화합물은 단독으로 또는 2종 이상을 혼합하여 화학 기상 성장 재료로서 사용할 수 있다. 1종의 화합물을 단독으로 화학 기상 성장 재료로서 사용하는 것이 바람직하다.These compounds may be used singly or as a mixture of two or more of them as a chemical vapor phase growth material. It is preferable to use one kind of compound alone as a chemical vapor growth material.

본 발명의 화학적 기상 성장 방법은 상기한 화학 기상 성장 재료를 사용한다.The chemical vapor deposition method of the present invention uses the chemical vapor deposition material described above.

본 발명의 화학적 기상 성장 방법은 상기한 화학 기상 성장 재료를 사용하는 것 이외에는 그 자체로 공지된 방법을 사용할 수 있으며, 예를 들면 다음과 같이 하여 실시할 수 있다.The chemical vapor deposition method of the present invention can be performed by a method known per se in addition to the use of the above chemical vapor deposition material. For example, the chemical vapor deposition method can be carried out as follows.

(1) 본 발명의 화학 기상 성장 재료를 기화시키고, 이어서 (2) 얻어진 기체(氣體)를 가열하여 열 분해시켜 기체(基體) 위에 루테늄을 퇴적시킨다. 또한, 상기 공정 (1)에서 본 발명의 화학 기상 성장 재료의 분해를 동반하더라도, 본 발명의 효과를 감쇄시키지는 않는다.(1) The chemical vapor deposition material of the present invention is vaporized, and then (2) the obtained gas is heated and thermally decomposed to deposit ruthenium on the substrate. Further, even if the decomposition of the chemical vapor deposition material of the present invention is accompanied by the above step (1), the effect of the present invention is not attenuated.

여기서 사용할 수 있는 기체(基體)로서는, 예를 들면 유리, 실리콘 반도체, 석영, 금속, 금속 산화물, 합성 수지 등의 적절한 재료를 사용할 수 있지만, 루테늄 화합물을 열 분해시키는 공정의 열 분해 온도에 견딜 수 있는 재료인 것이 바람직하다.Suitable substrates such as glass, silicon semiconductor, quartz, metal, metal oxide, and synthetic resin can be used as the substrate to be used here. However, the substrate can withstand the thermal decomposition temperature of the step of thermally decomposing the ruthenium compound Is preferable.

상기 공정 (1)에서 루테늄 화합물을 기화시키는 온도는 바람직하게는 100 내지 350 ℃이고, 더욱 바람직하게는 120 내지 300 ℃이다.The temperature for vaporizing the ruthenium compound in the step (1) is preferably 100 to 350 占 폚, and more preferably 120 to 300 占 폚.

상기 공정 (2)에서 루테늄 화합물을 열 분해시키는 온도는 바람직하게는 180 내지 450 ℃이고, 보다 바람직하게는 200 내지 400 ℃이고, 더욱 바람직하게는 250 내지 400 ℃이다.The temperature at which the ruthenium compound is thermally decomposed in the step (2) is preferably 180 to 450 ° C, more preferably 200 to 400 ° C, and still more preferably 250 to 400 ° C.

본 발명의 화학적 기상 성장 방법은 불활성 기체의 존재하 또는 비존재하나, 또는 환원성 기체의 존재하 또는 비존재하 중 어떠한 조건하에서도 실시할 수 있다. 또한, 불활성 기체 및 환원성 기체의 양쪽이 존재하는 조건에서 실시할 수도 있다. 여기서 불활성 기체로서는, 예를 들면 질소, 아르곤, 헬륨 등을 들 수 있다. 또한, 환원성 기체로서는, 예를 들면 수소, 암모니아 등을 들 수 있다. 특히, 성막한 루테늄막 중 불순물을 감소시키는 목적으로부터 이들 환원성 기체를 공존시키는 것이 바람직하다. 환원성 기체를 공존시키는 경우, 분위기 중의 환원성 기체의 비율은 1 내지 70 몰%인 것이 바람직하고, 3 내지 40 몰%인 것이 보다 바람직하다.The chemical vapor phase growth method of the present invention can be carried out under any of the following conditions: in the presence or in the absence of an inert gas, or in the presence or in the absence of a reducing gas. Further, it may be carried out under the condition that both an inert gas and a reducing gas are present. Examples of the inert gas include nitrogen, argon and helium. Examples of the reducing gas include hydrogen and ammonia. Particularly, it is preferable to coexist these reducing gases for the purpose of reducing impurities in the formed ruthenium film. When the reducing gas is coexistent, the ratio of the reducing gas in the atmosphere is preferably 1 to 70 mol%, more preferably 3 to 40 mol%.

또한, 본 발명의 화학적 기상 성장 방법은 산화성 기체의 공존하에 실시하는 것도 가능하다. 여기서 산화성 기체로서는, 예를 들면 산소, 일산화탄소, 아산화질소 등을 들 수 있다.The chemical vapor deposition method of the present invention can also be carried out in the coexistence of an oxidizing gas. Examples of the oxidizing gas include oxygen, carbon monoxide, nitrous oxide and the like.

본 발명의 화학적 기상 성장 방법은, 가압하, 상압하 및 감압하 중 어떠한 조건으로도 실시할 수 있다. 이 중에서도 상압하 또는 감압하에 실시하는 것이 바람직하고, 15,000 Pa 이하의 압력하에 실시하는 것이 더욱 바람직하다.The chemical vapor phase growth method of the present invention can be carried out under any conditions of under pressure, normal pressure and reduced pressure. Among these, it is preferable to carry out the polymerization under atmospheric pressure or reduced pressure, more preferably under a pressure of 15,000 Pa or less.

본 발명의 디루테늄 착체 및 화학 기상 성장 재료는 공기 중의 보존에 대하여 산화 등의 열화가 발생하기 어렵고, 보존 안정성이 우수하다. 시판되는 실험용의 밀폐 용기에 넣어서 냉암소에 유지하면, 특히 용기 내의 분위기를 불활성 분위기로 하지 않아도 15일 정도 재료의 열화가 발생하지 않는다.The di-ruthenium complex and the chemical vapor deposition material of the present invention are less prone to deterioration such as oxidation with respect to preservation in the air, and are excellent in storage stability. When the material is placed in a commercially available sealed container for experiments and kept in a cool dark place, deterioration of the material does not occur for about 15 days even if the atmosphere in the container is not an inert atmosphere.

상기한 바와 같이 하여 얻어진 루테늄막은, 후술하는 실시예로부터 분명한 바와 같이 보존 안정성이 우수하고, 순도 및 전기 전도성이 높고, 예를 들면 배선 전극의 배리어막, 도금 성장막, 커패시터 전극 등에 바람직하게 사용할 수 있다.The ruthenium film obtained as described above is excellent in storage stability, has high purity and electrical conductivity, and can be preferably used for a barrier film of a wiring electrode, a plating growth film, a capacitor electrode, etc. have.

