KR101526092B1 - 개선된 생산 및 분배를 위한 방법들 - Google Patents
개선된 생산 및 분배를 위한 방법들 Download PDFInfo
- Publication number
- KR101526092B1 KR101526092B1 KR1020137021488A KR20137021488A KR101526092B1 KR 101526092 B1 KR101526092 B1 KR 101526092B1 KR 1020137021488 A KR1020137021488 A KR 1020137021488A KR 20137021488 A KR20137021488 A KR 20137021488A KR 101526092 B1 KR101526092 B1 KR 101526092B1
- Authority
- KR
- South Korea
- Prior art keywords
- data
- factory
- customer
- plant
- electronic processor
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 134
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000009826 distribution Methods 0.000 title description 43
- 230000005611 electricity Effects 0.000 claims abstract description 101
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 78
- 230000002068 genetic effect Effects 0.000 claims abstract description 77
- 238000012358 sourcing Methods 0.000 claims abstract description 76
- 230000003466 anti-cipated effect Effects 0.000 claims abstract description 37
- 238000003860 storage Methods 0.000 claims description 16
- 238000001914 filtration Methods 0.000 claims description 13
- 238000013500 data storage Methods 0.000 claims description 3
- 230000001052 transient effect Effects 0.000 claims description 3
- 238000005457 optimization Methods 0.000 description 42
- 239000000047 product Substances 0.000 description 34
- 238000013459 approach Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 18
- 239000007788 liquid Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 230000008859 change Effects 0.000 description 9
- 238000012384 transportation and delivery Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000012263 liquid product Substances 0.000 description 6
- 230000015654 memory Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000013068 supply chain management Methods 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002986 genetic algorithm method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- YMXREWKKROWOSO-VOTSOKGWSA-N methyl (e)-3-(2-hydroxyphenyl)prop-2-enoate Chemical compound COC(=O)\C=C\C1=CC=CC=C1O YMXREWKKROWOSO-VOTSOKGWSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N γ Benzene hexachloride Chemical compound ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D1/00—Pipe-line systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D3/00—Arrangements for supervising or controlling working operations
- F17D3/01—Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04848—Control strategy, e.g. advanced process control or dynamic modeling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04951—Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06313—Resource planning in a project environment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/067—Enterprise or organisation modelling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/10—Mathematical formulae, modeling, plot or curves; Design methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/60—Details about pipelines, i.e. network, for feed or product distribution
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Operations Research (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Primary Health Care (AREA)
- Water Supply & Treatment (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Genetics & Genomics (AREA)
- Evolutionary Biology (AREA)
Abstract
이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 예상되는 공장 전기 가격 데이터가 수정된 유전 알고리즘에 입력되고, 전자 프로세서가 수정된 유전 알고리즘을 해결하고 해결책을 인터페이스에 출력하는, 적어도 하나의 공장으로부터 적어도 한 명의 고객까지 적어도 하나의 제품을 생산 및 분배하기 위한 컴퓨터-구현 시스템 및 방법이 개시된다. 시스템 및 방법은 유연하며 데이터가 산출에 이용 가능하게 될 때 그 데이터를 포함시킬 수 있다.
Description
본 발명은 개선된 생산 및 분배를 위한 방법들에 대한 것이다.
공기 분리 공장(air separation plant)은 예를 들어, 극저온 증류법(cryogenic distillation)에 의해 기체 및 액체 질소, 산소 및 아르곤 둘 다를 생성한다. 액체 제품이 생성되면, 종래에는 그것이 필요로 될 때까지 대형 극저온 저장 탱크들에 저장된다. 필요로 되면, 액체 제품은 극저온 액체 저장 탱크로부터 인출되고 트럭들 또는 다른 배송 수단을 통해 공장 부지로부터 고객들 또는 일련의 고객들로 배송된다. 액체 제품들과 대조적으로, 기체 제품들은 공동생산(co-produce)되고 통상적으로 파이프라인(pipeline)을 통해 고객들에게 보내진다. 액체 및/또는 기체 제품들에 대한 수요는 변할 수 있고, 이에 따라 공장 가동률(plant rate)들은 이러한 수요들을 충족하도록 조정된다.
이러한 제품들을 고객들에게 공급하는데 초래되는 비용들은 제품을 제조하기 위한 생산 비용 및 그 고객에 공급하기 위한 분배 비용을 포함한다. 종래에는, 생산 비용의 상당 부분이 공익 회사(utility company)에 의해 과금되는 전기 비용들이다. 이 전기 비용들은 몇몇 영역들에서 매 15분만큼 빈번하게 가격 변화 사건을 통해 몹시 가변 가능하게 될 수 있다. 전기 비용들은 이에 따라 공기 분리 공장의 네트워크에 대한 매우 가변 가능한 생산 비용을 구성한다.
제품이 생산되면, 제품은 이어서 통상적으로 특유의 지리 내의 다수의 고객들에게 공급된다. 영역 또는 대륙 내의 다수의 생산 부지로부터 다수의 고객들로의 제품들의 생산 및 배달은 다수의 회사들이 직면한 공통적인 최적화 문제이다. 특히, 예측되고 요청되는 소비자 수요들을 충족하기 위해 소싱 계획들(sourcing plans)을 결정하는 것과 함께 다수의 생산 부지들에서의 생산 계획들의 결정과 결합된 문제의 최적화는 도전적이다. 각각의 공장에 대한 상이한 생산 성능들 및 효율들과 결합된, 위에서 언급된 바와 같이 매우 가변 가능한 생산 비용은 물론 고객 수요들의 가변성(variability)은 고객들과 공장들의 네트워크에 대해 액체 생산 판단들 및 고객 소싱 판단들을 상당히 복잡하게 한다. 이 경우에, 분배 문제는 종종 생산 및/또는 저장 방식: 생산, 저장 및 배달의 최저 총 비용을 용이하게 하기 위해 제품이 언제 그리고 어디에서 제조되고 저장되어야 하는가? 와 밀접하게 결합된다.
상품 제품(예를 들어, 액체 산소, 액체 질소, 액체 아르곤 등)을 생산하고 이어서 분배 네트워크를 통해 고객들에게 이 제품을 공급하는 공장들의 네트워크의 경우에, 각각의 공장이 정해진 범위 내에서 가변양의 각각의 제품을 제조할 수 있기 때문에, 각각의 공장에서 생산율(production rate)에 대한 무한한 실행 가능한 시나리오들이 존재한다. 동시에, 분배측에서, 모든 이용 가능한 공장 소스들은 소싱 판단들을 내릴 때 고려된다. 다른 것들 중에서 이들 요인들은 고객들 및 공장들의 네트워크에 대해 이익을 최대화하고 및/또는 생산 및 분배 비용들을 최소화하도록 의도되는 경우 조합된 생산-분배 최적화 문제에서 과대한 크기를 유발할 수 있다. 그러므로, 전체 네트워크 최적화 문제는 중요한 조합 최적화 문제로 인해 심지어 합당한 시간 프레임에서도 해결하는 것이 어렵게 된다.
생산측 상에서 문제의 크기를 감소시키기 위한 노력들은 통상적으로 전체 네트워크 내로의 현저한 통합 없이 개별 공장 동작을 통상적으로 고려한다. 즉, 공장들은 이들 생산 범위들에 관련하여 제약들 및 과거 경험에 기초하여 좁은 범위에 걸쳐서 실행되고 및/또는 공장 동작은 그 특유의 공장에 대한 최적의 동작 지점에 기초하여 차선의 네트워크 범위(sub-optimal network wide) 내에 있는 해결책을 발생시킨다. 일반적으로 분배 측 상의 다수의 변수들을 감소시키기 위한 노력들이 행해져 왔는데, 그 이유는 분배 최적화 문제가 현재 최적화 시스템들을 이용하여 합당한 시간 프레임들에서 저절로 해결될 수 있기 때문이다. 그러나 만연한 해결책들은 여전히 생산 소스들로서 모든 가능한 공장들을 고려하여 문제 크기를 증가시킨다. 또한, 제안된 해결책들 중 일부는 소비자 선호도, 계약 요인들(contractual factor) 등과 같은 제약들로 인해 구현이 불가능할 수 있다.
네트워크 최적화 문제에 대한 종래의 접근법들은 문제의 크기를 관리 가능한 수의 변수들로 감소시키고 합당한 시간 프레임에서 해결책을 얻기 위해 대부분 생산 최적화 문제와 분배 최적화 문제를 개별적으로 다룬다. 예를 들어, 미국 특허 출원 번호 US 2006 0241986에서, 유전 알고리즘(Genetic Algorithm)은 소스 공장들에서 최적의 생산을 결정하는데 이용되고 별개의 Ant Colony 최적화기가 최적의 분배 해결책들을 결정하는데 이용되었다. 양자의 최적화기들로부터의 출력들은 각각의 개별 최적화기에 의해 제안된 상이한 해결책들의 효율성을 평가하기 위한 시뮬레이션을 실행하는 제3 최적화 조화 모듈을 이용하여 개별적으로 비교된다.
그러나 결과적인 해결책들은 차선인데, 그 이유는 조합된 생산 및 분배 시나리오들의 전체 판단 공간이 동시에 고려되지 않기 때문이다. 여러 번, 방금 기술된 것과 같은 차선의 접근법에 이어서 생산 최적화 또는 분배 최적화를 개별적으로 행하기 위한 자립형 최적화기를 위해 다액의 자본을 이미 투자한 회사가 있을 것이고, 맨 위에 제3 최적화기를 부가하는 것은 조합된 생산 및 분배 최적화 문제 그 자체에 가장 최적의 해결책을 제공하는 것이 아닐지라도 가장 비용-효과적인 옵션이다.
문헌에서 기술된 방법들은 또한 네트워크 최적화 문제들을 해결하기 위한 다양한 최적화 알고리즘들을 이용한다. 이러한 타입들의 네트워크 최적화 문제들을 해결하기 위한 하나의 접근법은, 공기 분리 공장들 및 소비자들의 네트워크에서 액체 생산의 제어가 혼합-정수 비-선형 프로그래밍(mixed-integer non-linear programming; MINLP) 기법을 이용하여 수행되는 미국 특허 번호 제7,092,893호에서 논의된다. MINLP는 통상적으로 이러한 타입들의 네트워크 최적화 문제들이 적용될 때 2개의 주요한 제한들을 겪는데, (1) MINLP는 합당한 시간 프레임에서 중간의 해결책들을 위한 해결 유연성을 갖지 않고; (2) 새로운 또는 중간의 데이터가 이용 가능할 때, 그 새로운 테이터를 포함시키는 유일한 방법은 처음부터 전체 최적화 시퀀스를 재차 실행하는 것이다. 중간 해결책들을 이용 가능하게 하는 것은 물론 다양한 인입하는 데이터 피드들(incoming data feeds)로부터 새로운 데이터를 포함하는데 있어서의 이러한 무능은 가장 효율적이고, 구현 가능하고 최적화된 방식으로 네트워크 최적화 문제를 해결하기 위해 MINLP가 이용되는데 있어 큰 장애물이다. MINLP의 다른 제한은 새로운 또는 중간 데이터의 이용 없이 획득된 해결책이 또한 구현하는데 부정확할 수 있다는 것인데, 그 이유는 최적화기가 실행에 소모하는 시간 동안 그 상황이 실질적으로 변경될 수 있기 때문이다. 그러므로 최근의 데이터를 포함함 없이 획득된 해결책은 최소 비용 및/또는 최대 이익을 유발하지 않을 수 있다.
