KR101507999B1 - The preparation of monodisperse spheric particles via solution re-crystallization with RITP technique - Google Patents

The preparation of monodisperse spheric particles via solution re-crystallization with RITP technique Download PDF

Info

Publication number
KR101507999B1
KR101507999B1 KR20110077488A KR20110077488A KR101507999B1 KR 101507999 B1 KR101507999 B1 KR 101507999B1 KR 20110077488 A KR20110077488 A KR 20110077488A KR 20110077488 A KR20110077488 A KR 20110077488A KR 101507999 B1 KR101507999 B1 KR 101507999B1
Authority
KR
South Korea
Prior art keywords
particles
polymer
polymer latex
group
glycol dimethacrylate
Prior art date
Application number
KR20110077488A
Other languages
Korean (ko)
Other versions
KR20130015479A (en
Inventor
김여주
최순자
김기정
이병형
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR20110077488A priority Critical patent/KR101507999B1/en
Publication of KR20130015479A publication Critical patent/KR20130015479A/en
Application granted granted Critical
Publication of KR101507999B1 publication Critical patent/KR101507999B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/34Per-compounds with one peroxy-radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/18Increasing the size of the dispersed particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters

Abstract

본 발명은 높은 안정도를 갖는 구상의 고분자 입자를 RITP 중합법 및 용액 재결정법을 통하여 제조하는 방법에 관한 것으로, 보다 상세하게는 일정한 분자량 범위를 갖는 고분자 라텍스 입자를 RITP 중합법을 통해 제조한 후, 이를 상용성 용매에 완전 용해시켜 용해도 차이를 이용하여 구형의 안정화된 고분자 입자를 용매 상에서 재결정하여 수득하는 방법에 관한 것이다.The present invention relates to a method for producing spherical polymer particles having high stability through RITP polymerization and solution recrystallization. More particularly, the present invention relates to a process for producing polymer latex particles having a certain molecular weight range through RITP polymerization, And dissolving it in a compatible solvent to obtain spherical stabilized polymer particles by recrystallization in a solvent using the difference in solubility.

Description

RITP 중합법과 용액 재결정법을 이용한 안정화된 단분산 구형 고분자 입자의 제조 방법{The preparation of monodisperse spheric particles via solution re-crystallization with RITP technique}[0001] The present invention relates to a method for preparing stabilized monodisperse spherical polymer particles by RITP polymerization and solution recrystallization,

본 발명은 높은 안정도를 갖는 구상의 고분자 입자를 RITP 중합법 및 용액 재결정법을 통하여 제조하는 방법에 관한 것으로, 보다 상세하게는 일정한 분자량 범위를 갖는 고분자 라텍스 입자를 RITP 중합법을 통해 제조한 후, 이를 상용성 용매에 완전 용해시켜 용해도 차이를 이용하여 구형의 안정화된 고분자 입자를 용매 상에서 재결정하여 수득하는 방법에 관한 것이다.
The present invention relates to a method for producing spherical polymer particles having high stability through RITP polymerization and solution recrystallization. More particularly, the present invention relates to a process for producing polymer latex particles having a certain molecular weight range through RITP polymerization, And dissolving it in a compatible solvent to obtain spherical stabilized polymer particles by recrystallization in a solvent using the difference in solubility.

구상의 고분자 입자는 타 무기물 및 금속에 비해 높은 탄성도, 광학특성 및 가공성을 가지며, 이러한 입자의 크기와 단분산도의 조절 및 다양한 고분자 물질의 사용을 통해 적용 범위가 커져 다양한 산업적 핵심 소재로서 사용이 가능하고, 현재까지 이러한 고분자 입자들은 각종 필름들의 광 확산재료, LCD SPACER, 도전볼 등 광학 및 전기 전자 분야뿐만 아니라 약품 전달 캡슐 입자, MRI 조형재 등과 같은 의학 분야까지 다양한 분야에서 적용되고 있다. 또한 각종 무기물을 표면 및 입자의 내부에 도입하여 촉매로도 활용할 수도 있으며, 구형이기 때문에 은폐력이 높은 유기 안료, 도료, 잉크, 화장품뿐만 아니라 전파 자폐용 군용 장비 등의 분야에도 적용이 가능하다. The spherical polymer particles have higher elasticity, optical characteristics and processability than other inorganic materials and metals, and can be used as various industrial core materials because of their large size and monodispersity and various polymers. Such polymer particles have been applied to a wide variety of fields such as optical diffusing materials of various films, LCD spatter, conductive balls, optical and electrical and electronic fields as well as medicine delivery capsule particles and MRI molding materials. In addition, it can be used as a catalyst by introducing various inorganic substances into the surface and inside of particles. Since it is spherical, it can be applied not only to organic pigments, paints, inks, and cosmetics with high hiding power but also to military electric apparatuses.

상기 중합법에 의한 방법으로는 현탁 중합법과 유화 중합법이 알려져 있는데, 현탁 중합에 의해 고분자 입자를 제조하는 방법은 단량체를 기계적 교반에 의하여 분산시킨 후, 지용성 개시제를 사용하여 단량체 방울을 중합하는 것으로, 평균직경이 100 마이크로미터 이상인 고분자 입자가 제조된다[미국특허 제4,017,670호, 제4,071,670호, 제4,085,169호, 및 제4,129,706호]. 그러나 이 방법으로는 고분자 입자가 균일한 직경을 갖게 하는데 어려움이 있다. 이러한 현탁중합의 한계를 극복하기 위한 방법으로 다양한 크기의 고분자 입자를 제조한 후, 분급장치를 이용하여 입자를 크기에 따라 분리하는 방법이 제시되었다[일본특허공개 제90-261728호]. 그러나 이러한 분리방법을 사용할 경우 공정이 복잡하고 분급장치에 대한 비용이 과다 소요될 뿐 아니라 생산성도 매우 낮은 문제점이 있다.The suspension polymerization method and the emulsion polymerization method are known as the methods by the polymerization method. The method of producing the polymer particles by suspension polymerization is a method of dispersing monomers by mechanical stirring and then polymerizing the monomer droplets by using a fat-soluble initiator , And polymer particles having an average diameter of 100 micrometers or more are prepared (U.S. Patent Nos. 4,017,670, 4,071,670, 4,085,169, and 4,129,706). However, with this method, it is difficult to make the polymer particles have a uniform diameter. As a method for overcoming the limitations of such suspension polymerization, various sizes of polymer particles are prepared, and then a method of separating the particles according to their sizes by using a classification device has been proposed (Japanese Patent Laid-Open No. 90-261728). However, when such a separation method is used, there is a problem in that the process is complicated, the cost for the classifier is excessively high, and the productivity is very low.

또한 유화 중합은 입자의 크기 분포도가 극히 균일한 입자를 제조하는데 유용한 방법으로 널리 사용되고 있으나, 이 방법으로 제조되는 고분자 직경이 1μm를 넘지 못하며, 입자의 안정성을 부여하기 위하여 사용되는 계면활성제가 입자의 표면에 흡착되어 이로 인해 거품이 일어나거나 고분자의 물성 저하 등을 유발하는 단점이 있다.In addition, emulsion polymerization is widely used as a useful method for producing particles with extremely uniform particle size distribution. However, the polymer produced by this method does not exceed 1 μm in diameter, and the surfactant used for imparting particle stability is a particle Which is adsorbed on the surface, resulting in bubbles or deterioration of the physical properties of the polymer.