[실시예][Example]

이하, 실시예에 의해 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

실시예 1Example 1

테트라(μ-아세테이토)디루테늄(II,II)의 합성Synthesis of tetra (μ-acetato) diuthenium (II, II)

삼염화루테늄ㆍ3수화물 2.0210 g, 아담스 산화백금 촉매 0.0138 g, 메탄올 25 mL를 오토클레이브를 사용하여 수소 6 atm하에 3 시간 동안 교반하여, 청색의 용액을 얻었다. 교반 종료 후, 여과를 행하여 질소 치환한 슈렝크에 옮기고, 여기에 아세트산리튬 2.3580 g을 첨가하여 18 시간 동안 가열 환류를 행하였다. 환류 종료 후, 열시(熱時) 여과를 행하고, 메탄올로 3회 세정하고 80 ℃에서 진공 건조함으로써, 테트라(μ-아세테이토)디루테늄 0.9207 g을 갈색의 분말로서 얻었다. 수율 54 %.2.0210 g of ruthenium trichloride trihydrate, 0.0138 g of Adams platinum catalyst, and 25 mL of methanol were stirred under hydrogen 6 atm for 3 hours using an autoclave to obtain a blue solution. After the completion of the stirring, the mixture was filtered and transferred to a nitrogen-substituted Schlenk. To this was added 2.3580 g of lithium acetate and the mixture was heated under reflux for 18 hours. After completion of the reflux, filtration was carried out at the time of heat treatment (heat treatment), followed by washing with methanol three times and vacuum drying at 80 캜 to obtain 0.9207 g of tetra (μ-acetate) diruthenium as a brown powder. Yield 54%.

여기서 얻어진 고체의 원소 분석을 실시한 바, 탄소: 21.91 %, 수소 2.70 %였다. 또한, 테트라(μ-아세테이토)디루테늄으로서의 이론값은 탄소: 21.92 %, 수소: 2.76 %였다.Elemental analysis of the obtained solid was carried out to find that the carbon content was 21.91% and the hydrogen content was 2.70%. The theoretical values as tetra (μ-acetato) durotanium were 21.92% for carbon and 2.76% for hydrogen.

Figure 112010059863512-pct00003
Figure 112010059863512-pct00003

실시예 2Example 2

테트라(μ-트리플루오로아세테이토)디(아세톤)디루테늄(II,II)의 합성Synthesis of tetra (μ-trifluoroacetate) di (acetone) diruthenium (II, II)

질소 치환한 슈렝크에 테트라(μ-아세테이토)디루테늄 0.9059 g, 트리플루오로아세트산나트륨 1.696 g, 트리플루오로아세트산 28 mL, 무수 트리플루오로아세트산 4 mL를 넣고, 3일간 가열 환류하였다. 환류 종료 후, 여과를 행하여 심홍색의 용액을 얻었다. 용매를 진공 증류 제거하고, 에테르로 추출하였다. 다시 진공 증류 제거하고, 아세톤을 사용하여 재결정을 행하고, 헥산으로 세정한 후, 진공 건조하여 테트라(μ-트리플루오로아세테이토)디(아세톤)디루테늄 1.3517 g을 적자색의 고체로서 얻었다. 수율 65 %.0.9059 g of tetra (mu -acetate) diruthenium substituted with nitrogen, 1.696 g of sodium trifluoroacetate, 28 mL of trifluoroacetic acid, and 4 mL of anhydrous trifluoroacetic acid were placed, and the mixture was heated to reflux for 3 days. After refluxing was completed, filtration was performed to obtain a magenta solution. The solvent was distilled off under vacuum and extracted with ether. The residue was vacuum distilled again, recrystallized using acetone, washed with hexane, and then vacuum-dried to obtain 1.3517 g of tetra (μ-trifluoroacetate) di (acetone) diruthenium as a red-purple solid. Yield 65%.

여기서 얻어진 고체의 원소 분석을 실시한 바, 탄소: 22.19 %, 수소 1.62 %였다. 또한, 테트라(μ-트리플루오로아세테이토)디(아세톤)디루테늄으로서의 이론값은 탄소 21.83 %, 수소 1.57 %였다.Elemental analysis of the obtained solid was carried out, and it was 22.19% carbon and 1.62% hydrogen. Further, the theoretical value as tetra ([mu] -trifluoroacetate) di (acetone) diruthenium was 21.83% for carbon and 1.57% for hydrogen.

Figure 112010059863512-pct00004
Figure 112010059863512-pct00004

실시예 3Example 3

테트라(μ-펜타플루오로프로피오네이토)디(아세톤)디루테늄(II,II)의 합성Synthesis of tetra (μ-pentafluoropropionate) di (acetone) diruthenium (II, II)

질소 치환한 슈렝크에 테트라(μ-아세테이토)디루테늄 100.4 mg, 펜타플루오로프로피온산나트륨 194.1 mg, 펜타플루오로프로피온산 3.6 mL, 무수 펜타플루오로프로피온산 0.4 mL를 넣고, 3일간 가열 환류하였다. 환류 종료 후, 여과를 행하여 심홍색의 용액을 얻었다. 용매를 진공 증류 제거하고, 에테르로 추출하였다. 다시 진공 증류 제거하고, 아세톤/헥산을 사용하여 재결정을 행하고, 헥산으로 세정한 후, 진공 건조하여 테트라(μ-펜타플루오로프로피오네이토)디(아세톤)디루테늄 122.4 mg을 적자색의 고체로서 얻었다. 수율 55 %.100 mg of tetra (mu -acetate) diruthenium substituted with nitrogen, 194.1 mg of sodium pentafluoropropionate, 3.6 mL of pentafluoropropionic acid and 0.4 mL of anhydrous pentafluoropropionic acid were placed, and the mixture was heated to reflux for 3 days. After refluxing was completed, filtration was performed to obtain a magenta solution. The solvent was distilled off under vacuum and extracted with ether. The residue was vacuum distilled again, recrystallized using acetone / hexane, washed with hexane and then vacuum-dried to obtain 122.4 mg of tetra (μ-pentafluoropropionate) di (acetone) diruthenium as a purple-red solid . Yield 55%.

여기서 얻어진 고체의 원소 분석을 실시한 바, 탄소: 22.56 %, 수소 1.53 %였다. 또한, 테트라(μ-펜타플루오로프로피오네이토)디(아세톤)디루테늄으로서의 이론값은 탄소 22.28 %, 수소 1.25 %였다.Elemental analysis of the obtained solid was carried out to find that carbon was 22.56% and hydrogen was 1.53%. Further, the theoretical value as tetra (p-pentafluoropropionate) di (acetone) duluthenium was 22.28% for carbon and 1.25% for hydrogen.