산업은 다양한 애플리케이션들에 대해 그리고 오랜 시간 동안 최적화를 위해 유전 알고리즘들(Genetic algorithms; GA)을 이용하였다. GA는 생물학적 진화의 다윈 프로세스와 유사한 자연 선택 프로세스에 기초하여 최적화 문제들을 해결하는 방법을 지칭한다. 잠재적인 해결책의 초기 또는 시드 집단(seed population)과 함께 시작하여, GA는 다음 단계로 나아가기 위해 최상의 또는 "최적합(fittest)" 해결책들을 선택한다. 각각의 단계 또는 세대에서, GA는 새로운 해결책들을 생성하고 결국 최적의 해결책으로 진화하도록 집단들로부터 개개인들을 선택한다. GA는 가장 최적의 문제들에 적용될 수 있지만, 목적 함수(objective function)가 이산 또는 비-선형인 최적화 문제들에 최상으로 적합하게 된다. 다수의 공장들로부터 다수의 고객들로 액체 제품들을 포함하는 제품들을 생산하고 분배하기 위한 네트워크 최적화의 경우에, 전기 계약들/비용들은 매우 비-선형이다. GA의 상이한 예시적인 애플리케이션들은 예를 들어, 미국 특허 번호 제7,693,653호를 포함하며, 여기서, GA는 무인 차량들이 군대 임무를 완료하도록 최적의 경로들을 동적으로 결정하기 위해 개시된다. 또한, 미국 특허 번호 제7,065,420호에서, GA는 CAD 설계 단계에서 부품들의 최적의 양상들을 결정하도록 이용되어서, 제조 단계에서 그들의 실용 가능성을 평가한다. GA의 이용은 또한 공급 체인 관리 문제들(Supply Chain Management problems)에도 적용된다. 예를 들어, 미국 특허 번호 제7,643,974호에서, 파이프라인 시스템에서 최적의 소싱을 결정하기 위해 GA의 이용이 개시된다.
정교한 최적화 기법들이 몇몇 산업들에서 이용을 위해 실제적이 되는 지점까지 계산 전력이 증가하였지만, 대형 네트워크들의 최적화는 여전히 매우 계산적으로 부담스럽다. 종종, 결과적인 해결책들은 해결하는데 지나치게 오랜 시간이 걸릴 수 있고 입력 데이터의 등락(fluctuation)으로 인해 추후의 시구간에 심지어 응용 가능하지 않을 수 있으며, 이는 최적화 문제가 된다. 다수의 소싱 및 고객 부지들이 존재하고 이에 따라 수십억의 잠재적인 시나리오들이 존재하는 매우 대형의 분배 네트워크의 공급 체인 관리의 경우에, 최적의 해결책이 생성되는 시간의 양은 그 해결책이 실질적으로 구현될 수 있는 시구간을 초과할 것이다.
따라서, 데이터가 이용 가능하게 될 때 그 데이터를 포함하는 유연성을 갖고 빠른 판단 내리기를 위해 중간 해결책들을 산출하는, 조합된 생산 및 분배 문제를 해결하기 위한 최적화 루틴에 대한 요구가 당 분야에 존재한다. 또한, 문제의 크기를 감소, 즉, 최적화기 결과가 실행 가능하며 구현 가능한 해결책이 되어야 하는 동시에 최적화기가 내려야 하는 판단들의 수를 감소시킬 필요성이 있다.
개시되는 실시예들은 데이터가 이용 가능하게 될 때 그 데이터를 포함하는 유연성을 갖고 빠른 판단 내리기를 위해 중간 해결책을 산출하는, 조합된 생산 및 분배 문제를 최적화하기 위한 시스템 및 방법을 제공함으로써 당 분야의 요구를 만족시킨다. 개시된 실시예들은 수정된 유전 알고리즘 기법을 이용하여 조합된 생산 및 분배 최적화 문제를 위한 판단 공간을 감소시키는 방법 및 시스템을 제공한다. 수정된 유전 알고리즘(GA) 접근법은 문제 크기를 지능적으로 감소시키고 중간 데이터 포함을 허용하며, 이에 따라 효율적인 방식으로 조합된 생산 및 분배 최적화 문제를 해결하기 위한 방법 및 시스템을 제공함으로써 종래의 부족한 점들 중 일부를 극복한다.
일 실시예에서, 적어도 하나의 공장으로부터 적어도 한 명의 고객까지 적어도 하나의 제품을 생산 및 분배하기 위한 컴퓨터-구현 방법이 개시되며, 이 방법은, 전자 데이터 저장소로부터 전자 프로세서를 이용하여 상기 적어도 하나의 공장으로부터의 연속적인 공장 데이터를 획득하는 단계; 이산화된 공장 생산 데이터(discretized plant production data)를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하는 단계; 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 한 명의 고객으로부터의 이력적 고객 소싱 데이터(historical customer sourcing data)를 획득하는 단계; 필터링된 고객 소싱 데이터를 획득하기 위해 전자 프로세서를 이용하여 상기 이력적 고객 소싱 데이터를 필터링하는 단계; 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 고객 이용 데이터를 획득하는 단계; 예상되는 고객 수요 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 고객 이용 데이터를 모델링하는 단계; 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 획득하는 단계; 예상되는 공장 날씨 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 모델링하는 단계; 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터를 획득하는 단계; 예상되는 공장 전기 가격 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터 및 예상되는 공장 날씨 데이터를 모델링하는 단계; 상기 전자 프로세서를 이용하여, 상기 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘(modified genetic algorithm) 내에 입력하는 단계; 상기 전자 프로세서를 이용하여, 상기 수정된 유전 알고리즘을 해결(solving)하는 단계; 및 상기 전자 프로세서를 이용하여 상기 수정된 유전 알고리즘에 대한 해결책(solution)을 인터페이스에 출력하는 단계를 포함한다.
다른 실시예에서, 적어도 하나의 공장으로부터 적어도 한 명의 고객까지 적어도 하나의 제품을 생산 및 분배하기 위한 컴퓨터 시스템이 개시되며, 이 시스템은 전자 데이터 저장소; 및 전자 프로세서를 포함하고, 상기 전자 프로세서는, 상기 전자 데이터 저장소로부터 상기 적어도 하나의 공장으로부터의 연속적인 공장 데이터를 획득하고; 이산화된 공장 생산 데이터(discretized plant production data)를 획득하기 위해 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하고; 상기 전자 데이터 저장소로부터 상기 적어도 한 명의 고객으로부터의 이력적 고객 소싱 데이터(historical customer sourcing data)를 획득하고; 필터링된 고객 소싱 데이터를 획득하기 위해 상기 이력적 고객 소싱 데이터를 필터링하고; 상기 전자 데이터 저장소로부터 고객 이용 데이터를 획득하고; 예상되는 고객 수요 데이터를 획득하기 위해 적어도 하나의 시간 동안 상기 고객 이용 데이터를 모델링하고; 상기 전자 데이터 저장소로부터 상기 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 획득하고; 예상되는 공장 날씨 데이터를 획득하기 위해 적어도 하나의 시간 동안 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 모델링하고; 상기 전자 데이터 저장소로부터 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터를 획득하고; 예상되는 공장 전기 가격 데이터를 획득하기 위해 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터 및 예상되는 공장 날씨 데이터를 모델링하고; 상기 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘(modified genetic algorithm) 내에 입력하는 단계; 상기 수정된 유전 알고리즘을 해결(solve)하고; 및 상기 수정된 유전 알고리즘에 대한 해결책(solution)을 인터페이스에 출력하도록 구성된다.
또 다른 실시예에서, 전자 프로세서에 의해 실행되도록 구성되는 명령들이 인코딩된 비-일시적인 컴퓨터-판독 가능한 저장 매체가 개시되며, 상기 명령들은 상기 저장 프로세서에 의해 실행될 때, 적어도 하나의 공장으로부터 적어도 한 명의 고객까지 적어도 하나의 제품을 생산 및 분배하기 위한 방법을 수행하게 하며, 상기 방법은, 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장으로부터의 연속적인 공장 데이터를 획득하는 단계; 이산화된 공장 생산 데이터(discretized plant production data)를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하는 단계; 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 한 명의 고객으로부터의 이력적 고객 소싱 데이터(historical customer sourcing data)를 획득하는 단계; 필터링된 고객 소싱 데이터를 획득하기 위해 전자 프로세서를 이용하여 상기 이력적 고객 소싱 데이터를 필터링하는 단계; 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 고객 이용 데이터를 획득하는 단계; 예상되는 고객 수요 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 고객 이용 데이터를 모델링하는 단계; 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 획득하는 단계; 예상되는 공장 날씨 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 모델링하는 단계; 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터를 획득하는 단계; 예상되는 공장 전기 가격 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터 및 예상되는 공장 날씨 데이터를 모델링하는 단계; 상기 전자 프로세서를 이용하여, 상기 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘(modified genetic algorithm) 내에 입력하는 단계; 상기 전자 프로세서를 이용하여, 상기 수정된 유전 알고리즘을 해결(solving)하는 단계; 및 상기 전자 프로세서를 이용하여 상기 수정된 유전 알고리즘에 대한 해결책(solution)을 인터페이스에 출력하는 단계를 포함한다.
위의 및 다른 목적 및 이점들은 본 발명의 다음의 상세한 설명에 기초하여 당업자에게 자명하게 될 것이다.
도 1a는 본 발명의 일 실시예에 따라 전체 시스템 및 방법을 예시하는 흐름도.
도 1b는 이산 공장 생산 데이터를 획득하기 위한 프로세스를 예시하는 흐름도.
도 1c는 연속적인 공장 생산 데이터를 모드들로 단편화하기 위한 프로세스의 그래픽 표현을 도시하는 도면.
도 1d는 필터링된 고객 소싱 데이터를 획득하기 위한 프로세스를 예시하는 흐름도.
도 1e는 본 발명의 일 실시예에 따라 고객으로의 배달들을 예시하는 그래픽 표현이며 이력적 고객 소싱 데이터를 필터링하는 프로세스를 도시하는 도면.
도 1f는 예측된 고객 수요 데이터를 획득하기 위한 프로세스를 예시하는 흐름도.
도 1g는 예측된 공장 전기 가격 데이터를 획득하기 위한 프로세스를 예시하는 흐름도.
도 2는 본 발명의 일 실시예에 따른 일 예시적인 시스템을 예시하는 도면.
도 1b는 이산 공장 생산 데이터를 획득하기 위한 프로세스를 예시하는 흐름도.
도 1c는 연속적인 공장 생산 데이터를 모드들로 단편화하기 위한 프로세스의 그래픽 표현을 도시하는 도면.
도 1d는 필터링된 고객 소싱 데이터를 획득하기 위한 프로세스를 예시하는 흐름도.
도 1e는 본 발명의 일 실시예에 따라 고객으로의 배달들을 예시하는 그래픽 표현이며 이력적 고객 소싱 데이터를 필터링하는 프로세스를 도시하는 도면.
도 1f는 예측된 고객 수요 데이터를 획득하기 위한 프로세스를 예시하는 흐름도.
도 1g는 예측된 공장 전기 가격 데이터를 획득하기 위한 프로세스를 예시하는 흐름도.
도 2는 본 발명의 일 실시예에 따른 일 예시적인 시스템을 예시하는 도면.
