KR101502221B1 - Hepatoprotective Composition Comprising Thiacremonone As Active Ingredient - Google Patents

Hepatoprotective Composition Comprising Thiacremonone As Active Ingredient Download PDF

Info

Publication number
KR101502221B1
KR101502221B1 KR1020130081139A KR20130081139A KR101502221B1 KR 101502221 B1 KR101502221 B1 KR 101502221B1 KR 1020130081139 A KR1020130081139 A KR 1020130081139A KR 20130081139 A KR20130081139 A KR 20130081139A KR 101502221 B1 KR101502221 B1 KR 101502221B1
Authority
KR
South Korea
Prior art keywords
cells
apap
liver
mice
composition
Prior art date
Application number
KR1020130081139A
Other languages
Korean (ko)
Other versions
KR20140009051A (en
Inventor
홍진태
반정옥
길동철
권선미
정헌상
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Publication of KR20140009051A publication Critical patent/KR20140009051A/en
Application granted granted Critical
Publication of KR101502221B1 publication Critical patent/KR101502221B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/896Liliaceae (Lily family), e.g. daylily, plantain lily, Hyacinth or narcissus
    • A61K36/8962Allium, e.g. garden onion, leek, garlic or chives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Mycology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

본 발명은 치아크레모논을 유효성분으로 포함하는 간 보호용 조성물에 관한 것이다. 본 발명의 치아크레모논은 간독성 물질에 의해 유도된 간세포 손상을 효과적으로 보호한다. 치아크레모논은 과량의 간 독성 물질 투여에 의해 유도된 간손상에서 ALT 수준, AST 수준, 및 지질과산화 수준을 감소시키고 NO (nitric oxide) 생성을 억제한다. 또한, 간세포에서 간독성 물질에 의해 유도되는 Kupffer 세포, T 세포, 및 NK 세포의 침투 및 간세포 사이토크롬 P450 2E1의 발현을 감소시키며, 친염증성 사이토카인 I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-10, IL-13, IL-7 및 IL-17의 수준을 감소시킨다. 따라서, 치아크레모논은 간독성 물질에 의한 간손상을 보호하는 약물 및 기능성 식품의 활성물질로 개발될 수 있다. TECHNICAL FIELD The present invention relates to a composition for protecting the liver, which comprises tiocrimmonium as an active ingredient. The present invention provides a method for effectively protecting hepatocyte damage induced by a hepatotoxic substance. Chiacormonone reduces ALT levels, AST levels, and lipid peroxidation levels and inhibits NO (nitric oxide) production in liver damage induced by excessive hepatotoxic drug administration. In addition, it inhibits the penetration of Kupffer cells, T cells, and NK cells induced by hepatotoxic substances in hepatocytes and the expression of hepatocyte cytochrome P450 2E1, and proinflammatory cytokines I-309, M-CSF, MIG, , MIP-1 ?, IL-10, IL-13, IL-7 and IL-17. Therefore, dia-crmmonone can be developed as an active substance for drugs and functional food that protects liver damage by hepatotoxic substances.

Description

치아크레모논을 유효성분으로 포함하는 간보호용 조성물{Hepatoprotective Composition Comprising Thiacremonone As Active Ingredient} (Hepatoprotective Composition Comprising Thiacremonone As Active Ingredient)

본 발명은 치아크레모논을 유효성분으로 포함하는 간보호용 조성물에 관한 것이다.
TECHNICAL FIELD The present invention relates to a composition for protecting the liver, which comprises tiocrimmonium as an active ingredient.

아세트아미노펜(APAP; N-acetyl-p-aminophenol)은 치료적 용량으로 사용되면 안전한 것으로 알려져 있으며 진통제 및 해열제로 사용되고 있다. 그러나, 과량 복용하는 경우 소엽중심성 간세포 괴사(centrilobular hepatic necrosis)로 불리는 심각한 간세포 독성을 유발한다(Agarwal et al., 2012). APAP는 사이토크롬 P450 2E1에 의해 대사적으로 활성화되어 활성 대사물인 N-아세틸-p-벤조퀴논이민(NAPQI)을 형성하며, NAPQI는 단백질에 결합한다(Slitt et al., 2005). 치료적 용량에서는 NAPQI는 글루타타이온(GSH)에 의해 APAP-GSH 컨쥬게이트를 형성하고 신장에서 배출됨으로써 효과적으로 무독화된다(Prescott, 2005). 그러나, APAP를 과량복용하면, 설페이트 및 글루쿠로나이드 컨쥬게이션 경로가 포화되고, NAPQI가 형성되는 양과 속도가 크게 증가한다(Hu et al., 1996). NAPQI는 간세포 단백질과 공유적으로 결합하여 3-(시스테인-S-일)-아세트아미노펜(APAP-Cys) 부가물을 형성한다(James et al., 2003; Hinson et al., 2010; Agarwal et al., 2012). 과도한 양의 NAPQI는 또한 단백질을 퍼옥시나이트라이트화시키고, 지질, 단백질, DNA와 같은 거대분자를 산화시켜 간세포 손상 및 괴사를 유발한다(Rubbo et al., 1994; Sies et al., 1997). 아세트아미노펜은 새로운 간보호제 또는 치료제의 효과를 검증하기 위한 표준적인 간독성 유발물질로 널리 이용되고 있다(D. J. Jollow et al., J. Pharmacol. Exp. Ther . 187, pp 195-202, 1973 ; J. R. Mitchell et al., J.Pharmacol. Exp. Ther . 187, pp 185-194, 1973). N-acetyl-p-aminophenol (APAP) is known to be safe when used in therapeutic doses and is used as an analgesic and antipyretic. However, overdose can lead to severe hepatocellular toxicity, called centrilobular hepatic necrosis (Agarwal et al., 2012). APAP is metabolically activated by cytochrome P450 2E1 to form the active metabolite N-acetyl-p-benzoquinoneimine (NAPQI) and NAPQI binds to the protein (Slitt et al., 2005). At therapeutic doses, NAPQI forms an APAP-GSH conjugate by glutathione (GSH) and is effectively detoxified by excretion in the kidney (Prescott, 2005). However, overdosage of APAP saturates the sulfate and glucuronide conjugation pathways, greatly increasing the amount and rate at which NAPQI is formed (Hu et al., 1996). NAPQI covalently associates with hepatocyte proteins to form 3- (cysteine-S-yl) -acetaminophen (APAP-Cys) adducts (James et al., 2003; Hinson et al., 2010; Agarwal et al ., 2012). Excess quantities of NAPQI also peroxynitrite proteins and oxidize macromolecules such as lipids, proteins, and DNA, leading to hepatocyte injury and necrosis (Rubbo et al., 1994; Sies et al., 1997). Acetaminophen is widely used as a standard hepatotoxic agent to test the efficacy of new hepatoprotectants or therapeutic agents (DJ Jollow et al., J. Pharmacol. Exp. Ther. 187, pp 195-202, 1973; JR Mitchell et al., J. Pharmacol. Exp. Ther. 187, pp 185-194, 1973).

Kupffer 세포, 자연살해(NK, natural killer) 세포, 중성호성백혈구(neutrophils) 및 대식세포(macrophages)는 종양괴사인자-알파(TNF-α), 인터페론-감마(IFN-γ), 인터루킨(IL)-1α, IL-1β 및 산화질소(NO)와 같은 친염증성 사이토카인과 매개인자의 방출을 통해 APAP-유도된 간독성에 기여한다(Michael et al., 2001; Martin-Murphy et al., 2010). APAP 처리한 생쥐에서, IFN-γ가 과도하게 생성되면 염증성 사이토카인, 케모카인, 부착 분자(adhesion molecules), Fas, 및 유도성 산화질소 합성효소(iNOS)를 상당한 정도로 유발한다(Ishida et al., 2002; Liu et al., 2004). 또한, IFN-γ가 과도하게 생성되면, 혈청 ALT(alanine aminotransferase) 및 AST(aspartate transaminase) 수준 및 괴사의 조직병리학적평가를 통해 인지될 수 있는 바와 같이 괴사성 간독성이 유발된다(Blazka et al., 1995b; Liu et al., 2004). 생쥐에서 항체를 사용하여 TNF-α 또는 IL-1α을 억제하면 APAP-유도된 간 손상을 보호할 수 있다(Gandhi et al., 2010). IL-1ra는 IL-1와 구조적으로 유사하여, IL-1 수용체에 강하게 결합하여 IL-1 신호경로를 차단할 수 있다(Hu et al., 2010). 간세포내 IL-1의 수준은 APAP-유도된 간 손상의 위중도와 상관관계를 갖는다(Blazka et al., 1995b). 활성화된 Kupffer 세포는 퍼옥시나이트라이트(peroxynitrite)를 형성시키는 NO 및 수퍼옥사이드 생산에 있어서 중요하다(Rubbo et al., 1994; Sies et al., 1997). Kupffer 세포는 염증에 대응할 수 있으며, 또는 IL-10 분비 변화를 통해 간 재생 역할을 할 수 있다(Ju et al., 2002). Kupffer 세포에 의해 활성화된 침투 NK세포 및 NK-T 세포가 아세트아미노펜 독성에서 IFN-γ를 생산하는 주요한 세포 타입이다(Ishida et al., 2002; Liu et al., 2004). IL-1 및 IL-1ra는 염증상태에 있는 환자에서 중성호성백혈구, 대식세포 및 섬유아세포와 같은 다양한 종류의 세포에 의해 대량으로 생성된다(Hu et al., 2010). Kupffer cells, natural killer (NK) cells, neutrophils and macrophages have been implicated in tumor necrosis factor-alpha (TNF-a), interferon-gamma (IFN- Induction of hepatotoxicity through the release of proinflammatory cytokines and mediators such as IL-1α, IL-1β and nitric oxide (NO) (Michael et al., 2001; Martin-Murphy et al., 2010) . In APAP treated mice, excessive production of IFN-y induces a significant degree of inflammatory cytokines, chemokines, adhesion molecules, Fas, and inducible nitric oxide synthase (iNOS) (Ishida et al. 2002; Liu et al., 2004). In addition, excessive production of IFN-y induces necrotic hepatotoxicity, as can be seen through the histopathological evaluation of serum ALT (alanine aminotransferase) and AST (aspartate transaminase) levels and necrosis (Blazka et al. , 1995b; Liu et al., 2004). In mice, inhibition of TNF-α or IL-1α using antibodies can protect APAP-induced liver damage (Gandhi et al., 2010). IL-1ra is structurally similar to IL-1 and can bind IL-1 receptors strongly to block the IL-1 signaling pathway (Hu et al., 2010). The level of IL-1 in hepatocytes correlates with the severity of APAP-induced liver damage (Blazka et al., 1995b). Activated Kupffer cells are important for NO and superoxide production to form peroxynitrite (Rubbo et al., 1994; Sies et al., 1997). Kupffer cells can respond to inflammation, or can play a role in liver regeneration through changes in IL-10 secretion (Ju et al., 2002). Penetrating NK cells and NK-T cells activated by Kupffer cells are the major cell types that produce IFN-y in acetaminophen toxicity (Ishida et al., 2002; Liu et al., 2004). IL-1 and IL-lra are produced in large quantities by various types of cells such as neutrophils, macrophages and fibroblasts in patients with inflammatory conditions (Hu et al., 2010).

방어 메카니즘이 손상 공격을 견디기에 충분하지 못한 경우, 세포는 과립성백혈구 및 단핵식세포와 같은 염증성 세포를 끌어모으거나 체류성 대식세포를 활성화시키는 작용을 할 것으로 추정되는 다음과 같은 케모카인들을 합성하기 시작한다: MIG (monokine-induced by gamma interferon; Ren et al., 2002), IP-10 (gamma-interferon-inducible protein; Ren et al., 2002), KC (cytokine-induced neutrophil chemoattractant, 및 MIP-1, MIP-2, 및 MIP-3와 같은 MIPs(macrophage inflammatory proteins; Li et al., 2004). 상기의 케모카인들은 급성 염증성 상태에서 손상된 간세포, T세포, NK세포 및 Kupffer 세포에 의해 분비된다(Ishida et al., 2002; Liu et al., 2004; Dragomir et al., 2012). 반면에, IP-10 (CXCL10) 및 MIP-2 (CXCL-2)은 간세포 재생에 있어서 주요 신호전달자인 STAT3(signal transducer and the activator of transcription 3) 전사인자의 핵내 국재화(localization)을 증가시킬 수도 있다(Hogaboam et al., 1999; Hogaboam et al., 2000b; Ren et al., 2003). 특히, IP-10은 HGF(hepatocyte growth factor)를 유도할 수 있으며(Hinson et al., 2010), APAP 간독성에 대해 MIP-2 수용체를 보호할 수 있다(Bone-Larson et al., 2001). 따라서, MIP-2 및 IP-10의 생성이 증가하는 것은 APAP 독성에 대응한 세포 증식에 있어서 매우 중요하다(Bone-Larson et al., 2001; Hinson et al., 2010). If the defense mechanism is not sufficient to withstand the attack, the cells begin to synthesize the following chemokines, which are believed to attract inflammatory cells such as granular leukocytes and mononuclear cells or to activate resident macrophages (Ren), 2002), cytokine-induced neutrophil chemoattractant (KC), and MIP-1 (Gene-dependent interferon-inducible protein , Macrophage inflammatory proteins (Li et al., 2004) such as MIP-2 and MIP-3. The above chemokines are secreted by damaged hepatocytes, T cells, NK cells and Kupffer cells in acute inflammatory conditions (Ishida On the other hand, IP-10 (CXCL10) and MIP-2 (CXCL-2) are major signal transporters in hepatocyte regeneration, STAT3 signal transducer and the activator of transcription 3) nuclear localization of transcription factor (loc IP-10 can induce HGF (hepatocyte growth factor) (Hinson et al., 1999; Hogaboam et al., 2000b; Ren et al., 2003) (Bone-Larson et al., 2001). Thus, an increase in the production of MIP-2 and IP-10 is associated with an increased risk of APAP toxicity (Bone-Larson et al., 2001; Hinson et al., 2010).

NF-kB(Nuclear transcription factor-kB)는 염증성 사이토카인, 케모카인, 세포 부착분자 및 성장인자의 생성에 관여된 다양한 유전자를 조절하는 전사인자이다 (Richmond, 2002). NF-kB는 증식 유전자들뿐만 아니라 다수의 항-아폽토시스 단백질의 발현도 조절한다(Wang et al., 1998). Nuclear transcription factor-kB (NF-kB) is a transcription factor that regulates various genes involved in the production of inflammatory cytokines, chemokines, cell adhesion molecules and growth factors (Richmond, 2002). NF-kB regulates the expression of multiple anti-apoptotic proteins as well as proliferative genes (Wang et al., 1998).

APAP를 과량 복용한 후, 간에서 NF-kB의 DNA 결합 활성은 증가하며, APAP-유도 독성에 대한 보호 효과는 감소된 NF-kB와 관련되어 있다(Meraz et al., 1996). STAT-1은 간 재생의 억제 뿐만 아니라 간 염증 및 손상에도 관련되어 있다. STAT-1은 Concavalin-A 유도 간염 및 리포폴리사카라이드/d-갈락토사민-유도 간염모델에서 IFN-γ에 대응하여 활성화되며, 이들 간독성 모델에서 유해한 역할을 담당한다(Hong et al., 2002; Ghosh and Sil, 2009). 다른 한편, IL-6에 의해 주로 활성화되는 STAT3 및 이의 관련 사이토카인은 간 손상에 대한 보호 및 간 재생을 촉진시키는 것을 포함하여 급성 상태 반응에서 매우 중요한 역할을 한다(Hecht et al., 2001; Hong et al., 2004; Gao, 2005). STAT3 유전자를 손상시킨 경우 간 재생을 악화시켰으며, 활성화된 STAT3는 지방간 질환을 완화시켰다(Hecht et al., 2001; Hong et al., 2004; Gao, 2005). 이와 같은 결과들은 STAT3가 다양한 항-아톱토시스 및 유사세포분열촉진 단백질을 유도함으로써 간보호 및 간 재생에서 중요한 역할을 담당하는 반면 STAT1은 간 손상을 매개한다는 것을 암시한다. After overdose of APAP, the DNA binding activity of NF-kB in the liver is increased, and the protective effect against APAP-induced toxicity is associated with reduced NF-kB (Meraz et al., 1996). STAT-1 is involved in liver inflammation and damage as well as inhibition of liver regeneration. STAT-1 is activated in response to IFN-y in concavalin-A-induced hepatitis and lipopolysaccharide / d-galactosamine-induced hepatitis models and plays a deleterious role in these hepatotoxicity models (Hong et al., 2002 Ghosh and Sil, 2009). On the other hand, STAT3 and its related cytokines, which are mainly activated by IL-6, play a very important role in acute-state responses, including protection against liver damage and promoting liver regeneration (Hecht et al., 2001; Hong et al., 2004; Gao, 2005). Inhibition of STAT3 gene aggravates liver regeneration and activated STAT3 mitigates fatty liver disease (Hecht et al., 2001; Hong et al., 2004; Gao, 2005). These results suggest that STAT3 plays an important role in liver protection and liver regeneration by inducing a variety of anti-atocytosis and mitogen-promoting proteins, while STAT1 mediates liver damage.