유화 중합법의 하나인 무유화 유화 중합법은 일반적인 유화 중합법에서 입자의 안정성을 부여하기 위하여 사용되는 계면활성제를 사용하지 않고 단지 수용성 개시제의 이온화에 의하여 고분자 입자를 얻는 방법이나 이러한 단일 공정을 통해서 얻어지는 입자의 직경이 1 μm를 넘지 못하는 문제가 있다. 이러한 문제를 해결하기 위하여 무유화 유화 중합법을 물과 알코올의 혼합 용매상에서 수행하거나, 반응 초기에 양이온성 계면활성제 내지 전해질을 소량 첨가 또는 다단계를 통한 단량체의 투입에 의하여 1 μm 이상의 비닐계 고분자 입자가 제조된 바 있다[J. Appl. Polym. Sci., Vol. 19, 3077 (1975); J. Colloid Interf Sci., Vol. 230, 210 ~ 212 (2000); J. Appl. Polym. Sci., Vol. 71, 2259 - 2269 (1999); 미국특허 제 6,552,115호; 미국특허 제 6,252,004; Macromol. Res., Vol, 12, 240 - 245 (2004)]. 그러나 무유화 유화 중합법에서는 고분자 입자의 안정화가 개시제에 의한 이온화에 의해서만 얻어지므로 이러한 방법을 통하여 얻어지는 비닐계 고분자의 최대 직경은 2.5 μm를 넘지 못하고, 또한 입자크기 분포도가 20 ~ 30 %로 저하되는 문제가 있다. The non-emulsion emulsion polymerization method, which is one of the emulsion polymerization methods, is a method in which polymer particles are obtained by ionization of a water-soluble initiator only without using a surfactant used for imparting particle stability in general emulsion polymerization, There is a problem that the diameter of the obtained particles can not exceed 1 탆. In order to solve this problem, an oil-free emulsion polymerization method may be carried out in a mixed solvent of water and alcohol, or a small amount of a cationic surfactant or an electrolyte may be added at the beginning of the reaction, Have been prepared [J. Appl. Polym. Sci., Vol. 19,3077 (1975); J. Colloid Interf Sci., Vol. 230, 210-212 (2000); J. Appl. Polym. Sci., Vol. 71, 2259-2229 (1999); U.S. Patent No. 6,552,115; U.S. Patent 6,252,004; Macromol. Res., Vol, 12, 240-245 (2004)]. However, in the oil-free emulsion polymerization, since the stabilization of the polymer particles is obtained only by ionization by the initiator, the maximum diameter of the vinyl-based polymer obtained by this method does not exceed 2.5 μm and the particle size distribution is reduced to 20 to 30% there is a problem.

용액 재결정법을 이용하여 구상 입자를 제조하기 위한 여러 가지 방법이 제안되어 왔다. 일본특허공보 제 2,723,200호 및 일본특허공보 제 3,423,922호에서는 유기 미립자의 조제 방법으로 재침전법을 개시하고 있다. 재침전법은 유기 화합물을 양용매에 용해한 후, 그 용액을 빈용매(통상은 증류수)에 시린지 등을 이용하여 주입함으로써 유기 화합물의 미립자를 생성시키는 방법이다. 그러나 상기 방법은 양용매가 빈용매에 무한 희석 가능한 극성 용매밖에 사용할 수 없다. 이로 인해, 유기 화합물도 일부의 극성 용매에 녹는 것에 한정된다.Various methods for preparing spherical particles by solution recrystallization have been proposed. Japanese Patent Publication No. 2,723,200 and Japanese Patent Publication No. 3,423,922 disclose a reprecipitation method by a method of preparing organic fine particles. In the reprecipitation method, an organic compound is dissolved in a good solvent, and the solution is injected into a poor solvent (usually distilled water) using a syringe or the like to produce fine particles of the organic compound. However, the process can only use polar solvents in which both solvents are infinitely dilutable to poor solvents. Therefore, the organic compound is limited to a part of the polar solvent.

한편, 현탁 중합과 유화 중합법에 RITP 방법을 도입하여 고분자 입자를 제조하고, 이를 상용성 용매에 용해시키고 재석출시키는 과정을 통해 원하는 크기의 안정된 고분자 입자를 제조하는 방법은 알려지지 않은 실정이다.
On the other hand, there is no known method for preparing stable polymer particles of desired size through the process of preparing polymer particles by introducing the RITP method into suspension polymerization and emulsion polymerization, dissolving them in a solvent for compatibility and re-precipitating them.

이에 본 발명자들은, 본 발명의 발명자는 안정적인 구상의 고분자 입자를 제조하고자 연구, 노력한 결과, RITP 중합법을 통하여 고분자 라텍스 입자를 제조한 후, 이를 상용성 용매를 통해 용해시킨 뒤 증류된 탈 이온수를 첨가하여 안정된 구형의 고분자 입자를 재결정화하면 용해된 고분자 사슬이 효과적으로 구상의 입자형태로 재결정화되어 안정적인 고분자 입자를 제조할 수 있음을 발견함으로써 본 발명을 완성하게 되었다. The inventors of the present invention have made efforts to produce stable spherical polymer particles, and as a result, they have found that polymer latex particles are prepared through RITP polymerization and then dissolved in a compatible solvent, and then distilled deionized water The present invention has been accomplished based on the discovery that stable polymer particles can be produced by recrystallizing stable spherical polymer particles by adding the polymer particles to the polymer particles in the form of spherical particles effectively.

따라서 본 발명은, RITP 중합법 및 입자 재결정법을 적용하여 안정된 구형 고분자 입자를 제조하는 방법을 제공하는 것에 그 목적이 있다.
Accordingly, it is an object of the present invention to provide a method for producing stable spherical polymer particles by applying the RITP polymerization method and the particle recrystallization method.

본 발명은, According to the present invention,

(a) 불포화 비닐계 단량체, 수용성 중합개시제, 퍼옥사이드계 촉매 및 사슬 이동제를 반응 용매에 용해시키고 교반하여 고분자 라텍스 입자를 제조하는 단계; 및(a) dissolving an unsaturated vinyl monomer, a water-soluble polymerization initiator, a peroxide-based catalyst, and a chain transfer agent in a reaction solvent and stirring to prepare polymer latex particles; And

(b) 상기 고분자 라텍스 입자를 상용성 용매에 용해시키고 증류된 탈 이온수를 첨가하여 분산시켜 재결정화시키는 단계(b) dissolving the polymer latex particles in a compatible solvent and adding distilled deionized water to disperse and recrystallize the polymer latex particles

를 포함하는 구형 고분자 입자의 제조방법을 그 특징으로 한다.
The method for producing spherical polymer particles according to claim 1,

본 발명의 고분자 입자 제조 방법은 기존에 알려진 분산 중합을 통한 재결정화 과정을 거치는 방법에 비하여 생성된 입자의 단분산 분포와 입자의 안정성이 우수하다는 장점이 있다. 또한 재결정 공정에 사용되는 고분자 라텍스를 제조하는 제1단계에서 RITP 기술을 도입하여 좁은 분자량 분포를 동시에 가지면서도 낮은 평균 분자량을 갖는 입자의 제조가 가능하고, 사슬 이동제가 소량 사용되어도 높은 효과를 얻을 수 있기 때문에 공정의 안정성과 제조 단가가 낮다는 장점이 있다. 그리고 제2단계의 상용성 용매를 사용한 재결정화 과정에 의하여 입자의 구형도가 증가되며 원하는 크기를 갖는 단분산의 입자 생성이 가능하다.
The polymer particle manufacturing method of the present invention is advantageous in that the monodisperse distribution of the particles produced and the stability of the particles are superior to the conventional method of performing the recrystallization through dispersion polymerization. In addition, it is possible to manufacture particles having a low average molecular weight while having a narrow molecular weight distribution at the same time by introducing RITP technology in the first step of producing a polymer latex used in a recrystallization process, and a high effect can be obtained even when a small amount of chain transfer agent is used The stability of the process and the manufacturing cost are low. The sphericity of the particles is increased by the recrystallization process using the solvent of the second step and monodispersed particles having a desired size can be produced.