위의 요약은 물론 예시적인 실시예들의 다음의 상세한 설명은 첨부된 도면들과 함께 판독될 때 더 잘 이해될 것이다. 실시예들을 예시할 목적으로, 도면들에서 예시적인 구조들이 도시되지만, 본 발명은 개시된 특유의 방법들 및 방편들로 제한되지 않는다.
본 발명의 실시예들은 전체 생산 및 분배 최적화 문제를 단순화하기 위해 각각의 공장의 동작 모드들 및 고객 소싱 판단들을 기술하도록 GA의 정수 또는 비트-스트림 집단(bit-string population)을 특정하는 것을 포함한다. GA가 단지 공장 동작의 이산 모드들을 고려해야 하기 때문에, GA는 연속적인 변수들로 존재하는 생산양들의 잠재적으로 다른 무한 공간보다 훨씬 적은 해결 공간을 고려한다. 이산 모드들의 이용에 의한 네트워크의 이러한 단순화는 상기 모드들이 기초하여 최적화하기 위해 이러한 접근법의 양상들이 유전 알고리즘에 적용되는 것을 가능하게 한다. 시스템에서 이산 변수들을 특정함으로써 GA는 효율적으로 실행되고 그렇지 않았다면 몇 시간이 걸렸을 해결책들을 몇 분 내에 생성한다.
이러한 신규한 접근법에서, 각각의 공장은 동작 모드들의 이산 세트 중 하나에서 실행되며, 여기서 각각의 모드는 시스템의 근본적인 상태, 예를 들어, 온 또는 오프되는 압축기에 링크된다. 여기서 모드는 병존 생산율 및 전기 이용을 초래하도록 실행중인 장비의 정의된 세트와 연관되는 대표적 동작 지점으로서 정의된다. 접근법은 우선 각각의 공장에 대한 가능한 동작 모드들을 단순화하는데 초점을 맞추고, 이어서 각각의 이진 이산 판단들에 대한 최적의 판단들을 결정하는데 초점을 맞춘다. 판단 공간의 이러한 이산화는 공장 동작 모드를 통해서 뿐만 아니라 복수의 공장들로부터 소싱되는 고객 상에서 수행된다. 그 결과, 고객이 어떻게 소싱될지에 관한 판단들은 또한 이진 변수들의 세트를 초래하도록 일련의 허용된 수의 소스들 사이에서 이산화된다. 재차, 이러한 접근법은 허용된 판단 공간의 단순화에 이은 최적화에 초점을 맞춘다. 마지막으로, 이 접근법은 또한 이러한 문제를 해결하기 위해 중간 데이터를 포함하는 유전 알고리즘 방법들을 활용한다는 점에서 신규하다.
본 발명의 일 실시예는 공장들 각각에서 생성되는 제품에서 거의 차이가 없는, 제품의 최상의 생산 및 분배를 결정하기 위한, 보다 구체적으로 상품 제품을 위한 자동화된 최적화 방법을 제공한다. 여기서 기술되는 본 발명의 실시예들은 예를 들어, 공기 분리 공장들 및 액체 질소, 액체 산소, 액체 아르곤, 또는 임의의 조합을 요구하는 그들의 고객들의 최적화이지만, 본 발명은 이러한 분배 네트워크들로 제한되지 않는다.
최저 비용 및 최대 이익을 보장하기 위한 액체 분리 공장들을 위한 최적화 방법은 매우 다수의 요인들을 고려할 필요가 있을 것이다. 주로, 공장 에너지 요건은 앞서 언급된 바와 같이 대부분의 생산 비용이 전기이기 때문에 최소화될 필요가 있을 것이다. 그러나 동일한 네트워크 내의 상이한 공장들은 상이한 지역 전기 비용들로 인해 상이한 비용 구조를 가질 수 있다. 최적화에 있어서 다른 중요한 요인들은 통상적으로 계약상의 고객 수요들이며 수요율(demand rate)이 충족되지 않은 경우 실질적인 비용 불이익이 초래될 수 있다. 마지막으로, 분배 비용들은 전체 비용의 주요한 컴포넌트이며 고객 배달들을 위한 최적의 소싱의 계획에서 고려된다.
네트워크 최적화는 비용들을 최소화하고 이익들을 최대화하기 위해 행해지며, 공장 동작 및 분배 둘 다의 모델들을 요구한다. 임의의 시점에, 정해진 수요에 대해, 공장 동작 모델들의 그룹은 예를 들어, 이들 공장들로부터 기체 및 액체 제품들을 제조하기 위한 생산 비용들을 결정하는데 이용된다. 모델들은 또한 수요들에 기초하여 소비자에게 제품을 이송하는 것과 연관된 분배 비용들을 예측하도록 요구된다. 모델들의 통합은 최적의 전체 비용을 결정하기 위해 요구된다. 예를 들어, 액체 질소를 생산하는데 저렴한 공장은 높은 분배 비용들에 기초하여 특정한 고객들에 제공하는데 적합하지 않을 수 있다.
제안된 프로세스를 더 잘 예시하기 위해, 본 발명의 실시예들에 따른 예시적인 프로세스의 개략적인 다이어그램들이 도 1a 내지 도 1g에서 제공된다. 도 1a는 본 발명의 일 실시예에 따른 개략적인 전체 시스템 및 프로세스를 도시하며, 여기서 수정된 유전 알고리즘(102)은 해결책에 도달하기 위해 다양한 인입하는 데이터 피드들에 적용된다.
도 1b는 도 1a의 이산화된 공장 생산 데이터(Discretized Plant Production Data)(208)를 획득 및 제공하기 위한 본 발명의 하나의 예시적인 실시예를 예시한다. 도 1b에서 예시되는 바와 같이, 연속적은 공장 데이터는 예를 들어, 공장 데이터 이력장치(plant data historian)들과 같은 다양한 데이터 소스들로부터 단계(202)에서 획득된다. 단계(202)에서 획득된 이 연속적인 공장 생산 데이터는 생산율, 제품 탱크 레벨, 전기 이용 등을 포함하는, 공장에서의 다양한 프로세스 파라미터들로 구성될 수 있다. 확장 시구간에 걸쳐서 획득되는 연속적인 공장 생산 데이터는 이상치(outlier)들을 가질 수 있다는 것이 가능하다. 이상치들은 누락 데이터, 시간적으로 오정렬된 데이터, 범위밖 데이터(out of range data) 등을 포함하는 다양한 형태들로 데이터에 존재할 수 있다. 이 이상치 데이터는 제안된 접근법이 적용되기 이전에 연속적인 공장 생산 데이터로부터 제거되어야 하는데, 그 이유는 이러한 이상치 데이터가 최적화기에 대한 부정확한 입력들을 야기할 수 있기 때문이다. 예를 들어, 부정확한 공장 모델들은 분석에서 오정렬된 데이터 또는 범위밖 데이터가 포함되는 경우 식별될 수 있다. 따라서 단계(202)에서 획득되는 연속적인 공장 생산 데이터는 이어서 온전한 데이터-세트를 생성하도록 미리 결정된 규칙들의 세트에 기초하여 모든 이러한 이상치 데이터를 제거 및 정정함으로써 단계(204)에서 인증된다. 규칙들은 여기서 데이터-세트에서 누락 값들을 교체하도록 최근접 값들 사이에서 보간(interpolating)하고, 임의의 오정렬된 데이터 값들을 수정하도록 상이한 연속적인 시간 스템프들에서 이력 데이터의 사본들을 획득하고 마지막 획득된 범위내 값(in-range value)으로 범위밖 값을 대체하는 것과 같은 단계들을 포함할 수 있다. 연속적인 공장 생산 데이터의 인증된 데이터-세트는 이어서 이산화된 공장 생산 데이터를 생성하도록 단계(206)에서 단편화된다. 이러한 이산화된 공장 생산 데이터는 이어서 도 1a에서 예시된 바와 같은 수정된 유전 아키텍처(102)로의 입력을 위해 단계(208)에서 제공된다.
단편화 단계(206)는 추가로 도 1c에서 예시되며, 도 1c는 액체 질소(LIN) 및 액체 산소(LOX)의 생산이 모드들(1 내지 4)로 단편화되는 단일의 공기 분리 공장에 대한 단편화된 생산의 예를 도시한다. 임의의 정해진 공기 분리 공장은 동시에 LIN, LOX 및 기체 제품들을 생산하고 전기를 이용할 것이다. 이력 데이터에 기초하여 공장 동작 모드들은 생산 및 전기 이용에 대해 선택된다. 임의의 공장은 동작의 "영역들" 내로 단편화될 수 있다. 이 예에서, 임의의 정해진 지점에, 이 공장은 이들 4개의 모드들 중 하나 내에서 동작할 것이라고 말할 수 있다. 정해진 모드에 대해, 생산 및 전기 이용은 압축기 또는 액화기가 턴 온 또는 턴 오프되는 것과 같은 물리적인 속성들에 기초한다. 모드들은 이들 속성들, 주로, 생산율 및 전기 이용에 기초하지만, 다른 요인들에 또한 기초하여 선택된다. 모드들의 물리적 차별기(physical differentiator)의 다른 예는 오프 또는 온으로 실행중인 액화기이다. 예를 들어, 도 1c에서, 공장은 모드 1에서 실행중인 하나의 액화기 및 모드들 2 내지 4에서 실행중인 2개의 액화기를 가질 수 있다. 단편화 단계에 대한 핵심 요인은 도 1c에서 다양한 생산 지점들에 의해 도시되는 바와 같이 무한양으로부터 유한양(즉, 4개의 지점들(모드 1, 모드 2, 모드 3 및 모드 4))으로 가능한 생산 지점들의 수를 감소시키는 것이다. 선택된 모드는 전체 범위에서의 대표적인 지점이다. 지정된 지점을 선택하기 위한 몇몇 옵션들은 생산 범위들의 평균 또는 생산 범위들의 중간에 기초할 수 있다.
고객 배달들 또는 필터링된 고객 소싱 데이터를 획득 및 제공하기 위해, 유사한 접근법이 취해져서 판단 공간 및 궁극적으로 도 1d에서 도시된 바와 같이 해결된 문제의 크기를 감소시킨다. 이력적 고객 소싱 데이터는 비즈니스 데이터베이스들로부터 단계(302)에서 획득된다. 광범위한 시구간에 걸쳐서 획득된 이력적 고객 소싱 데이터는 또한 이상치들을 포함할 수 있다는 것이 가능하다. 이상치들은 누락 데이터, 오정렬된 데이터, 범위밖 데이터 등을 포함하는 다양한 형태들로 데이터에 존재할 수 있다. 이 이상치 데이터는 제안된 접근법이 적용되기 이전에 이력적 고객 소싱 데이터로부터 제거되어야 한다. 이력적 고객 소싱 데이터는 이에 따라 온전한 데이터세트를 획득하기 위해 미리 결정된 규칙들의 세트에 기초하여 모든 이러한 이상치 데이터를 제거 및 정정함으로써 단계(306)에서 인증된다. 인증된 이력적 고객 소싱 데이터의 온전한 데이터세트는 이어서 필터링된 고객 소싱 데이터를 획득하기 위해 단계(308)에서 필터링되며, 여기서, 이러한 필터링된 고객 소싱 데이터는 이어서 도 1a에 도시된 바와 같이 수정된 유전 알고리즘(102)에 대한 입력으로서 단계(310)에서 제공된다. 필터링 단계(308)는 소스 공장들(A, B, C, D, E, F, 및 G)의 목록으로부터 고객에 대해 행해지는 이력적 고객 소싱 데이터 또는 배달들을 도시하는 도 1e에서 추가로 예시된다. 이 경우에, 과거에 고객을 소싱한 공장들만이 가능한 소스들로서 선택된다. 소스 공장들(D, E 및 G)은 이것이 그들의 비용 구조가 최적이 아니었음을 가정하는 실제 시나리오인 경우 제거될 것이다. 전체 네트워크에서, 고객은 이론적으로 공기 분리 공장들 중 임의의 것으로부터 소싱될 수 있다. 그러나 공장들 중 일부만이 그들의 배달 비용 및 고객에 대한 그들의 근접도에 기초하여 실현 가능할 것이다. 소스로서 어느 공장들을 고려할지를 선택하는 토대는 각각의 고객에 대해 상이하지만, 판단은 주로 과거 소싱의 빈도 및 예측된 배달 비용에 기초한다. 특정한 공장으로부터 배달한 이력이 없지만, 비용은 잠재적으로 호의적(favorable)인 경우(새로운 공장 또는 고객의 경우에서와 같이), 공장이 포함될 수 있다. 수천 명의 고객들의 네트워크에 대해, 이러한 접근은 최적화기가 고려할 지점들의 수를 크게 감소시켜서, 최적화기를 더욱 효율적으로 만든다. 또한, 이 접근법은 결과들을 보다 실현 가능하게 하고 매우 다수의 고객들이 과거에 제품을 앞서 수신한 공장으로부터 소싱될 것이므로 구현의 기회를 크게 증가시킨다. 공장의 그룹으로부터 임의의 고객에게 배달된 부피들의 누적 합에 기초하여, 공장 소스들의 선호 목록이 각 고객에 대해 식별된다.