마늘은 고혈압, 고콜레스테롤혈증, 및 혈전증과 같은 위험인자들에 변경을 가함으로써, 또한 산화적 스트레스 및 노화와 관련된 다른 급성 및 만성 질환에 작용함으로써 암, 비만, 당뇨, 간독성, 신장독성 및 심혈관 질환의 치료용 식품성분으로서 민간요법에 오랫동안 사용되어 왔다(Rahman, 2001; Yeh and Liu, 2001; Tanaka et al., 2006). 이러한 마늘의 약리학적 효과는 디아릴설파이드(diallyl sulfide), 디아릴다이설파이드(diallyl disulfide), 알리신(allicin) 및 디프로필 설파이드(dipropyl sulfide)와 같은 활성 황 성분의 존재 때문인 것으로 알려져 왔다(Ban et al., 2009a; Kim et al., 2012). 이들 화합물들은 이들의 항산화 활성(Pari et al., 2007)과 함께, 발암물질의 대사에 관련된 효소의 활성을 증가시키고(Fisher et al., 2007), 인 비트로 및 인 비보에서 항염증 효과를 증가시킨다(Narayanaswami and Sies, 1990; Son et al., 2006; Sabayan et al., 2007). 치아크레모논(Thiacremonone)은 가열 처리한 마늘의 즙으로부터 분획된 항산화 활성을 갖는 분획으로부터 분리된 화합물이다(Kwon OC, Woo KS, Kim TM, Kim DJ, Hong JT, Jeong HS. Korean J Food Sci Technol. 2006;38:331-336). 치아크레모논 화합물은 균류인 Acremonium sp. 균주 HA33-95가 생성할 수 있는 것으로도 알려져 있으며 동물세포의 분화를 유도할 수 있다고도 보고되어 있다(Gehrt, A. Erkel, G. Anke, T. and Sterner, O. Nat. Prod. Lett. 2000;14:281-284.). 치아크레모논에 대해서는 항암활성(한국공개특허 제2009-0035946호), 비만, 당뇨, 고지혈증과 같은 대사성질환에 대한 치료 효능(한국공개특허 제2011-0011187호), 항염증활성(한국공개특허 제2011-0030756호)에 대한 용도가 개시되어 있으나, 간 독성물질로부터의 간세포 보호작용에 대해서는 아직 보고된 바 없다.
Garlic acts by altering risk factors such as hypertension, hypercholesterolemia, and thrombosis, as well as by acting on other acute and chronic diseases associated with oxidative stress and aging, leading to cancer, obesity, diabetes, hepatotoxicity, renal toxicity and cardiovascular disease (Rahman, 2001; Yeh and Liu, 2001; Tanaka et al., 2006). The pharmacological effect of such garlic has been shown to be due to the presence of active sulfur components such as diallyl sulfide, diallyl disulfide, allicin and dipropyl sulfide (Ban et al., 2009a; Kim et al., 2012). These compounds, along with their antioxidant activity (Pari et al., 2007), increase the activity of enzymes involved in the metabolism of carcinogens (Fisher et al., 2007) and increase the anti-inflammatory effect in in vitro and in vivo (Narayanaswami and Sies, 1990; Son et al., 2006; Sabayan et al., 2007). Thiacremonone is a compound isolated from a fraction having antioxidative activity from heat-treated garlic juice (Kwon OC, Woo KS, Kim TM, Kim DJ, Hong JT, Jeong HS. 2006; 38: 331-336). The compound is a fungus Acremonium sp. It is also known that strain HA33-95 is able to produce and induce differentiation of animal cells (Gehrt, A. Erkel, G. Anke, T. and Sterner, O. Nat. Prod. Lett. 2000; 14: 281-284.). (Korean Patent Laid-Open No. 2009-0035946), therapeutic efficacy against metabolic diseases such as obesity, diabetes and hyperlipidemia (Korea Patent Publication No. 2011-0011187), anti-inflammatory activity 2011-0030756) has been disclosed, but the hepatocyte protective action from hepatotoxic substances has not been reported yet.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

한국공개특허 제2009-0035946호Korean Patent Publication No. 2009-0035946 한국공개특허 제2011-0011187호Korea Patent Publication No. 2011-0011187 한국공개특허 제2011-0030756호Korea Patent Publication No. 2011-0030756

Adams, J.D., Jr., Lauterburg, B.H., Mitchell, J.R., 1983. J. Pharmacol. Exp. Ther. 227, 749-754.Adams, J. D., Jr., Lauterburg, B. H., Mitchell, J. R., 1983. J. Pharmacol. Exp. Ther. 227, 749-754. Agarwal, R., Hennings, L., Rafferty, T.M., Letzig, L.G., McCullough, S., James, L.P., MacMillan-Crow, L.A., Hinson, J.A., 2012. J. Pharmacol. Exp. Ther. 340, 134-142. L. A., Hinson, J. A., 2012. J. Pharmacol. Exp. Ther. 340, 134-142. Arsura, M., Wu, M., Sonenshein, G.E., 1996. Immunity 5, 31-40. Arsura, M., Wu, M., Sonenshein, G. E., 1996. Immunity 5, 31-40. Ban, J.O., Lee, H.S., Jeong, H.S., Song, S., Hwang, B.Y., Moon, D.C., Yoon do, Y., Han, S.B., Hong, J.T., 2009a. Mol Cancer Res 7, 870-879. Ban, J.O., Lee, H.S., Jeong, H.S., Song, S., Hwang, B.Y., Moon, D.C., Yoon Do, Y., Han, S.B., Hong, J.T., 2009a. Mol Cancer Res 7, 870-879. Ban, J.O., Oh, J.H., Kim, T.M., Kim, D.J., Jeong, H.S., Han, S.B., Hong, J.T., 2009b. Arthr Res & therapy 11, R145. Ban, J.O., Oh, J.H., Kim, T.M., Kim, D.J., Jeong, H.S., Han, S.B., Hong, J.T., 2009b. Arthr Res & therapy 11, R145. Blazka, M.E., Elwell, M.R., Holladay, S.D., Wilson, R.E., Luster, M.I., 1996. Toxicol. Pathol. 24, 181-189.Blazka, M. E., Elwell, M. R., Holladay, S. D., Wilson, R. E., Luster, M. I., 1996. Toxicol. Pathol. 24, 181-189. Blazka, M.E., Germolec, D.R., Simeonova, P., Bruccoleri, A., Pennypacker, K.R., Luster, M.I., 1995a. J. Inflamm. 47, 138-150.Blazka, M.E., Germolec, D.R., Simeonova, P., Bruccoleri, A., Pennypacker, K.R., Luster, M.I., 1995a. J. Inflamm. 47, 138-150. Blazka, M.E., Wilmer, J.L., Holladay, S.D., Wilson, R.E., Luster, M.I., 1995b. Toxicol. Appl. Pharmacol. 133, 43-52. Blazka, M.E., Wilmer, J.L., Holladay, S.D., Wilson, R.E., Luster, M.I., 1995b. Toxicol. Appl. Pharmacol. 133, 43-52. Bone-Larson, C.L., Hogaboam, C.M., Evanhoff, H., Strieter, R.M., Kunkel, S.L., 2001. J. Immunol. 167, 7077-7083. Bone-Larson, C. L., Hogaboam, C. M., Evanhoff, H., Strieter, R. M., Kunkel, S. L., 2001. J. Immunol. 167, 7077-7083. Bourdi, M., Eiras, D.P., Holt, M.P., Webster, M.R., Reilly, T.P., Welch, K.D., Pohl, L.R., 2007. Chem. Res. Toxicol. 20, 208-216. Bourdi, M., Eiras, D. P., Holt, M. P., Webster, M. R., Reilly, T. P., Welch, K. D., Pohl, L. R., 2007. Chem. Res. Toxicol. 20, 208-216. Bourdi, M., Masubuchi, Y., Reilly, T.P., Amouzadeh, H.R., Martin, J.L., George, J.W., Shah, A.G., Pohl, L.R., 2002. Hepatology 35, 289-298. Bourdi, M., Masubuchi, Y., Reilly, T. P., Amouzadeh, H. R., Martin, J. L., George, J. W., Shah, A. G., Pohl, L. R., 2002. Hepatology 35, 289-298. Cho, M.C., Lee, S., Choi, H.S., Yang, Y., Tae Hong, J., Kim, S.J., Yoon, D.Y., 2009. Immunopharmacol. Immunotoxicol. 31, 459-467.Cho, M. C., Lee, S., Choi, H. S., Yang, Y., Tae Hong, J., Kim, S.J., Yoon, D.Y., 2009. Immunopharmacol. Immunotoxicol. 31,459-467. Cho, M.C., Lee, W.S., Hong, J.T., Park, S.W., Moon, D.C., Paik, S.G., Yoon, D.Y., 2005. Mol. Cell. Endocrinol. 242, 96-102.Cho, M.C., Lee, W.S., Hong, J.T., Park, S.W., Moon, D.C., Paik, S.G., Yoon, D.Y., 2005. Mol. Cell. Endocrinol. 242, 96-102. Cho, M.C., Yoon, H.E., Kang, J.W., Park, S.W., Yang, Y., Hong, J.T., Song, E.Y., Paik, S.G., Kim, S.H., Yoon, D.Y., 2006. Eur. J. Pharm. Sci. 29, 355-360.Cho, M.C., Yoon, H.E., Kang, J.W., Park, S.W., Yang, Y., Hong, J.T., Song, E.Y., Paik, S.G., Kim, S.H., Yoon, D.Y., 2006. Eur. J. Pharm. Sci. 29, 355-360. Dambach, D.M., Durham, S.K., Laskin, J.D., Laskin, D.L., 2006. Toxicol Appl Pharmacol 211, 157-165.Dambach, D. M., Durham, S. K., Laskin, J. D., Laskin, D. L., 2006. Toxicol Appl Pharmacol 211, 157-165. Dragomir, A.C., Sun, R., Mishin, V., Hall, L.B., Laskin, J.D., Laskin, D.L., 2012. Toxicol. Sci. 127, 609-619.Dragomir, A. C., Sun, R., Mishin, V., Hall, L. B., Laskin, J. D., Laskin, D. L., 2012. Toxicol. Sci. 127, 609-619. Fisher, C.D., Augustine, L.M., Maher, J.M., Nelson, D.M., Slitt, A.L., Klaassen, C.D., Lehman-McKeeman, L.D., Cherrington, N.J., 2007. Drug Metab. Dispos. 35, 995-1000.Dr. Fisher, C. D., Augustine, L. M., Maher, J. M., Nelson, D. M., Slitt, A. L., Klaassen, C. D., Lehman-McKeeman, L. D., Cherrington, N. J., 2007. Drug Metab. Dispos. 35, 995-1000. Gandhi, A., Guo, T., Ghose, R., 2010. J. Toxicol. Sci. 35, 163-173.Gandhi, A., Guo, T., Ghose, R., 2010. J. Toxicol. Sci. 35,163-173. Gao, B., 2005. Cell Mol. Immunol. 2, 92-100.Gao, B., 2005. Cell Mol. Immunol. 2, 92-100. Gardner, C.R., Hankey, P., Mishin, V., Francis, M., Yu, S., Laskin, J.D., Laskin, D.L., 2012. Toxicol. Appl. Pharmacol. 262, 139-148.Gardner, C. R., Hankey, P., Mishin, V., Francis, M., Yu, S., Laskin, J. D., Laskin, D. L., 2012. Toxicol. Appl. Pharmacol. 262, 139-148. Ghosh, A., Sil, P.C., 2009. Chem. Biol. Interact. 177, 96-106.Ghosh, A., Sil, P. C., 2009. Chem. Biol. Interact. 177, 96-106. Hecht, N., Pappo, O., Shouval, D., Rose-John, S., Galun, E., Axelrod, J.H., 2001. Mol. Ther. 3, 683-687.Hecht, N., Pappo, O., Shouval, D., Rose-John, S., Galun, E., Axelrod, J. H., 2001. Mol. Ther. 3, 683-687. Hinson, J.A., Pike, S.L., Pumford, N.R., Mayeux, P.R., 1998. Chem. Res. Toxicol. 11, 604-607.Hinson, J. A., Pike, S. L., Pumford, N. R., Mayeux, P. R., 1998. Chem. Res. Toxicol. 11,604-607. Hinson, J.A., Roberts, D.W., James, L.P., 2010. Handb Exp Pharmacol 196, 369-405.Hinson, J. A., Roberts, D. W., James, L. P., 2010. Handb Exp Pharmacol 196, 369-405. Hogaboam, C.M., Bone-Larson, C., Matsukawa, A., Steinhauser, M.L., Blease, K., Lukacs, N.W., Kunkel, S.L., 2000a. Therapeutic use of chemokines. Curr. Pharm. Des. 6, 651-663.Hogaboam, C. M., Bone-Larson, C., Matsukawa, A., Steinhauser, M. L., Blease, K., Lukacs, N. W., Kunkel, S. L., 2000a. Therapeutic use of chemokines. Curr. Pharm. Des. 6, 651-663. Hogaboam, C.M., Bone-Larson, C.L., Steinhauser, M.L., Lukacs, N.W., Colletti, L.M., Simpson, K.J., Strieter, R.M., Kunkel, S.L., 1999. FASEB J. 13, 1565-1574.Fink, J., Hogaboam, C. M., Bone-Larson, C. L., Steinhauser, M. L., Lukacs, N. W., Colletti, L. M., Simpson, K. J., Strieter, R. M., Kunkel, S. L., 1999. FASEB J. 13, 1565-1574. Hogaboam, C.M., Bone-Larson, C.L., Steinhauser, M.L., Matsukawa, A., Gosling, J., Boring, L., Charo, I.F., Simpson, K.J., Lukacs, N.W., Kunkel, S.L., 2000b. Am. J. Pathol. 156, 1245-1252.Lukacs, N. W., Kunkel, S. L., 2000b. The method of the present invention is described in detail in U.S. Pat. Am. J. Pathol. 156, 1245-1252. Hong, F., Jaruga, B., Kim, W.H., Radaeva, S., El-Assal, O.N., Tian, Z., Nguyen, V.A., Gao, B., 2002. J. Clin. Invest. 110, 1503-1513.Gao, B., 2002. J. Clin. Biophys. Eng., Vol. Invest. 110,1503-1513. Hong, F., Radaeva, S., Pan, H.N., Tian, Z., Veech, R., Gao, B., 2004. Hepatology 40, 933-941.Hong, F., Radaeva, S., Pan, H. N., Tian, Z., Veech, R., Gao, B., 2004. Hepatology 40, 933-941. Hu, J., Yan, D., Gao, J., Xu, C., Yuan, Y., Zhu, R., Xiang, D., Weng, S., Han, W., Zang, G., Yu, Y., 2010. Lab. Invest. 90, 1737-1746.Hu, J., Yan, D., Gao, J., Xu, C., Yuan, Y., Zhu, R., Xiang, D., Weng, S., Han, W., Zang, G., Yu, Y., 2010. Lab. Invest. 90, 1737-1746. Hu, J.J., Yoo, J.S., Lin, M., Wang, E.J., Yang, C.S., 1996. Food Chem. Toxicol. 34, 963-969.Hu, J. J., Yoo, J. S., Lin, M., Wang, E. J., Yang, C. S., 1996. Food Chem. Toxicol. 34, 963-969. Ishibe, T., Kimura, A., Ishida, Y., Takayasu, T., Hayashi, T., Tsuneyama, K., Matsushima, K., Sakata, I., Mukaida, N., Kondo, T., 2009. Lab. Invest. 89, 68-79.T., Kimura, A., Ishida, Y., Takayasu, T., Hayashi, T., Tsuneyama, K., Matsushima, K., Sakata, I., Mukaida, N., Kondo, T., 2009. Lab. Invest. 89, 68-79. Ishida, Y., Kondo, T., Ohshima, T., Fujiwara, H., Iwakura, Y., Mukaida, N., 2002. FASEB J. 16, 1227-1236.Ishida, Y., Kondo, T., Ohshima, T., Fujiwara, H., Iwakura, Y., Mukaida, N., 2002. FASEB J. 16, 1227-1236. Iwakura, Y., Ishigame, H., Saijo, S., Nakae, S., 2011. Immunity 34, 149-162.Iwakura, Y., Ishigame, H., Saijo, S., Nakae, S., 2011. Immunity 34, 149-162. Jaeschke, H., Gores, G.J., Cederbaum, A.I., Hinson, J.A., Pessayre, D., Lemasters, J.J., 2002. Toxicol. Sci. 65, 166-176.Jaeschke, H., Gores, G. J., Cederbaum, A. I., Hinson, J. A., Pessayre, D., Lemasters, J. J., 2002. Toxicol. Sci. 65, 166-176. James, L.P., Mayeux, P.R., Hinson, J.A., 2003. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos. 31, 1499-1506.James, L. P., Mayeux, P. R., Hinson, J. A., 2003. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos. 31, 1499-1506. Jaruga, B., Hong, F., Kim, W.H., Gao, B., 2004. American journal of physiology. Gastroint. Liver Physiol. 287, G1044-1052.Jaruga, B., Hong, F., Kim, W. H., Gao, B., 2004. American journal of physiology. Gastroint. Liver Physiol. 287, G1044-1052. Ju, C., Reilly, T.P., Bourdi, M., Radonovich, M.F., Brady, J.N., George, J.W., Pohl, L.R., 2002. Chem. Res. Toxicol. 15, 1504-1513.Ju, C., Reilly, T. P., Bourdi, M., Radonovich, M.F., Brady, J.N., George, J.W., Pohl, L.R., 2002. Chem. Res. Toxicol. 15, 1504-1513. Kim, E.J., Lee, D.H., Kim, H.J., Lee, S.J., Ban, J.O., Cho, M.C., Jeong, H.S., Yang, Y., Hong, J.T., Yoon, D.Y., 2012. J. Nutr. Biochem.Kim, E.J., Lee, D.H., Kim, H.J., Lee, S.J., Ban, J.O., Cho, M.C., Jeong, H.S., Yang, Y., Hong, J.T., Yoon, D.Y., 2012. J. Nutr. Biochem. Lawson, J.A., Farhood, A., Hopper, R.D., Bajt, M.L., Jaeschke, H., 2000. Toxicol. Sci. 54, 509-516.Lawson, J. A., Farhood, A., Hopper, R. D., Bajt, M. L., Jaeschke, H., 2000. Toxicol. Sci. 54, 509-516. Li, X., Klintman, D., Liu, Q., Sato, T., Jeppsson, B., Thorlacius, H., 2004. J. Leukoc. Biol. 75, 443-452.Li, X., Klintman, D., Liu, Q., Sato, T., Jeppsson, B., Thorlacius, H., 2004. J. Leukoc. Biol. 75, 443-452. Liu, Z.X., Govindarajan, S., Kaplowitz, N., 2004. Gastroenterology 127, 1760-1774.Liu, Z.X., Govindarajan, S., Kaplowitz, N., 2004. Gastroenterology 127, 1760-1774. Manna, S.K., Mukhopadhyay, A., Van, N.T., Aggarwal, B.B., 1999. J. Immunol. 163, 6800-6809.Manna, S. K., Mukhopadhyay, A., Van, N. T., Aggarwal, B. B., 1999. J. Immunol. 163, 6800-6809. Martin-Murphy, B.V., Holt, M.P., Ju, C., 2010. Toxicol. Lett. 192, 387-394.Martin-Murphy, B. V., Holt, M. P., Ju, C., 2010. Toxicol. Lett. 192, 387-394. Meraz, M.A., White, J.M., Sheehan, K.C., Bach, E.A., Rodig, S.J., Dighe, A.S., Kaplan, D.H., Riley, J.K., Greenlund, A.C., Campbell, D., Carver-Moore, K., DuBois, R.N., Clark, R., Aguet, M., Schreiber, R.D., 1996. Cell 84, 431-442. Carla-Moore, K., DuBois, Jr., Merel, MA, White, JM, Sheehan, KC, Bach, EA, Rodig, SJ, Dighe, AS, Kaplan, DH, Riley, JK, Greenlund, AC, Campbell, RN, Clark, R., Aguet, M., Schreiber, RD, 1996. Cell 84, 431-442. Michael, S.L., Mayeux, P.R., Bucci, T.J., Warbritton, A.R., Irwin, L.K., Pumford, N.R., Hinson, J.A., 2001. Nitric oxide: Biol Chem. / official journal of the Nitric Oxide Society 5, 432-441. Michael, S. L., Mayeux, P. R., Bucci, T. J., Warbritton, A. R., Irwin, L. K., Pumford, N. R., Hinson, J. A., 2001. Nitric oxide: Biol Chem. / official journal of the Nitric Oxide Society 5, 432-441. Narayanaswami, V., Sies, H., 1990. Free Radic. Res. Commun. 10, 237-244. Narayanaswami, V., Sies, H., 1990. Free Radic. Res. Commun. 10, 237-244. Numata, K., Kubo, M., Watanabe, H., Takagi, K., Mizuta, H., Okada, S., Kunkel, S.L., Ito, T., Matsukawa, A., 2007. J. Immunol. 178, 3777-3785. Numata, K., Kubo, M., Watanabe, H., Takagi, K., Mizuta, H., Okada, S., Kunkel, S. L., Ito, T., Matsukawa, A., 2007. J. Immunol. 178, 3777-3785. O'Dea, E., Hoffmann, A., 2009. Syst. Biol. Med. 1, 107-115. O'Dea, E., Hoffmann, A., 2009. Syst. Biol. Med. 1, 107-115. Ostapowicz, G., Fontana, R.J., Schiodt, F.V., Larson, A., Davern, T.J., Han, S.H., McCashland, T.M., Shakil, A.O., Hay, J.E., Hynan, L., Crippin, J.S., Blei, A.T., Samuel, G., Reisch, J., Lee, W.M., Group, U.S.A.L.F.S., 2002. Ann. Intern. Med. 137, 947-954. Shapiro, AO, Hay, JE, Hynan, L., Crippin, JS, Blei, AT, G., Fontana, RJ, Schiodt, FV, Larson, A., Davern, TJ, Han, SH, McCashland, , Samuel, G., Reisch, J., Lee, WM, Group, USALFS, 2002. Ann. Intern. Med. 137, 947-954. Pari, L., Murugavel, P., Sitasawad, S.L., Kumar, K.S., 2007. Life Sci. 80, 650-658. Pari, L., Murugavel, P., Sitasawad, S. L., Kumar, K. S., 2007. Life Sci. 80, 650-658. Prescott, L., 2005. Ann. Emerg. Med. 45, 409-413. Prescott, L., 2005. Ann. Emerg. Med. 45, 409-413. Qian, Y., Hua, E., Bisht, K., Woditschka, S., Skordos, K.W., Liewehr, D.J., Steinberg, S.M., Brogi, E., Akram, M.M., Killian, J.K., Edelman, D.C., Pineda, M., Scurci, S., Degenhardt, Y.Y., Laquerre, S., Lampkin, T.A., Meltzer, P.S., Camphausen, K., Steeg, P.S., Palmieri, D., 2011. Clin. Exp. Metast. 28, 899-908.Qian, Y., Hua, E., Bisht, K., Woditschka, S., Skordos, KW, Liewehr, DJ, Steinberg, SM, Brogi, E., Akram, MM, Killian, JK, Edelman, DC, Pineda M., Scurci, S., Degenhardt, YY, Laquerre, S., Lampkin, TA, Meltzer, PS, Camphausen, K., Steeg, PS, Palmieri, D., 2011. Clin. Exp. Metast. 28, 899-908. Rahman, K., 2001. J. Nutr. 131, 977S-979S.Rahman, K., 2001. J. Nutr. 131, 977S-979S. Ramadori, G., Moriconi, F., Malik, I., Dudas, J., 2008. J. Physiol. Pharmacol. 59 Suppl 1, 107-117.Ramadori, G., Moriconi, F., Malik, I., Dudas, J., 2008. J. Physiol. Pharmacol. 59 Suppl 1, 107-117. Ren, X., Carpenter, A., Hogaboam, C., Colletti, L., 2003. Am. J. Pathol. 163, 563-570.Ren, X., Carpenter, A., Hogaboam, C., Colletti, L., 2003. Am. J. Pathol. 163, 563-570. Ren, X., Kennedy, A., Colletti, L.M., 2002. Shock 17, 513-520.Ren, X., Kennedy, A., Colletti, L. M., 2002. Shock 17, 513-520. Reyes-Gordillo, K., Segovia, J., Shibayama, M., Vergara, P., Moreno, M.G., Muriel, P., 2007. Biochim. Biophys. Acta 1770, 989-996.Reyes-Gordillo, K., Segovia, J., Shibayama, M., Vergara, P., Moreno, M.G., Muriel, P., 2007. Biochim. Biophys. Acta 1770, 989-996. Richmond, A., 2002. Nat. Rev. Immunol. 2, 664-674.Richmond, A., 2002. Nat. Rev. Immunol. 2, 664-674. Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., Freeman, B.A., 1994. J. Biol. Chem. 269, 26066-26075.Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., Freeman, B. A., 1994. J. Biol. Chem. 269, 26066-26075. Sabayan, B., Foroughinia, F., Chohedry, A., 2007. Med. Hypotheses 68, 512-514.Sabayan, B., Foroughinia, F., Chohedry, A., 2007. Med. Hypotheses 68, 512-514. Sen, C.K., Traber, K.E., Packer, L., 1996. Biochem. Biophys. Res. Comm. 218, 148-153.Sen, C. K., Traber, K. E., Packer, L., 1996. Biochem. Biophys. Res. Comm. 218, 148-153. Sies, H., Sharov, V.S., Klotz, L.O., Briviba, K., 1997. J. Biol. Chem. 272, 27812-27817.Sies, H., Sharov, V. S., Klotz, L.O., Briviba, K., 1997. J. Biol. Chem. 272, 27812-27817. Slitt, A.M., Dominick, P.K., Roberts, J.C., Cohen, S.D., 2005. Basic Clin. Pharmacol. Toxicol. 96, 487-494.Slitt, A. M., Dominick, P. K., Roberts, J. C., Cohen, S. D., 2005. Basic Clin. Pharmacol. Toxicol. 96, 487-494. Son, E.W., Mo, S.J., Rhee, D.K., Pyo, S., 2006. Int. Immunopharmacol. 6, 1788-1795.Son, E. W., Mo, S. J., Rhee, D. K., Pyo, S., 2006. Int. Immunopharmacol. 6, 1788-1795. Tanaka, S., Haruma, K., Yoshihara, M., Kajiyama, G., Kira, K., Amagase, H., Chayama, K., 2006. J. Nutr. 136, 821S-826S.Tanaka, S., Haruma, K., Yoshihara, M., Kajiyama, G., Kira, K., Amagase, H., Chayama, K., 2006. J. Nutr. 136, 821S-826S. Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V., Baldwin, A.S., Jr., 1998. Science 281, 1680-1683.Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., Baldwin, A. S., Jr., 1998. Science 281, 1680-1683. Wheeler, M.D., Yamashina, S., Froh, M., Rusyn, I., Thurman, R.G., 2001. J Leuk. Biol. 69, 622-630.Wheeler, M.D., Yamashina, S., Froh, M., Rusyn, I., Thurman, R.G., 2001. J Leuk. Biol. 69, 622-630. Yeh, Y.Y., Liu, L., 2001. J. Nutr. 131, 989S-993S.Yeh, Y. Y., Liu, L., 2001. J. Nutr. 131, 989S-993S.