Figure 112010059863512-pct00005
Figure 112010059863512-pct00005

이하의 실시예에서, 비저항은 냅슨사 제조 프로브 저항률 측정기, 형식 "RT-80/RG-80"에 의해 측정하였다. 막 두께 및 막 밀도는 필립스사 제조 경사입사 X선 분석 장치, 형식 "X'Pert MRD"에 의해 측정하였다. ESCA 스펙트럼은 니혼 덴시(주) 제조 형식 "JPS80"으로 측정하였다. 또한, 밀착성의 평가는 JIS K-5400에 준거하여 격자 테이프법에 의해 행하였다.In the following examples, the resistivity was measured by a Naptson manufactured probe resistivity meter, type "RT-80 / RG-80 ". The film thickness and the film density were measured by an oblique incidence X-ray analyzer, type "X'Pert MRD" manufactured by Philips Corporation. The ESCA spectrum was measured with a model "JPS80" manufactured by Nippon Denshi Co., Ltd. The adhesion was evaluated by a lattice tape method according to JIS K-5400.

실시예 4Example 4

(1) 실시예 1에서 얻어진 테트라(μ-아세테이토)디루테늄(II,II) 0.05 g을 질소 가스 중에서 석영제 보트형 용기에 칭량투입하고, 석영제 반응 용기에 세팅하였다. 반응 용기 내의 기류의 하류 방향측 근방에 열산화막 부착 실리콘 웨이퍼를 놓고, 실온하에 반응 용기 내에 질소 가스를 300 mL/분의 유량으로 20분간 흘렸다. 그 후, 반응 용기 중에 질소 가스를 100 mL/분의 유량으로 흘리고, 계 내를 13 Pa로 하고, 반응 용기를 400 ℃로 15분간 가열하였다. 보트형 용기로부터 미스트가 발생하였으며, 근방에 설치한 석영 기판에서 퇴적물이 관찰되었다. 미스트의 발생이 종료된 후, 감압을 중지하고, 질소 가스를 계에 넣어 압력을 되돌리고, 이어서 101.3 kPa에서 질소 가스를 200 mL/분의 유량으로 흘리고, 반응 용기의 온도를 420 ℃로 상승시켜 그대로 1 시간 동안 유지한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 920 Å이었다.(1) 0.05 g of tetra (μ-acetate) diluthenium (II, II) obtained in Example 1 was weighed into a quartz boat-shaped vessel in nitrogen gas and set in a quartz reaction vessel. A silicon wafer with a thermally oxidized film was placed in the vicinity of the downstream side of the air stream in the reaction vessel, and nitrogen gas was passed through the reaction vessel at a flow rate of 300 mL / min for 20 minutes at room temperature. Thereafter, nitrogen gas was flowed into the reaction vessel at a flow rate of 100 mL / min, the inside of the system was brought to 13 Pa, and the reaction vessel was heated at 400 캜 for 15 minutes. Mist was generated from the boat type vessel, and sediments were observed on the quartz substrate installed in the vicinity. After completion of the generation of the mist, the decompression was stopped, nitrogen gas was introduced into the system to return the pressure, and then nitrogen gas was flown at 101.3 kPa at a flow rate of 200 mL / min. And maintained for 1 hour, a film having metallic luster was obtained on the substrate. The film thickness of this film was 920 Å.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 35 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. The resistivity of this ruthenium film was measured by a four-terminal method, and found to be 35 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by the lattice tape method, and no peeling between the substrate and the ruthenium film was observed at all.

(2) 보존 안정성의 확인으로서, 공기에 대한 열화성 검토를 가열 가속 테스트에 의해 실시하였다. 테트라(μ-아세테이토)디루테늄(II,II) 1 g을 50 mL 용량의 석영제 삼구 플라스크에 넣고, 용기 전체를 50 ℃로 가열하고, 그 후 상압하에 공기를 3 L/분의 유량으로 3 시간 동안 유통시켰다. 외관상 테트라(μ-아세테이토)디루테늄(II,II)의 변화는 없었다. 그 후, 용기를 실온으로 되돌리고, 건조 질소로 용기 내를 치환한 후, 상기 (1)과 동일한 요령으로 성막을 실시한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 920 Å이었다.(2) As a confirmation of the storage stability, examination of thermal degradation to air was carried out by a heating accelerated test. 1 g of tetra (μ-acetate) duluthenium (II, II) was placed in a 50-mL capacity quartz three-necked flask, the entire container was heated to 50 ° C., and then air was introduced at a flow rate of 3 L / For 3 hours. Apparently, there was no change in tetra (μ-acetate) diuthenium (II, II). Thereafter, the container was returned to room temperature, and the inside of the container was replaced with dry nitrogen. Then, the film formation was carried out in the same manner as in the above (1), and a film having metallic luster was obtained on the substrate. The film thickness of this film was 920 Å.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 35 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았으며, 공기 폭로 가열 테스트에 의한 루테늄 금속막질의 열화도 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. The resistivity of this ruthenium film was measured by a four-terminal method, and found to be 35 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by a lattice tape method. No peeling of the substrate and the ruthenium film was observed at all, and no deterioration of the ruthenium metal film quality by the air exposure heating test was observed.

실시예 5Example 5

(1) 실시예 1에서 얻어진 테트라(μ-아세테이토)디루테늄(II,II) 0.05 g을 질소 가스 중에서 석영제 보트형 용기에 칭량투입하고, 석영제 반응 용기에 세팅하였다. 반응 용기 내의 기류의 하류 방향측 근방에 열산화막 부착 실리콘 웨이퍼를 놓고, 실온하에 반응 용기 내에 수소ㆍ질소 혼합 가스(수소 함량 3 vol%)를 300 mL/분의 유량으로 20분간 흘렸다. 그 후, 반응 용기 중에 수소ㆍ질소 혼합 가스(수소 함량 3 vol%)를 100 mL/분의 유량으로 흘리고, 계 내를 13 Pa로 하고, 반응 용기를 400 ℃로 15분간 가열하였다. 보트형 용기로부터 미스트가 발생하였으며, 근방에 설치한 석영 기판에서 퇴적물이 관찰되었다. 미스트의 발생이 종료된 후, 감압을 중지하고, 질소 가스를 계에 넣어 압력을 되돌리고, 이어서 101.3 kPa에서 수소ㆍ질소 혼합 가스(수소 함량 3 vol%)를 200 mL/분의 유량으로 흘리고, 반응 용기의 온도를 420 ℃로 상승시켜 그대로 1 시간 동안 유지한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 900 Å이었다.(1) 0.05 g of tetra (μ-acetate) diluthenium (II, II) obtained in Example 1 was weighed into a quartz boat-shaped vessel in nitrogen gas and set in a quartz reaction vessel. A silicon wafer with a thermally oxidized film was placed in the vicinity of the downstream side of the air stream in the reaction vessel, and a hydrogen-nitrogen mixed gas (hydrogen content 3 vol%) was flowed at a flow rate of 300 mL / min for 20 minutes in the reaction vessel at room temperature. Thereafter, a hydrogen / nitrogen mixed gas (hydrogen content: 3 vol%) was flowed into the reaction vessel at a flow rate of 100 mL / min, the system was brought to 13 Pa, and the reaction vessel was heated at 400 DEG C for 15 minutes. Mist was generated from the boat type vessel, and sediments were observed on the quartz substrate installed in the vicinity. After completion of the generation of the mist, the decompression was stopped, nitrogen gas was introduced into the system to return the pressure, and then a hydrogen-nitrogen mixed gas (hydrogen content 3 vol%) was flowed at a flow rate of 200 mL / min at 101.3 kPa, The temperature of the container was raised to 420 DEG C and maintained as it was for 1 hour, and a film having metallic luster was obtained on the substrate. The thickness of this film was 900 ANGSTROM.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 28 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. Further, the resistivity of this ruthenium film was measured by a four-terminal method and found to be 28 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by the lattice tape method, and no peeling between the substrate and the ruthenium film was observed at all.