도 1a에서 예시되는 바와 같이, 수정된 유전 알고리즘(102)에 대한 다른 입력은 예상되는 고객 수요 데이터(408)이다. 도 1f는 미래의 시구간 동안 모든 고개들에 대한 예상되는 고객 수요 데이터를 획득하고 제공하기 위한 프로세스를 예시한다. 예상되는 고객 수요 데이터는 또한 내부적으로 초래되는 임의의 제품 이용을 포함할 수 있으며, 예를 들어, 극저온 액체들의 경우에, 액체 제품은 임의의 계약상 동의 가능한 기체 파이프라인 수요들을 충족시키기 위한 대한 백업 소스로서 기화될 수 있거나, 또는 내부 공장 요구들을 위해 이용될 수 있다. 이 시구간은 본질적으로 장래에 7일의 바람직한 선택을 통해 변동 가능하게 될 수 있다. 프로세스는 단계(402)에서 고객 이용 데이터를 획득하는 것으로 시작한다. 극저온의 경우에, 고객 이용 데이터는 원격측정(telemetry)을 통해 원격으로 탱크 레벨들을 판독함으로써 획득될 수 있다. 이것은 광범위한 시구간에 걸쳐서 탱크 레벨들에 대해 획득된 판독들이 그 내부에 이상치가 존재할 수 있다는 것이 가능하다. 이상치들은 누락 데이터, 오정렬된 데이터, 범위밖 데이터 등을 포함하는 다양한 형태들로 데이터에 존재할 수 있다. 이들 이상치 데이터는 제안된 접근법이 고객 이용 데이터에 적용되기 이전에 이로부터 제거되어야 한다. 단계(404)에서, 예시적인 프로세스는 온전한 데이터세트를 획득하기 위해 미리 결정된 규칙들의 세트에 기초하여 모든 이러한 이상치 데이터를 제거 및 정정함으로써 고객 이용 데이터를 인증한다. 인증된 고객 이용 데이터는 이어서 예상되는 고객 수요 데이터를 획득하기 위해 단계(406)에서 모델링된다. 예상되는 고객 수요 데이터는 이어서 도 1a에서 도시되는 바와 같이 수정된 유전 알고리즘(102)에 대한 입력으로서 단계(408)에서 제공된다. 원격측정이 고객 탱크 레벨을 측정하기 위해 이용 가능하지 않은 경우에, 예를 들어, 고객에 대한 이력적 이용 패턴들이 이용될 수 있다.
도 1a에서 예시되는 바와 같이, 수정된 유전 알고리즘(102)에 대한 다른 입력은 예상되는 공장 전기 가격 데이터(516)이다. 도 1g는 미래에 정해진 시구간 동안 모든 공장들에 대한 예상되는 공장 전기 가격 데이터를 획득 및 제공하는 프로세스를 예시한다. 이 시구간은 본질적으로 장래에 7일의 바람직한 선택을 통해 변동 가능하게 될 수 있다. 프로세스는 단계(510)에서 이력적 공장 전기 가격 데이터 및 단계(502)에서 이력적 공장 날씨 데이터를 획득하는 것으로 시작한다. 이력적 공장 전기 데이터는 대금지급 청구서(billing statement)들로부터 또는 공익 회사로부터 직접 획득될 수 있고 이력적 공장 날씨 데이터는 데이터를 저장하도록 생성된 내부 데이터베이스들 및 외부 웹사이트들로부터 획득될 수 있다. 광범위한 시구간에 걸쳐서 이력적 공장 전기 가격 데이터는 이상치들이 그 내부에 존재할 수 있다는 것이 가능하다. 이상치들은 누락 데이터, 오정렬된 데이터 등을 포함하는 다양한 형태들로 데이터에 존재할 수 있다. 이 이상치 데이터는 제안된 접근법이 적용되기 이전에 이력적 공장 전기 가격 데이터로부터 제거되어야 한다. 따라서, 이력적 공장 전기 가격 데이터는 이어서 온전한 데이터 세트를 획득하기 위해 미리 결정된 규칙들의 세트에 기초하여 모든 이러한 이력적 데이터를 제거 및 정정함으로써 단계(512)에서 인증된다. 광범위한 시구간에 걸친 이력적 공장 날씨 데이터는 또한 이상치들이 그 내부에 존재할 수 있다는 것이 가능하다. 이상치들은 누락 데이터, 오정렬된 데이터 등을 포함하는 다양한 형태들로 데이터에 존재할 수 있다. 이 이상치 데이터는 제안된 접근법이 적용되기 이전에 이력적 공장 날씨 데이터로부터 제거되어야 한다. 따라서 이력적 공장 날씨 데이터는 이어서 온전한 데이터세트를 획득하기 위해 미리 결정된 규칙들의 세트에 기초하여 모든 이러한 이상치 데이터를 제거 및 정정함으로써 단계(504)에서 인증된다. 인증된 이력적 공장 날씨 데이터는 이어서 단계(506)에서 모델링되어 단계(508)에서 예상되는 공장 날씨 데이터를 획득한다. 예상되는 공장 날씨 데이터 및 인증된 이력적 공장 전기 가격 데이터는 입력으로서 이용되고 이어서 단계(514)에서 모델링되어 단계(516)에서 예상되는 공장 전기 가격 데이터를 획득하며, 이는 도 1a에서 도시된 바와 같이 수정된 유전 알고리즘(102)에 대한 입력으로서 역할한다.
입력 동작 및 분배에 있어서 판단 공간을 유한 수로 감소시키면, 수정된 유전 알고리즘(102)은 도 1a에서 예시되는 바와 같이 문제를 해결하도록 적용된다. 문제가 정수 프로그래밍(Integer Programming)으로 감소되기 때문에, 수정된 유전 알고리즘(102)을 이용하여 해결하는 것이 보다 실용적이다. 해결 시간은 해결책을 적절한 방식으로 구현될 수 있도록 충분히 짧다. 보다 효율적인 최적화 실행 외에, 이산 변수 세트(discrete variable set)를 해결하기 위해 수정된 유전 알고리즘(102)을 이용하는 것은 시스템의 보다 현실적인 표현이다. 수정된 유전 알고리즘(102)이 모드 변경을 추천할 수 있는 해결책을 생성하기 때문에, 보다 현실적인 판단들의 세트가 시스템에 대해 구현될 수 있다. 예를 들어, 수정된 유전 알고리즘(102) 해결책은 공장이 하나의 동작 모드에서 다른 동작 모드(예를 들어, 2개의 액화기 중 하나를 턴 오프함)로 이전하는 것을 추천할 수 있다. 이산 모드들 대신 연속적인 생산율을 이용하는 다른 통상적인 접근법들은 최적의 해결책을 발생시킬 있어서, 단지 매우 작은 생산율 변경들만이 추천된다. 공장 동작에 대한 이러한 변경은 실제적이지 않을 수 있고, 이에 따라 구현되지 않을 수 있다. 개시된 접근법에 기초하여, 해결책은 단지 현실적으로 실행가능한, 시스템에 대한 섭동(perturbation)들의 형성, 즉 동작 모드 변경들을 제안할 것이다. 기법의 이러한 양상은 구현의 가능성을 더 양호하게 하여 회사의 최종 결과(bottom line)에 대한 절감 가능성을 크게 한다.
수정된 유전 알고리즘(102)은 상이한 시간 버킷들(time bucket)에 해결하도록 셋업된다. 도 1a에서의 예로서, 수정된 유전 알고리즘(102)을 이용하는 프로세스는 24-시간 버킷들(106) 및 1-시간 버킷들(104)에 대해 예시된다. 장래의 1주일 동안 1-시간 버킷들(즉, 최적화기는 각각이 다음 168 시간 각각에 대한 것인 168개의 결과들을 제공함) 대신 장래의 1주일 동안 24-시간 버킷들을 이용하여 문제를 해결하는 것(즉, 최적화기는 각각이 다음 7일 각각에 대한 것인 7개의 결과들을 제공함)은 문제 크기를 추가로 감소시키고 해결 시간이 감소되게 한다. 이 스테이지에서 획득된 해결책이 차선일지라도, 이는 여전히 시구간에 걸친 생산 및 분배에 관한 판단들까지 계획자들이 동작의 코스를 추산(gauge)하는데 중요한 정보 조각이다. 이 해결책은 인터페이스(108)(예를 들어, 프린터, 컴퓨터 스크린, 디스플레이 모듈 등) 상에 디스플레이될 수 있다. 이 해결책 품질은 해결하는데 더 많은 시간이 걸리는 해결책 시간 버킷의 입도를 감소시킴으로써(예를 들어, 1-시간 버킷들(104))까지 가장 최적이 될 수 있으며, 1-시간 버킷들(104)로부터 해결책이 이용 가능하게 되면, 1-시간 버킷 해결책은 24-시간 버킷 해결책(106)을 대체할 수 있고, 후속적으로 인터페이스(108) 상에서 디스플레이될 수 있다. 예를 들어, 시간 0(제로)(예를 들어, 일요일 00:00)에서, 해결책이 장래의 7일 동안 요구되는 경우, 24-시간 버킷(106)에 기초한 계산이 1일의 간격(즉, 월요일 00:00, 화요일 00:00 등)으로 생산 및 분배 판단들을 발생시킬 것이고, 반면에, 1-시간 버킷에 기초한 계산은 1시간의 간격들(즉, 일요일 01:00, 일요일 02:00 등)로 생산 및 분배 판단들을 발생시킬 것이다.
다른 이익은 이용 가능하게 되는 임의의 새로운 데이터가 보다 대표적인 해결책을 제공하기 위해 수정된 GA 최적화기에 부가될 수 있다는 것이다. 이는 예를 들어, 전기 가격의 등락이 매 15분 또는 그 미만에 발생할 수 있는(이는 공장에서 초래되는 생산 비용들에 상당히 영향을 줌) 임의의 공장 또는 공장들의 조합에 대한 전기 비용들을 포함할 것이다. 이는 대표적 예들을 이용하여 더 상세히 논의된다.