본 발명자들은 간 독성물질로부터 간을 보호할 수 있는 효능을 갖는 물질을 천연물로부터 발굴하기 위해 연구 노력하였다. 그 결과, 마늘로부터 분리된 황함유 화합물인 치아크레모논이 생쥐를 대상으로 한 동물실험에서 아세트아미노펜 투여에 의해 유도되는 간독성으로부터 간세포를 매우 효과적으로 보호할 수 있다는 사실을 실험적으로 확인하여 본 발명을 완성하였다. The present inventors have sought to find a substance having an effect capable of protecting the liver from hepatotoxic substances from natural products. As a result, it was experimentally confirmed that chitosanmonone, which is a sulfur-containing compound separated from garlic, can very effectively protect hepatocytes from hepatotoxicity induced by acetaminophen administration in animal experiments in mice, Respectively.

따라서, 본 발명의 목적은 치아크레모논을 유효성분으로 포함하는 간 보호용 조성물을 제공하는 데에 있다.
Accordingly, it is an object of the present invention to provide a composition for protecting the liver, which comprises dicryptomone as an active ingredient.

본 발명의 목적 및 장점은 하기의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 명확하게 된다.
The objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 하기 화학식 1로 표시되는 치아크레모논을 유효성분으로 포함하는 간 보호용 조성물을 제공한다. According to one aspect of the present invention, there is provided an antimicrobial composition for protecting the liver comprising, as an active ingredient, dicamphoronone represented by the following formula (1).

[화학식 1] [Chemical Formula 1]

Figure 112013062199779-pat00001
Figure 112013062199779-pat00001

본 발명의 조성물의 유효성분인 "치아크레모논"은 가열 처리한 마늘의 즙으로부터 분획된 항산화 활성을 갖는 분획으로부터 분리된 화합물이다. 치아크레모논 화합물은 균류인 Acremonium sp. 균주 HA33-95가 생성할 수 있는 것으로도 알려져 있으며, 동물세포의 분화를 유도할 수 있다고도 보고되어 있고, 항암활성, 염증성 질환 및 당뇨, 고지혈증 및 심혈관질환과 같은 대사성 질환 치료 효능도 갖는 것으로 보고되었다. "Chiacormonone" as an active ingredient of the composition of the present invention is a compound isolated from a fraction having antioxidative activity, which is fractionated from the juice of heat-treated garlic. The compound is a fungus Acremonium sp. It is also known that the strain HA33-95 is capable of producing and is capable of inducing the differentiation of animal cells and also has an anticancer activity, an inflammatory disease and a metabolic disease treatment effect such as diabetes, hyperlipemia and cardiovascular disease .

본 발명은 치아크레모논의 간 보호에 관한 새로운 용도에 관한 것이다. The present invention relates to a new use for the protection of the teeth crest.

본 발명의 바람직한 구현예에 의하면, 본 발명에서 상기 간 보호는 간독성 물질로부터의 간 보호이다. According to a preferred embodiment of the present invention, in the present invention, the liver protection is liver protection from hepatotoxic substances.

본 발명의 보다 바람직한 구현예에 의하면, 본 발명에서 상기 간독성 물질은 아세트아미노펜이다. According to a more preferred embodiment of the present invention, in the present invention, the hepatotoxic substance is acetaminophen.

본 발명의 하기 구체적인 일 실시예에서 입증되는 바와 같이, 본 발명의 치아크레모논은 생쥐를 대상으로 한 동물실험에서 간독성 유발물질로 알려진 아세트아미노펜의 투여에 의한 간세포의 손상을 매우 효과적으로 보호하며 회복시켰다. As demonstrated in the following specific example of the present invention, the dicamcinuron of the present invention highly effectively protects and restores damage of hepatocytes by administration of acetaminophen, which is known as a hepatotoxic inducer in animal experiments in mice .

본 발명의 바람직한 구현예에 의하면, 상기 치아크레모논은 간세포에서 간독성 물질에 의해 유도된 ALT 수준, AST 수준, 및 지질과산화 수준을 감소시키고 NO (nitric oxide) 생성을 억제한다. According to a preferred embodiment of the present invention, the dacrimemicone reduces ALT level, AST level, and lipid peroxidation level induced by hepatotoxic substances in hepatocytes and inhibits nitric oxide (NO) production.

본 발명의 다른 바람직한 구현예에 의하면, 상기 치아크레모논은 간세포에서 간독성 물질에 의해 유도되는 Kupffer 세포, T 세포, 및 NK 세포의 침투 및 간세포 사이토크롬 P450 2E1의 발현을 감소시킨다. According to another preferred embodiment of the present invention, the dental crmmonon reduces penetration of Kupffer cells, T cells, and NK cells induced by hepatotoxic substances in hepatocytes and expression of hepatocyte cytochrome P450 2E1.

본 발명의 다른 바람직한 구현예에 의하면, 상기 치아크레모논은 간세포에서 간독성 물질에 의해 유도되는 친염증성 사이토카인 I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-10, IL-13, IL-7 및 IL-17의 증가된 수준을 감소시키고, 사이토카인 IL-1ra, IP-10 및 MIP-2의 수준은 증가시킨다. According to another preferred embodiment of the present invention, the diphtheria-crmmonon is a pro-inflammatory cytokine I-309, M-CSF, MIG, MIP-1α, MIP-1β, -13, IL-7 and IL-17 and increases the levels of cytokines IL-lra, IP-10 and MIP-2.

본 발명의 다른 바람직한 구현예에 의하면, 상기 치아크레모논은 마늘로부터 추출되어 분리된 것이다. According to another preferred embodiment of the present invention, the tooth crushmonon is extracted and separated from garlic.

본 발명의 조성물은 약제학적 조성물 형태로 제공될 수 있으며, 상기 약제학적 조성물은 유효성분으로서 치아크레모논 이외에 약제학적으로 허용되는 담체를 포함한다. The composition of the present invention may be provided in the form of a pharmaceutical composition, and the pharmaceutical composition includes a pharmaceutically acceptable carrier other than the dicamphonone as an active ingredient.

본 발명의 약제학적 조성물은 간 독성물질에 의한 간질환의 치료 용도로 사용될 수 있다. The pharmaceutical composition of the present invention can be used for the treatment of liver diseases by hepatic toxic substances.

본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세 결정성셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다. The pharmaceutically acceptable carriers to be contained in the pharmaceutical composition of the present invention are those conventionally used in the formulation and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, But are not limited to, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrups, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. It is not. The pharmaceutical composition of the present invention may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington ' s Pharmaceutical Sciences (19th ed., 1995).