(2) 보존 안정성의 확인으로서, 공기에 대한 열화성 검토를 가열 가속 테스트에 의해 실시하였다. 테트라(μ-아세테이토)디루테늄(II,II) 1 g을 50 mL 용량의 석영제 삼구 플라스크에 넣고, 용기 전체를 50 ℃로 가열하고, 그 후 상압하에 공기를 3 L/분의 유량으로 3 시간 동안 유통시켰다. 외관상 테트라(μ-아세테이토)디루테늄(II,II)의 변화는 없었다. 그 후, 용기를 실온으로 되돌리고, 건조 질소로 용기 내를 치환한 후, 상기 (1)과 동일한 요령으로 성막을 실시한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 900 Å이었다.(2) As a confirmation of the storage stability, examination of thermal degradation to air was carried out by a heating accelerated test. 1 g of tetra (μ-acetate) duluthenium (II, II) was placed in a 50-mL capacity quartz three-necked flask, the entire container was heated to 50 ° C., and then air was introduced at a flow rate of 3 L / For 3 hours. Apparently, there was no change in tetra (μ-acetate) diuthenium (II, II). Thereafter, the container was returned to room temperature, and the inside of the container was replaced with dry nitrogen. Then, the film formation was carried out in the same manner as in the above (1), and a film having metallic luster was obtained on the substrate. The thickness of this film was 900 ANGSTROM.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 28 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았으며, 공기 폭로 가열 테스트에 의한 루테늄 금속막질의 열화도 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. Further, the resistivity of this ruthenium film was measured by a four-terminal method and found to be 28 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by a lattice tape method. No peeling of the substrate and the ruthenium film was observed at all, and no deterioration of the ruthenium metal film quality by the air exposure heating test was observed.

실시예 6Example 6

(1) 실시예 2에서 얻어진 테트라(μ-트리플루오로아세테이토)디(아세톤)디루테늄(II,II) 0.05 g을 질소 가스 중에서 석영제 보트형 용기에 칭량투입하고, 석영제 반응 용기에 세팅하였다. 반응 용기 내의 기류의 하류 방향측 근방에 열산화막 부착 실리콘 웨이퍼를 놓고, 실온하에 반응 용기 내에 질소 가스를 300 mL/분의 유량으로 20분간 흘렸다. 그 후, 반응 용기 중에 질소 가스를 100 mL/분의 유량으로 흘리고, 계 내를 13 Pa로 하고, 반응 용기를 400 ℃로 15분간 가열하였다. 보트형 용기로부터 미스트가 발생하였으며, 근방에 설치한 석영 기판에서 퇴적물이 관찰되었다. 미스트의 발생이 종료된 후, 감압을 중지하고, 질소 가스를 계에 넣어 압력을 되돌리고, 이어서 101.3 kPa에서 질소 가스를 200 mL/분의 유량으로 흘리고, 반응 용기의 온도를 400 ℃로 상승시켜 그대로 1 시간 동안 유지한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 900 Å이었다.(1) 0.05 g of tetra (μ-trifluoroacetate) di (acetone) diruthenium (II, II) obtained in Example 2 was weighed into a quartz boat type container in nitrogen gas, . A silicon wafer with a thermally oxidized film was placed in the vicinity of the downstream side of the air stream in the reaction vessel, and nitrogen gas was passed through the reaction vessel at a flow rate of 300 mL / min for 20 minutes at room temperature. Thereafter, nitrogen gas was flowed into the reaction vessel at a flow rate of 100 mL / min, the inside of the system was brought to 13 Pa, and the reaction vessel was heated at 400 캜 for 15 minutes. Mist was generated from the boat type vessel, and sediments were observed on the quartz substrate installed in the vicinity. After the generation of the mist was terminated, the decompression was stopped, nitrogen gas was introduced into the system to return the pressure, then nitrogen gas was flown at a flow rate of 200 mL / min at 101.3 kPa, the temperature of the reaction vessel was raised to 400 DEG C And maintained for 1 hour, a film having metallic luster was obtained on the substrate. The thickness of this film was 900 ANGSTROM.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 21 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. The resistivity of this ruthenium film was measured by a four-terminal method and found to be 21 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by the lattice tape method, and no peeling between the substrate and the ruthenium film was observed at all.

(2) 보존 안정성의 확인으로서, 공기에 대한 열화성 검토를 가열 가속 테스트에 의해 실시하였다. 테트라(μ-트리플루오로아세테이토)디(아세톤)디루테늄(II,II) 1 g을 50 mL 용량의 석영제 삼구 플라스크에 넣고, 용기 전체를 50 ℃로 가열하고, 그 후 상압하에 공기를 3 L/분의 유량으로 3 시간 동안 유통시켰다. 외관상 테트라(μ-트리플루오로아세테이토)디(아세톤)디루테늄(II,II)의 변화는 없었다. 그 후, 용기를 실온으로 되돌리고, 건조 질소로 용기 내를 치환한 후, 상기 (1)과 동일한 요령으로 성막을 실시한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 900 Å이었다.(2) As a confirmation of the storage stability, examination of thermal degradation to air was carried out by a heating accelerated test. 1 g of tetra ([mu] -trifluoroacetate) di (acetone) diuthenium (II, II) was placed in a 50 mL quartz three-necked flask, and the entire container was heated to 50 DEG C, At a flow rate of 3 L / min for 3 hours. Apparently, there was no change in tetra (μ-trifluoroacetate) di (acetone) diruthenium (II, II). Thereafter, the container was returned to room temperature, and the inside of the container was replaced with dry nitrogen. Then, the film formation was carried out in the same manner as in the above (1), and a film having metallic luster was obtained on the substrate. The thickness of this film was 900 ANGSTROM.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 21 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았으며, 공기 폭로 가열 테스트에 의한 루테늄 금속막질의 열화도 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. The resistivity of this ruthenium film was measured by a four-terminal method and found to be 21 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by a lattice tape method. No peeling of the substrate and the ruthenium film was observed at all, and no deterioration of the ruthenium metal film quality by the air exposure heating test was observed.