다음의 표들은 극저온 액체들을 다양한 고객들에게 이송하기 위해 조합된 생산 및 분배 최적화 문제를 해결하는 대표적인 예를 도시한다. 단순화 목적들을 위해, 고려중인 제품은 액체 질소(LIN)라고 가정된다. 단지 2개의 공장들: 공장 1 및 공장 2가 존재하며, 이들 공장들 둘 다는 4명의 고객들(고객 1, 고객 2, 고객 3 및 고객 4)의 네트워크에 대한 요구되는 LIN을 생산 및 배송할 성능을 갖는다. 예상되는 기간은 4시간이라고 가정된다. 실시간 시나리오에서, 고려될 필요가 있는 다수의 부가적인 요인들(즉, 통상 7일의 더 긴 예상 기간, 각각의 공장에서 기존의 인벤토리들 등)이 존재한다. 단순화 및 예시 목적들을 위해 0의 시작 인벤토리 레벨 및 제품을 이송하는데 이용 가능한 운송수단들의 수는 각 공장에서 무제한이라는 것이 가정된다.
표 1은 공장 1 및 2에 대한 상이한 동작 모드들에 대한 연관된 전력 이용 데이터와 함께 공장 생산 데이터를 도시한다.
[표 1]
여기서 공장 모드들은 특정한 공장 장비가 온 또는 오프인지를 반영하도록 선택되었다. 이들 모드들은 도 1c에서 예시되는 바와 같은 매우 다양한 생산율들을 포함한다. 표 1에서 도시되는 바와 같이, 두 공장들(1 및 2)에 대해, 모드 0은 공장들이 어떠한 LIN도 제조하지 않고 전기를 이용하지 않는 셧다운(shutdown) 시나리오를 표현한다. 모드 1 및 모드 2는 하나의 액화기가 온일 때의 경우를 표현하지만, 모드 2는 모드 1보다 많은 LIN을 생산하고 더 많은 전기를 이용하는데, 그 이유는 상이한 장비가 더 많은 제품을 생산하기 위해 더 열심히 실행하기 때문이다. 마지막으로, 모드 3은 2개의 액화기들이 온일 때의 경우를 표현하며 최대 생산율 및 전력 이용을 갖는 모드를 발생시킨다. 각각의 모드에 대해 나열된 생산율은 대표적 시간 프레임에 걸친 평균 생산율을 반영하며, 이에 따라 광범위한 생산값들을 포함한다. 무한한 생산 시나리오들은 이에 따라 제한되며 동작 모드들에 의해 정확히 표현되며, 이에 따라 최적화 문제의 크기를 감소시킨다. 각각의 모드에 대해 나열된 전기 이용은 공장이 그 모드에서 실행중일 때 소비되는 총 전기를 반영한다. 이들 전기 이용 판독들은 전기 이용을 추적하기 위해 공장에 설치된 전력계(power meters)로부터 획득된다. 일단 제품이 공장들 중 어느 하나에서 제조되면, 제품은 트럭들을 통해 다양한 고객들에게 이송되어야 한다. 표 2의 비용들은 공장들 중 어느 하나로부터 특유의 고객들에게 여행(trip)하는데 초래되는 분배 비용들을 반영한다.
[표 2]
이 데이터는 공장에 의해 마일(mile) 값당 평균 달러를 제공하도록 공장으로부터 운전된 총 마일들로 나눠진 총 분배 달라들과 같은 평균 측정들을 이용함으로써 획득된다. 이들 평균들은 초래되는 통상적인 여행 비용들을 획득하기 위해 임의의 고객 및 공장 페어링(pairing) 간의 거리에 의해 곱해질 수 있다. 보다 정확한 분배 모델은 또한 그 전체가 인용에 의해 본원에 포함되는 국제 특허 출원 번호 PCT/US10/35973에서 예시되는 바와 같은 배달되는 부피, 그 여행에서 행해진 정지(stop)들의 수 등과 같은 다른 요인들을 포함할 수 있다.
표 3은 각각의 시간(1 내지 4) 대한 예상되는 고객 수요 데이터를 예시한다.
[표 3]
통상적으로, LIN, LOX 및 다른 극저온 제품들에 대한 통상적인 판독들은 원격측정 기법들을 이용함으로써 고객들로부터 원격으로 획득될 수 있다. 여기서, 정기적인 간격들에서의 고객 탱크 값들은 떨어진 원격측정을 이용하여 획득되며, 이들은 각 시간(hour)에 고객들로부터의 수요를 예상하기 위한 시간 시리즈 모델(time series model)에 맞춰진다. 평균 값 또는 이력적 이용 패턴들은 원격측정 값들이 이용 가능하지 않은 고객들에 대해 이용될 수 있다. 도시된 예에서, 원격측정 값들은 정기적인 빈도들로 고객들 각각에 대해 획득되며, 시간 시리즈 모델은 이들 값들에 맞춰지고, 예상은 각각의 연속 시간에의 소비자 수요에 대해 획득된다. 예를 들어, 고객 1은 시간 1에 5톤, 시간 4에 10톤이 필요한 것으로 예상된다. 전체 4시간 동안 총 고객 수요는 103톤들이다.
표 4는 최적화의 시작시(t=0 분들)에 다음의 4시간 동안 각각의 공장에 대한 예상되는 전기 가격 데이터를 도시한다.
[표 4]
이전에 언급된 바와 같이, 이 정보는 빠르게 변한다. 몇몇 공장들에서, 전기 가격은 매 15분마다 변한다. 이력적 공장 전기 가격 데이터 및 이력적 공장 날씨 데이터는 모든 공장들 및 그의 연관된 전기 그리드들에 대해 모아지며, 시간-시리즈 모델은 미래에 대한 전기 가격들을 예상하는데 이용되었다. 표 6 내지 8에서 도시되는 바와 같이, 이 전기 가격은 동적이며, 날씨, 전기 그리드 상의 로드, 및 다른 요인들에 의존하여 값의 갑작스런 변동을 경험할 수 있다.
수정된 유전 알고리즘(102)은 다음의 방식으로 실행한다. 제1 단계는 랜덤 초기 집단이 생성되는 초기 집단의 생성이다. 여기서 초기 집단은 양자의 랜덤 현재 동작 모드들 및 이전의 해결책 모드들로 구성된다. 이것에 이어서 각각의 집단 일원의 스코어링(scoring)이 이어지며, 여기서 수정된 유전 알고리즘(102)이 각 집단 일원의 피트니스 함수(fitness function)를 스코어링(score) 또는 계산할 것이다. 스코어들로부터, 최상의 피트니스 값들을 갖는 일원들이 "엘리트" 일원으로서 선택되고 다음 세대로 넘어간다. 이 단계에 이어서, 수정된 유전 알고리즘(102)은 집단의 부모 일원들로부터 자식 일원들을 생성하며, 이 자식 일원들은 돌연변이(랜덤 변화들)에 의해 또는 이전의 인구의 2명의 일원들의 조합을 지칭하는 크로스오버(corssover)에 의해 생성될 수 있다. 다음 세대는 이어서 현재의 세대의 자식에 의해 대체된다. 이 세대 사이클은 미리-특정된 정지 기준들 중 임의의 것이 충족될 때까지 스스로 반복한다.
표 5는 전반적인 목적이 시스템의 총 비용의 감소인 조합된 생산-분배 최적화 문제를 함께 해결하기 위해 수정된 유전 알고리즘(102)으로부터 획득된 결과들을 도시한다.
[표 5]
경우 1 : 수정된 유전 알고리즘으로부터의 결과들
수정된 유전 알고리즘(102)은 공장 모드들 및 그들의 연관된 생산율들 및 전기 이용의 견지에서 다음 4 시간 동안 공장 생산을 위한 해결책들을 제공한다. 총 생산 및 분배 비용들을 최소화하기 위해, 수정된 유전 알고리즘(102)은 공장 1이 제1 시간에 모드 1에서 다음 2 시간에 모드 2에서 그리고 제4 시간에 모드 1에서 동작해야 한다는 것을 제안한다. 해결책은 또한 공장 2가 제1 시간에 모드 2에서, 다음 2 시간에 모드 3에서, 제4 시간에 모드 2에서 동작해야 한다는 것을 제안한다. 이 예에서의 분배의 견지에서, 모든 공장들은 이들이 이력적으로 그렇게 하였기 때문에 모든 고객들을 소싱할 수 있다. 공장-소비자 페어링들 중 어느 것도 필터링되지 않는다.
수정된 유전 알고리즘(102)으로부터 획득된 결과들은 또한 다음의 4시간들에 걸쳐서 103의 총 고객 수요를 충족하기 위해 각각의 공장으로부터 각 시간 동안 분배 계획들을 도시한다. 예를 들어, 공장 1은 최초의 시간에 10톤들을, 제2 시간에 12톤들을, 제3 시간에 14 톤들을 및 제4 시간에 10 톤들을 제공할 것이다. 이들 판단들의 구현은 $7431의 최소 생산 및 분배 이용을 발생시키며, 이중에서 $3995는 생산 비용(대부분 전기 비용)이고 $3436은 제품을 고객들에게 배달하기 위한 분배 비용이다.
그러나, 이전에 언급된 바와 같이, 전기 가격은 배 15분마다 변할 수 있다. 종래에는, 최적화기는 전기 가격이 변할 때 여전히 실행중일 것이며, 이러한 가격 변화는 데이터에 도중에 포함되지 않을 것이다. 예를 들어, 이것은 최적화기가 실행하는데 1시간이 걸리는 경우, 최적화기는 시간의 과정에 걸쳐서 여러 번 전기 가격이 변할 때 여전히 실행중일 것이고, 이 새로운 전기 가격 변화는 종래에는 실행 도중에 최적화기에 포함되지 않을 것이다. 대신, 새로운 데이터는 최적화기가 그의 1시간 실행을 완료했을 때만 이용될 것이고, 이어서 최적화기는 그 지점에서 새로운 전기 가격으로 재차 개시될 것이다. 수정된 유전 알고리즘(102)의 이용은 분석을 보다 정확히 수행하기 위해 이 "중간의" 데이터의 이용을 허용한다.
표 6 내지 8은 각각의 15분 시간 간격들에 이용 가능한 동적인 전기 데이터를 이용하여 공장 1 및 공장 2에 대해 각각의 시간에 예상되는 전기 이용의 예시적인 변화를 도시한다.
[표 6]
표 6은 최적화의 시작 이후에 15분에 이용 가능한 전기 가격 데이터를 이용하여 각각의 공장에서의 예상되는 전기 가격을 도시한다.
[표 7]
표 7은 최적화기의 시작 이후에 30분에 이용 가능한 전기 가격 데이터를 이용하여 예상되는 전기 가격을 도시한다.
[표 8]
표 8은 최적화기의 시작 이후에 45분에 이용 가능한 전기 가격 데이터를 이용하여 예상되는 전기 가격을 도시한다.
수정된 유전 알고리즘(102)의 중간 데이터의 이용은 표 9에서 도시된 해결책을 발생시킨다.