본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명의 약제학적 조성물의 경구 투여량은 바람직하게는 1일 당 0.001-100mg/kg (체중)이다. 본 발명의 약제학적 조성물은 경구 또는 비경구로 투여할 수 있고, 비경구로 투여되는 경우, 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 경피 투여 등으로 투여할 수 있다. 본 발명의 약제학적 조성물은 적용되는 질환의 종류에 따라, 투여 경로가 결정되는 것이 바람직하다. 본 발명의 약제학적 조성물에서 유효성분의 농도는 치료 목적, 환자의 상태, 필요기간 등을 고려하여 결정할 수 있으며 특정 범위의 농도로 한정되지 않는다. The appropriate dosage of the pharmaceutical composition of the present invention may vary depending on factors such as the formulation method, administration method, age, body weight, sex, pathological condition, food, administration time, administration route, excretion rate, . On the other hand, the oral dosage amount of the pharmaceutical composition of the present invention is preferably 0.001-100 mg / kg (body weight) per day. The pharmaceutical composition of the present invention can be administered orally or parenterally, and when administered parenterally, it can be administered by intravenous injection, subcutaneous injection, muscle injection, intraperitoneal injection, transdermal administration, or the like. In the pharmaceutical composition of the present invention, the route of administration is preferably determined depending on the type of disease to which it is applied. The concentration of the active ingredient in the pharmaceutical composition of the present invention can be determined in consideration of the purpose of treatment, the condition of the patient, the period of time required, and the like, and is not limited to a specific range of concentration.

본 발명의 약제학적 조성물은 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다. The pharmaceutical composition of the present invention may be formulated into a unit dose form by formulating it using a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by a person having ordinary skill in the art to which the present invention belongs. Or by intrusion into a multi-dose container. The formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media, or in the form of excipients, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.

본 발명의 조성물은 기능성 식품 조성물 형태로 제공될 수 있다. 본 발명의 조성물이 식품 조성물 형태로 제공되는 경우, 본 발명의 조성물은 상기 유효성분인 치아크레모논 이외에, 식품 제조 시에 통상적으로 첨가되는 성분을 포함할 수 있으며, 예를 들어, 단백질, 탄수화물, 지방, 영양소, 조미제 및 감미제를 포함할 수 있다. 상술한 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등 디사카라이드, 예를 들어 말토스, 수크로스, 올리고당 등 및 폴리사카라이드, 예를 들어 덱스트린, 사이클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 감미제로서 천연 감미제 (타우마틴, 스테비아 추출물, 레바우디오시드 A, 글리시리진 등) 및 합성 감미제(사카린, 아스파르탐 등)를 사용할 수 있다. 예컨대, 본 발명의 식품 조성물이 드링크제로 제조되는 경우에는 유효성분인 치아크레모논 이외에 구연산, 액상과당, 설탕, 포도당, 초산, 사과산, 과즙, 두충 추출액, 대추 추출액, 감초 추출액 등을 추가로 포함시킬 수 있다. The composition of the present invention may be provided in the form of a functional food composition. When the composition of the present invention is provided in the form of a food composition, the composition of the present invention may contain, in addition to the above-mentioned active ingredient, chiacemphonone, a component ordinarily added during the manufacture of a food. Examples thereof include protein, carbohydrate, Fat, nutrients, flavoring agents and sweetening agents. Examples of such carbohydrates include, but are not limited to, monosaccharides such as disaccharides such as glucose and fructose, such as maltose, sucrose, oligosaccharides and the like, and polysaccharides such as dextrins, cyclodextrins, And sugar alcohols such as xylitol, sorbitol and erythritol. Natural sweeteners (tau Martin, stevia extract, rebaudioside A, glycyrrhizin, etc.) and synthetic sweetening agents (saccharin, aspartame, etc.) can be used as sweeteners. For example, when the food composition of the present invention is prepared as a drink, citric acid, liquid fructose, sugar, glucose, acetic acid, malic acid, juice, mulberry extract, jujube extract, licorice extract, etc., .

본 발명의 특징 및 이점을 요약하면 다음과 같다: The features and advantages of the present invention are summarized as follows:

(ⅰ) 본 발명은 치아크레모논의 새로운 간 보호 용도를 제공한다. (I) The present invention provides a novel liver protection application for dicrecromone.

(ⅱ) 치아크레모논은 간독성 물질에 의해 유도된 간세포 손상을 효과적으로 보호한다. (Ii) dacrimemonon effectively protects hepatocyte damage induced by hepatotoxic agents.

(ⅲ) 치아크레모논은 과량의 아세트아미노펜이 투여된 간손상 생쥐 모델에서 ALT 수준, AST 수준, 및 지질과산화 수준을 감소시키고 NO(nitric oxide) 생성을 억제한다. (Iii) Tia-crmmonone reduces ALT levels, AST levels, and lipid peroxidation levels and inhibits NO (nitric oxide) production in liver damaged rat models treated with excess acetaminophen.

(ⅳ) 또한, 간세포에서 과량의 아세트아미노펜 투여에 의해 유도되는 Kupffer 세포, T 세포, 및 NK 세포의 침투 및 간세포 사이토크롬 P450 2E1의 발현을 감소시키며, 친염증성 사이토카인 I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-10, IL-13, IL-7 및 IL-17의 수준을 감소시킨다. (Iv) It also inhibits the infiltration of Kupffer cells, T cells, and NK cells induced by excessive acetaminophen administration in hepatocytes and the expression of hepatocyte cytochrome P450 2E1 and proinflammatory cytokines I-309, M-CSF , MIP, MIP-1 alpha, MIP-1 beta, IL-10, IL-13, IL-7 and IL-17.

본 발명은 치아크레모논을 유효성분으로 포함하는 간 보호용 조성물에 관한 것이다. 본 발명의 치아크레모논은 간독성 물질에 의해 유도된 간세포 손상을 효과적으로 보호한다. 치아크레모논은 과량의 간 독성 물질 투여에 의해 유도된 간손상에서 ALT 수준, AST 수준, 및 지질과산화 수준을 감소시키고 NO (nitric oxide) 생성을 억제한다. 또한, 간세포에서 간독성 물질에 의해 유도되는 Kupffer 세포, T 세포, 및 NK 세포의 침투 및 간세포 사이토크롬 P450 2E1의 발현을 감소시키며, 친염증성 사이토카인 I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-10, IL-13, IL-7 및 IL-17의 수준을 감소시킨다. 따라서, 치아크레모논은 간독성 물질에 의한 간손상을 보호하는 약물 및 기능성 식품의 활성물질로 개발될 수 있다.
TECHNICAL FIELD The present invention relates to a composition for protecting the liver, which comprises tiocrimmonium as an active ingredient. The present invention provides a method for effectively protecting hepatocyte damage induced by a hepatotoxic substance. Chiacormonone reduces ALT levels, AST levels, and lipid peroxidation levels and inhibits NO (nitric oxide) production in liver damage induced by excessive hepatotoxic drug administration. In addition, it inhibits the penetration of Kupffer cells, T cells, and NK cells induced by hepatotoxic substances in hepatocytes and the expression of hepatocyte cytochrome P450 2E1, and proinflammatory cytokines I-309, M-CSF, MIG, , MIP-1 ?, IL-10, IL-13, IL-7 and IL-17. Therefore, dia-crmmonone can be developed as an active substance for drugs and functional food that protects liver damage by hepatotoxic substances.

도 1a 및 도 1b는 치아크레모논을 미리 투여한 생쥐에서 간세포 독성의 억제 효과를 보여준다.
도 1a은 APAP-처리 및 치아크레모논 전처리한 생쥐의 생존율 및 ALT 및 AST 수준을 측정한 결과이다. 대조군, APAP-처리 및 치아크레모논 전 처리한 생쥐에서 500 mg/kg의 APAP를 복강내(i.p.) 주입 후 생쥐 생존율을 40 시간 동안 모니터링하였다 (n = 12). 치아크레모논을 전 처리한 생쥐는 Log-rank test 확인결과, APAP-처리된 생쥐와 비교하여 매우 높은 생존율을 나타내었다(패널 A). ALT (패널 B) 및 AST (패널 C)의 수준은 비처리한 대조군 생쥐 및 500 mg/kg의 APAP을 복강내(i.p.) 주입한 생쥐에서 주입후 40 시간 동안 측정하였다. 생쥐는 APAP 처리 전에 7일 동안 치아크레모논(10, 20, 50 mg/kg)을 미리 투여하였다. 치아크레모논을 미리 투여한 생쥐는 APAP-처리한 생쥐와 비교하여 ALT 및 AST 수준이 현저히 감소하였다.
도 1b는 H&E 염색으로 간 섹션을 분석한 결과이다. 데이터는 평균±SD으로 표시하였고, *은 대조군 생쥐와의 유의성 있는 차이를 표시하고(p<0.05), #은 APAP-투여된 생쥐와의 유의성 있는 차이를 표시한다(p<0.05).
도 2a 내지 도 2e는 치아크레모논을 미리 투여한 생쥐의 간조직에서 사이토크롬 P450 2E1의 발현, GSH/GSSG 비율, NO(nitric oxide) 및 지질과산화의 감소를 측정한 결과를 보여준다.
도 2a의 결과에서 사이토크롬 P450 2E1의 발현, GSH/GSSG 비율, NO 및 지질과산화 수준을 생쥐 간 조직의 총 단백질 추출물에서 웨스턴 블로팅에 의해 측정하였다. 도 2b는 사이토크롬 P450 2E1의 면역조직화학 분석 결과로서, 대조군, APAP 처리군 및 치아크레모논 전 처리군 생쥐의 간 조직에서 사이토크롬 P450 2E1의 염색 강도를 확인한 결과를 보여준다.
도 2c는 치아크레모논을 미리 투여한 생쥐에서 간세포 GSH/GSSG 비율은 APAP-처리된 생쥐와 비교하여 현저하게 증가하였다.
도 2d는 치아크레모논을 미리 투여한 생쥐의 간 조직에서의 NO가 APAP-투여된 생쥐와 비교하여 현저하게 저해된 결과를 보여준다. 치아크레모논 전 처리된 생쥐에서 사이토크롬 P450 2E1의 발현 및 강도는 감소하였다.
도 2e는 치아크레모논을 미리 투여한 생쥐에서 간세포 지질과산화는 APAP-처리된 생쥐와 비교하여 현저하게 감소하였다. 데이터는 평균±SD으로 표시하였으며, *은 대조군 생쥐와의 유의성 있는 차이를 표시하고(p<0.05), #은 APAP-투여된 생쥐와의 유의성 있는 차이를 표시한다(p<0.05).
도 3a 내지 도 3e은 치아크레모논을 미리 투여한 생쥐의 간에서 친염증성 사이토카인의 발현이 하향 조절되는 결과를 보여준다.
도 3a는 생쥐 사이토카인 어레이 패널 좌표를 보여준다. 니트로셀룰로오스 멤브레인에는 40개의 상이한 항-사이토카인 항체가 중복적으로 프린트되어 있다.
도 3b에 나타난 생쥐 사이토카인 어레이 패널에서 대조군 생쥐(control), APAP-처리된 생쥐(APAP) 및 치아크레모논 처리된 생쥐(APAP+Thiacremonone 200mg/kg)의 간 조직에서 사이토카인 발현 차이를 보여준다. 도 3c 및 도 3d에는 3회 독립적인 실험에서의 대표값들을 나타내었다. 양성대조군은 멤브레인상의 제조사의 내부 양성 대조군 샘플을 나타낸다. 치아크레모논을 미리 투여한 생쥐에서 IL-1a, IL-7, IL-17, I-309, MIG, M-CSF, MIP-1a 및 MIP-1b의 발현 수준은 APAP-처리한 생쥐와 비교하여 현저하게 감소하였다. 도 3e에는 IL-1ra (IL-1α receptor antagonist), IP-10 및 MIP-2 사이토카인의 발현을 측정한 결과이다. 치아크레모논을 미리 투여한 생쥐 간 조직에서 대조군 및 APAP-투여한 생쥐 간과 비교하여 상기 사이토카인들의 발현이 현저히 증가되었다.
도 4a 및 도 4b는 치아크레모논을 미리 투여한 생쥐의 간에서 NF-kB 및 STAT1가 감소한 결과를 보여준다. 도 4a에서 핵 추출물(NE)내에서 p50 및 p65의 인산화 발현을 웨스턴 블로팅으로 측정하였고, APAP-투여 생쥐 및 치아크레모논을 미리 투여한 생쥐의 간 조직의 핵 추출물(NE)에서의 NF-kB의 DNA 결합 활성은 EMSA에 의해 측정하였다.
도 4b에서 APAP-투여 생쥐 및 치아크레모논을 미리 투여한 생쥐의 간 조직의 핵 추출물(NE)에서 p-STAT1 및 STAT1의 발현은 웨스턴 블로팅에 의해 측정하였고, STAT1의 DNA 결합 활성은 EMSA을 통해 측정하였다.

도 5a 내지 도 5d는 치아크레모논을 미리 투여한 생쥐의 혈액 및 간 조직으로의 면역세포 및 Kupffer 세포의 침투가 감소하는 효과를 보여준다. 생쥐 모델로부터 혈액(도 5a, 도 5b 및 도 5c) 및 간 조직(도 5d)을 연구 종료후에 분리하였다. FACSCalibur 유세포 분석기를 사용하여 유세포 분석을 행하였다. 대표 데이터를 나타내었으며, 데이터는 4회의 실험동물의 평균±SD으로 나타내었다. 도 5d는 부형제(vehicle) 또는 치아크레모논과 조합하여 APAP를 처리한 후의 Kupffer 세포 및 NK 세포에 대한 간 조직 섹션 사진이다. Kupffer 세포 및 NK 세포와의 면역반응성은 문맥주위(소엽중앙부) 간세포에서 발현되었다. APAP 처리군의 경우 간의 소엽중앙부 시누소이드(sinusoid)에서 Kupffer세포, NK세포 및 Tc세포의 강한 발현이 나타났다. 그러나, 치아크레모논으로 전처리한 경우 소엽중앙부 시누소이드(sinusoid)에서 Kupffer세포 및 NK세포에 대한 염색 강도가 약하게 나타났다.
FIGS. 1A and 1B show the effect of inhibiting hepatocellular toxicity in mice pretreated with dicamycorone.
FIG. 1A shows the results of measurement of the survival rate, ALT and AST levels of APAP-treated and dicammenone pretreated mice. The mice survival was monitored for 40 h after intraperitoneal (ip) infusion of 500 mg / kg APAP (n = 12) in the control, APAP-treated, and dicamperone pretreated mice. Log-rank test of mice pretreated with dicamcuronone showed a very high survival rate compared to APAP-treated mice (panel A). Levels of ALT (Panel B) and AST (Panel C) were measured for 40 hours after injection in untreated control mice and 500 mg / kg APAP in ip injected mice. Mice were pre-dosed with 10 mg / kg, 10, 20, 50 mg / kg for 7 days before APAP treatment. Mice pre-dosed with tooth crmmonon significantly reduced ALT and AST levels compared to APAP-treated mice.
Figure 1B shows the results of analysis of liver sections with H & E staining. Data are expressed as mean ± SD, * indicates a significant difference from control mice (p <0.05), and # indicates significant difference from APAP-treated mice (p <0.05).
FIGS. 2A to 2E show the results of measuring cytochrome P450 2E1 expression, GSH / GSSG ratio, NO (nitric oxide) and lipid peroxidation in liver tissues of mice previously administered with dicamycoronone.
In the results of FIG. 2A, expression of cytochrome P450 2E1, GSH / GSSG ratio, NO and lipid peroxidation levels were determined by Western blotting in total protein extracts of mouse liver tissue. FIG. 2B shows the results of immunohistochemistry analysis of cytochrome P450 2E1, showing the staining intensity of cytochrome P450 2E1 in the liver tissues of control, APAP-treated group and mice pretreated with dicamphorone.
Figure 2c shows that the hepatocyte GSH / GSSG ratio was significantly increased in mice pretreated with dicamcuronone compared with APAP-treated mice.
FIG. 2d shows that NO in the liver tissues of mice pre-administered with dicamcrimonone was remarkably inhibited compared with APAP-administered mice. The expression and the intensity of cytochrome P450 2E1 decreased in mice pretreated with dicamphorone.
Figure 2e shows that hepatocyte lipid peroxidation was significantly reduced in mice pre-dosed with dicamarcone compared with APAP-treated mice. Data are expressed as mean ± SD, * indicates a significant difference from control mice (p <0.05), and # indicates significant difference from APAP-treated mice (p <0.05).
FIGS. 3A through 3E show that the expression of proinflammatory cytokines is down-regulated in the liver of mice pre-administered with dicamcorone.
Figure 3a shows mouse cytokine array panel coordinates. In the nitrocellulose membrane, 40 different anti-cytokine antibodies are redundantly printed.
In the mouse cytokine array panel shown in Fig. 3b, there is a difference in cytokine expression in the liver tissues of control mice, APAP-treated mice (APAP) and mice treated with dicaprimonone (APAP + Thiacremonone 200 mg / kg). Figures 3c and 3d show representative values in three independent experiments. The positive control represents the manufacturer's internal positive control sample on the membrane. Expression levels of IL-1α, IL-7, IL-17, I-309, MIG, M-CSF, MIP-1a and MIP-1b in mice pre- Lt; / RTI &gt; FIG. 3E shows the results of measurement of expression of IL-1ra (IL-1 alpha receptor antagonist), IP-10 and MIP-2 cytokine. Expression of the cytokines was significantly increased in mice liver tissues pre-dosed with dicryptomone compared to the control and APAP-injected mice.
FIGS. 4A and 4B show the results of decreasing NF-kB and STAT1 in the liver of mice pretreated with dicamcuronone. 4A, the expression of phosphorylation of p50 and p65 in the nuclear extract (NE) was measured by Western blotting and the expression of NF-κB in nuclear extract (NE) of hepatic tissue of mice pre-administered with APAP- The DNA binding activity of kB was measured by EMSA.
In FIG. 4b, expression of p-STAT1 and STAT1 was measured by Western blotting in the nuclear extract (NE) of hepatic tissue of mice pre-administered with APAP-injected mice and dental crmmonon, and DNA binding activity of STAT1 was measured by EMSA .