실시예 7Example 7

(1) 실시예 2에서 얻어진 테트라(μ-트리플루오로아세테이토)디(아세톤)디루테늄(II,II) 0.05 g을 질소 가스 중에서 석영제 보트형 용기에 칭량투입하고, 석영제 반응 용기에 세팅하였다. 반응 용기 내의 기류의 하류 방향측 근방에 열산화막 부착 실리콘 웨이퍼를 놓고, 실온하에 반응 용기 내에 수소ㆍ질소 혼합 가스(수소 함량 3 vol%)를 300 mL/분의 유량으로 20분간 흘렸다. 그 후, 반응 용기 중에 수소ㆍ질소 혼합 가스(수소 함량 3 vol%)를 100 mL/분의 유량으로 흘리고, 계 내를 13 Pa로 하고, 반응 용기를 400 ℃로 15분간 가열하였다. 보트형 용기로부터 미스트가 발생하였으며, 근방에 설치한 석영 기판에서 퇴적물이 관찰되었다. 미스트의 발생이 종료된 후, 감압을 중지하고, 질소 가스를 계에 넣어 압력을 되돌리고, 이어서 101.3 kPa에서 수소ㆍ질소 혼합 가스(수소 함량 3 vol%)를 200 mL/분의 유량으로 흘리고, 반응 용기의 온도를 400 ℃로 상승시켜 그대로 1 시간 동안 유지한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 870 Å이었다.(1) 0.05 g of tetra (μ-trifluoroacetate) di (acetone) diruthenium (II, II) obtained in Example 2 was weighed into a quartz boat type container in nitrogen gas, . A silicon wafer with a thermally oxidized film was placed in the vicinity of the downstream side of the air stream in the reaction vessel, and a hydrogen-nitrogen mixed gas (hydrogen content 3 vol%) was flowed at a flow rate of 300 mL / min for 20 minutes in the reaction vessel at room temperature. Thereafter, a hydrogen / nitrogen mixed gas (hydrogen content: 3 vol%) was flowed into the reaction vessel at a flow rate of 100 mL / min, the system was brought to 13 Pa, and the reaction vessel was heated at 400 DEG C for 15 minutes. Mist was generated from the boat type vessel, and sediments were observed on the quartz substrate installed in the vicinity. After completion of the generation of the mist, the decompression was stopped, nitrogen gas was introduced into the system to return the pressure, and then a hydrogen-nitrogen mixed gas (hydrogen content 3 vol%) was flowed at a flow rate of 200 mL / min at 101.3 kPa, The temperature of the container was raised to 400 DEG C and maintained as it was for 1 hour, and a film having metallic luster was obtained on the substrate. The film thickness of this film was 870 Å.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 18 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. The resistivity of this ruthenium film was measured by a four-terminal method and found to be 18 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by the lattice tape method, and no peeling between the substrate and the ruthenium film was observed at all.

(2) 보존 안정성의 확인으로서, 공기에 대한 열화성 검토를 가열 가속 테스트에 의해 실시하였다. 테트라(μ-트리플루오로아세테이토)디(아세톤)디루테늄(II,II) 1 g을 50 mL 용량의 석영제 삼구 플라스크에 넣고, 용기 전체를 50 ℃로 가열하고, 그 후 상압하에 공기를 3 L/분의 유량으로 3 시간 동안 유통시켰다. 외관상 테트라(μ-트리플루오로아세테이토)디(아세톤)디루테늄(II,II)의 변화는 없었다. 그 후, 용기를 실온으로 되돌리고, 건조 질소로 용기 내를 치환한 후, 상기 (1)과 동일한 요령으로 성막을 실시한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 870 Å이었다.(2) As a confirmation of the storage stability, examination of thermal degradation to air was carried out by a heating accelerated test. 1 g of tetra ([mu] -trifluoroacetate) di (acetone) diuthenium (II, II) was placed in a 50 mL quartz three-necked flask, and the entire container was heated to 50 DEG C, At a flow rate of 3 L / min for 3 hours. Apparently, there was no change in tetra (μ-trifluoroacetate) di (acetone) diruthenium (II, II). Thereafter, the container was returned to room temperature, and the inside of the container was replaced with dry nitrogen. Then, the film formation was carried out in the same manner as in the above (1), and a film having metallic luster was obtained on the substrate. The film thickness of this film was 870 Å.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 18 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았으며, 공기 폭로 가열 테스트에 의한 루테늄 금속막질의 열화는 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. The resistivity of this ruthenium film was measured by a four-terminal method and found to be 18 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by a lattice tape method. No peeling between the substrate and the ruthenium film was observed at all, and no deterioration of the ruthenium metal film quality was observed by the air exposure heating test.

실시예 8Example 8

(1) 실시예 3에서 얻어진 테트라(μ-펜타플루오로프로피오네이토)디(아세톤)디루테늄(II,II) 0.05 g을 질소 가스 중에서 석영제 보트형 용기에 칭량투입하고, 석영제 반응 용기에 세팅하였다. 반응 용기 내의 기류의 하류 방향측 근방에 열산화막 부착 실리콘 웨이퍼를 놓고, 실온하에 반응 용기 내에 질소 가스를 300 mL/분의 유량으로 20분간 흘렸다. 그 후, 반응 용기 중에 질소 가스를 100 mL/분의 유량으로 흘리고, 계 내를 13 Pa로 하고, 반응 용기를 400 ℃로 15분간 가열하였다. 보트형 용기로부터 미스트가 발생하였으며, 근방에 설치한 석영 기판에서 퇴적물이 관찰되었다. 미스트의 발생이 종료된 후, 감압을 중지하고, 질소 가스를 계에 넣어 압력을 되돌리고, 이어서 101.3 kPa에서 질소 가스를 200 mL/분의 유량으로 흘리고, 반응 용기의 온도를 400 ℃로 상승시켜 그대로 1 시간 동안 유지한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 600 Å이었다.(1) 0.05 g of tetra (μ-pentafluoropropionate) di (acetone) diruthenium (II, II) obtained in Example 3 was weighed into a quartz boat type vessel in nitrogen gas, . A silicon wafer with a thermally oxidized film was placed in the vicinity of the downstream side of the air stream in the reaction vessel, and nitrogen gas was passed through the reaction vessel at a flow rate of 300 mL / min for 20 minutes at room temperature. Thereafter, nitrogen gas was flowed into the reaction vessel at a flow rate of 100 mL / min, the inside of the system was brought to 13 Pa, and the reaction vessel was heated at 400 캜 for 15 minutes. Mist was generated from the boat type vessel, and sediments were observed on the quartz substrate installed in the vicinity. After the generation of the mist was terminated, the decompression was stopped, nitrogen gas was introduced into the system to return the pressure, then nitrogen gas was flown at a flow rate of 200 mL / min at 101.3 kPa, the temperature of the reaction vessel was raised to 400 DEG C And maintained for 1 hour, a film having metallic luster was obtained on the substrate. The thickness of this film was 600 Å.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 16 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. Further, the resistivity of this ruthenium film was measured by a four-terminal method and found to be 16 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by the lattice tape method, and no peeling between the substrate and the ruthenium film was observed at all.