[표 9]
경우 2 : 수정된 유전 알고리즘으로부터의 결과들
이 경우에 대한 생산 및 분배 비용들은 $6,817이 되는 것으로 계산되며, 여기서 $3,317은 생산 비용(주로 전기 비용)이고, $3,500은 제품을 고객들에게 배달하기 위한 분배 비용이다. 중간 데이터의 이용은 표 5에서 도시된 해결책과 상이한 해결책을 발생시킨다. 공장 생산 모드들은 물론 다음 4시간 동안의 분배 계획이 상이하다. 중간의 데이터는 그것이 이용 가능하게 될 때 포함되지 않은 경우, 계획자들은 차선의, 즉 보다 비싼 계획을 구현할 것이다. 이전에 언급된 바와 같이, MINLP와 같이 이용된 종래의 기법들은 도중에 포함되는 중간 데이터를 이용할 수 없다. 대신, 종래의 최적화기는 처음부터 새로운 데이터로 재실행해야 하여, 해결책들이 합당한 시간 프레임들에 이용 불가능하게 한다. 최적화기의 재-실행은 대략 몇 시간 정도의 판단 내리는데 있어서의 지연이 상당한 비용들을 초래할 수 있기 때문에 비용 효과적이지 않다. 모드들로의 공장 생산 데이터의 이산화(discretization) 및 단편화(segmentation) 및 단지 허용된 소스들만으로의 고객 소싱의 제한으로 인해, 수정된 GA는 빠른 판단 내리기를 위해 합당한 시간 프레임에서 해결한다. 또한, 최적화기 결과는 실제적이고 구현 가능한 해결책인데, 그 이유는 모드들이 시스템의 근본적인 상태(액화기가 온 또는 오프됨 등)에 링크되기 때문이다. 예를 들어, 공장 1은 제1 시간에 2개의 액화기를 실행하고, 이어서 잔여 3시간 동안 하나의 액화기가 셧다운될 것이다.
도 2는 본 발명의 일 실시예에 따른 하나의 예시적인 시스템을 예시한다. 예시적인 시스템은 최적화기(210)를 포함할 수 있다. 최적화기(210)는 서버(예를 들어, 고 전력 범용 컴퓨터), 복수의 로컬 서버들, 및/또는 복수의 지리적으로 분산된 서버들일 수 있다. 최적화기(210)를 포함하는 각각의 서버는 하나 이상의 시스템 메모리들(203), 예를 들어, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 하드 디스크들, 고상 드라이브들, 디스크 어레이들 및 임의의 수의 다른 데이터 저장 기술들을 가질 수 있다. 하나 이상의 데이터베이스들(205)은 메모리 배열들(203) 중 하나 이상 내에서 구성될 수 있다. 메모리는 버스를 통해 하나 이상의 프로세서들(202)에 접속될 수 있다. 이는 하나 이상의 범용 전자 프로세서들, 특수 목적 프로세서들, 단일 또는 다중-코어 프로세서들, 다른 적합한 데이터 프로세싱 배열들, 및/또는 이들의 임의의 조합을 포함할 수 있다. 버스는 또한 네트워크 접속, 모니터들, 데이터 케이블들, 키보드들, 마우스들, 터치-패드들, 터치 스크린들, 스피커들, 및/또는 임의의 수의 다른 입력 및/또는 출력 디바이스를 포함할 수 있다. 최적화기(210)는 또한 저장을 위해 메모리에 접속되는 모델러 모듈(206) 및 실행을 위한 프로세서를 가질 수 있다. 최적화기(210)는 네트워크(280)(예를 들어, 인터넷)를 통해 예를 들어, 공장 위치들(203), 공익 회사 위치들(250), 및/또는 고객 위치들(260)에 위치되는 서버들에 접속될 수 있다. 이들 접속들은 통신(예를 들어, 이메일), 소프트웨어 기능들(예를 들어, 송장 작성(invoicing)), 및 데이터 공유(예를 들어, 운용상 통계들)를 제공할 수 있다.
본 발명의 양상들이 다양한 도면들의 바람직한 실시예들과 함께 기술되었지만, 다른 유사한 실시예들이 이용될 수 있거나, 또는 수정들 및 부가들이 본 발명의 범위로부터 벗어남 없이 본 발명의 동일한 기능을 수행하기 위해 기술된 실시예들에 대해 이루어질 수 있다는 것이 이해될 것이다. 청구되는 본 발명은 이에 따라 임의의 단일의 실시예들로 제한되어선 안 되며, 오히려 첨부된 청구항들에 따른 폭 및 범위로 해석되어야 한다. 예를 들어, 다음의 양상들은 또한 본 개시의 부분인 것으로 이해되어야 한다.
양상 1. 적어도 하나의 공장으로부터 적어도 한 명의 고객까지 적어도 하나의 제품을 생산 및 분배하기 위한 컴퓨터-구현 방법으로서,
a. 전자 데이터 저장소로부터 전자 프로세서를 이용하여 상기 적어도 하나의 공장으로부터의 연속적인 공장 데이터를 획득하는 단계;
b. 이산화된 공장 생산 데이터(discretized plant production data)를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하는 단계;
c. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 한 명의 고객으로부터의 이력적 고객 소싱 데이터(historical customer sourcing data)를 획득하는 단계;
d. 필터링된 고객 소싱 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 이력적 고객 소싱 데이터를 필터링하는 단계;
e. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 고객 이용 데이터를 획득하는 단계;
f. 예상되는 고객 수요 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 고객 이용 데이터를 모델링하는 단계;
g. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 획득하는 단계;
h. 예상되는 공장 날씨 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 모델링하는 단계;
i. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터를 획득하는 단계;
j. 예상되는 공장 전기 가격 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터 및 예상되는 공장 날씨 데이터를 모델링하는 단계;
k. 상기 전자 프로세서를 이용하여, 상기 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘(modified genetic algorithm) 내에 입력하는 단계;
l. 상기 전자 프로세서를 이용하여, 단계 k의 입력들에 기초하여 상기 수정된 유전 알고리즘을 해결(solving)하는 단계; 및
m. 상기 전자 프로세서를 이용하여 상기 수정된 유전 알고리즘에 대한 해결책(solution)을 인터페이스에 출력하는 단계
를 포함하는,
컴퓨터-구현 방법.
양상 2. 양상 1에 있어서,
상기 전자 프로세서를 이용하여 이산화된 공장 생산 데이터를 획득하기 위해 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하는 단계 이전에, 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장으로부터 획득된 연속적인 공장 데이터를 인증하는 단계
를 더 포함하는,
컴퓨터-구현 방법.
양상 3. 양상 1 또는 양상 2에 있어서,
상기 필터링된 고객 소싱 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 이력적 고객 소싱 데이터를 필터링하는 단계 이전에, 상기 전자 프로세서를 이용하여 상기 적어도 한 명의 고객으로부터 상기 획득된 이력적 고객 소싱 데이터를 인증하는 단계
를 더 포함하는,
컴퓨터-구현 방법.
양상 4. 양상 1 내지 양상 3 중 어느 한 양상에 있어서,
상기 전자 프로세서를 이용하여 상기 고객 이용 데이터를 모델링하는 단계 이전에, 상기 전자 프로세서를 이용하여 상기 획득된 고객 이용 데이터를 인증하는 단계
를 더 포함하는,
컴퓨터-구현 방법.
양상 5. 양상 1 내지 양상 4 중 어느 한 양상에 있어서,
상기 전자 프로세서를 이용하여 상기 이력적 고장 날씨 데이터를 모델링하는 단계 이전에, 상기 전자 프로세서를 이용하여 상기 획득된 이력적 공장 날씨 데이터를 인증하는 단계
를 더 포함하는,
컴퓨터-구현 방법.
양상 6. 양상 5에 있어서,
상기 이력적 공장 날씨 데이터는,
온도, 습도, 풍속 및 압력 중 적어도 하나를 포함하는,
컴퓨터-구현 방법.
양상 7. 양상 1 내지 양상 6 중 어느 한 양상에 있어서,
상기 전자 프로세서를 이용하여 상기 이력적 공장 전기 가격 데이터를 모델링하는 단계 이전에, 상기 전자 프로세서를 이용하여 상기 획득된 이력적 공장 전기 가격 데이터를 인증하는 단계
를 더 포함하는,
컴퓨터-구현 방법.
양상 8. 양상 1 내지 양상 7 중 어느 한 양상에 있어서,
상기 수정된 유전 알고리즘으로부터의 해결책은,
적어도 24시간 기간에 대한 것인,
컴퓨터-구현 방법.
양상 9. 양상 1 내지 양상 8 중 어느 한 양상에 있어서,
적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 예상되는 공장 전기 가격 데이터를 획득하기 위해 단계들(a 내지 k)을 수행하는 단계;
상기 적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘 내로 입력하는 단계;
개정된 해결책은 획득하기 위해 상기 전자 프로세서를 이용하여 상기 수정된 유전 알고리즘을 해결(solve)하는 단계; 및
상기 전자 프로세서를 이용하여 상기 개정된 해결책을 상기 인터페이스에 출력하는 단계
를 더 포함하는,
컴퓨터-구현 방법.
양상 10. 양상 9에 있어서,
상기 개정된 해결책은,
24시간 기간 이하의 시간 기간에 대한 것인,
컴퓨터-구현 방법.
양상 11. 양상 10에 있어서,
상기 개정된 해결책은,
연속적으로 계산되는,
컴퓨터-구현 방법.
양상 12. 적어도 하나의 공장으로부터 적어도 한 명의 고객까지 적어도 하나의 제품을 생산 및 분배하기 위한 컴퓨터 시스템으로서,
전자 데이터 저장소; 및
전자 프로세서
를 포함하고,
상기 전자 프로세서는,
a. 상기 전자 데이터 저장소로부터 상기 적어도 하나의 공장으로부터의 연속적인 공장 데이터를 획득하고;
b. 이산화된 공장 생산 데이터(discretized plant production data)를 획득하기 위해 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하고;
c. 상기 전자 데이터 저장소로부터 상기 적어도 한 명의 고객으로부터의 이력적 고객 소싱 데이터(historical customer sourcing data)를 획득하고;
d. 필터링된 고객 소싱 데이터를 획득하기 위해 상기 이력적 고객 소싱 데이터를 필터링하고;
e. 상기 전자 데이터 저장소로부터 고객 이용 데이터를 획득하고;
f. 예상되는 고객 수요 데이터를 획득하기 위해 적어도 하나의 시간 동안 상기 고객 이용 데이터를 모델링하고;
g. 상기 전자 데이터 저장소로부터 상기 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 획득하고;
h. 예상되는 공장 날씨 데이터를 획득하기 위해 적어도 하나의 시간 동안 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 모델링하고;
i. 상기 전자 데이터 저장소로부터 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터를 획득하고;
j. 예상되는 공장 전기 가격 데이터를 획득하기 위해 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터 및 예상되는 공장 날씨 데이터를 모델링하고;
k. 상기 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘(modified genetic algorithm) 내에 입력하는 단계;
l. 단계 k의 입력들에 기초하여 상기 수정된 유전 알고리즘을 해결(solve)하고; 및
m. 상기 수정된 유전 알고리즘에 대한 해결책(solution)을 인터페이스에 출력하도록 구성되는,
컴퓨터 시스템.
양상 13. 양상 12에 있어서,
상기 수정된 유전 알고리즘에 대한 해결책은,
적어도 24시간 기간에 대한 것인,
컴퓨터 시스템.
양상 14. 양상 12 또는 양상 13에 있어서,
상기 전자 프로세서는 또한,
적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 예상되는 공장 전기 가격 데이터를 획득하기 위해 단계들(a 내지 k)을 수행하고;
상기 적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘 내로 입력하고;
개정된 해결책을 획득하기 위해 상기 수정된 유전 알고리즘을 해결하고; 및
상기 개정된 해결책을 상기 인터페이스에 출력하는,
컴퓨터 시스템.
양상 15. 양상 14에 있어서,
상기 개정된 해결책은,
24시간 기간 이하의 시간 기간에 대한 것인,
컴퓨터 시스템.
양상 16. 양상 14 또는 양상 15에 있어서,
상기 개정된 해결책은,
연속적으로 계산되는,
컴퓨터 시스템.
양상 17. 전자 프로세서에 의해 실행되도록 구성되는 명령들이 인코딩된 비-일시적인 컴퓨터-판독 가능한 저장 매체로서,
상기 명령들은 상기 저장 프로세서에 의해 실행될 때, 적어도 하나의 공장으로부터 적어도 한 명의 고객까지 적어도 하나의 제품을 생산 및 분배하기 위한 방법을 수행하게 하며,
상기 방법은,
a. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장으로부터의 연속적인 공장 데이터를 획득하는 단계;
b. 이산화된 공장 생산 데이터(discretized plant production data)를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하는 단계;
c. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 한 명의 고객으로부터의 이력적 고객 소싱 데이터(historical customer sourcing data)를 획득하는 단계;
d. 필터링된 고객 소싱 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 이력적 고객 소싱 데이터를 필터링하는 단계;
e. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 고객 이용 데이터를 획득하는 단계;
f. 예상되는 고객 수요 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 고객 이용 데이터를 모델링하는 단계;
g. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 획득하는 단계;
h. 예상되는 공장 날씨 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 모델링하는 단계;
i. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터를 획득하는 단계;
j. 예상되는 공장 전기 가격 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터 및 예상되는 공장 날씨 데이터를 모델링하는 단계;
k. 상기 전자 프로세서를 이용하여, 상기 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘(modified genetic algorithm) 내에 입력하는 단계;
l. 상기 전자 프로세서를 이용하여, 단계 k의 입력들에 기초하여 상기 수정된 유전 알고리즘을 해결(solving)하는 단계; 및
m. 상기 전자 프로세서를 이용하여 상기 수정된 유전 알고리즘에 대한 해결책(solution)을 인터페이스에 출력하는 단계
를 포함하는,
컴퓨터-판독 가능한 저장 매체.
양상 18. 양상 17에 있어서,
상기 수정된 유전 알고리즘에 대한 해결책은,
적어도 24시간 기간에 대한 것인,
컴퓨터-판독 가능한 저장 매체.
양상 19. 양상 17 또는 양상 18에 있어서,
상기 전자 프로세서는 추가로,
적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 예상되는 공장 전기 가격 데이터를 획득하기 위해 단계들(a 내지 k)을 수행하고;
상기 적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘 내로 입력하고;
개정된 해결책은 획득하기 위해 상기 수정된 유전 알고리즘을 해결하고; 및
상기 개정된 해결책을 상기 인터페이스에 출력하는,
컴퓨터-판독 가능한 저장 매체.
양상 20. 양상 19에 있어서,
상기 개정된 해결책은,
24시간 기간 이하의 시간 기간에 대한 것인,
컴퓨터-판독 가능한 저장 매체.
양상 21. 양상 19 또는 양상 20에 있어서,
상기 개정된 해결책은,
연속적으로 계산되는,
컴퓨터-판독 가능한 저장 매체.
102: 수정된 유전 알고리즘 104: 1시간 버킷들
106: 24시간 버킷들 108: 인터페이스
202: 프로세서 203: 메모리
205: 데이터베이스 206: 모델러
208: 이산화된 공장 생산 데이터 210: 최적화기
230: 공장 시스템 240: 고객 탱크
250: 공익 회사 260: 비즈니스 데이터베이스
280: LAN/WAN/인터넷 네트워크 310: 필터링된 고객 소싱 데이터
408: 예상되는 고객 수요 데이터 508: 예상되는 공장 날씨 데이터
516: 예상되는 공장 전기 가격 데이터
106: 24시간 버킷들 108: 인터페이스
202: 프로세서 203: 메모리
205: 데이터베이스 206: 모델러
208: 이산화된 공장 생산 데이터 210: 최적화기
230: 공장 시스템 240: 고객 탱크
250: 공익 회사 260: 비즈니스 데이터베이스
280: LAN/WAN/인터넷 네트워크 310: 필터링된 고객 소싱 데이터
408: 예상되는 고객 수요 데이터 508: 예상되는 공장 날씨 데이터
516: 예상되는 공장 전기 가격 데이터
Claims (21)
- 적어도 하나의 공장으로부터 적어도 한 명의 고객까지 적어도 하나의 제품을 생산 및 분배하기 위한 컴퓨터-구현 방법에 있어서,
a. 전자 데이터 저장소로부터 전자 프로세서를 이용하여 상기 적어도 하나의 공장으로부터의 연속적인 공장 데이터를 획득하는 단계;
b. 이산화된 공장 생산 데이터(discretized plant production data)를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하는 단계;
c. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 한 명의 고객으로부터의 이력적 고객 소싱 데이터(historical customer sourcing data)를 획득하는 단계;
d. 필터링된 고객 소싱 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 이력적 고객 소싱 데이터를 필터링하는 단계;
e. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 고객 이용 데이터를 획득하는 단계;
f. 예상되는 고객 수요 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 고객 이용 데이터를 모델링하는 단계;
g. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 획득하는 단계;
h. 예상되는 공장 날씨 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 모델링하는 단계;
i. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터를 획득하는 단계;
j. 예상되는 공장 전기 가격 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 상기 이력적 공장 전기 가격 데이터 및 상기 예상되는 공장 날씨 데이터를 모델링하는 단계;
k. 상기 전자 프로세서를 이용하여, 상기 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘(modified genetic algorithm) 내에 입력하는 단계;
l. 상기 전자 프로세서를 이용하여, 단계 k의 입력들에 기초하여 상기 수정된 유전 알고리즘을 해결(solving)하는 단계; 및
m. 상기 전자 프로세서를 이용하여 상기 수정된 유전 알고리즘에 대한 해결책(solution)을 인터페이스에 출력하는 단계를
포함하는, 컴퓨터-구현 방법. - 제1항에 있어서,
상기 전자 프로세서를 이용하여 이산화된 공장 생산 데이터를 획득하기 위해 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하는 단계 이전에, 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장으로부터 상기 획득된 연속적인 공장 데이터를 인증하는 단계를 더 포함하는, 컴퓨터-구현 방법. - 제1항에 있어서,
필터링된 고객 소싱 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 이력적 고객 소싱 데이터를 필터링하는 단계 이전에, 상기 전자 프로세서를 이용하여 상기 적어도 한 명의 고객으로부터 상기 획득된 이력적 고객 소싱 데이터를 인증하는 단계를 더 포함하는, 컴퓨터-구현 방법. - 제1항에 있어서,
상기 전자 프로세서를 이용하여 상기 고객 이용 데이터를 모델링하는 단계 이전에, 상기 전자 프로세서를 이용하여 상기 획득된 고객 이용 데이터를 인증하는 단계를 더 포함하는, 컴퓨터-구현 방법. - 제1항에 있어서,
상기 전자 프로세서를 이용하여 상기 이력적 공장 날씨 데이터를 모델링하는 단계 이전에, 상기 전자 프로세서를 이용하여 상기 획득된 이력적 공장 날씨 데이터를 인증하는 단계를 더 포함하는, 컴퓨터-구현 방법. - 제5항에 있어서,
상기 이력적 공장 날씨 데이터는 온도, 습도, 풍속 및 압력 중 적어도 하나를 포함하는 것인, 컴퓨터-구현 방법. - 제1항에 있어서,
상기 전자 프로세서를 이용하여 상기 이력적 공장 전기 가격 데이터를 모델링하는 단계 이전에, 상기 전자 프로세서를 이용하여 상기 획득된 이력적 공장 전기 가격 데이터를 인증하는 단계를 더 포함하는, 컴퓨터-구현 방법. - 제1항에 있어서,
상기 수정된 유전 알고리즘으로부터의 해결책은 적어도 24시간 기간에 대한 것인, 컴퓨터-구현 방법. - 제1항에 있어서,
적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 예상되는 공장 전기 가격 데이터를 획득하기 위해 단계들(a 내지 k)을 수행하는 단계;
상기 적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터 및 예상되는 공장 전기 가격 데이터를 상기 수정된 유전 알고리즘 내로 입력하는 단계;
개정된 해결책을 획득하기 위해 상기 전자 프로세서를 이용하여 상기 수정된 유전 알고리즘을 해결하는 단계; 및
상기 전자 프로세서를 이용하여 상기 개정된 해결책을 상기 인터페이스에 출력하는 단계를
더 포함하는, 컴퓨터-구현 방법. - 제9항에 있어서, 상기 개정된 해결책은 24시간 기간 이하의 시간 기간에 대한 것인, 컴퓨터-구현 방법.
- 제9항에 있어서, 상기 개정된 해결책은 연속적으로 계산되는 것인, 컴퓨터-구현 방법.
- 적어도 하나의 공장으로부터 적어도 한 명의 고객까지 적어도 하나의 제품을 생산 및 분배하기 위한 컴퓨터 시스템에 있어서,
전자 데이터 저장소; 및
전자 프로세서를
포함하고,
상기 전자 프로세서는,
a. 상기 전자 데이터 저장소로부터 상기 적어도 하나의 공장으로부터의 연속적인 공장 데이터를 획득하고;
b. 이산화된 공장 생산 데이터(discretized plant production data)를 획득하기 위해 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하고;
c. 상기 전자 데이터 저장소로부터 상기 적어도 한 명의 고객으로부터의 이력적 고객 소싱 데이터(historical customer sourcing data)를 획득하고;
d. 필터링된 고객 소싱 데이터를 획득하기 위해 상기 이력적 고객 소싱 데이터를 필터링하고;
e. 상기 전자 데이터 저장소로부터 고객 이용 데이터를 획득하고;
f. 예상되는 고객 수요 데이터를 획득하기 위해 적어도 하나의 시간 동안 상기 고객 이용 데이터를 모델링하고;
g. 상기 전자 데이터 저장소로부터 상기 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 획득하고;
h. 예상되는 공장 날씨 데이터를 획득하기 위해 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 상기 이력적 공장 날씨 데이터를 모델링하고;
i. 상기 전자 데이터 저장소로부터 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터를 획득하고;
j. 예상되는 공장 전기 가격 데이터를 획득하기 위해 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 상기 이력적 공장 전기 가격 데이터 및 상기 예상되는 공장 날씨 데이터를 모델링하고;
k. 상기 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘(modified genetic algorithm) 내에 입력하고;
l. 단계 k의 입력들에 기초하여 상기 수정된 유전 알고리즘을 해결(solve)하고; 및
m. 상기 수정된 유전 알고리즘에 대한 해결책(solution)을 인터페이스에 출력하도록 구성되는 것인, 컴퓨터 시스템. - 제12항에 있어서, 상기 수정된 유전 알고리즘에 대한 해결책은 적어도 24시간 기간에 대한 것인, 컴퓨터 시스템.