도 1은 실시예 1의 (a)단계에서 RITP 방법으로 제조된 고분자 라텍스 입자의 전자 현미경 사진이다.
도 2은 실시예 1의 (b)단계에서 재결정된 고분자 입자의 전자 현미경 사진이다.
1 is an electron microscope photograph of a polymer latex particle prepared by the RITP method in the step (a) of Example 1. Fig.
2 is an electron micrograph of polymer particles recrystallized in step (b) of Example 1. Fig.

본 발명은, (a) 불포화 비닐계 단량체, 수용성 중합개시제, 퍼옥사이드계 촉매 및 사슬 이동제를 반응 용매에 용해시키고 교반하여 고분자 라텍스 입자를 제조하는 단계; 및 (b) 상기 고분자 라텍스 입자를 상용성 용매에 용해시키고 증류된 탈 이온수를 첨가하여 분산시켜 재결정화시키는 단계를 포함하는 구형 고분자 입자의 제조방법을 그 특징으로 한다.
The present invention provides a process for producing a polymer latex, comprising: (a) dissolving an unsaturated vinyl monomer, a water-soluble polymerization initiator, a peroxide-based catalyst and a chain transfer agent in a reaction solvent and stirring the polymer latex particles; And (b) dissolving the polymer latex particles in a compatible solvent and adding distilled deionized water to disperse and recrystallize the polymer latex particles.

본 발명에서 "불포화 비닐계 단량체"는 일반적인 분산중합, 유화중합 또는 현탁중합 등에서 사용되는 라디칼 개시가 가능한 모든 불포화 비닐계 단량체를 의미한다.
The term "unsaturated vinyl monomer" in the present invention means any unsaturated vinyl monomer capable of radical initiation used in general dispersion polymerization, emulsion polymerization or suspension polymerization.

본 발명에서 "중합 개시제"는 자유라디칼로 해리된 상태에서 이온성 작용기 내지 친수성 말단기를 포함하여 고분자 중합 반응을 개시시킴과 동시에 생성되는 고분자 입자간의 엉김을 정전기적으로 방지할 수 있는 것은 모두 의미한다.
In the present invention, the term "polymerization initiator" means that both the ionic functional group and the hydrophilic terminal group are dissociated into free radicals, thereby initiating the polymeric polymerization reaction and electrostatically preventing the entanglement of the generated polymeric particles. do.

본 발명에서 "촉매"는 중합 개시제가 자유라디칼로 해리되는 속도를 증가시킴으로서 반응속도를 빠르게 할 수 있는 것으로서 퍼옥사이드계의 모든 것을 의미한다.
The term "catalyst" in the present invention means all the peroxide-based catalysts capable of accelerating the reaction rate by increasing the rate at which the polymerization initiator dissociates into free radicals.

본 발명에서 "사슬 이동제"는 제조될 고분자의 분자량, 분자량 분포 등을 조절하기 위한 목적으로 중합 시 사용된 물질을 의미한다.
In the present invention, the term "chain transfer agent" means a substance used in polymerization for the purpose of controlling the molecular weight and molecular weight distribution of the polymer to be produced.

본 발명에서 "상용성 용매"는 재결정 과정 시 분산 용매로 사용되어 고분자 라텍스를 용해시키는 물질을 의미한다.
In the present invention, "compatible solvent" means a material which is used as a dispersing solvent in the recrystallization process to dissolve the polymer latex.

본 발명은 상기 반응 용매에 불포화 비닐계 단량체, 사슬 이동제, 수용성 중합 개시제 및 촉매를 완전히 용해시킨 후, 무유화 유화 중합 방법에 의하여 중량평균분자량과 PDI(polymer dispesity index)가 조절된 고분자 라텍스 입자를 제조하고, 상용성 용매에 상기 라텍스 고분자 입자를 분산시켜 용해시킨 뒤 수용액 상에 분산 시켜 재결정화 시키는 공정을 통하여 구의 형태를 가지며, 단분산을 나타내는 안정화된 고분자 입자를 제조한다.The present invention relates to a process for preparing polymer latex particles having a weight average molecular weight and PDI (polymer dispity index) controlled by a non-emulsified emulsion polymerization method after completely dissolving an unsaturated vinyl monomer, a chain transfer agent, And dispersing and dissolving the latex polymer particles in a compatible solvent, and dispersing the latex polymer particles in an aqueous solution to recrystallize them to prepare stabilized polymer particles having a spherical shape and exhibiting monodisperse.

특히, 본 발명은 수용성 중합 개시제가 라디칼을 형성하여 불포화 비닐계 단량체의 중합 반응이 개시된 후 사슬 이동제가 라디칼과 반응하여 지속적인 가역 반응에 의하여 고분자의 분자량이 조절되는 원리를 기초로 한 RITP 중합 방법을 통하여 고분자 라텍스를 1차적으로 얻고, 이를 상용성 용매에 용해시킨 뒤 재결정화 과정에 적용하여 1차적으로 제조된 고분자 라텍스를 용해도 차이를 이용하여 원하는 크기를 갖는 구형의 고분자 입자로 재결정화는 방법을 기초로 하고 있다. In particular, the present invention relates to a RITP polymerization method based on the principle that the water-soluble polymerization initiator forms a radical to initiate polymerization of an unsaturated vinyl-based monomer, and then the chain transfer agent reacts with the radical to control the molecular weight of the polymer by the continuous reversible reaction A method of recrystallizing polymeric latexes into a spherical polymer particle having a desired size by solubilizing the polymer latex by first obtaining polymer latex, dissolving it in a solvent and then applying it to a recrystallization process It is based on.