FIGS. 5A to 5D show the effect of decreasing the infiltration of immune cells and Kupffer cells into blood and liver tissues of mice previously administered with dicamycoronone. Blood (Figs. 5A, 5B and 5C) and liver tissue (Fig. 5D) were isolated from the mouse model after study termination. Flow cytometry was performed using a FACSCalibur flow cytometer. Representative data were presented and data were expressed as the mean ± SD of four laboratory animals. Figure 5d is a photograph of liver tissue sections for Kupffer cells and NK cells after treatment of APAP in combination with vehicle or diafculonone. Immunoreactivity with Kupffer cells and NK cells was expressed in hepatocytes around the portal vein (central lobule). In the APAP-treated group, strong expression of Kupffer cells, NK cells and Tc cells was observed in the central nervous system sinusoid of liver. However, when pretreated with dichromocarnonine, the staining intensity of Kupffer cells and NK cells was weak in the sinusoid of the middle leaflet.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예 Example

실험방법 및 재료 Experimental Methods and Materials

1. 실험동물 및 처리방법 1. Experimental animals and treatment methods

C58BL6/J 생쥐(mouse)는 Orient Bio사(한국, 경기도 성남시)에서 구입하였다. 생쥐는 미국실험동물인증협회에 의해 공인되고 한국식품의약품안정청 및 충북대학교에 의해 규정된 현재 규제 및 표준에 따른 시설 내에 멸균 조건에서 수용하여 유지하였다. 생쥐(n=4/케이지)는 22±3℃의 일정한 온도, 50±10%의 상대습도 및 12시간 명/암 사이클하의 룸에서 유지시켰고, 표준 설치류 먹이(삼양사, 한국)를 정수한 물과 함께 임의 공급하였다. 연령(9주령) 및 체중(18-24g)이 매칭된 생쥐(n=12/그룹)을 사용하였다. APAP를 주입하기 전에, 생쥐를 치아크레모논(순도> 97%, PBS (phosphate buffered saline)에 용해된 형태로 10, 20 또는 50 mg/kg의 용량으로 투여)을 복강내(intraperitoneally, i.p.) 7일간 1일 1회 투여하였다. 치아크레모논은 종래 기술된 방법에 따라 분리하고 특성을 확인하였다(Cho et al., 2005; Cho et al., 2006; Cho et al., 2009). APAP를 60℃에서 가열하여 식염수에 용해시켰다. 생쥐는 16시간 동안 금식시킨 후 APAP(500 mg/kg; Sigma-Aldrich, St. Louis, MO) 또는 식염수를 복강내 투여하였다. 생쥐를 APAP 투여 후 40 시간 시점에서 희생시켰다. 생쥐는 40시간 동안 관찰한 후 전체 생존율을 산출하였다.
C58BL6 / J mice were purchased from Orient Bio (Sungnam, Kyonggi-do, Korea). Mice were housed and maintained under sterilization conditions in facilities compliant with current regulations and standards approved by the American Laboratory Animal Care and Accreditation Association and Korea Food and Drug Administration and Chungbuk National University. The mice (n = 4 / cage) were maintained in a room at a constant temperature of 22 ± 3 ° C, a relative humidity of 50 ± 10% and a 12 hour light / dark cycle, Were randomly supplied. Mice matched with age (9 weeks old) and body weight (18-24 g) (n = 12 / group) were used. Before injecting APAP, the mice were intraperitoneally injected ip with a dose of 10, 20 or 50 mg / kg in the form of diphtheria (97% purity, dissolved in PBS (phosphate buffered saline) Day once a day. Cho et al., 2005; Cho et al., 2006; Cho et al., 2009). APAP was heated at 60 占 폚 and dissolved in saline. Mice were fasted for 16 h and then administered intraperitoneally with APAP (500 mg / kg; Sigma-Aldrich, St. Louis, Mo.) or saline. Mice were sacrificed at 40 hours after APAP administration. The mice were observed for 40 hours and then the overall survival rate was calculated.

2. 혈청 AST 및 ALT의 측정 2. Measurement of serum AST and ALT

생쥐를 과량의 펜토바르비탈(100 mg/kg)로 마취시키고, 심장에 천공을 가하여 혈액을 채취하였다. 혈청에서의 ALT 및 AST의 수준을 분석 키트(Sigma Diagnostics, St. Louis, MO)를 사용하여 측정하였다.
Mice were anesthetized with an excess of pentobarbital (100 mg / kg) and the heart was perforated to collect blood. Levels of ALT and AST in serum were determined using an assay kit (Sigma Diagnostics, St. Louis, Mo.).

3. 간세포에서 글루타타이온/산화된 글루타타이온 비율 및 산화질소(NO)의 측정 3. Measurement of glutathione ion / oxidized glutathione ion ratio and NO (NO) in hepatocytes

환원 글루타타이온(GSH) 및 산화된 글루타타이온(GSSG)의 간세포에서의 수준을 상업적으로 구입가능한 분석 키트(Cayman Chemical, Ann Arbor, MI)를 사용하여 측정하였다. 간략하게 설명하면, 동결된 조직을 완충액안에 10% 비율(조직 중량/완충액 부피)로 넣고, GSSG 측정의 경우 0.01M의 N-에틸말레이미드(N-ethylmaleimide)가 첨가되고, GSH 측정의 경우는 N-에틸말레이미드가 제외된, EDTA 포함 0.1M 인산완충액(phosphate buffer, pH = 7.4)내에서 조직 균질물을 제조하였다. 조직내에서의 GSH 및 GSSG의 함량은 종래 이미 설명된 효소 리사이클링 방법(Adams et al., 1983)에 의해 측정하였다. 간 조직을 얼음 냉각된 용해 완충액(pH 7.5, 50 mM Tris, 1% Nonidet P-40, 150 mM NaCl 및 프로테아제 억제자 칵테일)내에서 균질화하고, 2000g 에서 20 분간 원심분리를 행하였다. 상등액을 사용하기전까지 -80℃에서 보관하였다. 산화질소(nitric oxide, NO) 농도는 생조직내에서 NO 전환시의 부생성물인 아질산염(nitrite)을 간접적으로 측정하여 결정하였다. NO 검출 키트(iNtRON Biotechnology, 서울, 한국)를 사용하여 NO의 농도를 분석하였고, 분석은 제조자의 프로토콜을 따라 수행하였다.
Levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) in hepatocytes were measured using a commercially available assay kit (Cayman Chemical, Ann Arbor, Mich.). Briefly, the frozen tissue is placed in a buffer at a 10% ratio (tissue weight / buffer volume), 0.01 M N-ethylmaleimide is added for GSSG measurements, and for GSH measurements Tissue homogenates were prepared in 0.1 M phosphate buffer (pH = 7.4) with EDTA, except N-ethylmaleimide. The content of GSH and GSSG in tissues was measured by the enzyme recycling method (Adams et al., 1983) which has been described previously. Liver tissues were homogenized in ice-cold lysis buffer (pH 7.5, 50 mM Tris, 1% Nonidet P-40, 150 mM NaCl and protease inhibitor cocktail) and centrifuged at 2000 g for 20 min. The supernatant was stored at -80 &lt; 0 &gt; C until use. The concentration of nitric oxide (NO) was determined by indirect measurement of nitrite (nitrite), which is a byproduct of NO conversion in biological tissues. The concentration of NO was analyzed using a NO detection kit (iNtRON Biotechnology, Seoul, Korea) and analysis was performed according to the manufacturer's protocol.

4. 웨스턴 블로팅 4. Western blotting

간 조직은 단백질 추출 용액(PRO-PREP™, iNtRON Biotechnology)으로 균질화시키고, -20℃에서 60분간 인큐베이션한 후 용해시켰다. 조직 균질물은 4℃에서 15분간 15,000 rpm 으로 원심분리하였다. 단백질 동등량(30μg)을 10% SDS-PAGE를 사용하여 분리하고, PVDF 멤브레인(GE Water and Process Technologies, Trevose, PA)에 옮겼다. 블롯은 TBST [Tris-Buffered Saline Tween-20; 10 mM Tris (pH 8.0) 및 0.05% Tween-20을 포함하는 150 mM NaCl 용액]내에서 5%(w/v) 탈지유으로 블로킹하였다. TBST으로 세정한 후에 멤브레인을 다음의 1차 항체를 사용하여 면역블로팅을 행하였다: 시토크롬 P450 2E1 (1:2000 dilution; Abcam PLC, Cambridge, MA), p65 및 p50 (1:2000 dilution; Santa Cruz Biotechnology, Santa Cruz, CA), STAT1 또는 p-STAT1 (1:2500 dilutions; Santa Cruz Biotechnology)에 대한 토끼 폴리클로날 항체. 각 블롯은 각각의 서양고추냉이 퍼옥시다아제-콘주게이트된 항-토끼 또는 항-생쥐 IgG (1:4000 dilution; Santa Cruz Biotechnology)와 함께 인큐베이션하였다. 면역반응성 단백질들을 ECL 검출 시스템을 사용하여 검출하였다.
Liver tissue was homogenized with protein extraction solution (PRO-PREP ™, iNtRON Biotechnology), incubated at -20 ° C for 60 minutes and then lysed. The tissue homogenate was centrifuged at 15,000 rpm for 15 minutes at 4 ° C. Protein equivalent (30 μg) was separated using 10% SDS-PAGE and transferred to a PVDF membrane (GE Water and Process Technologies, Trevose, Pa.). Blots were incubated with TBST [Tris-Buffered Saline Tween-20; Was blocked with 5% (w / v) skim milk in a 150 mM NaCl solution containing 10 mM Tris (pH 8.0) and 0.05% Tween-20. After washing with TBST, the membranes were immunoblotted using the following primary antibodies: cytochrome P450 2E1 (1: 2000 dilution; Abcam PLC, Cambridge, MA), p65 and p50 (1: 2000 dilution; Santa Cruz Biotechnology, Santa Cruz, Calif.), STAT1 or p-STAT1 (1: 2500 dilutions; Santa Cruz Biotechnology). Each blot was incubated with each horseradish peroxidase-conjugated anti-rabbit or anti-mouse IgG (1: 4000 dilution; Santa Cruz Biotechnology). Immunoreactive proteins were detected using an ECL detection system.

5. 사이토카인 면역 어레이 5. Cytokine Immune Array

간 조직을 절제하고 PBS 내에서 프로테아제 억제자 칵테일(Sigma-Aldrich) 및 Triton X-100 (최종 농도 1%)와 함께 균질화하였다. 샘플을 -70℃에서 동결시키고, 해동시킨 후, 10,000xg에서 5분간 원심분리하여 세포 잔여물을 제거하였다. 조직 용해물을 웨스턴 블로팅에서와 동일한 방식으로 단백질 어레이를 수행하기 위해 사용하였다. 단백질 4.5mg을 그룹 당 3개의 샘플로부터 수집하여 제조사의 프로토콜에 따라 Proteome Profiler™ 생쥐 사이토카인 어레이를 수행하였다(#ARY006; R&D Systems, Minneapolis, MN). 간략히 설명하면, 항체-프린트된 멤브레인을 23℃에서 1시간 동안 블로킹하였다. 간세포 용해액(0.5 mL)을 비오티닐화한 항체 칵테일과 혼합하고, 23℃에서 1시간 동안 인큐베이션하였다. 이어서, 혼합물을 멤브레인에 첨가하고 4℃에서 하룻밤 인큐베이션시켰다. 멤브레인을 세척한 후, 스트렙타비딘-서양고추냉이 퍼옥시다아제 용액내애서 23℃의 상온에서 30분간 인큐베이션하였다. 면역복합체는 ECL를 사용하여 검출하였다.
Liver tissue was excised and homogenized in PBS with protease inhibitor cocktail (Sigma-Aldrich) and Triton X-100 (final concentration 1%). Samples were frozen at -70 ° C, thawed, and centrifuged at 10,000 × g for 5 minutes to remove cell debris. The tissue lysates were used to perform protein arrays in the same manner as in Western blotting. Protein 4.5 mg was collected from three samples per group and a Proteome Profiler (TM) mouse cytokine array was performed according to the manufacturer's protocol (# ARY006; R & D Systems, Minneapolis, MN). Briefly, antibody-printed membranes were blocked for 1 hour at 23 ° C. Hepatocyte lysis solution (0.5 mL) was mixed with biotinylated antibody cocktail and incubated at 23 ° C for 1 hour. The mixture was then added to the membrane and incubated overnight at &lt; RTI ID = 0.0 &gt; 4 C. &lt; / RTI &gt; The membrane was washed and then incubated in a streptavidin-horseradish peroxidase solution at room temperature for 30 minutes at 23 ° C. Immunoconjugates were detected using ECL.

6. 유세포분석 6. Flow cytometry

표현형 분석을 위해 간으로부터 면역-관련 세포들을 회수하였다. 그룹당 3마리의 생쥐로부터 얻은 신선한 간 생체 조직 검사물로부터 간 조직을 분리하였다. 간 조직 검사물은 PBS에서 기계적으로 균질화하고, 100μm 세포 여과기(BD Biosciences, Franklin Lakes, NJ)를 사용하여 여과하고, ACK 용해 완충액(Lonza, Basel, Switzerland)에 넣어 적혈구를 제거하였다. 100만개의 간세포를 0.5% BSA을 포함하는 PBS내에서 1회 세척하고, 100μL의 PBS/BSA 완충액내에서 재현탁하였다. 한편, 1 x 106 의 분리한 세포들을 다음의 다양한 컨쥬게이트된 모노클로날 항체들과 얼음상에서 20분간 인큐베이션하였다: CD4-APC(1:400 희석; BD Biosciences), CD3-FITC(1:100 희석; BD Biosciences), CD8a-FITC(1:100 희석; BD Biosciences), CD45R-PE(1:400 희석; BD Biosciences), CD49b-APC(1:200 희석; eBioscience, San Diego, CA), CD11c-PE(1:200 희석; BD Biosciences) 및 F4/80-APC(1:100 희석; eBioscience). 이어서, PBS/BSA 내에서 2회 세척하고 500μL의 PBS/BSA 완충액내에서 재현탁하였다. 유세포분석은 FACSCalibur 기구(BD Biosciences)를 사용하여 수행하였고, 데이터는 WinMDI 통계 소프트웨어(Scripps, La Jolla, CA)를 사용하여 분석하였다. 염색 세포를 게이트(gate)하기 위해 전방 및 측면 산포 파라미터를 사용하였다.
Immune-related cells were recovered from the liver for phenotypic analysis. Liver tissues were isolated from fresh liver biopsy specimens obtained from 3 mice per group. Liver biopsies were mechanically homogenized in PBS, filtered using a 100 μm cell filter (BD Biosciences, Franklin Lakes, NJ), and placed in ACK lysis buffer (Lonza, Basel, Switzerland) to remove erythrocytes. One million hepatocytes were washed once in PBS containing 0.5% BSA and resuspended in 100 μL of PBS / BSA buffer. Meanwhile, 1 x 106 separated cells were incubated with various conjugated monoclonal antibodies for 20 minutes on ice: CD4-APC (1: 400 dilution; BD Biosciences), CD3-FITC (1: 100 (1: 100 dilution; BD Biosciences), CD45R-PE (1: 400 dilution; BD Biosciences), CD49b-APC (1: 200 dilution; eBioscience, San Diego, Calif.), CD11c -PE (1: 200 dilution; BD Biosciences) and F4 / 80-APC (1: 100 dilution; eBioscience). It was then washed twice in PBS / BSA and resuspended in 500 [mu] L of PBS / BSA buffer. Flow cytometry was performed using a FACSCalibur instrument (BD Biosciences) and data were analyzed using WinMDI statistical software (Scripps, La Jolla, Calif.). Front and side scatter parameters were used to gate stained cells.