(2) 보존 안정성의 확인으로서, 공기에 대한 열화성 검토를 가열 가속 테스트에 의해 실시하였다. 테트라(μ-펜타플루오로프로피오네이토)디(아세톤)디루테늄(II,II) 1 g을 50 mL 용량의 석영제 삼구 플라스크에 넣고, 용기 전체를 50 ℃로 가열하고, 그 후 상압하에 공기를 3 L/분의 유량으로 3 시간 동안 유통시켰다. 외관상 테트라(μ-펜타플루오로프로피오네이토)디(아세톤)디루테늄(II,II)의 변화는 없었다. 그 후, 용기를 실온으로 되돌리고, 건조 질소로 용기 내를 치환한 후, 상기 (1)과 동일한 요령으로 성막을 실시한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 600 Å이었다.(2) As a confirmation of the storage stability, examination of thermal degradation to air was carried out by a heating accelerated test. 1 g of tetra (μ-pentafluoropropionate) di (acetone) diruthenium (II, II) was placed in a 50-mL capacity quartz three-necked flask, the entire container was heated to 50 ° C., At a flow rate of 3 L / min for 3 hours. Apparently, there was no change in tetra (μ-pentafluoropropionate) di (acetone) diruthenium (II, II). Thereafter, the container was returned to room temperature, and the inside of the container was replaced with dry nitrogen. Then, the film formation was carried out in the same manner as in the above (1), and a film having metallic luster was obtained on the substrate. The thickness of this film was 600 Å.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 16 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았으며, 공기 폭로 가열 테스트에 의한 루테늄 금속막질의 열화는 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. Further, the resistivity of this ruthenium film was measured by a four-terminal method and found to be 16 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by a lattice tape method. No peeling between the substrate and the ruthenium film was observed at all, and no deterioration of the ruthenium metal film quality was observed by the air exposure heating test.

실시예 9Example 9

(1) 실시예 3에서 얻어진 테트라(μ-펜타플루오로프로피오네이토)디(아세톤)디루테늄(II,II) 0.05 g을 질소 가스 중에서 석영제 보트형 용기에 칭량투입하고, 석영제 반응 용기에 세팅하였다. 반응 용기 내의 기류의 하류 방향측 근방에 열산화막 부착 실리콘 웨이퍼를 놓고, 실온하에 반응 용기 내에 수소ㆍ질소 혼합 가스(수소 함량 3 vol%)를 300 mL/분의 유량으로 20분간 흘렸다. 그 후, 반응 용기 중에 수소ㆍ질소 혼합 가스(수소 함량 3 vol%)를 100 mL/분의 유량으로 흘리고, 계 내를 13 Pa로 하고, 반응 용기를 400 ℃로 15분간 가열하였다. 보트형 용기로부터 미스트가 발생하였으며, 근방에 설치한 석영 기판에서 퇴적물이 관찰되었다. 미스트의 발생이 종료된 후, 감압을 중지하고, 질소 가스를 계에 넣어 압력을 되돌리고, 이어서 101.3 kPa에서 수소ㆍ질소 혼합 가스(수소 함량 3 vol%)를 200 mL/분의 유량으로 흘리고, 반응 용기의 온도를 400 ℃로 상승시켜 그대로 1 시간 동안 유지한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 570 Å이었다.(1) 0.05 g of tetra (μ-pentafluoropropionate) di (acetone) diruthenium (II, II) obtained in Example 3 was weighed into a quartz boat type vessel in nitrogen gas, . A silicon wafer with a thermally oxidized film was placed in the vicinity of the downstream side of the air stream in the reaction vessel, and a hydrogen-nitrogen mixed gas (hydrogen content 3 vol%) was flowed at a flow rate of 300 mL / min for 20 minutes in the reaction vessel at room temperature. Thereafter, a hydrogen / nitrogen mixed gas (hydrogen content: 3 vol%) was flowed into the reaction vessel at a flow rate of 100 mL / min, the system was brought to 13 Pa, and the reaction vessel was heated at 400 DEG C for 15 minutes. Mist was generated from the boat type vessel, and sediments were observed on the quartz substrate installed in the vicinity. After completion of the generation of the mist, the decompression was stopped, nitrogen gas was introduced into the system to return the pressure, and then a hydrogen-nitrogen mixed gas (hydrogen content 3 vol%) was flowed at a flow rate of 200 mL / min at 101.3 kPa, The temperature of the container was raised to 400 DEG C and maintained as it was for 1 hour, and a film having metallic luster was obtained on the substrate. The film thickness of this film was 570 Å.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 21 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. The resistivity of this ruthenium film was measured by a four-terminal method and found to be 21 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by the lattice tape method, and no peeling between the substrate and the ruthenium film was observed at all.

(2) 보존 안정성의 확인으로서, 공기에 대한 열화성 검토를 가열 가속 테스트에 의해 실시하였다. 테트라(μ-펜타플루오로프로피오네이토)디(아세톤)디루테늄(II,II) 1 g을 50 mL 용량의 석영제 삼구 플라스크에 넣고, 용기 전체를 50 ℃로 가열하고, 그 후 상압하에 공기를 3 L/분의 유량으로 3 시간 동안 유통시켰다. 외관상 테트라(μ-펜타플루오로프로피오네이토)디(아세톤)디루테늄(II,II)의 변화는 없었다. 그 후, 용기를 실온으로 되돌리고, 건조 질소로 용기 내를 치환한 후, 상기 (1)과 동일한 요령으로 성막을 실시한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 570 Å이었다.(2) As a confirmation of the storage stability, examination of thermal degradation to air was carried out by a heating accelerated test. 1 g of tetra (μ-pentafluoropropionate) di (acetone) diruthenium (II, II) was placed in a 50-mL capacity quartz three-necked flask, the entire container was heated to 50 ° C., At a flow rate of 3 L / min for 3 hours. Apparently, there was no change in tetra (μ-pentafluoropropionate) di (acetone) diruthenium (II, II). Thereafter, the container was returned to room temperature, and the inside of the container was replaced with dry nitrogen. Then, the film formation was carried out in the same manner as in the above (1), and a film having metallic luster was obtained on the substrate. The film thickness of this film was 570 Å.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 21 μΩcm였다. 이 막의 막 밀도는 12.0 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았으며, 공기 폭로 가열 테스트에 의한 루테늄 금속막질의 열화는 관찰되지 않았다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. The resistivity of this ruthenium film was measured by a four-terminal method and found to be 21 μΩcm. The membrane density of this membrane was 12.0 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by a lattice tape method. No peeling between the substrate and the ruthenium film was observed at all, and no deterioration of the ruthenium metal film quality was observed by the air exposure heating test.