본 발명에서 불포화 비닐계 단량체는, 일반적인 분산중합, 유화중합 또는 현탁중합 등에 사용되는 라디칼 개시가 가능한 것이면 모두 사용될 수 있으며, 바람직하게는 스티렌, 디비닐벤젠, 에틸비닐벤젠, 알파메틸스티렌, 플루오로스티렌, 비닐피리딘, 염화비닐, 아크릴로니트릴, 메타크릴로니트릴, 부틸아크릴레이트, 2-에틸헥실에틸아크릴레이트, 글리시딜아크릴레이트, N,N'-디메틸아미노에틸아크릴레이트, 부틸메타크릴레이트, 2-에틸헥실에틸메타크릴레이트, 메틸메타크릴레이트, 2-히드록시에틸메타크릴레이트, 글리시딜메타크릴레이트, 폴리에틸렌글리콜디아크릴레이트, 1,3-부틸렌글리콜디아크릴레이트, 1,6-헥산디아크릴레이트, 에틸렌글리콜디메타크릴레이트, 디에틸렌글리콜디메타크릴레이트, 트리에틸렌글리콜디메타크릴레이트, 폴리에틸렌글리콜디메타크릴레이트 및 1,3-부틸렌글리콜디메타크릴레이트로 이루어진 군에서 선택된 1종 또는 2종 이상을 사용하는 것이 좋다. In the present invention, the unsaturated vinyl monomer may be any unsaturated vinyl monomer as long as it can initiate a radical used for general dispersion polymerization, emulsion polymerization or suspension polymerization, and preferably styrene, divinylbenzene, ethylvinylbenzene, alphamethylstyrene, fluoro Acrylates such as styrene, vinylpyridine, vinyl chloride, acrylonitrile, methacrylonitrile, butyl acrylate, 2-ethylhexyl ethyl acrylate, glycidyl acrylate, N, N'-dimethylaminoethyl acrylate, butyl methacrylate Butyl methacrylate, 2-ethylhexyl ethyl methacrylate, methyl methacrylate, 2-hydroxyethyl methacrylate, glycidyl methacrylate, polyethylene glycol diacrylate, 1,3-butylene glycol diacrylate, Hexane diacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethyl It is preferable to use one or two or more selected from the group consisting of ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate and 1,3-butylene glycol dimethacrylate.

상기 불포화 비닐계 단량체는, 바람직하게는 반응 용매 100 중량부에 대하여 2 ∼ 40 중량부로 사용될 수 있으며, 더욱 바람직하게는 5 ~ 30 중량부로 사용되는 것이 좋다. 불포화 비닐계 단량체의 사용량이 2 중량부 미만이면 반응 효율이 저하되고 40 중량부를 초과하면 입자간의 응집이 발생하여 구형의 입자를 얻을 수 없게 된다. The unsaturated vinyl monomer is preferably used in an amount of 2 to 40 parts by weight, more preferably 5 to 30 parts by weight, based on 100 parts by weight of the reaction solvent. When the amount of the unsaturated vinyl-based monomer is less than 2 parts by weight, the reaction efficiency is lowered. When the amount of the unsaturated vinyl-based monomer is more than 40 parts by weight, aggregation of particles occurs and spherical particles can not be obtained.

또한, 본 발명의 수용성 중합 개시제는 자유라디칼 중합에 사용될 수 있는 것이면 그 사용이 제한되지 않으나, 바람직하게는 2,2'-아조비스이소부티로니트릴, 2,2'-아조비스-2,4-디메틸발레로니트릴, 2,2'-아조비스-2-메틸이소부티로니트릴, 암모늄퍼설페이트, 포타슘퍼설페이트, 소듐퍼설페이트, 암모늄바이설페이트 및 소듐바이설페이트로 이루어진 군에서 선택된 1종 또는 2종 이상을 사용하는 것이 좋다. The water-soluble polymerization initiator of the present invention is not limited in its use as long as it can be used in free radical polymerization, but is preferably 2,2'-azobisisobutyronitrile, 2,2'-azobis-2,4 One or two selected from the group consisting of dimethylvaleronitrile, 2,2'-azobis-2-methylisobutyronitrile, ammonium persulfate, potassium persulfate, sodium persulfate, ammonium bisulfate and sodium bisulfate It is better to use more than species.

상기 중합 개시제는 바람직하게는 불포화 비닐계 단량체 100 중량부에 대하여 0.01 ∼ 10 중량부가 사용될 수 있다. 사용량이 0.01 중량부 미만이면 중합 반응의 속도가 현격히 감소되며, 10 중량부 초과 시에는 자체촉진반응(auto-acceleration)으로 인하여 겔화가 발생되는 문제가 있다.The polymerization initiator is preferably used in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the unsaturated vinyl monomer. When the amount is less than 0.01 part by weight, the rate of polymerization reaction is remarkably reduced. When the amount is more than 10 parts by weight, gelation occurs due to auto-acceleration.

또한 퍼옥사이드계 촉매는 RITP법의 반응 속도를 촉진시키는 목적으로 사용되어지며 하이드로퍼옥사이드, 큐멘하이드로퍼옥사이드, 부틸하이드로퍼옥사이드, 하이드로메틸하이드로퍼옥사이드, 또는 아세틸하이드로퍼옥사이드 등이 사용될 수 있다. Also, the peroxide-based catalyst is used for the purpose of promoting the reaction rate of the RITP process, and hydroperoxide, cumene hydroperoxide, butyl hydroperoxide, hydro-methyl hydroperoxide, or acetyl hydroperoxide can be used.

상기 촉매는 바람직하게는 상기 불포화 비닐계 단량체 100 중량부에 대하여 0.001 ∼ 5 중량부, 특히 바람직하게는 0.01 ~ 0.5 중량부로 사용된다. 촉매의 사용량이 너무 적으면 반응속도가 너무 느려 입자가 뭉치는 현상이 발생하고 너무 많으면 고분자 입자의 분자량을 조절할 수 없다. The catalyst is preferably used in an amount of 0.001 to 5 parts by weight, particularly preferably 0.01 to 0.5 parts by weight, based on 100 parts by weight of the unsaturated vinyl monomer. If the amount of the catalyst used is too small, the reaction rate is too slow to cause aggregation of the particles, and if the amount is too large, the molecular weight of the polymer particles can not be controlled.

그리고 RITP법에 사용되는 사슬 이동제로는 이오딘, 포타슘아이오디드, 소디움아이오디드, 리튬아이오디드, 브롬아이오디드, 아이오딘모노크로라이드, 마그네슘아이오디드, 포스포러스트리아이오디드 및 알킬아이오디드로 이루어진 군에서 선택된 1종 또는 2종 이상이 사용될 수 있다. Examples of the chain transfer agent used in the RITP method include a group consisting of iodine, potassium iodide, sodium iodide, lithium iodide, bromine iodide, iodine monochloride, magnesium iodide, phosphorus triiodide and alkyl iodide May be used alone or in combination.

상기 사슬 이동제의 사용량에 따라 고분자의 분자량과 분자량 분포를 조절할 수 있으며, 바람직하게는 수용성 중합 개시제와 사슬 이동제는 1 : 5 ~ 2 : 1의 중량비로 사용되는 것이 좋다. The molecular weight and the molecular weight distribution of the polymer can be controlled according to the amount of the chain transfer agent. Preferably, the water-soluble polymerization initiator and the chain transfer agent are used in a weight ratio of 1: 5 to 2: 1.

1단계 과정에서 이루어지는 무유화 유화 중합은 상기 성분의 교반을 통하여 이루어지며, 교반은 60 ∼ 90 ℃에서 100 ∼ 300 rpm의 교반속도로 5 ∼ 10 시간 동안 이루어지는 것이 바람직하다. The non-emulsified emulsion polymerization in the first step is carried out by stirring the above components, and stirring is preferably performed at 60 to 90 ° C at a stirring speed of 100 to 300 rpm for 5 to 10 hours.

한편, 상기 무유화 유화 중합 반응에는 통상의 무유화 유화 중합 반응에 사용되는 공지의 첨가제가 통상적인 용도와 방법으로 부가 사용될 수 있다. 부틸 알데히드, 트리클로로에틸렌, 퍼클로로에틸렌, 아세트알데히드 또는 머캅탄 등의 중합 조절제나 pH 조절제, 가교 결합제, 스케일 방지제 및 분산 안정제 등이 필요에 따라 부가될 수 있다.On the other hand, known nonionic emulsion polymerization reaction may be used in the non-emulsified emulsion polymerization reaction in addition to usual uses and methods. A polymerization regulator such as butyl aldehyde, trichlorethylene, perchlorethylene, acetaldehyde or mercaptan, a pH adjuster, a crosslinking agent, an anti-scale agent and a dispersion stabilizer may be added as needed.

상기 과정을 통하여 고분자 라텍스가 제조되며, 상기 고분자 라텍스의 질량평균분자량이 25,000 ~ 60,000 g/mol 범위에 있으며, 제조된 고분자 라텍스의 PDI(poly dispersity index)는 1.5 ~ 1.8 범위에 있는 것이 바람직하다. The polymer latex has a weight average molecular weight ranging from 25,000 to 60,000 g / mol, and the prepared polymer latex preferably has a poly dispersity index (PDI) in the range of 1.5 to 1.8.

상기 제조된 고분자 라텍스를 상용성 용매에 용해시키고 증류된 탈 이온수를 첨가하여 분산시켜 재결정화시켜 최종 구형의 고분자 입자를 제조한다. The prepared polymer latex is dissolved in a compatible solvent, and distilled deionized water is added to disperse and recrystallize to prepare final spherical polymer particles.

이 때 상기 상용성 용매는 고분자 라텍스를 완전 용해시키는 용매를 사용하며 구체적으로 톨루엔, 벤젠, 에틸아세테이트, 부틸아세테이트, 클로로포름, 디클로로메탄, 테트라하이드로퓨란(THF), 메틸에틸케톤, 자일렌, 사이클로헥사놀, 아세톤 및 C1 ~ C6의 알콜을 포함하는 용매를 사용할 수 있으나 이에 한정되는 것은 아니다. 바람직하게는 테트라하이드로퓨란 또는 에탄올을 포함하는 용매를 사용할 수 있다. 상기 상용성 용매는 제조된 고분자 라텍스 100 중량부에 대하여 300 ~ 10000 중량부, 바람직하게는 500 ~ 1000 중량부를 사용하는 것이 좋다. In this case, the compatible solvent may be a solvent which completely dissolves the polymer latex. Specific examples of the solvent include toluene, benzene, ethyl acetate, butyl acetate, chloroform, dichloromethane, tetrahydrofuran (THF), methyl ethyl ketone, But are not limited to, acetonitrile, acetone, and C 1 to C 6 alcohols. Preferably, a solvent containing tetrahydrofuran or ethanol can be used. The compatible solvent is preferably used in an amount of 300 to 10000 parts by weight, preferably 500 to 1000 parts by weight, based on 100 parts by weight of the produced polymer latex.

상기 재결정 과정을 통하여 안정된 구상의 형태로 재결정된 나노 ~ 마이크론의 크기의 고분자 입자를 제조할 수 있다. Through the recrystallization process, nano-micron sized polymer particles recrystallized in a stable spherical form can be produced.

상기 제조과정에 따라 제조된 고분자 입자는 각각의 특성에 따라 각종 필름들의 광 확산재료, 엘시디 스페이서(LCD SPACER), 도전볼 등 광학 및 전기 전자 분야뿐만 아니라 약품 전달 캡슐 입자, MRI 조형재 등과 같은 의학 분야까지 다양한 분야에 적용될 수 있다. 또한 각종 무기물을 입자의 표면에 입혀 촉매로도 활용할 수도 있으며, 구형이기 때문에 은폐력이 높은 유기 안료, 도료, 잉크, 복사용 중합 토너, 화장품뿐만 아니라 전파 차폐용 군용 장비 등 다양한 산업 분야에도 적용이 가능하다.The polymer particles produced according to the above manufacturing process can be used in a variety of fields such as optical diffusion and diffusion films of various films, LCD SPACER, conductive balls, etc., as well as in medical fields such as drug delivery capsule particles and MRI molding materials And so on. In addition, it can be applied to various industrial fields such as organic pigments, paints, inks, polymerized toners for photocopying, cosmetics, and military equipment for radio wave shielding because of their spherical shape. Do.

이하 구체적인 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 다음의 실시예에 의해 본 발명의 범위가 한정되는 것은 아니며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능한 것은 물론이다.
Hereinafter, the present invention will be described in more detail with reference to specific examples. However, it should be understood that the scope of the present invention is not limited by the following embodiments, and that those skilled in the art will readily understand that the technical idea of the present invention and the equivalents of the claims It goes without saying that various modifications and variations are possible.

실시예 1Example 1

(a) RITP 방법을 통한 고분자 라텍스 제조 과정(a) Production process of polymer latex by RITP method

냉각기가 달려있는 3구 둥근 플라스트 반응기 내부를 아르곤 가스로 퍼지 하면서 증류된 탈 이온수 100 g을 넣고 200 rpm으로 교반 가열시켜 반응기 내부 온도가 80 ℃에 다다르면 스티렌 10 g과 아이오딘을 0.260 g을 반응기 내부에 넣었다. 반응 개시제로서 포타슘퍼설페이트(KPS) 0.1 g 을 탈 이온수 10 g에 녹여서 반응기 내부에 주입하였고, 촉매로서 하이드로퍼옥사이드 1 ml를 반응기 내부에 적하하며 반응기 내부를 빛이 없는 상태에서 반응을 실시하였다.100 g of distilled deionized water was poured into the three-neck round plast reactor equipped with a condenser, and the mixture was stirred and heated at 200 rpm. When the internal temperature of the reactor reached 80 ° C, 10 g of styrene and 0.260 g of iodine Lt; / RTI > 0.1 g of potassium persulfate (KPS) as a reaction initiator was dissolved in 10 g of deionized water and injected into the reactor. 1 ml of hydroperoxide as a catalyst was added dropwise into the reactor, and the reaction was carried out in the absence of light in the reactor.

혼합물의 반응기를 80 ℃로 유지시키며 200 rpm으로 교반하면서 7시간 동안 중합하여 고분자 라텍스를 얻었으며, 중량평균분자량을 GPC로 분석한 결과 50,000 g/mol의 분자량과 1.7의 PDI를 갖는다는 사실을 확인하였다. 또한 상기 과정을 통하여 제조된 고분자 라텍스 입자의 전자 현미경 사진을 도 1에 나타내었다.
The reactor of the mixture was maintained at 80 ° C and polymerized for 7 hours while stirring at 200 rpm to obtain a polymer latex. The weight average molecular weight was analyzed by GPC and it was confirmed that the polymer had a molecular weight of 50,000 g / mol and a PDI of 1.7 Respectively. 1 shows an electron micrograph of the polymer latex particles prepared through the above process.

(b) 재결정 과정(b) Recrystallization process

냉각기가 달려있는 3구 둥근 플라스크에 테트라하이드로퓨란 100 g과 상기 (a)단계의 중합 과정을 통해 제조된 건조된 고분자 라텍스 10 g을 투입하고, 30 ℃에서 2시간 동안 200 rpm으로 교반하였다. 분산 안정제로 폴리비닐알코올 0.5g이 분산되어 있는 탈 이온수 50 g을 투입하고 250 rpm으로 교반하여 최종적으로 폴리스티렌 입자를 얻었다.100 g of tetrahydrofuran and 10 g of dried polymer latex prepared through the polymerization process of step (a) were added to a three-necked round flask equipped with a condenser, and the mixture was stirred at 200 rpm for 2 hours at 30 ° C. 50 g of deionized water in which 0.5 g of polyvinyl alcohol was dispersed as a dispersion stabilizer was added and stirred at 250 rpm to finally obtain polystyrene particles.

상기와 같이 얻어진 폴리스티렌 입자를 원심 분리하여 전자현미경으로 관찰한 입자 사진을 도 2에 나타내었고, GPC 분석 결과를 표 1에 나타내었다. 상기 도 2에서 보는 바와 같이, 상기 폴리스티렌 입자는 그 크기가 균일하고 평균 입경이 약 2 ~ 3 마이크로미터로서 안정한 구형의 입자로서 제조되는 것임을 확인하였다.
The thus-obtained polystyrene particles were centrifuged and observed with an electron microscope. The photographs of the particles are shown in Fig. 2, and the results of GPC analysis are shown in Table 1. As shown in FIG. 2, it was confirmed that the polystyrene particles were prepared as spherical particles having a uniform size and an average particle diameter of about 2 to 3 micrometers.

실시예 2Example 2

(a)단계의 RITP 방법을 통한 고분자 라텍스 제조 공정 중 투입 단량체를 스티렌 대신 메틸메타크릴레이트를 사용한 것 외에는 상기 실시예 1과 동일하게 진행하였다.
The procedure of Example 1 was repeated except that methylmethacrylate was used instead of styrene as a monomer to be introduced during the polymer latex production process through the RITP method in the step (a).

실시예 3Example 3

(a)단계의 RITP 방법을 통한 고분자 라텍스 제조 공정 중 투입 단량체를 스티렌 대신 부틸메타크릴레이트를 사용한 것 외에는 상기 실시예 1과 동일하게 진행하였다.
The procedure of Example 1 was repeated except that butylmethacrylate was used instead of styrene in the polymer latex preparation process through the RITP method in the step (a).

실시예 4Example 4

(a)단계의 RITP 방법을 통한 고분자 라텍스 제조 공정 중 아이오딘을 0.220 g 사용한 것 이외에는 상기 실시예 1과 동일하게 진행하였다.
The procedure of Example 1 was repeated except that 0.220 g of iodine was used in the polymer latex preparation process through the RITP method in the step (a).

실시예 5Example 5

(a)단계의 RITP 방법을 통한 고분자 라텍스 제조 공정 중 아이오딘을 0.280 g 사용한 것 이외에는 상기 실시예 1과 동일하게 진행하였다.
The procedure of Example 1 was repeated except that 0.280 g of iodine was used in the polymer latex preparation process through the RITP method in the step (a).

실시예 6Example 6

(b)단계의 재결정 공정 중 테트라하이드로퓨란 대신 아세톤을 사용한 것 이외에는 상기 실시예 1과 동일하게 진행하였다.
The procedure of Example 1 was repeated except that acetone was used instead of tetrahydrofuran in the recrystallization step of step (b).

실시예 7Example 7

(b)단계의 재결정 공정 중 폴리비닐알코올을 사용하지 않은 것 이외에는 상기 실시예 1과 동일하게 진행하였다.
The procedure of Example 1 was repeated except that polyvinyl alcohol was not used in the recrystallization step of step (b).

실시예 8Example 8

(b)단계의 재결정 과정 중 폴리비닐알코올 1g 사용한 것 이외에는 상기 실시예 1과 동일하게 진행하였다.
The procedure of Example 1 was repeated except that 1 g of polyvinyl alcohol was used during the recrystallization process in the step (b).

비교예 1Comparative Example 1

(a)단계의 RITP 방법을 통한 고분자 라텍스 제조 공정 중 아이오딘을 사용하지 않고 고분자 라텍스를 제조한 것 이외에는 상기 실시예 1과 동일하게 진행하였다.
The procedure of Example 1 was repeated except that the polymer latex was prepared without using iodine in the process of producing polymer latex by the RITP method in the step (a).

비교예 2Comparative Example 2

(a)단계의 RITP 방법을 통한 고분자 라텍스 제조 공정 중 아이오딘을 사용하지 않고, 머캡탄을 사용하여 유화 중합을 실시하여 고분자 라텍스를 제조한 것 이외에는 상기 실시예 1과 동일하게 진행하였다
except that iodine was not used in the polymer latex production process through the RITP method in the step (a), and the polymer latex was prepared by performing emulsion polymerization using mercaptan to prepare a polymer latex.

실험예 : GPC 측정에 따른 분자량 분포 측정Experimental Example: Measurement of molecular weight distribution by GPC measurement

상기 실시예 및 비교예에서 제조된 입자는 GPC 측정을 통하여 고분자 입자의 분자량 분포를 측정하였다. 분자량을 측정하기 위해 고분자 입자 내 반응 시 첨가된 미반응 단량체를 세척과정을 통해 완전히 제거시킨 후 분석하였다. 상기 분석은 세척된 입자를 테트라하이드로퓨란에 완전 용해시켜 이루어졌으며, 각종 조건에 따른 분자량 분포 측정하였다. 상기 측정 결과를 하기 표 1에 나타내었다.
The molecular weight distribution of the polymer particles was measured by GPC measurement of the particles prepared in the examples and comparative examples. In order to measure the molecular weight, the unreacted monomers added during the reaction in the polymer particles were completely removed through a washing process and then analyzed. The analysis was carried out by completely dissolving the washed particles in tetrahydrofuran and measuring the molecular weight distribution according to various conditions. The measurement results are shown in Table 1 below.

단량체Monomer 아이오딘함량(g)Iodine content (g) 분자량
(g/mol)
Molecular Weight
(g / mol)
PDI
(Mw/Mn)
PDI
(Mw / Mn)
상용성 용매Compatible solvent PVA
함량(g)
PVA
Content (g)
입자
크기(μm)
particle
Size (μm)
실시예 1Example 1 StyreneStyrene 0.2600.260 50,00050,000 1.71.7 THFTHF 0.50.5 2.72.7 실시예 2Example 2 MMAMMA 0.2600.260 35,00035,000 1.551.55 THFTHF 0.50.5 5.55.5 실시예 3Example 3 BMABMA 0.2600.260 45,00045,000 1.631.63 THFTHF 0.50.5 4.14.1 실시예 4Example 4 StyreneStyrene 0.2200.220 50,00050,000 1.71.7 THFTHF 0.50.5 2.72.7 실시예 5Example 5 StyreneStyrene 0.2800.280 50,00050,000 1.71.7 THFTHF 0.50.5 2.72.7 실시예 6Example 6 StyreneStyrene 0.2600.260 50,00050,000 1.71.7 아세톤Acetone 0.50.5 1.81.8 실시예 7Example 7 StyreneStyrene 0.2600.260 50,00050,000 1.71.7 THFTHF 00 4.84.8 실시예 8Example 8 StyreneStyrene 0.2600.260 50,00050,000 1.71.7 THFTHF 1One 1.21.2 비교예 1Comparative Example 1 StyreneStyrene 00 200,000200,000 3.73.7 THFTHF 0.50.5 응집Cohesion 비교예 2Comparative Example 2 StyreneStyrene 00 45,00045,000 2.52.5 THFTHF 0.50.5 응집Cohesion