7. 젤 전기이동성 이동 분석(Gel electromobility shift assay) 7. Gel electromobility shift assay

젤 전기이동성 이동분석(Gel electromobility shift assay, EMSA)는 제조사(Promega, Madison, WI)의 지시서에 따라 수행하였다. 간 조직은 200μL의 용액 A(10 mM HEPES [pH 7.9], 1.5 mM MgCl2, 10 mM KCl, 0.5 mM 디티오트레이톨 및 0.2 mM 페닐메틸술포닐플루오라이드)내에서 균질화한 후 얼음상에서 6 분간 인큐베이션하고, 6,000 rpm에서 6분간 원심분리하였다. 펠렛화된 핵을 용액 C (용액 A에 420 mM NaCl 및 20% 글리세롤이 첨가된 용액)에 재현탁시키고, 얼음상에서 매 5분마다 심하게 볼텍싱(vortexing)하면서 20 분간 인큐베이션하였다. 재현탁된 펠렛을 15,000 rpm에서 15분간 원심분리를 행하였고, 생성된 핵 추출물 상등액을 냉각시킨 에펜도르프 튜브안에 수집하였다. 콘센서스 올리고뉴클레오타이드를 T4 폴리뉴클레오티드 키나아제 및 [P32]-ATP를 사용하여 37℃에서 10분간 말단-표지하였다. 젤 이동 반응물을 조합하여 상온에서 인큐베이션하였다. 이어서, 1μL의 젤 로딩 완충액을 각 반응에 첨가하여 6% 비-변성젤 상에 로딩하였다. 젤을 젤의 4/5까지 염색될 때까지 전기영동을 행한 후, 젤을 80℃에서 2 시간 동안 건조시키고, -70℃에서 필름에 하룻밤 노출시켰다.
Gel electromobility shift assay (EMSA) was performed according to the manufacturer's instructions (Promega, Madison, Wis.). Liver tissues were homogenized in 200 μL of solution A (10 mM HEPES [pH 7.9], 1.5 mM MgCl 2 , 10 mM KCl, 0.5 mM dithiothreitol and 0.2 mM phenylmethylsulfonyl fluoride) and incubated on ice for 6 min Incubation and centrifugation at 6,000 rpm for 6 minutes. The pelleted nuclei were resuspended in solution C (solution with 420 mM NaCl and 20% glycerol added to solution A) and incubated for 20 minutes with vortexing vigorously every 5 minutes on ice. The resuspended pellet was centrifuged at 15,000 rpm for 15 minutes and the resulting nuclear extract supernatant was collected in cold Eppendorf tubes. The consensus oligonucleotides were end-labeled with T4 polynucleotide kinase and [P 32 ] -ATP at 37 ° C for 10 minutes. The gel transfer reaction was combined and incubated at room temperature. Subsequently, 1 μL of gel loading buffer was added to each reaction and loaded onto a 6% non-denaturing gel. The gel was electrophoresed until 4/5 of the gel was dyed, then the gel was dried at 80 ° C for 2 hours and exposed to film at -70 ° C overnight.

8. 조직병리학 및 면역조직화학 8. Histopathology and immunohistochemistry

간 조직을 4% 파라포름알데히드내에서 고정시키고 냉동 마이크로톰(Thermo Scientific, Germany)을 사용하여 30μm 섹션으로 잘랐다. 섹션은 병리학적 검사를 위해 H&E(hematoxylin and eosin) 염색을 실시하였다. 면역조직화학 염색을 위해서, 간 섹션을 다음의 1차 항체와 함께 인큐베이션하였다: CD49(1:5000 희석; Santa Cruz Biotechnology), CD3(1:1000 희석; Abcam, Cambridge, UK), cytochrome P450 2E1(1:2000 희석; Abcam) 및 F4/80(1:2000 희석; Abcam)에 대한 1차 항체. PBS내에서 세척한 후에, 섹션을 비오티닐화한 2차 항체내에서 인큐베이션하였다. 이어서 조직을 아비딘-퍼옥시다아제 복합체(ABC Elite Kit; Vector Laboratories, Burlingame, CA)내에서 1 시간 동안 인큐베이션하였다. PBS내에서 세척한 후에, 면역복합체는 PBS내의 0.08% 과산화수소를 포함하는 3,3-디아미노벤지딘 용액을 사용하여 시각화하였다. 섹션을 농도 구배 알코올을 연속적으로 처리하여 탈수시키고, 크실렌으로 제거한 후 Permount (Sigma-Aldrich)를 사용하여 커버슬립상에 놓았다.
Liver tissue was fixed in 4% paraformaldehyde and cut into 30μm sections using a freezing microtome (Thermo Scientific, Germany). The sections were stained with H & E (hematoxylin and eosin) for pathological examination. For immunohistochemical staining, liver sections were incubated with the following primary antibodies: CD49 (1: 5000 dilution; Santa Cruz Biotechnology), CD3 (1: 1000 dilution; Abcam, Cambridge, UK), cytochrome P450 2E1 Primary antibody to 1: 2000 dilution; Abcam) and F4 / 80 (1: 2000 dilution; Abcam). After washing in PBS, the sections were incubated in biotinylated secondary antibodies. Tissues were then incubated in an avidin-peroxidase complex (ABC Elite Kit; Vector Laboratories, Burlingame, Calif.) For 1 hour. After washing in PBS, the immune complexes were visualized using a 3,3-diaminobenzidine solution containing 0.08% hydrogen peroxide in PBS. The sections were dehydrated by successive treatment of concentrated gradient alcohol, removed with xylene, and then placed on cover slips using Permount (Sigma-Aldrich).

9. 통계학적 분석 9. Statistical analysis

데이터는 GraphPad Prism 6 소프트웨어(Version 6.00; GraphPad Software, San Diego, CA)을 사용하여 분석하였다. 데이터는 평균±SD 값으로 표시하였다. APAP 간독성도에서의 그룹간 차이는 two-way ANOVA, 처리되는 인자 및 유전형을 사용하여 분석하였고, Bonferroni's post-hoc 테스트를 행하였다. 나머지는 two-tailed student t-test를 사용하여 분석하였다. p<0.05 값을 통계학적으로 유의한 것으로 간주하였다. 생존율 데이터는 Kaplan-Meier 생존 추정에 의해 표시하고, GraphPad Prism 내에서 Log-rank (Mantel-Cox) 테스트에 의해 비교하여 산출하였다. 모든 값들은 평균±S.E.M.으로 표시하였다. 모든 테스트에서 유의성은 p<0.05으로 설정하였다.
Data were analyzed using GraphPad Prism 6 software (Version 6.00; GraphPad Software, San Diego, Calif.). Data were expressed as mean ± SD. Group differences in APAP hepatotoxicity were analyzed using two-way ANOVA, the factor to be treated and genotype, and Bonferroni's post-hoc test was performed. The rest were analyzed using a two-tailed student t-test. p <0.05 was considered statistically significant. Survival data were calculated by Kaplan-Meier survival estimation and compared by Log-rank (Mantel-Cox) test within GraphPad Prism. All values were expressed as mean ± SEM. Significance was set at p <0.05 for all tests.

실험결과 Experiment result

1. 치아크레모논은 간세포 독성을 감소시켰다. 1.Tiamcurenonone reduced hepatocellular toxicity.

아세트아미노펜(acetaminophen, APAP)은 과량 투여시 중심엽성 간독성을 일으키는 약물로 알려져 있다. 치아크레모논의 간 보호 효과를 확인하고자 생쥐에 치아크레모논을 미리 투여한 후 과량의 아세트아미노펜을 투여하여 생쥐의 생존율을 측정하였다. 생존율을 측정하기 위해, 금식시킨 생쥐에 APAP를 500 mg/kg 단독 투여하고 40 시간 동안 모니터링하였다(도 1a 패널 A). APAP-투여된 생쥐의 생존율은 대조군 생쥐와 치아크레모논-전 투여 생쥐에 비해서 현저히 낮았다. APAP-투여한 생쥐의 생존율은 50%로 감소된 반면, 10, 20 및 50 mg/kg의 치아크레모논을 각각 미리 투여한 생쥐의 경우 생존율이 각각 58.3%, 83.3% 및 100%으로 회복되었다. 실험 종료시점에서, ALT 및 AST의 혈청 수준을 측정한 결과 대조군 생쥐의 경우 8.6 및 3.0 IU/L의 수치를 보였고, APAP-전투여 생쥐의 경우 11754.8 및 18631.8 IU/L (p<0.001)의 수치를 보여, ALT 및 AST의 혈청 수준에서 큰 차이를 보였다. 그러나, ALT 및 AST 측정 수치는 치아크레모논을 10 mg/kg을 투여한 경우 각각 9235.7 및 11063.8 IU/L이었고, 20 mg/kg의 치아크레모논을 투여한 경우 각각 5797.8 및 6526.8 IU/L (p<0.05)이었으며, 50 mg/kg의 치아크레모논을 투여한 경우 각각 4264.8 및 6185.0 IU/L (p<0.01)의 수치를 보였다. 즉, 치아크레모논은 농도의존적 방식으로 ALT 및 AST 수치를 감소시켰다(도 1a 패널 B 및 C). Acetaminophen (APAP) is known to cause central hepatotoxicity when overdosed. In order to confirm the protective effect of the tooth crmomonas, the survival rate of the mice was measured by administering an excess amount of acetaminophen after the dental crmmonium was previously administered to the mice. To determine the survival rate, fasted mice were administered 500 mg / kg of APAP alone and monitored for 40 hours (Fig. 1A Panel A). The survival rate of APAP-treated mice was significantly lower than that of control mice and dacrimemonone-pretreated mice. Survival rates of APAP-treated mice were reduced to 50%, whereas survival rates of mice pretreated with 10, 20, and 50 mg / kg of dacrimemone were respectively restored to 58.3%, 83.3%, and 100%, respectively. Serum levels of ALT and AST were measured at the end of the experiment. The levels of ALT and AST were 8.6 and 3.0 IU / L in the control group and 11754.8 and 18631.8 IU / L (p <0.001) in the APAP- , Showing significant differences in serum levels of ALT and AST. However, ALT and AST measurements were 9235.7 and 11063.8 IU / L for 10 mg / kg of dacrimemone, respectively, and 5797.8 and 6526.8 IU / L for dacrimemone (20 mg / <0.05), and the values of 4264.8 and 6185.0 IU / L (p <0.01) were obtained when 50 mg / kg of dacrimemonone was administered, respectively. That is, dia-clemmonon decreased ALT and AST levels in a concentration-dependent manner (FIG. 1A panels B and C).

대조군으로부터의 생쥐 간 조직의 조직병리학적 검사결과, 중심정맥 및 사인곡선확장(sinusoidal dilatation)을 갖는 정상 간세포의 모습을 모였으나, APAP-투여군에서는 핵의 소실과 함께 심한 괴사가 관찰되는 심각한 간세포독성이 나타났다. 조직병리학적 분석결과 치아크레모논을 미리 투여한 군에서는 APAP 투여에 의한 병리학적 손상은 매우 최소적으로 나타났다. 즉, 치아크레모논 투여 군에서는 재생하는 간세포를 갖는 정상 간세포가 관찰되었고, 간문맥 영역에서 약한 염증만이 관찰되었다(도 1b).
Histopathological examination of mouse hepatic tissue from the control group revealed normal hepatic cells with central vein and sinusoidal dilatation. However, in the APAP-treated group, severe hepatocellular toxicity . Histopathological analysis showed that pathological damage by APAP administration was minimal in the group pre - administered with dicryptone. Namely, normal hepatocytes with regenerating hepatocytes were observed in the dacrimemonone-treated group and only weak inflammation was observed in the portal vein region (Fig. 1B).

2. 치아크레모논은 사이토크롬 P450 2E1 발현 억제를 통해 APAP-유도된 GSH 고갈, NO 과생성 및 지질 과산화를 억제하였다. 2. Tachylemonium inhibited APAP-induced GSH depletion, NO production and lipid peroxidation by inhibiting cytochrome P450 2E1 expression.

APAP-유도된 간독성에서 사이토크롬 P450 2E1의 과발현은 매우 중요한 역할을 한다. 치아크레모논이 간 조직에서 사이토크롬 P450 2E1의 발현에 관련되어 있는지를 평가하기 위해, 사이토크롬 P450 2E1 단백질의 발현을 간조직내에서 웨스턴 블로팅 및 면역조직화학 방법으로 검사하였다. APAP 투여에 의한 사이토크롬 P450 2E1의 항상적 발현의 상향 조절은 치아크레모논으로 미리 처리한 생쥐 간 조직에서는 현저히 감소하였다(도 2a). 면역조직화학 검사 결과, 사이토크롬 P450 2E1에 대한 강한 염색이 치아크레모논을 전 투여한 생쥐에서는 감소하였음을 확인하였다(도 2b). APAP의 대사산물은 GSH를 고갈시켜 지질과산화를 일으키고 NO (nitric oxide) 생성을 증가시킬 수 있다. 따라서, APAP-투여된 생쥐와 치아크레모논 전 투여한 생쥐에서 GSH/GSSG 비율, NO 생성 및 지질 과산화의 차이를 조사하였다. GSH/GSSG 비율은 APAP-투여한 생쥐에서 대조군과 비교하여 약 67.4% (p<0.05) 정도로 현저히 감소하였으나, 50 mg/kg의 치아크레모논을 미리 투여한 생쥐에서 GSH/GSSG 비율은 APAP-투여한 생쥐와 비교하여 약 123.6% (p<0.05) 정도로 현저히 증가하였다(도 2c). 한편, NO 수준 및 지질 과산화는 대조군 생쥐와 비교하여 APAP-투여한 생쥐에서 각각 약 156,5% 및 661.5% (p<0.05)으로 증가하였다. 50 mg/kg의 치아크레모논으로 미리 처리한 생쥐에서는, NO 및 지질과산화 수준이 APAP-투여한 생쥐에 비교하여 각각 약 56.1% 및 194.2% (p<0.05)으로 감소하였다(도 2d 및 도 2e).
Overexpression of cytochrome P450 2E1 plays an important role in APAP-induced hepatotoxicity. To evaluate whether dicamconeone is involved in the expression of cytochrome P450 2E1 in liver tissue, the expression of cytochrome P450 2E1 protein was examined by Western blotting and immunohistochemistry in liver tissue. Upregulation of the constant expression of cytochrome P450 2E1 by APAP administration was significantly reduced in mouse liver tissue pretreated with dicamcuronone (Fig. 2a). Immunohistochemistry showed that strong staining for cytochrome P450 2E1 was reduced in mice pretreated with dicamcone (Fig. 2B). Metabolites of APAP can deplete GSH and cause lipid peroxidation and increase nitric oxide (NO) production. Thus, we examined the differences in GSH / GSSG ratio, NO production and lipid peroxidation in APAP-treated mice and mice pretreated with dicamphorone. The GSH / GSSG ratio was significantly reduced in APAP-treated mice by about 67.4% (p <0.05) compared to the control group, but the GSH / GSSG ratio in APC-treated mice was pre-administered with 50 mg / Was significantly increased by about 123.6% (p < 0.05) compared with that of one mouse (Fig. 2C). On the other hand, NO levels and lipid peroxidation increased to about 156.5% and 661.5% (p < 0.05) in APAP-treated mice, respectively, as compared to control mice. NO and lipid peroxidation levels were reduced to about 56.1% and 194.2% (p < 0.05), respectively, in APAP-treated mice in mice pretreated with 50 mg / kg of dicamcrimonone (Figures 2d and 2e ).

3. 치아크레모논은 APAP-유도된 친염증성 사이토카인의 과생성을 감소시켰다. 3. Tachylemonon reduced the overproduction of APAP-induced proinflammatory cytokines.

APAP-투여된 생쥐 간 조직 및 치아크레모논 전 투여한 생쥐의 간 조직에서의 사이토카인 수준의 차이를 조사하기 위해, Mouse Proteome Array를 사용하여 사이토카인 어레이 분석을 실시하였다(도 3a 및 도 3b). 40개의 테스트한 사이토카인 중에서, IL-1a, IL-7, IL-17, I-309 (chemokine C-C motif ligand 1, CCL1), M-CSF (macrophage colony-stimulating factor), MIG (C-X-C motif ligand 9, CXCL9), MIP-1a (CCL3) 및 MIP-1b (CCL4)의 수준이 APAP-투여된 생쥐에서 대조군 생쥐와 비교하여 약 10배 정도 증가하였다(도 3c 및 도 3d). 그러나, 상기 사이토카인들은 치아크레모논을 미리 투여한 생쥐에서 현저하게 감소하였다. 이와 대조적으로, IL-1ra (IL-1α receptor antagonist), IP-10 및 MIP-2는 치아크레모논을 미리 투여한 생쥐 간 조직에서 대조군 및 APAP-투여한 생쥐 간과 비교하여 현저히 증가되었다(도 3e).
To investigate the difference in cytokine levels in hepatic tissues of APAP-treated mouse liver tissue and mice pretreated with dicryptone, a cytokine array assay was performed using a Mouse Proteome Array (FIGS. 3A and 3B) . Among the 40 tested cytokines, IL-1α, IL-7, IL-17, I-309 (chemokine CC motif ligand 1, CCL1), macrophage colony-stimulating factor (M-CSF), MIG , CXCL9), MIP-1a (CCL3) and MIP-1b (CCL4) levels were increased about 10-fold in APAP-treated mice compared to control mice (FIGS. However, the cytokines significantly decreased in mice pre-dosed with dicamcorone. In contrast, IL-1ra (IL-1 alpha receptor antagonist), IP-10 and MIP-2 were significantly increased compared to control and APAP-administered mice in mice liver tissues pre-dosed with dicryptomone ).