- 제12항에 있어서,
상기 전자 프로세서는 또한,
적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 획득하기 위해 단계들(a 내지 k)을 수행하고;
상기 적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터 및 예상되는 공장 전기 가격 데이터를 상기 수정된 유전 알고리즘 내로 입력하고;
개정된 해결책을 획득하기 위해 상기 수정된 유전 알고리즘을 해결하며;
상기 개정된 해결책을 상기 인터페이스에 출력하는 것인, 컴퓨터 시스템. - 제14항에 있어서, 상기 개정된 해결책은 24시간 기간 이하의 시간 기간에 대한 것인, 컴퓨터 시스템.
- 제14항에 있어서, 상기 개정된 해결책은 연속적으로 계산되는 것인, 컴퓨터 시스템.
- 전자 프로세서에 의해 실행되도록 구성되는 명령들이 인코딩된 비-일시적인 컴퓨터-판독 가능한 저장 매체에 있어서,
상기 명령들은 상기 전자 프로세서에 의해 실행될 때, 적어도 하나의 공장으로부터 적어도 한 명의 고객까지 적어도 하나의 제품을 생산 및 분배하기 위한 방법을 수행하게 하며,
상기 방법은,
a. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장으로부터의 연속적인 공장 데이터를 획득하는 단계;
b. 이산화된 공장 생산 데이터(discretized plant production data)를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 연속적인 공장 데이터를 이산 공장 생산 모드들로 단편화하는 단계;
c. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 한 명의 고객으로부터의 이력적 고객 소싱 데이터(historical customer sourcing data)를 획득하는 단계;
d. 필터링된 고객 소싱 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 상기 이력적 고객 소싱 데이터를 필터링하는 단계;
e. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 고객 이용 데이터를 획득하는 단계;
f. 예상되는 고객 수요 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 고객 이용 데이터를 모델링하는 단계;
g. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 날씨 데이터를 획득하는 단계;
h. 예상되는 공장 날씨 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 상기 이력적 공장 날씨 데이터를 모델링하는 단계;
i. 전자 데이터 저장소로부터 상기 전자 프로세서를 이용하여 상기 적어도 하나의 공장에 대한 이력적 공장 전기 가격 데이터를 획득하는 단계;
j. 예상되는 공장 전기 가격 데이터를 획득하기 위해 상기 전자 프로세서를 이용하여 적어도 하나의 시간 동안 상기 적어도 하나의 공장에 대한 상기 이력적 공장 전기 가격 데이터 및 상기 예상되는 공장 날씨 데이터를 모델링하는 단계;
k. 상기 전자 프로세서를 이용하여, 상기 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 수정된 유전 알고리즘(modified genetic algorithm) 내에 입력하는 단계;
l. 상기 전자 프로세서를 이용하여, 단계 k의 입력들에 기초하여 상기 수정된 유전 알고리즘을 해결(solving)하는 단계; 및
m. 상기 전자 프로세서를 이용하여 상기 수정된 유전 알고리즘에 대한 해결책(solution)을 인터페이스에 출력하는 단계를
포함하는, 컴퓨터-판독 가능한 저장 매체. - 제17항에 있어서, 상기 수정된 유전 알고리즘에 대한 해결책은 적어도 24시간 기간에 대한 것인, 컴퓨터-판독 가능한 저장 매체.
- 제17항에 있어서,
상기 전자 프로세서는 또한,
적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터, 및 예상되는 공장 전기 가격 데이터를 획득하기 위해 단계들(a 내지 k)을 수행하고;
상기 적어도 하나의 중간 이산화된 공장 생산 데이터, 필터링된 고객 소싱 데이터, 예상되는 고객 수요 데이터 및 예상되는 공장 전기 가격 데이터를 상기 수정된 유전 알고리즘 내로 입력하고;
개정된 해결책을 획득하기 위해 상기 수정된 유전 알고리즘을 해결하며;
상기 개정된 해결책을 상기 인터페이스에 출력하는 것인, 컴퓨터-판독 가능한 저장 매체. - 제19항에 있어서, 상기 개정된 해결책은 24시간 기간 이하의 시간 기간에 대한 것인, 컴퓨터-판독 가능한 저장 매체.
- 제19항에 있어서, 상기 개정된 해결책은 연속적으로 계산되는 것인, 컴퓨터-판독 가능한 저장 매체.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/036203 WO2012154182A1 (en) | 2011-05-12 | 2011-05-12 | Methods for improved production and distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130107369A KR20130107369A (ko) | 2013-10-01 |
KR101526092B1 true KR101526092B1 (ko) | 2015-06-04 |
Family
ID=47139455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137021488A KR101526092B1 (ko) | 2011-05-12 | 2011-05-12 | 개선된 생산 및 분배를 위한 방법들 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9547822B2 (ko) |
KR (1) | KR101526092B1 (ko) |
CA (1) | CA2821678C (ko) |
TW (1) | TW201246109A (ko) |
WO (1) | WO2012154182A1 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10563914B2 (en) * | 2015-08-06 | 2020-02-18 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Methods and systems for integration of industrial site efficiency losses to produce LNG and/or LIN |
WO2017138276A1 (ja) * | 2016-02-12 | 2017-08-17 | 本田技研工業株式会社 | 生産設備投資企画支援システム及び商品生産システム |
US10733613B2 (en) * | 2017-01-04 | 2020-08-04 | Salesforce.Com, Inc. | Methods and systems for performing data assessment |
TWI655554B (zh) * | 2018-02-09 | 2019-04-01 | 中國鋼鐵股份有限公司 | 動力系統模型的調節方法 |
JP7233964B2 (ja) * | 2019-02-26 | 2023-03-07 | 三菱重工業株式会社 | 運転指標提示装置、運転指標提示方法、およびプログラム |
CN111240326B (zh) * | 2020-01-15 | 2023-05-16 | 重庆邮电大学 | 一种基于异构双种群蚁群算法的移动机器人路径规划方法 |
FR3110686B1 (fr) * | 2020-05-19 | 2023-06-09 | Air Liquide | Procédé de fourniture d’oxygène et/ou d’azote ainsi que d’argon à une zone géographique |
AU2022217824A1 (en) * | 2021-02-04 | 2023-08-17 | C3.Ai, Inc. | Constrained optimization and post-processing heuristics for optimal production scheduling for process manufacturing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020017113A1 (en) * | 2000-05-30 | 2002-02-14 | Seiver David S. | Automatic control system and method for air separation units |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7627493B1 (en) | 2000-08-25 | 2009-12-01 | SCA Holdings | Production and distribution supply chain optimization software |
US20040015392A1 (en) | 2001-07-09 | 2004-01-22 | Philip Hammel | Shared freight rate system and invoicing method |
WO2003060812A2 (en) * | 2002-01-15 | 2003-07-24 | Suvajit Das | Computer-implemented system and method for measuring and improving manufacturing processes and maximizing product research and development speed and efficiency |
US7092893B2 (en) | 2003-01-28 | 2006-08-15 | Praxair Technology, Inc. | Control of liquid production of air separation plant network |
US7908228B2 (en) | 2003-07-31 | 2011-03-15 | Hewlett-Packard Development Company, L.P. | Accruals determination |
US20050135934A1 (en) * | 2003-12-22 | 2005-06-23 | Mechanology, Llc | Use of intersecting vane machines in combination with wind turbines |
US20040215529A1 (en) * | 2004-04-16 | 2004-10-28 | Foster Andre E. | System and method for energy price forecasting automation |
EP1763782A4 (en) * | 2004-06-18 | 2009-04-08 | Cvidya Networks Ltd | METHODS, SYSTEMS AND COMPUTER-READABLE CODES FOR PREDICTING TIME SERIES AND CONSUMING GOODS |
US8112300B2 (en) | 2005-04-22 | 2012-02-07 | Air Liquide Large Industries U.S. Lp | Production optimizer for supply chain management |
US20070050223A1 (en) | 2005-08-25 | 2007-03-01 | Malitski Konstantin N | System and method of order split for transportation planning |
JP4877970B2 (ja) | 2006-06-12 | 2012-02-15 | 株式会社日立製作所 | 輸送情報管理システム、輸送情報管理方法、および輸送情報管理プログラム |
-
2011
- 2011-05-12 US US13/994,853 patent/US9547822B2/en active Active
- 2011-05-12 CA CA2821678A patent/CA2821678C/en active Active
- 2011-05-12 KR KR1020137021488A patent/KR101526092B1/ko active IP Right Grant
- 2011-05-12 WO PCT/US2011/036203 patent/WO2012154182A1/en active Application Filing
- 2011-09-23 TW TW100134478A patent/TW201246109A/zh unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020017113A1 (en) * | 2000-05-30 | 2002-02-14 | Seiver David S. | Automatic control system and method for air separation units |
Also Published As
Publication number | Publication date |
---|---|
US9547822B2 (en) | 2017-01-17 |
CA2821678A1 (en) | 2012-11-15 |
WO2012154182A1 (en) | 2012-11-15 |
CA2821678C (en) | 2017-09-05 |
TW201246109A (en) | 2012-11-16 |
KR20130107369A (ko) | 2013-10-01 |
US20130275175A1 (en) | 2013-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101526092B1 (ko) | 개선된 생산 및 분배를 위한 방법들 | |
Safaei et al. | Integrated multi-site production-distribution planning in supply chain by hybrid modelling | |
Barbosa-Povoa et al. | Process supply chains: Perspectives from academia and industry | |
Juan et al. | A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems | |
Ding et al. | Stochastic multi-objective production-distribution network design using simulation-based optimization | |
US10740773B2 (en) | Systems and methods of utilizing multiple forecast models in forecasting customer demands for products at retail facilities | |
WO2020023998A1 (en) | Improvements to operational state determination and modification | |
US20110040399A1 (en) | Apparatus and method for integrating planning, scheduling, and control for enterprise optimization | |
Koo et al. | Decision support for integrated refinery supply chains: Part 2. Design and operation | |
Hu et al. | Corporate dashboards for integrated business and engineering decisions in oil refineries: An agent-based approach | |
Teichgraeber et al. | Optimal design of an electricity-intensive industrial facility subject to electricity price uncertainty: Stochastic optimization and scenario reduction | |
Sabbaghnia et al. | Reducing the Bullwhip effect in a supply chain network by application of optimal control theory | |
CN113065714A (zh) | 一种多项目式多目标集中采购决策优化方法及系统 | |
Misra et al. | Energy-efficient production scheduling of a cryogenic air separation plant | |
Misra et al. | Short-term planning framework for enterprise-wide production and distribution network of a cryogenic air separation industry | |
KR20240025574A (ko) | 지능형 수요 반응 입찰 관리 시스템 및 그 방법 | |
Barbosa-Póvoa et al. | Challenges and perspectives of process systems engineering in supply chain management | |
Shishebori et al. | Designing a capacitated multi-configuration logistics network under disturbances and parameter uncertainty: a real-world case of a drug supply chain | |
Manary et al. | Analytics makes inventory planning a lights-out activity at Intel Corporation | |
Ramaswamy et al. | Advanced decision-support technologies for the design and management of industrial gas supply chains | |
Prakash et al. | A multi-objective solution framework for the assembly inventory routing problem considering supply risk and carbon offset policies | |
Syu et al. | Q-learning based energy management system on operating reserve and supply distribution | |
Misra et al. | Enclave optimization: a novel multiplant production scheduling approach for cryogenic air separation plants | |
Attia et al. | Multi-Objective optimization of the Hydrocarbon supply chain under price and demand uncertainty | |
Baringo | Stochastic complementarity models for investment in wind-power and transmission facilities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180329 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190327 Year of fee payment: 5 |