상기 표 1에서 보는 바와 같이, 사슬 이동제를 사용하는 RITP 방법을 중합 공정에 도입하면 낮은 분자량과 좁은 분자량 분포를 갖는 고분자 라텍스를 합성할 수 있으며, 이를 상용성 용매에 녹인 후 재결정 시키면 안정된 구형의 고분자 입자를 제조할 수 있다는 사실을 확인할 수 있었다. As shown in Table 1, when a RITP method using a chain transfer agent is introduced into a polymerization process, a polymer latex having a low molecular weight and a narrow molecular weight distribution can be synthesized. When the polymer latex is dissolved in a compatible solvent and recrystallized, a stable spherical polymer It was confirmed that the particles can be produced.

특히 사슬 이동제를 사용하지 않은 상태에서 제조된 고분자 라텍스는 분자량이 크고 분자량 분포가 넓어 재결정 과정을 거친 후에도 구형의 입자상태의 고분자를 얻기 어려우며 재결정 과정 중 고분자의 응집이 발생하는 결과가 나타났다.Particularly, the polymer latex prepared without using a chain transfer agent has a large molecular weight and a broad molecular weight distribution, which makes it difficult to obtain a polymer having a spherical particle state even after a recrystallization process, resulting in the aggregation of the polymer during the recrystallization process.

따라서 본 발명의 제조방법에 의하여 25,000 ~ 60,000 (g/mol)의 질량평균 분자량과 1.8 미만의 PDI 범위를 갖는 2 ~ 3 마이크론 크기의 구형 입자를 제조할 수 있음을 확인하였다.
Thus, it was confirmed that spherical particles having a mass average molecular weight of 25,000 to 60,000 (g / mol) and a PDI range of less than 1.8 and having a size of 2 to 3 microns can be produced by the production method of the present invention.

Claims (11)

(a) 불포화 비닐계 단량체, 수용성 중합개시제, 퍼옥사이드계 촉매 및 사슬 이동제를 반응 용매에 용해시키고 교반하여 고분자 라텍스 입자를 제조하는 단계; 및
(b) 상기 고분자 라텍스 입자를 상용성 용매에 용해시키고 증류된 탈 이온수를 첨가하여 분산시켜 재결정화시키는 단계
를 포함하는 것을 특징으로 하는 구형 고분자 입자의 제조방법에 있어서, 상기 (a)단계에서 제조된 고분자 라텍스의 PDI가 1.5 ~ 1.8 범위에 있는 것을 특징으로 하는 구형 고분자 입자의 제조방법.
(a) dissolving an unsaturated vinyl monomer, a water-soluble polymerization initiator, a peroxide-based catalyst, and a chain transfer agent in a reaction solvent and stirring to prepare polymer latex particles; And
(b) dissolving the polymer latex particles in a compatible solvent and adding distilled deionized water to disperse and recrystallize the polymer latex particles
Wherein the PDI of the polymer latex prepared in the step (a) is in the range of 1.5 to 1.8. The method of manufacturing a spherical polymer particle according to claim 1, wherein the polymer latex has a PDI of 1.5 to 1.8.
제 1 항에 있어서, 상기 교반은 60 ∼ 90 ℃에서 100 ∼ 300 rpm의 교반속도로 5 ∼ 10 시간 동안 이루어지는 것을 특징으로 하는 구형 고분자 입자의 제조방법.
The method of claim 1, wherein the stirring is performed at 60 to 90 ° C at a stirring speed of 100 to 300 rpm for 5 to 10 hours.
제 1항에 있어서, 상기 불포화 비닐계 단량체는 스티렌, 디비닐벤젠, 에틸비닐벤젠, 알파메틸스티렌, 플루오로스티렌, 비닐피리딘, 염화비닐, 아크릴로니트릴, 메타크릴로니트릴, 부틸아크릴레이트, 2-에틸헥실에틸아크릴레이트, 글리시딜아크릴레이트, N,N'-디메틸아미노에틸아크릴레이트, 부틸메타크릴레이트, 2-에틸헥실에틸메타크릴레이트, 메틸메타크릴레이트, 2-히드록시에틸메타크릴레이트, 글리시딜메타크릴레이트, 폴리에틸렌글리콜디아크릴레이트, 1,3-부틸렌글리콜디아크릴레이트, 1,6-헥산디아크릴레이트, 에틸렌글리콜디메타크릴레이트, 디에틸렌글리콜디메타크릴레이트, 트리에틸렌글리콜디메타크릴레이트, 폴리에틸렌글리콜디메타크릴레이트 및 1,3-부틸렌글리콜디메타크릴레이트로 이루어진 군에서 선택된 1종 또는 2종 이상인 것을 특징으로 하는 구형 고분자 입자의 제조방법.
2. The composition of claim 1, wherein the unsaturated vinyl monomer is selected from the group consisting of styrene, divinylbenzene, ethylvinylbenzene, alphamethylstyrene, fluorostyrene, vinylpyridine, vinyl chloride, acrylonitrile, methacrylonitrile, butyl acrylate, Methyl ethyl acrylate, ethylhexyl ethyl acrylate, glycidyl acrylate, N, N'-dimethyl amino ethyl acrylate, butyl methacrylate, 2-ethylhexyl ethyl methacrylate, methyl methacrylate, Butylene glycol diacrylate, 1,6-hexane diacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, diethylene glycol dimethacrylate, diethylene glycol dimethacrylate, Triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, and 1,3-butylene glycol dimethacrylate, and one or more selected from the group consisting of The method of spherical polymer particles as ranging.
제 1 항에 있어서, 상기 불포화 비닐계 단량체는 반응 용매 100 중량부에 대하여 2 ∼ 40 중량부로 사용되는 것을 특징으로 하는 구형 고분자 입자의 제조방법.
The method of claim 1, wherein the unsaturated vinyl monomer is used in an amount of 2 to 40 parts by weight based on 100 parts by weight of the reaction solvent.
제 1 항에 있어서, 상기 수용성 중합개시제는 2,2'-아조비스이소부티로니트릴, 2,2'-아조비스-2,4-디메틸발레로니트릴, 2,2'-아조비스-2-메틸이소부티로니트릴, 암모늄퍼설페이트, 포타슘퍼설페이트, 소듐퍼설페이트, 암모늄바이설페이트 및 소듐바이설페이트로 이루어진 군에서 선택된 1종 또는 2종 이상인 것을 특징으로 하는 구형 고분자 입자의 제조방법.
The method of claim 1, wherein the water-soluble polymerization initiator is selected from the group consisting of 2,2'-azobisisobutyronitrile, 2,2'-azobis-2,4-dimethylvaleronitrile, 2,2'- Wherein the polymer is at least one selected from the group consisting of methyl isobutyronitrile, ammonium persulfate, potassium persulfate, sodium persulfate, ammonium bisulfate and sodium bisulfate.
제 1 항에 있어서, 상기 수용성 중합 개시제는 상기 불포화 비닐계 단량체 100 중량부에 대하여 0.01 ∼ 10 중량부로 사용되는 것을 특징으로 하는 구형 고분자 입자의 제조 방법.
The method for producing spherical polymer particles according to claim 1, wherein the water-soluble polymerization initiator is used in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the unsaturated vinyl monomer.
제 1 항에 있어서, 상기 퍼옥사이드계 촉매는 하이드로퍼옥사이드, 큐멘하이드로퍼옥사이드, 부틸하이드로퍼옥사이드, 하이드로메틸하이드로퍼옥사이드 및 아세틸하이드로퍼옥사이드로 이루어진 군에서 선택된 1종 또는 2종 이상인 것을 특징으로 하는 구형 고분자 입자의 제조 방법.
The peroxide-based catalyst according to claim 1, wherein the peroxide-based catalyst is at least one selected from the group consisting of hydroperoxide, cumene hydroperoxide, butyl hydroperoxide, hydro-methyl hydroperoxide and acetyl hydroperoxide. By weight based on the total weight of the polymer particles.
제 1 항에 있어서, 사슬 이동제는 아이오딘, 포타슘아이오디드, 소디움아이오디드, 리튬아이오디드, 브롬아이오디드, 아이오딘모노크로라이드, 마그네슘아이오디드, 포스포러스트리아이오디드 및 알킬아이오디드로 이루어진 군에서 선택된 1종 또는 2종 이상인 것을 특징으로 하는 구형 고분자 입자의 제조 방법.
The method of claim 1, wherein the chain transfer agent is selected from the group consisting of iodine, potassium iodide, sodium iodide, lithium iodide, bromoiodide, iodine monochloride, magnesium iodide, phosphorus triiodide, and alkyl iodide And at least one selected from the group consisting of at least one selected from the group consisting of water,
제 1 항에 있어서, 상기 수용성 중합 개시제와 사슬 이동제는 1 : 5 ~ 2 : 1의 중량비로 혼합되는 것을 특징으로 하는 구형 고분자 입자의 제조방법.
The method of claim 1, wherein the water-soluble polymerization initiator and the chain transfer agent are mixed at a weight ratio of 1: 5 to 2: 1.
제 1 항에 있어서, 상기 (a)단계에서 제조된 고분자 라텍스의 질량평균분자량이 25,000 ~ 60,000 g/mol 인 것을 특징으로 하는 구형 고분자 입자의 제조방법.
The method of claim 1, wherein the polymer latex prepared in step (a) has a mass average molecular weight of 25,000 to 60,000 g / mol.
삭제delete
KR20110077488A 2011-08-03 2011-08-03 The preparation of monodisperse spheric particles via solution re-crystallization with RITP technique KR101507999B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20110077488A KR101507999B1 (en) 2011-08-03 2011-08-03 The preparation of monodisperse spheric particles via solution re-crystallization with RITP technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20110077488A KR101507999B1 (en) 2011-08-03 2011-08-03 The preparation of monodisperse spheric particles via solution re-crystallization with RITP technique

Publications (2)

Publication Number Publication Date
KR20130015479A KR20130015479A (en) 2013-02-14
KR101507999B1 true KR101507999B1 (en) 2015-04-07

Family

ID=47895282

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20110077488A KR101507999B1 (en) 2011-08-03 2011-08-03 The preparation of monodisperse spheric particles via solution re-crystallization with RITP technique

Country Status (1)

Country Link
KR (1) KR101507999B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090094653A (en) * 2008-03-03 2009-09-08 인하대학교 산학협력단 Preparation method of low Molecular Weight of VinylPolymer by Reverse Iodine Transfer Polymerization-Emulsion Polymerization
US20090241801A1 (en) * 2008-03-31 2009-10-01 Fujifilm Corporation Method and apparatus for producing fine particles
US20090306302A1 (en) 2006-07-04 2009-12-10 Patrick Lacroix-Desmazes Process of free-radical polymerization in aqueous disperasion for the preparation of polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090306302A1 (en) 2006-07-04 2009-12-10 Patrick Lacroix-Desmazes Process of free-radical polymerization in aqueous disperasion for the preparation of polymers
KR20090094653A (en) * 2008-03-03 2009-09-08 인하대학교 산학협력단 Preparation method of low Molecular Weight of VinylPolymer by Reverse Iodine Transfer Polymerization-Emulsion Polymerization
US20090241801A1 (en) * 2008-03-31 2009-10-01 Fujifilm Corporation Method and apparatus for producing fine particles

Also Published As

Publication number Publication date
KR20130015479A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5099286B2 (en) Oval spherical organic polymer particles and method for producing the same
JP5245188B2 (en) Oval spherical organic polymer particles and method for producing the same
JP2001089510A (en) Colored polymer particle and method for producing the same
JP3580320B2 (en) Method for producing polymer particles
KR101507999B1 (en) The preparation of monodisperse spheric particles via solution re-crystallization with RITP technique
Hwang et al. Porous microspheres of polyaniline, poly (o-toluidine), and poly (m-toluidine) prepared from double emulsions stabilized by toluidine isomers as the single surfactant
CN110402257B (en) Emulsion, method for producing emulsion, and method for forming coating film using emulsion
KR100983110B1 (en) Method for producing low molecular weight vinyl polymer particles by RTP emulsion polymerization
KR100589125B1 (en) Process for preparing monodisperse polymer particles by soap-free emulsion polymerization
JP2001240627A (en) Cationic hollow cross-linked polymer particle and production method therefor
KR20100027694A (en) Process for preparing polymer particles by dispersion polymerization
KR100546817B1 (en) Method of Preparing Monodisperse Functional Polymer Particle
CN110950989B (en) Method for producing monodisperse particles
CN109422988B (en) Polymethyl methacrylate-vinyl benzyl dimethyl dodecyl ammonium chloride-titanium dioxide composite material and preparation method thereof
JP4918963B2 (en) Method for producing acicular or oval spherical organic polymer particles
Hosseinzadeh et al. One-pot synthesis of cross-linked nonspherical polystyrene particles via dispersion polymerization: the effect of polymerization conditions on the morphology of the particles
KR101170962B1 (en) Manufacturing Method of Monodispersed Cross-Linked Particle Using 1 Step Process
KR101426532B1 (en) A method for preparing polymer particle with porous structure
CN109422841B (en) Polystyrene-vinylbenzyl dimethyl dodecyl ammonium chloride-barium titanate composite material and preparation method thereof
KR100480329B1 (en) Preparation of Highly Crosslinked Monodisperse Particles with a Diameter of a Micron Size
JPS6372713A (en) Production of solvent-resistant fine particle of uniform particle diameter
TWI668238B (en) Method of fabricating cross-linked polymer microparticles using low quantity of surfactant
KR101550338B1 (en) Polymer particles prepared by monomer extraction method and manufacturing method of the same
KR100556628B1 (en) Monodispersed Polymer Particles with Low Molecular Weight and Method of Preparing the Same
KR20070099152A (en) Process for preparing monodisperse spherical light diffuser

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20130801

Effective date: 20150223

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
FPAY Annual fee payment

Payment date: 20171213

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181121

Year of fee payment: 5