4. 치아크레모논을 미리 투여한 생쥐의 간 조직에서 NF-kB 및 STAT-1 활성이 감소하였다. 4. NF-kB and STAT-1 activity decreased in liver tissues of mice pretreated with dicamcone.

APAP-투여한 생쥐의 간에서 간독성이 NF-kB의 불활성화와 관련이 있는지를 평가하기 위해서, 간조직에서의 NF-kB의 DNA 결합 활성을 EMSA으로 측정하였다. DNA-결합 활성은 치아크레모논을 미리 투여한 생쥐의 간과 비교하여 APAP-처리된 간의 간조직에서 더 높게 나타났다. 또한, 치아크레모논이 전 처리된 간 조직에서는 p50 및 p65의 핵안으로의 이동이 억제되는 것도 관찰되었다(도 4a). DNA binding activity of NF-kB in hepatic tissues was measured by EMSA in order to evaluate whether hepatotoxicity in liver of APAP-treated mice was associated with inactivation of NF-kB. DNA-binding activity was higher in APAP-treated liver tissue compared to liver in mice pretreated with dicamarone. In addition, it was also observed that the migration of p50 and p65 into the nucleus was inhibited in the liver tissue pretreated with dicamcrimonone (Fig. 4A).

치아크레모논을 미리 투여한 생쥐의 간에서 간독성이 감소하는 것이 APAP-처리된 간에서 STAT1의 불활성화와 관련이 있는지에 대해서도 검사하였다. 간 조직에서의 STAT1의 DNA 결합활성을 EMSA를 통해 측정하였다. 실험결과, 치아크레모논을 미리 투여한 생쥐의 간과 비교하여 APAP-투여한 생쥐의 간 조직에서 DNA-결합 활성이 더 높게 나타났다. 웨스턴 블로팅 실험결과, APAP-투여한 생쥐에서 보다 치아크레모논을 미리 투여한 생쥐의 간에서 STAT1 및 STAT1 인산화가 낮은 수준으로 나타났다는 것을 확인하였다(도 4b).
The reduction of hepatic toxicity in the liver of mice pretreated with dicamcuronone was also examined to determine whether it was associated with inactivation of STAT1 in the APAP-treated liver. DNA binding activity of STAT1 in liver tissue was measured by EMSA. As a result, DNA-binding activity was higher in hepatic tissues of APAP-treated mice than in mice pretreated with dicryptone. Western blotting experiments showed that STAT1 and STAT1 phosphorylation was low in the liver of mice pretreated with dicryptomone than in APAP-administered mice (Fig. 4B).

5. 치아크레모논은 APAP-유도된 세포독성 면역세포의 침투를 감소시켰다. 5. Tachylemonon reduced the penetration of APAP-induced cytotoxic immune cells.

치아크레모논을 미리 투여한 생쥐에서 APAP-유도 간독성의 억제가 세포독성 면역세포의 침투에 관련이 있는 지를 조사하기 위해서, 간 조직내에서 세포독성 면역세포의 분포 패턴을 분석하였다. 간 조직으로부터 림프구를 분리하여 형광 활성 세포 분리 분석법(fluorescence activated cell sorting)에 의해 세포의 표현형을 분석하였다. APAP-투여 생쥐의 T세포, B세포, 세포독성 T(Tc)세포 및 헬퍼 T(Th)세포의 각 세포군 비율은 각각 3.1%, 10.1%, 4.1% 및 6.0%이었고, 이와 대비하여 대조군 생쥐에서의 각 세포군 비율은 각각 6.7%, 59.4%, 6.3% 및 10.9%이었으며, 치아크레모논을 미리 투여한 생쥐에서의 각 세포군의 비율은 각각 7.6%, 38.3%, 6.4% 및 12.2% 이었다(도 5a 및 도 5b). APAP-투여 생쥐의 간 조직에서 NK세포 및 T세포의 2중 양성 세포와 NK세포 및 B세포의 2중 양성 세포의 세포군 비율은 각각 2.1% 및 0.9%이었으며, 이와 비교하여 대조군 생쥐는 상기 각 세포군 비율이 각각 0.6% 및 0.2%이었고, 치아크레모논을 미리 투여한 생쥐의 상기 각 세포군의 비율은 각각 0.4% 및 0.1% 이었다(도 5c). 위에서 살펴본 실험 데이터들은 Th 세포 및 NK 세포; NK 세포 및 T세포의 이중양성세포; 및 NK세포 및 B세포의 이중양성세포의 침투 촉진이 치아크레모논에 의해 감소될 수 있음을 보여준다. In order to investigate whether the inhibition of APAP-induced hepatotoxicity was associated with the penetration of cytotoxic immune cells in mice pretreated with dicryptomone, the pattern of distribution of cytotoxic immune cells in liver tissues was analyzed. Lymphocytes were isolated from liver tissues and the phenotype of the cells was analyzed by fluorescence activated cell sorting. The proportion of T cells, B cells, cytotoxic T (Tc) cells and helper T (Th) cells in APAP-treated mice was 3.1%, 10.1%, 4.1% and 6.0%, respectively, , 6.4%, and 12.2%, respectively. The proportion of each cell group was 6.7%, 59.4%, 6.3%, and 10.9%, respectively. The proportion of each cell group in mice previously administered with dicryptone was 7.6%, 6.4% And Figure 5b). In the liver tissues of APAP-treated mice, the ratio of the cell population of the NK cells and the T cells to the dichotomous cells, the NK cells and the B cells were 2.1% and 0.9%, respectively. In contrast, And 0.6% and 0.2%, respectively, and the ratios of the above cell groups to mice pre-administered with dicryptone were 0.4% and 0.1%, respectively (Fig. 5C). The experimental data above show that Th cells and NK cells; Double positive cells of NK cells and T cells; And that the enhancement of the penetration of the double positive cells of NK cells and B cells could be reduced by dicamcone.

APAP-투여 생쥐의 간 조직 섹션을 염색하여 관찰한 결과, 대조군 생쥐와 비교하여 APAP-투여 생쥐의 간에서 Kupffer 세포의 현저한 유입을 발견하였다. 그러나, 염색강도를 관찰한 결과 치아크레모논 처리된 간 조직에서는 Kupffer 세포 발현이 현저히 감소되었음을 확인할 수 있었다. Observation of staining of liver tissue sections of APAP-treated mice revealed a significant inflow of Kupffer cells in the liver of APAP-treated mice as compared to control mice. However, it was observed that the expression of Kupffer cells was significantly reduced in the dendritic cell treated liver tissue.

NK 세포 및 세포독성 T 세포에 대해 면역염색의 강도 및 세포 개수를 측정한 결과 대조군 생쥐에 비해 APAP-투여한 생쥐의 간에서 더욱 높은 수치를 나타내었다. 그러나, 치아크레모논 투여한 생쥐의 간조직에서 NK 세포 및 세포독성 T 세포에 대한 면역염색의 강도 및 세포 개수는 감소되어 있었다(도 5d). 이들 데이터는 생쥐에 치아크레모논을 미리 투여함으로써 Kupffer 세포, NK 세포 및 세포독성 T 세포의 침투를 억제하여 결과적으로 APAP에 의해 유도된 간 손상을 보호할 수 있음을 보여준다.
NK cells and cytotoxic T cells were found to be higher in the liver of APAP-treated mice compared to the control mice. However, the immunohistochemical staining intensity and number of cells of NK cells and cytotoxic T cells were decreased in the liver tissues of mice treated with dia-crmmonon (Fig. 5d). These data show that mice can be pre-administered with dicryptomone to inhibit penetration of Kupffer cells, NK cells, and cytotoxic T cells, resulting in protection of APAP-induced liver damage.

고찰 Review

치아크레모논은 APAP-유도된 ALT, AST 및 NO 생성과, 지질과산화를 억제하였고, GSH/GSSG 비율을 증가시켰다. 또한, 치아크레모논은 APAP-유도된 중심엽성 간세포 괴사, 간에서 Kupffer 세포, T 세포 및 NK 세포 침투와 간의 사이토크롬 P450 2E1 발현을 감소시켰다. 치아크레모논은 또한 I-309, IL-7, IL-10, IL-13, IL-17, M-CSF, MIG, MIP-1α 및 MIP-1β의 친염증성 사이토카인 발현에 대해 억제적 효과를 나타내었다. 그러나, 치아크레모논은 IL-1ra, IP-10 및 MIP-2의 수준을 증가시켰다. 이러한 결과는 치아크레모논이 간독성물질에 의한 급성 간독성 치료제로 사용될 가능성이 높다는 것을 제시한다. Chiacormonone inhibited APAP-induced ALT, AST and NO production, lipid peroxidation, and increased the GSH / GSSG ratio. In addition, dia-crmmonon reduced apoptosis-induced central nodule hepatocyte necrosis, Kupffer cells, T cells and NK cell infiltration and cytochrome P450 2E1 expression in the liver. Ticlcarmonone also inhibited the proinflammatory cytokine expression of I-309, IL-7, IL-10, IL-13, IL-17, M-CSF, MIG, MIP- Respectively. However, dicamconeone increased levels of IL-lra, IP-10 and MIP-2. These results suggest that dacremonone is highly likely to be used as a treatment for acute hepatotoxicity by hepatotoxic agents.

간세포에서 과량의 APAP는 주로 사이토크롬 P450 2E1에 의해 NAPQI으로 대사된다. 축적된 NAPQI는 글루타타이온 고갈 및 이에 따른 산화적 스트레스를 통해 간세포를 사멸시킨다(Jaeschke et al., 2002). NAPQI는 GSH와 반응하여 GSH를 90% 정도까지 고갈시킨다. 이어서, 이 대사물은 간세포 단백질에 공유적으로 결합하여 3-(시스테인-S-일)-아세트아미노펜(APAP-Cys) 부가물을 생성한다(James et al., 2003; Hinson et al., 2010; Agarwal et al., 2012). 퍼옥시나이트라이트(peroxynitrite)가 NO 및 수퍼옥사이드 사이의 빠른 반응에 의해 형성되고, NO 합성이 APAP 처리에 의해 증가된다(Hinson et al., 1998). 퍼옥시나이트라이트는 티로신의 질화(nitration)을 유도하고, 이는 지질, 단백질 및 DNA와 같은 다양한 종류의 생물학적 분자들을 공격하게 된다. 퍼옥시나이트라이트는 일반적으로 GSH/GSSG 퍼옥시다아제에 의해 무독화되고, GSH는 APAP 독성에서 고갈된다. 또한, 세포 산화물 소거능이 감소된 조건하에서는 퍼옥시나이트라이트는 매우 독성이 강하다(Pryor and Squadrito, 1995; Beckman and Koppenol, 1996; Gardner et al., 1998). 결과적으로, 퍼옥시나이트라이트에 대한 정상적인 무독화 메카니즘이 손상되어 간세포는 산화적 스트레스에 의해 손상된다(Sies et al., 1997). 본 발명의 실험결과에서는 간 NO의 생성이 치아크레모논 처리에 의해 감소하였다. 치아크레모논은 GSH/GSSG 비율을 증가시키고 지질과산화를 감소시킴으로써 치아크레모논이 산화적 세포 기능장애로부터 간세포를 보호할 수 있음을 확인할 수 있었다. Excess APAP in hepatocytes is metabolized to NAPQI primarily by cytochrome P450 2E1. Accumulated NAPQI kills hepatocytes through glutathione ion depletion and consequent oxidative stress (Jaeschke et al., 2002). NAPQI reacts with GSH and depletes GSH to about 90%. This metabolite then covalently binds to the hepatocyte protein producing a 3- (cysteine-S-yl) -acetaminophen (APAP-Cys) adduct (James et al., 2003; Hinson et al., 2010 ; Agarwal et al., 2012). Peroxynitrite is formed by a rapid reaction between NO and superoxide, and NO synthesis is increased by APAP treatment (Hinson et al., 1998). Peroxynitrite induces nitration of tyrosine, which attacks various kinds of biological molecules such as lipids, proteins and DNA. Peroxynitrite is generally detoxified by GSH / GSSG peroxidase, and GSH is depleted in APAP toxicity. In addition, peroxynitrite is highly toxic under conditions of reduced cell oxidase clearing activity (Pryor and Squadrito, 1995; Beckman and Koppenol, 1996; Gardner et al., 1998). As a result, the normal detoxification mechanism for peroxynitrite has been impaired and hepatocytes are damaged by oxidative stress (Sies et al., 1997). As a result of the experiment of the present invention, the production of liver NO decreased by the treatment with dicammonon. By increasing the ratio of GSH / GSSG and decreasing lipid peroxidation, it was possible to confirm that dicryptone can protect hepatocytes from oxidative cell dysfunction.

ALT 및 AST이 수준이 증가하는 것은 아세트아미노펜 또는 다른 약물의 급성 과량복용 또는 바이러스에 의한 간세포 기능장애에서 나타나는 특징이다(Ostapowicz et al., 2002). APAP-투여된 생쥐에서 ALT 및 AST의 높은 혈청수준은 조직병리학적 간 손상과 매우 밀접하게 관련되어 있다(Blazka et al., 1995a; Blazka et al., 1995b; Blazka et al., 1996; Agarwal et al., 2012). 조직병리학적 및 혈청 분석 결과 치아크레모논으로 처리한 생쥐의 간에서는 APAP에 의해 발생된 병리학적 부위가 매우 최소적으로 나타났다. 이러한 결과는 치아크레모논이 간독성 물질로서 예컨대 APAP 과량 복용에 의한 간 손상을 보호하는데 매우 유용하다는 점을 시사한다. Increased levels of ALT and AST are characteristic of acute overdosage of acetaminophen or other drugs or hepatocellular dysfunction caused by viruses (Ostapowicz et al., 2002). High serum levels of ALT and AST in APAP-treated mice are closely related to histopathological liver damage (Blazka et al., 1995a; Blazka et al., 1995b; Blazka et al., 1996; al., 2012). Histopathologic and serological analysis showed that pathologic sites developed by APAP in the liver of mice treated with dicryptomone were minimal. These results suggest that dicryptone is very useful as a hepatotoxic agent, for example, to protect liver damage by APAP overdose.