비교예 1Comparative Example 1

(1) 시판되는 비스(에틸시클로펜타디에닐)루테늄 0.01 g을 질소 가스 중에서 석영제 보트형 용기에 칭량투입하고, 석영제 반응 용기에 세팅하였다. 반응 용기 내의 기류의 하류 방향측 근방에 석영 기판을 놓고, 실온하에 반응 용기 내에 산소ㆍ질소 혼합 가스(산소 함량 5 vol%)를 250 mL/분의 유량으로 60분간 흘렸다. 그 후, 반응 용기 중에 산소ㆍ질소 혼합 가스(산소 함량 5 vol%)를 20 mL/분의 유량으로 흘리고, 계 내를 110 Pa로 하고, 반응 용기를 350 ℃로 30분간 가열하였다. 보트형 용기로부터 미스트가 발생하였으며, 근방에 설치한 석영 기판에서 퇴적물이 관찰되었다. 미스트의 발생이 종료된 후, 감압을 중지하고, 질소 가스를 계에 넣어 압력을 되돌리고, 이어서 101.3 kPa에서 질소 가스를 200 mL/분의 유량으로 흘려 그대로 1 시간 동안 유지한 바, 기판 위에 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 850 Å이었다. 이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 25 μΩcm였다. 또한, 이 막의 막 밀도는 12.1 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 기판과 루테늄막의 박리는 전혀 관찰되지 않았다.(1) 0.01 g of commercially available bis (ethylcyclopentadienyl) ruthenium was weighed into a quartz boat-shaped vessel in a nitrogen gas and set in a quartz reaction vessel. A quartz substrate was placed in the vicinity of the downstream side of the air stream in the reaction vessel, and an oxygen / nitrogen mixed gas (oxygen content 5 vol%) was flowed into the reaction vessel at room temperature for 60 minutes at a flow rate of 250 mL / min. Thereafter, an oxygen / nitrogen mixed gas (oxygen content of 5 vol%) was flowed into the reaction vessel at a flow rate of 20 mL / min, the inside of the system was set at 110 Pa, and the reaction vessel was heated at 350 캜 for 30 minutes. Mist was generated from the boat type vessel, and sediments were observed on the quartz substrate installed in the vicinity. After the generation of the mist was terminated, the decompression was stopped, nitrogen gas was introduced into the system to return the pressure, and then nitrogen gas was flown at a flow rate of 200 mL / min at 101.3 kPa and maintained as it was for 1 hour. Was obtained. The film thickness of this film was 850 Å. The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. The resistivity of this ruthenium film was measured by a four-terminal method, and found to be 25 μΩcm. The film density of this film was 12.1 g / cm < 3 & gt ;. The adhesion of the ruthenium film formed thereon to the substrate was evaluated by the lattice tape method, and no peeling between the substrate and the ruthenium film was observed at all.

(2) 시판되는 비스(에틸시클로펜타디에닐)루테늄에 대하여 실시예 1의 (2)와 마찬가지로 공기에 대한 열화성 검토로서 가열 가속 테스트를 실시하였다. 비스(에틸시클로펜타디에닐)루테늄 1 g을 50 mL 용량의 석영제 삼구 플라스크에 넣고, 용기 전체를 50 ℃로 가열하고, 그 후 상압하에 공기를 3 L/분의 유량으로 3 시간 동안 유통시켰다. 이에 따라, 본래는 옅은 황색 투명 액체 형상인 비스(에틸시클로 펜타디에닐)루테늄의 외관은 황색 불투명한 액체 형상으로 변화되었다. 그 후, 용기를 실온으로 되돌리고, 건조 질소로 용기 내를 치환한 후, 상기 (1)과 동일한 요령으로 성막을 실시한 바, 기판 위에 다소 검은빛을 띤 금속 광택을 갖는 막이 얻어졌다. 이 막의 막 두께는 300 Å이었다.(2) A heating accelerated test was conducted on commercially available bis (ethylcyclopentadienyl) ruthenium in the same manner as in (2) of Example 1, for examination of thermal resistance to air. 1 g of bis (ethylcyclopentadienyl) ruthenium was placed in a 50-mL capacity quartz three-necked flask, the entire container was heated to 50 ° C, and then air was passed at atmospheric pressure at a flow rate of 3 L / min for 3 hours . As a result, the appearance of bis (ethylcyclopentadienyl) ruthenium originally in the form of a pale yellow transparent liquid was changed to a yellow opaque liquid. Thereafter, the vessel was returned to room temperature, and the inside of the vessel was replaced with dry nitrogen. Then, the film formation was carried out in the same manner as in the above (1), and a film having a somewhat blackish metallic luster was obtained on the substrate. The thickness of this film was 300 ANGSTROM.

이 막의 ESCA 스펙트럼을 측정한 바, Ru3d 궤도에 귀속되는 피크가 280 eV와 284 eV에서 관찰되었으며, 다른 원소에서 유래하는 피크는 전혀 관찰되지 않았기 때문에 금속 루테늄이라는 것을 알 수 있었다. 또한, 이 루테늄막에 대하여 4 단자법으로 저항률을 측정한 바, 78 μΩcm로 낮은 도전율밖에 나타내지 못했다. 이 막의 막 밀도는 10.8 g/cm3였다. 여기서 형성된 루테늄막에 대하여 기판과의 밀착성을 격자 테이프법에 의해 평가한 바, 100개의 격자 루테늄막 중 80개의 루테늄막이 박리되어, 루테늄막질이 현저히 저하되었다. 이와 같이, 비스(에틸시클로펜타디에닐)루테늄은 공기 폭로 가열 테스트에 의해 성막된 루테늄 금속막질이 열화되었다.The ESCA spectrum of this film was measured. As a result, peaks belonging to the Ru 3d orbit were observed at 280 eV and 284 eV, and no peaks derived from other elements were observed. Thus, the film was found to be metal ruthenium. Further, the resistivity of this ruthenium film was measured by the four-terminal method, and only a low electric conductivity of 78 μΩcm was shown. The membrane density of this membrane was 10.8 g / cm < 3 & gt ;. The adhesion of the formed ruthenium film to the substrate was evaluated by a lattice tape method. As a result, 80 ruthenium films out of 100 lattice ruthenium films were peeled off, and the ruthenium film quality remarkably deteriorated. Thus, the ruthenium metal film formed by the air-exposing heating test deteriorated in the bis (ethylcyclopentadienyl) ruthenium.

이상과 같이, 본 발명의 화학 기상 성장 재료에 따르면 장기간의 보존 안정성이 우수하고, 잔류 불순물량이 적은 양질인 루테늄막을 얻을 수 있다. 또한, 이 화학적 기상 재료를 사용하여 간편한 방법으로 루테늄막을 형성할 수 있다.As described above, according to the chemical vapor deposition material of the present invention, it is possible to obtain a ruthenium film having excellent storage stability over a long period of time and having a small residual impurity amount. In addition, a ruthenium film can be formed by a simple method using this chemical vapor material.

Claims (5)

하기 화학식 1로 표시되는 디루테늄 착체.
<화학식 1>
Figure 112015003326183-pct00006

(R1, R2, R3 및 R4는 각각 독립적으로 수소 원자, 불소 원자, 탄소수 1 내지 10의 탄화수소기 또는 탄소수 1 내지 10의 할로겐화 탄화수소기이고, X 및 Y는 각각 독립적으로 탄소수 1 내지 10의 케톤 화합물임)
A ruthenium complex represented by the following formula (1).
&Lt; Formula 1 >
Figure 112015003326183-pct00006

(Wherein R1, R2, R3 and R4 are each independently a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogenated hydrocarbon group having 1 to 10 carbon atoms, X and Y each independently represent a ketone compound having 1 to 10 carbon atoms being)
하기 화학식 2로 표시되는 디루테늄 착체.
<화학식 2>
Figure 112015003326183-pct00007

(R5, R6, R7 및 R8은 각각 독립적으로 수소 원자, 불소 원자, 탄소수 1 내지 10의 탄화수소기 또는 탄소수 1 내지 10의 할로겐화 탄화수소기임)
A ruthenium complex represented by the following formula (2).
(2)
Figure 112015003326183-pct00007

(Wherein R5, R6, R7 and R8 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogenated hydrocarbon group having 1 to 10 carbon atoms)
제1항에 기재된 디루테늄 착체를 포함하는 화학 기상 성장 재료.A chemical vapor phase growth material comprising the di-ruthenium complex according to claim 1. 제2항에 기재된 디루테늄 착체를 포함하는 화학 기상 성장 재료.A chemical vapor growth material comprising the di-ruthenium complex according to claim 2. 제3항 또는 제4항에 기재된 화학 기상 성장 재료로부터 화학 기상 성장법에 의해 루테늄막을 형성하는 방법.A method for forming a ruthenium film from a chemical vapor deposition material according to claim 3 or 4 by chemical vapor deposition.
KR1020107020605A 2008-03-17 2008-09-04 Diruthenium complex and material and method for chemical vapor deposition KR101526633B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2008-068102 2008-03-17
JP2008068102A JP5293930B2 (en) 2007-03-22 2008-03-17 Chemical vapor deposition material and chemical vapor deposition method
PCT/JP2008/066364 WO2009116191A1 (en) 2008-03-17 2008-09-04 Diruthenium complex and material and method for chemical vapor deposition

Publications (2)

Publication Number Publication Date
KR20100126387A KR20100126387A (en) 2010-12-01
KR101526633B1 true KR101526633B1 (en) 2015-06-05

Family

ID=41091767

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107020605A KR101526633B1 (en) 2008-03-17 2008-09-04 Diruthenium complex and material and method for chemical vapor deposition

Country Status (3)

Country Link
KR (1) KR101526633B1 (en)
TW (1) TWI422590B (en)
WO (1) WO2009116191A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372849A (en) * 1992-07-28 1994-12-13 Minnesota Mining And Manufacturing Company Chemical vapor deposition of iron, ruthenium, and osmium
KR20010101961A (en) * 1999-02-05 2001-11-15 마터리아 인코포레이티드 Polyolefin compositions having variable density and methods for their production and use
KR20090092286A (en) * 2006-12-22 2009-08-31 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method for the deposition of a ruthenium containing film
US20130023662A9 (en) * 2006-05-18 2013-01-24 Vanda Pharmeceuticals Inc. Ruthenium (ii) catalysts for use in stereoselective cyclopropanations

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA9710220B (en) * 1996-11-26 1999-05-12 Bp Chem Int Ltd Process for the production of ruthenium (III) acetate solution
JP4639686B2 (en) * 2004-07-27 2011-02-23 Jsr株式会社 Chemical vapor deposition material and chemical vapor deposition method
JP4771516B2 (en) * 2005-03-04 2011-09-14 Jsr株式会社 Chemical vapor deposition material and chemical vapor deposition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372849A (en) * 1992-07-28 1994-12-13 Minnesota Mining And Manufacturing Company Chemical vapor deposition of iron, ruthenium, and osmium
KR20010101961A (en) * 1999-02-05 2001-11-15 마터리아 인코포레이티드 Polyolefin compositions having variable density and methods for their production and use
US20130023662A9 (en) * 2006-05-18 2013-01-24 Vanda Pharmeceuticals Inc. Ruthenium (ii) catalysts for use in stereoselective cyclopropanations
KR20090092286A (en) * 2006-12-22 2009-08-31 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method for the deposition of a ruthenium containing film

Also Published As

Publication number Publication date
WO2009116191A1 (en) 2009-09-24
TW200940553A (en) 2009-10-01
TWI422590B (en) 2014-01-11
KR20100126387A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US7002033B1 (en) Chemical vapor deposition material and chemical vapor deposition
JP4771516B2 (en) Chemical vapor deposition material and chemical vapor deposition method
KR20100071463A (en) Organometallic precursors for deposition of metal or metal oxide thin films, and deposition process of the thin films
JP2002526651A (en) Method for chemical vapor deposition of copper-based film and its copper source precursor
JP2008069453A (en) Precursor having open ligand for ruthenium-containing film deposition
US10287681B2 (en) Copper metal film, method for preparing the same, and method for forming copper interconnect for semiconductor device using the same
US8440260B2 (en) Diruthenium complex, and material and method for chemical vapor deposition
KR20190040354A (en) Metal complexes containing allyl ligands
KR101546319B1 (en) Tungsten precursors and the method for depositing tungsten-containg films
KR101526633B1 (en) Diruthenium complex and material and method for chemical vapor deposition
JP2005060814A (en) Ruthenium compound, and method of forming metallic ruthenium film
EP1249860A2 (en) Method to improve copper thin film adhesion to metal nitride substrates by the addition of water
TWI513681B (en) Ruthenium film forming material and ruthenium film forming method
JP5741443B2 (en) Ruthenium film forming material and ruthenium film forming method
JP2000169966A (en) Solution of copper compound for deposition of copper film by chemical vapor deposition and its synthesis
Baunemann et al. MOCVD of TaN Using the All‐Nitrogen‐Coordinated Precursors [Ta (NEtMe) 3 (N‐tBu)],[Ta (NEtMe)(N‐tBu){C (N‐iPr) 2 (NEtMe)} 2], and [Ta (NMeEt) 2 (N‐tBu){Me2N‐N (SiMe3)}]
KR101760968B1 (en) Material for forming ruthenium film and method for forming ruthenium film
JP4187373B2 (en) Copper raw material for chemical vapor deposition and method for producing thin film using the same
KR20140138085A (en) Novel ruthenium compound, preparing method thereof, precursor composition for film deposition including the same, and depositing method of film using the same
JP5343483B2 (en) Chemical vapor deposition material and chemical vapor deposition method
KR20030051231A (en) Method for Chemical Vapor Deposition of metal film
JP5343482B2 (en) Chemical vapor deposition method
JP4059662B2 (en) Copper raw material for chemical vapor deposition and method for producing thin film using the same
KR20230096216A (en) Metal thin film deposition method using organometallic precursor
JP2010077468A (en) Composition for forming ruthenium film, and method for forming ruthenium film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180529

Year of fee payment: 4