APAP 처리에 의해서 T 세포, NK 세포 및 Kupffer 세포가 활성되고, 활성화된 T 세포, NK 세포 및 Kupffer 세포는 가수분해효소, 에이코사노이드, 산화질소 및 수퍼옥사이드와 같은 다양한 신호분자들을 분비한다. Kupffer 세포는 IL-1, IL-6, IL-7, IL-17 및 TNF-α과 같은 친염증성 사이토카인을 분비할 수 있는데(Blazka et al., 1995b; Hogaboam et al., 1999; Bourdi et al., 2002), 이들 사이토카인들은 류머티스 관절염, 실험적 자가면역성 뇌척수염, 크론씨병과 같은 자가면역질환의 발병과 염증성 반응의 전개에 관여한다(Iwakura et al., 2011). 다른 사이토카인인 I-309, M-CSF, MIG, MIP-1α 및 MIP-1β는 몇몇 면역세포를 모으고 활성화시키는 급성 염증성 상태에 관여하는 염증성 케모카인의 패밀리에 속한다(Ishida et al., 2002; Liu et al., 2004; Dragomir et al., 2012). 이들 케모카인들은 손상된 간세포, T 세포, NK 세포 및 Kupffer 세포에 의해 분비되어, NK세포, 단핵구 및 다양한 종류의 다른 면역세포들을 간 괴사 부위로 불러들이는 것을 촉진한다고 보고되어 있다(Lawson et al., 2000; James et al., 2003; Bourdi et al., 2007; Agarwal et al., 2012). I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-7, IL-13 및 IL-17의 발현수준은 APAP 전처리에 의해 증가하였으나, 이들 케모카인 프로파일은 치아크레모논으로 전처리한 경우 감소하였으며, 또한, APAP에 의해 유도되는 Kupffer 세포, 세포독성 T 세포 및 NK 세포의 활성화가 감소하였다. 따라서, 치아크레모논은 Kupffer 세포, NK 세포 및 Tc 세포들을 비활성화시키고 친염증성 사이토카인 및 케모카인의 분비를 감소시킴으로써 간 보호효과를 발휘할 수 있다. IP-10, IL-1ra 및 MIP-2와 같은 몇몇 케모카인은 간세포 증식을 촉진함으로써 손상된 간을 재생할 수 있다(Gardner et al., 2012). MIP-2으로 처리하면 APAP-손상된 간 손상 보호에 보다 효과적이다. 또한, MIP-2는 APAP에 노출된 세포에서 간세포 증식을 유지시킬 수 있다(Hogaboam et al., 1999; Hogaboam et al., 2000a). IP-10은 마이토젠(mitogen)과 같이 간세포 성장인자를 유도할 수도 있을 것이다. IP-10는 APAP-유도된 간독성에서 보호 효과를 갖고, 이러한 보호효과는 간세포상의 MIP-2 수용체의 유도와 관련되어 있다(Bone-Larson et al., 2001; Ishida et al., 2002; Liu et al., 2004). IL-1ra는 APAP-유도 간 괴사를 경감시키거나 완전히 치료할 수 있다. IL-1ra 투여 및 IL-1α의 혈청 수준을 낮춤으로써 부분적인 간 보호 효과를 부여할 수 있다(Blazka et al., 1996; Ishibe et al., 2009; Hu et al., 2010). 이러한 케모카인들은 손상된 NK 세포, T 세포 및 Kupffer 세포에서 분비될 수 있다. Kupffer 세포, T 세포 및 NK 세포의 손상은 치아크레모논으로 전 처리함으로써 감소된다. 본 발명자들은 치아크레모논이 간세포 재생을 촉진하는 MIP-2 및 IP-10의 수준을 증가시킨다는 것도 확인하였다. 치아크레모논에 의한 이들 케모카인들에 대한 증가된 효과는 간독성의 직접적인 회복 또는 손상된 Kupffer 세포, T 세포, 및 NK 세포의 간접적 감소 결과를 가져오고, 궁극적으로 간독성을 감소시킨다. T cells, NK cells and Kupffer cells are activated by APAP treatment, and activated T cells, NK cells and Kupffer cells secrete various signal molecules such as hydrolytic enzymes, eicosanoids, nitric oxide and superoxide. Kupffer cells can secrete proinflammatory cytokines such as IL-1, IL-6, IL-7, IL-17 and TNF-α (Blazka et al., 1995b; Hogaboam et al., 1999; al., 2002), these cytokines are involved in the development of inflammatory reactions and the development of autoimmune diseases such as rheumatoid arthritis, experimental autoimmune encephalomyelitis, Crohn's disease (Iwakura et al., 2011). The other cytokines I-309, M-CSF, MIG, MIP-1α and MIP-1β belong to the family of inflammatory chemokines involved in acute inflammatory conditions that collect and activate some immune cells (Ishida et al. et al., 2004; Dragomir et al., 2012). These chemokines have been reported to be secreted by damaged hepatocytes, T cells, NK cells, and Kupffer cells, promoting the invasion of NK cells, mononuclear cells, and various other immune cells into the hepatic necrosis region (Lawson et al. 2000; James et al., 2003; Bourdi et al., 2007; Agarwal et al., 2012). Expression levels of I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-7, IL-13 and IL-17 were increased by APAP pretreatment, but these chemokine profiles were pretreated with , And the activation of APAP - induced Kupffer cells, cytotoxic T cells and NK cells was also decreased. Therefore, dicryptone can exert a liver protective effect by inactivating Kupffer cells, NK cells and Tc cells and decreasing the secretion of proinflammatory cytokines and chemokines. Some chemokines such as IP-10, IL-lra and MIP-2 can regenerate damaged liver by promoting hepatocyte proliferation (Gardner et al., 2012). Treatment with MIP-2 is more effective in protecting APAP-damaged liver damage. In addition, MIP-2 can maintain hepatocyte proliferation in APAP-exposed cells (Hogaboam et al., 1999; Hogaboam et al., 2000a). IP-10 may induce hepatocyte growth factors like mitogens. IP-10 has a protective effect on APAP-induced hepatotoxicity, and this protective effect is associated with the induction of MIP-2 receptors on hepatocytes (Bone-Larson et al., 2001; Ishida et al. al., 2004). IL-1ra can alleviate or completely treat APAP-induced liver necrosis. (Blazka et al., 1996; Ishibe et al., 2009; Hu et al., 2010), by administering IL-1ra and lowering serum levels of IL-1α. These chemokines can be secreted from damaged NK cells, T cells and Kupffer cells. Damage to Kupffer cells, T cells and NK cells is reduced by pretreatment with dia. The present inventors have also confirmed that dicryptomone increases the levels of MIP-2 and IP-10 that promote hepatocyte regeneration. The increased efficacy of these chemokines by dicamcurenon results in a direct recovery of hepatotoxicity or an indirect reduction of damaged Kupffer cells, T cells, and NK cells, and ultimately reduces hepatotoxicity.

NF-kB의 핵으로의 이동은 APAP-유도된 간독성에 관련된 다수의 사이토카인의 유도에 있어서 필수적이다(Arsura et al., 1996). TNF-α 및 IL-1β와 같은 염증성 자극은 NF-kB 경로에 의해 활성화된다. TNF 수용체(TNFR) 및 IL-1β수용체(IL-1βR)의 결합에 의해 NF-kB가 활성화된다(O'Dea and Hoffmann, 2009). NF-kB는 간독성에 관계되어 있는 NOSⅡ(nitric oxide synthase Ⅱ), TNF-α, IL-1β 및 cyclooxygenase-2와 같은 염증성 매개자를 조절하는 유전자들의 발현을 조절한다(Dambach et al., 2006). 커큐민, 아네톨디티오티온(anetholdithiolthione) 및 시리마린(silymarin)과 같은 물질들은 NF-kB를 억제함으로써 손상으로부터 간을 보호한다(Sen et al., 1996; Manna et al., 1999; Reyes-Gordillo et al., 2007). NF-kB 억제를 통해 활성화된 Kupffer 세포가 TNF-α를 생성하는 것을 억제한다(Wheeler et al., 2001). 따라서, NF-kB 억제는 염증매개 의존성 간손상을 감소시킨다. 종전의 연구결과에 의하면, APAP 처리된 간세포에서 STAT-1의 발현이 시간 의존적 방식으로 증가되었다는 사실을 보고하였다(Ghosh and Sil, 2009). IFN-γ 및 TNF-α는 STAT1을 활성화시키고 간세포의 아폽토시스를 유도한다. 최근 연구결과에 의하면, NK 세포 및 NK T 세포는 IFN-γ를 생성하고 APAP-유도된 간 손상에서 핵심적 역할을 한다는 점이 증명되었다(Liu et al., 2004). IFN-γ는, APAP-유도된 간염에서 다수의 사이토카인, 케모카인, 부착 분자 및 Fas/FasL을 유도함으로써 염증신호를 개시하는 STAT1를 활성화시킨다. TNF-α도 또한 STAT1를 활성화시키며, STAT1이 소실된 세포는 TNF-α에 의한 아폽토시스에 대해 저항성을 나타낸다(Meraz et al., 1996; Ishida et al., 2002; Jaruga et al., 2004). 따라서, APAP 처리된 간세포에서 NF-kB 및 STAT1 활성화가 간손상에 주 원인이라고 보여진다(Numata et al., 2007). APAP 처리된 간에서 NF-kB 및 STAT1 활성화가 증가되었으나, 치아크레모논으로 미리 처리된 생쥐에서는 NF-kB 및 STAT1 가 모두 하향조절되었다. 이러한 실험결과는 STAT1 및 NF-kB 경로 모두를 억제하는 것이 치아크레모논의 APAP 유도된 독성으로부터의 간 보호 효과와 관련되어 있다는 점을 시사한다. 이와 같은 실험결과를 종합하면, 본 발명의 실험결과는 치아크레모논이 간독성 물질, 예컨대 과량의 APAP 투여에 의한 간손상의 치료에 매우 효과적으로 사용될 수 있다는 점을 제시한다. Transfer of NF-kB to the nucleus is essential for induction of multiple cytokines related to APAP-induced hepatotoxicity (Arsura et al., 1996). Inflammatory stimuli such as TNF-α and IL-1β are activated by the NF-kB pathway. NF-kB is activated by the binding of the TNF receptor (TNFR) and the IL-1β receptor (IL-1βR) (O'Dea and Hoffmann, 2009). NF-kB regulates the expression of genes regulating inflammatory mediators such as NOS II (nitric oxide synthase II), TNF-α, IL-1β and cyclooxygenase-2, which are associated with hepatotoxicity (Dambach et al., 2006). Materials such as curcumin, anetholdithiolthione and silymarin protect the liver from damage by inhibiting NF-kB (Sen et al., 1996; Manna et al., 1999; Reyes-Gordillo et al., 2007). Kupffer cells activated through NF-kB inhibition inhibit TNF-α production (Wheeler et al., 2001). Thus, NF-kB inhibition reduces inflammatory mediator-dependent liver damage. Previous studies have shown that STAT-1 expression is increased in a time-dependent manner in APAP-treated hepatocytes (Ghosh and Sil, 2009). IFN-y and TNF-a activate STAT1 and induce hepatocyte apoptosis. Recent studies have shown that NK cells and NK T cells produce IFN-γ and play a key role in APAP-induced liver damage (Liu et al., 2004). IFN-y activates STAT1, which initiates inflammatory signals by inducing multiple cytokines, chemokines, adhesion molecules and Fas / FasL in APAP-induced hepatitis. TNF-α also activates STAT1, and STAT1-deficient cells are resistant to TNF-α-induced apoptosis (Meraz et al., 1996; Ishida et al., 2002; Jaruga et al., 2004). Thus, NF-kB and STAT1 activation in APAP-treated hepatocytes appears to be the main cause of liver injury (Numata et al., 2007). NF-KB and STAT1 activation were increased in the APAP-treated liver, but NF-KB and STAT1 were down-regulated in mice pretreated with dicryptomone. These experimental results suggest that inhibition of both STAT1 and NF-kB pathways is associated with liver protection from APAP-induced toxicity in dental crmomonas. Taken together with these experimental results, the experimental results of the present invention suggest that dicryptomone can be used very effectively for the treatment of hepatic toxicity by administration of hepatotoxic agents, for example, excessive APAP.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (9)

하기 화학식 1로 표시되는 치아크레모논을 유효성분으로 포함하는 아세트 아미노펜에 의해 유도되는 간 손상 보호용 조성물.
[화학식 1]
Figure 112014122801575-pat00002

1. A composition for protecting liver damage induced by acetaminophen comprising an effective ingredient of dicamphorone represented by the following formula (1).
[Chemical Formula 1]
Figure 112014122801575-pat00002

삭제delete 삭제delete 제 1 항에 있어서, 상기 치아크레모논은 간세포에서 간독성 물질에 의해 유도된 ALT 수준, AST 수준, 및 지질과산화 수준의 증가를 감소시키고 NO (nitric oxide) 생성을 억제하는 것을 특징으로 하는 간 보호용 조성물.
The liver protecting composition according to claim 1, wherein said dicryptone is reduced in an increase in ALT level, AST level, and lipid peroxidation level induced by hepatotoxic substances in hepatocytes and inhibits NO (nitric oxide) production .
제 1 항에 있어서, 상기 치아크레모논은 간세포에서 간독성 물질에 의해 유도되는 Kupffer 세포, T 세포, 및 NK 세포의 침투 및 간세포 사이토크롬 P450 2E1의 발현의 증가를 감소시키는 것을 특징으로 하는 조성물.
2. The composition of claim 1, wherein said dicryptone reduces the penetration of Kupffer cells, T cells, and NK cells induced by hepatotoxic agents in hepatocytes and the increase of hepatocyte cytochrome P450 2E1 expression.
제 1 항에 있어서, 상기 치아크레모논은 간세포에서 간독성 물질에 의해 유도되는 친염증성 사이토카인 I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-10, IL-13, IL-7 및 IL-17의 증가된 수준을 감소시키고, 사이토카인 IL-1ra, IP-10 및 MIP-2의 수준은 증가시키는 것을 특징으로 하는 조성물.
2. The method of claim 1, wherein the diphtheria toxin is selected from the group consisting of proinflammatory cytokines I-309, M-CSF, MIG, MIP-1 ?, MIP-1 ?, IL- -7 and IL-17, and the levels of the cytokines IL-lra, IP-10 and MIP-2 are increased.
제 1 항에 있어서, 상기 치아크레모논은 마늘로부터 분리된 것임을 특징으로 하는 조성물.
2. The composition of claim 1, wherein the dental crumomone is isolated from garlic.
제 1 항에 있어서, 상기 조성물은 약제학적 조성물 형태인 것을 특징으로 하는 조성물.
The composition of claim 1, wherein the composition is in the form of a pharmaceutical composition.
제 1 항에 있어서, 상기 조성물은 기능성 식품 조성물 형태인 것을 특징으로 하는 조성물. The composition of claim 1, wherein the composition is in the form of a functional food composition.
KR1020130081139A 2012-07-11 2013-07-10 Hepatoprotective Composition Comprising Thiacremonone As Active Ingredient KR101502221B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120075678 2012-07-11
KR20120075678 2012-07-11

Publications (2)

Publication Number Publication Date
KR20140009051A KR20140009051A (en) 2014-01-22
KR101502221B1 true KR101502221B1 (en) 2015-03-12

Family

ID=50142644

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130081139A KR101502221B1 (en) 2012-07-11 2013-07-10 Hepatoprotective Composition Comprising Thiacremonone As Active Ingredient

Country Status (1)

Country Link
KR (1) KR101502221B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090035946A (en) * 2007-10-08 2009-04-13 충북대학교 산학협력단 Pharmaceutical composition comprising thiacremonone for preventing or treating cancer
KR20110011187A (en) * 2009-07-28 2011-02-08 건국대학교 산학협력단 Pharmaceutical composition for preventing or treating metabolic disease comprising thiacremonone compound as effective component
KR20110030756A (en) * 2009-09-18 2011-03-24 충북대학교 산학협력단 Anti-inflammatory pharmaceutical composition containing thiacremonone as active ingredient
KR20110048700A (en) * 2009-11-03 2011-05-12 충북대학교 산학협력단 Anticancer composition comprising docetaxel and thiacremonone by inhibiting nf-&kappa;b

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090035946A (en) * 2007-10-08 2009-04-13 충북대학교 산학협력단 Pharmaceutical composition comprising thiacremonone for preventing or treating cancer
KR20110011187A (en) * 2009-07-28 2011-02-08 건국대학교 산학협력단 Pharmaceutical composition for preventing or treating metabolic disease comprising thiacremonone compound as effective component
KR20110030756A (en) * 2009-09-18 2011-03-24 충북대학교 산학협력단 Anti-inflammatory pharmaceutical composition containing thiacremonone as active ingredient
KR20110048700A (en) * 2009-11-03 2011-05-12 충북대학교 산학협력단 Anticancer composition comprising docetaxel and thiacremonone by inhibiting nf-&kappa;b

Also Published As

Publication number Publication date
KR20140009051A (en) 2014-01-22

Similar Documents

Publication Publication Date Title
Gao et al. Hypoxia‐inducible factor‐2α reprograms liver macrophages to protect against acute liver injury through the production of interleukin‐6
Cao et al. Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity
Malik et al. Single-dose gamma-irradiation induces up-regulation of chemokine gene expression and recruitment of granulocytes into the portal area but not into other regions of rat hepatic tissue
Martin-Murphy et al. The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice
Singh et al. Role of resveratrol-induced CD11b+ Gr-1+ myeloid derived suppressor cells (MDSCs) in the reduction of CXCR3+ T cells and amelioration of chronic colitis in IL-10−/− mice
US20130129675A1 (en) Interferon therapies in combination with blockade of stat3 activation
Ghosh et al. Protection of acetaminophen induced mitochondrial dysfunctions and hepatic necrosis via Akt-NF-κB pathway: Role of a novel plant protein
Liao et al. Baicalin attenuates IL-17-mediated acetaminophen-induced liver injury in a mouse model
Teoh et al. Short‐term therapy with peroxisome proliferation‐activator receptor‐α agonist Wy‐14,643 protects murine fatty liver against ischemia–reperfusion injury
Ho et al. Ganoderma lucidum polysaccharide peptide reduced the production of proinflammatory cytokines in activated rheumatoid synovial fibroblast
Gardner et al. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase
WO2016203499A1 (en) Synergistic beverage composition
Jiang et al. Anti-tumor-promoting action of FK506, a potent immunosuppressive agent
Laskin Role of macrophages and endothelial cells in hepatotoxicity
Hermes et al. Escalating morphine dosing in HIV-1 Tat transgenic mice with sustained Tat exposure reveals an allostatic shift in neuroinflammatory regulation accompanied by increased neuroprotective non-endocannabinoid lipid signaling molecules and amino acids
Chandler et al. Angiotensin II decreases inducible nitric oxide synthase expression in rat astroglial cultures
Mandolesi et al. Interferon-γ causes mood abnormalities by altering cannabinoid CB1 receptor function in the mouse striatum
KR101502221B1 (en) Hepatoprotective Composition Comprising Thiacremonone As Active Ingredient
Pulliam et al. CPI-1189 attenuates effects of suspected neurotoxins associated with AIDS dementia: a possible role for ERK activation
Hachmo et al. The small tellurium compound AS101 ameliorates rat crescentic glomerulonephritis: association with inhibition of macrophage caspase-1 activity via very late antigen-4 inactivation
Laemont et al. Effects of the phosphodiesterase inhibitor rolipram on streptococcal cell wall-induced arthritis in rats
Zhang et al. Protective effect of anisodamine against Shiga toxin-1: Inhibition of cytokine production and increase in the survival of mice
Kim et al. Research Article Curative Effects of Thiacremonone against Acetaminophen-Induced Acute Hepatic Failure via Inhibition of Proinflammatory Cytokines Production and Infiltration of Cytotoxic Immune Cells and Kupffer Cells
Chen et al. A synergistic effect between PG490-88 and tacrolimus prolongs renal allograft survival in monkeys
Scieszka et al. Neuroinflammatory and neurometabolic consequences from inhaled 2020 California wildfire smoke-derived particulate matter at a remote location

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant