KR101491943B1 - 트랜잭션 로그 복구 - Google Patents

트랜잭션 로그 복구 Download PDF

Info

Publication number
KR101491943B1
KR101491943B1 KR1020137015563A KR20137015563A KR101491943B1 KR 101491943 B1 KR101491943 B1 KR 101491943B1 KR 1020137015563 A KR1020137015563 A KR 1020137015563A KR 20137015563 A KR20137015563 A KR 20137015563A KR 101491943 B1 KR101491943 B1 KR 101491943B1
Authority
KR
South Korea
Prior art keywords
memory
transaction log
data
page
information
Prior art date
Application number
KR1020137015563A
Other languages
English (en)
Other versions
KR20130088173A (ko
Inventor
조셉 엠. 제들로
Original Assignee
마이크론 테크놀로지, 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마이크론 테크놀로지, 인크 filed Critical 마이크론 테크놀로지, 인크
Publication of KR20130088173A publication Critical patent/KR20130088173A/ko
Application granted granted Critical
Publication of KR101491943B1 publication Critical patent/KR101491943B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1415Saving, restoring, recovering or retrying at system level
    • G06F11/1441Resetting or repowering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/10Address translation
    • G06F12/1009Address translation using page tables, e.g. page table structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1471Saving, restoring, recovering or retrying involving logging of persistent data for recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Debugging And Monitoring (AREA)

Abstract

본 발명은 메모리에 있는 트랜잭션 로그를 복구하는 방법을 포함한다. 하나의 이러한 방법은 기록 패턴을 결정하기 위해 트랜잭션 로그에 저장된 다수의 엔트리를 조사하는 단계, 상기 기록 패턴에 기초하여 상기 메모리를 판독하는 단계, 상기 기록 패턴에 기초하여 상기 메모리로부터 판독된 데이터와 연관된 정보로 트랜잭션 로그를 업데이트하는 단계 및 상기 트랜잭션 로그를 사용하여 논리적 어드레스(LA) 테이블을 업데이트하는 단계를 포함한다.

Description

트랜잭션 로그 복구{TRANSACTION LOG RECOVERY}
본 발명은 일반적으로 반도체 메모리 디바이스, 방법, 및 시스템에 관한 것이고, 보다 상세하게는 트랜잭션 로그 복구(transaction log recovery)에 관한 것이다.
메모리 디바이스는 일반적으로 컴퓨터 또는 다른 전자 디바이스에서 내부, 반도체, 집적 회로로 제공된다. 여기에는 휘발성 및 비휘발성 메모리를 포함하는 많은 상이한 유형의 메모리가 있다. 휘발성 메모리는 그 데이터를 유지하는데 전력을 요구할 수 있으며, 특히 RAM(random-access memory), DRAM(dynamic random access memory) 및 SDRAM(synchronous dynamic random access memory)을 포함한다. 비 휘발성 메모리는 전력 투입이 없을 때에도 저장된 정보를 유지하는 것에 의해 영구적으로 정보를 제공할 수 있는 것으로, 특히 NAND 플래시 메모리, NOR 플래시 메모리, ROM(read only memory), EEPROM(Electrically Erasable Programmable ROM), EPROM(Erasable Programmable ROM), PCRAM(phase change random access memory)을 포함할 수 있다.
메모리 디바이스는 고체 상태 드라이브(solid state drive)(SSD)를 형성하도록 서로 결합될 수 있다. 고체 상태 드라이브는 여러 다른 유형의 비 휘발성 메모리 및 휘발성 메모리 중에서, 특히 비 휘발성 메모리, 예를 들어, NAND 플래시 메모리 및 NOR 플래시 메모리를 포함하고/하거나, 휘발성 메모리, 예를 들어, DRAM 및 SRAM을 포함할 수 있다. 질화물 층에 전하 트랩에 정보를 저장하는 반도체-산화물-질화물-산화물-반도체 및 금속-산화물-질화물-산화물-반도체 커패시터 구조를 사용하는 플로팅 게이트 플래시(floating gate flash) 디바이스와 전하 트랩 플래시(CTF: charge trap flash) 디바이스를 포함하는 플래시 메모리 디바이스는 광범위한 전자 응용을 위한 비휘발성 메모리로 사용될 수 있다. 플래시 메모리 디바이스는 일반적으로 높은 메모리 밀도, 높은 신뢰성, 및 낮은 전력 소비를 허용하는 하나의 트랜지스터 메모리 셀을 사용한다.
SSD는 성능, 사이즈, 중량, 러기드니스(ruggedness), 동작 온도 범위 및 전력 소비량 면에서 하드 드라이브에 비해 이점을 가질 수 있으므로 SSD는 컴퓨터를 위한 메인 저장 디바이스로서 하드 디스크 드라이브를 대체하는데 사용될 수 있다. 예를 들어, SSD는 이동 부분이 없는 것으로 인해 자기 디스크 드라이브에 비해 자기 디스크 드라이브와 연관된 탐색 시간, 지체, 및 다른 전기-기계 지연을 피할 수 있는 우수한 성능을 구비할 수 있다. SSD 제조사는 내부 배터리 공급원을 사용하지 않을 수 있는 플래시 SSD를 생성하는데 비 휘발성 플래시 메모리를 사용하여 드라이브를 보다 다양하고 컴팩트하게 할 수 있다.
SSD는 다수의 메모리 디바이스, 예를 들어, 다수의 메모리 칩을 포함할 수 있다(본 명세서에 사용된 바와 같이, 어떤 것의 "다수"란 이러한 것의 하나 이상을 말할 수 있고, 예를 들어, 다수의 메모리 디바이스는 하나 이상의 메모리 디바이스를 말할 수 있다. 이 기술 분야에 통상의 지식을 가진 자라면 이해할 수 있는 바와 같이, 메모리 칩(chip)은 다수의 다이(die) 및/또는 논리적 유닛(LUN: logical unit)을 포함할 수 있다. 각 다이는 다수의 메모리 어레이 및 주변 회로를 포함할 수 있다. 메모리 어레이는 다수의 물리적 페이지로 구성된 다수의 메모리 셀을 포함할 수 있고, 여기서 물리적 페이지는 다수의 블록으로 구성될 수 있다.
SSD는 논리 블록 어드레스(LBA: logical block address) 테이블과 같은 논리 어드레스(LA: logical address) 테이블을 포함할 수 있다. LBA 테이블은 데이터의 논리적 어드레스를 SSD의 메모리 어레이에 있는 데이터의 물리적 위치로 연결하는 정보를 레코드하는데 사용될 수 있다. LBA 테이블은 고체 상태 드라이브에서 휘발성 메모리에 저장될 수 있고, LBA 테이블의 사본(copy)은 고체 상태 드라이브에서 비휘발성 메모리에 또한 저장될 수 있다. LBA 테이블은 고체 상태 드라이브에 판독 요청이 개시될 때 데이터를 판독하기 위해 고체 상태 드라이브에서 데이터의 물리적 위치를 찾는데 사용될 수 있다. 특정 논리적 어드레스에서 데이터의 판독 요청은 호스트에 의해 개시될 수 있다. 논리적 어드레스는 LBA 테이블에서 찾을 수 있고 대응하는 물리적 어드레스가 지시될 수 있다. 고체 상태 드라이브는 고체 상태 드라이에 대한 판독 요청을 완료하는데 지시된 물리적 어드레스로부터 데이터를 판독할 수 있다.
고체 상태 드라이브에서 데이터에 대한 논리적 어드레스와 물리적 어드레스 사이의 관계에 관한 현재의, 예를 들어, 가장 최근의 정보를 가지는 LBA 테이블을 구비하지 않는 고체 상태 드라이브는 고체 상태 드라이브에서 일부 데이터를 액세스가능하지 않게 할 수 있다. 그러므로, 현재 LBA 테이블은 고체 상태 드라이브에서 데이터 전부에 완전한 액세스를 하는데 바람직하다. 고체 상태 드라이브에서 LBA 테이블은 LBA 테이블이 휘발성 메모리에 저장되고 및/또는 LBA 테이블이 비휘발성 메모리에 주기적으로 저장되어서 전력 인터럽트 후에 손실되거나 불완전할 수 있다. 그러므로, 전력 인터럽트는 고체 상태 드라이브로 하여금 전력 인터럽트 직전 시간에 고체 상태 드라이브에 기록된 데이터에 관한 정보를 구비하지 않는 LBA 테이블을 가지게 할 수 있다.
도 1은 본 발명의 하나 이상의 실시예에 따른 적어도 하나의 시스템을 포함하는 컴퓨팅 시스템의 기능 블록도;
도 2는 본 발명의 하나 이상의 실시예에 따른 메모리 시스템의 기능 블록도;
도 3은 본 발명의 하나 이상의 실시예에 따른 비휘발성 메모리에 있는 트랜잭션 로그, 블록 테이블, 및 논리 블록 어드레스(LBA) 테이블의 블록도;
도 4는 본 발명의 하나 이상의 실시예에 따른 트랜잭션 로그를 예시하는 테이블;
도 5는 본 발명의 하나 이상의 실시예에 따른 블록 테이블을 예시한 테이블;
도 6은 본 발명의 하나 이상의 실시예에 따른 논리적 블록 어드레스(LBA) 테이블을 예시한 테이블;
도 7은 본 발명의 하나 이상의 실시예에 따른 트랜잭션 로그 복구를 예시하는 방법 흐름도.
본 발명은 메모리에서 트랜잭션 로그 복구를 위한 방법을 포함한다. 하나의 이러한 방법은 기록 패턴을 결정하기 위해 트랜잭션 로그에 저장된 엔트리(entry)의 수를 조사하는 단계; 상기 기록 패턴에 기초하여 메모리를 판독하는 단계; 상기 기록 패턴에 기초하여 메모리로부터 판독된 데이터와 연관된 정보로 트랜잭션 로그를 업데이트하는 단계; 및 상기 트랜잭션 로그를 사용하여 논리적 어드레스(LA) 테이블을 업데이트하는 단계를 포함한다.
본 발명의 이하 상세한 설명에서는, 본 발명의 하나 이상의 실시예를 실시할 수 있는 방법을 예를 들어 도시하고 본 명세서의 일부를 형성하는 첨부 도면을 참조한다. 이들 실시예는 이 기술 분야에 통상의 지식을 가진 자라면 본 발명의 실시예를 실시할 수 있을 만큼 충분히 상세히 설명되고, 다른 실시예들이 사용될 수도 있으며 본 발명의 범위를 벗어남이 없이 공정, 전기적, 및/또는 구조적 변경이 이루어질 수 있는 것으로 이해된다.
본 발명의 이하 상세한 설명에서는, 본 발명의 하나 이상의 실시예를 실시할 수 있는 방법을 예를 들어 도시하고 본 명세서의 일부를 형성하는 첨부 도면을 참조한다. 이들 실시예는 이 기술 분야에 통상의 지식을 가진 자라면 본 발명의 실시예를 실시할 수 있을 만큼 충분히 상세히 설명되고, 다른 실시예들이 사용될 수도 있으며 본 발명의 범위를 벗어남이 없이 공정, 전기적, 및/또는 구조적 변경이 이루어질 수 있는 것으로 이해된다. 본 명세서에 사용된 바와 같이, 특히 도면에 있는 참조 부호에서 지시자 "N", "M" 및 "R"은 이렇게 지시된 다수의 특정 특징부의 부호가 본 발명의 하나 이상의 실시예에 포함될 수 있다는 것을 나타낸다.
본 명세서에 있는 도면은 첫 번째 숫자 또는 숫자들이 도면 번호에 대응하고 나머지 숫자는 도면에서 요소 또는 성분을 식별하는 도면 부호 부여 규정을 따른다. 상이한 도면들 사이에서 유사한 요소 또는 성분은 유사한 숫자를 사용하여 식별될 수 있다. 예를 들어, 108은 도 1에서 요소 "08"를 나타낼 수 있고, 도 2에 있는 유사한 요소는 208로 언급될 수 있다. 이해되는 바와 같이, 본 명세서에서 여러 실시예에 도시된 요소는 본 발명의 다수의 추가적인 실시예를 제공하도록 추가, 교환 및/또는 제거될 수 있다. 나아가, 이해되는 바와 같이, 도면에 제공된 요소의 비율과 상대적인 축척은 본 발명의 특정 실시예를 예시하려고 의도된 것이므로 발명을 제한하는 것으로 해석되어서는 안 된다.
도 1은 본 발명의 하나 이상의 실시예에 따라 적어도 하나의 메모리 시스템(104)을 포함하는 컴퓨팅 시스템(100)의 기능 블록도이다. 도 1에 도시된 실시예에서, 메모리 시스템(104), 예를 들어, 고체 상태 드라이브(SSD: solid state drive)는 물리적 호스트 인터페이스(106), 제어기(108), 예를 들어, 메모리 시스템 제어 회로, 및 하나 이상의 고체 상태 메모리 디바이스(110-1, ... , 110-N)를 포함할 수 있다. 고체 상태 메모리 디바이스(110-1, ... , 110-N)는 예를 들어 메모리 디바이스로 포맷된 파일 시스템을 구비하는 메모리 시스템을 위한 저장 볼륨을 제공할 수 있다. 하나 이상의 실시예에서, 제어기(108)는 물리적 인터페이스(106)와 고체 상태 메모리 디바이스(110-1, ... , 110-N)를 포함하는 인쇄 회로 보드에 연결된 응용 특정 집적 회로(ASIC: application specific integrated circuit)일 수 있다.
도 1에 도시된 바와 같이, 제어기(108)는 물리적 호스트 인터페이스(106)에 및 고체 상태 메모리 디바이스(110-1, ... , 110-N)에 연결될 수 있다. 물리적 호스트 인터페이스(106)는 메모리 시스템(104)과, 호스트 시스템(102)와 같은 다른 디바이스 사이에 정보를 전달하는데 사용될 수 있다. 호스트 시스템(102)은 메모리 액세스 디바이스, 예를 들어, 프로세서를 포함할 수 있다. 이 기술 분야에 통상의 지식을 가진 자라면, "프로세서"는 병렬 처리 시스템, 다수의 코프로세서 등과 같은 하나 이상의 프로세서를 의도할 수 있다는 것을 이해할 수 있을 것이다. 호스트 시스템의 예로는 랩탑 컴퓨터, 퍼스널 컴퓨터, 디지털 카메라, 디지털 레코딩 및 플레이백 디바이스, 모바일 전화, PDA, 메모리 카드 리더(memory card reader), 인터페이스 허브(hub) 등을 포함한다. 하나 이상의 실시예에서, 물리적 호스트 인터페이스(106)는 표준화된 인터페이스 형태일 수 있다. 예를 들어, 메모리 시스템(104)이 컴퓨팅 시스템(100)에 데이터를 저장하는데 사용될 때, 물리적 호스트 인터페이스(106)는 다른 커넥터 및 인터페이스 중에서 SATA(serial advanced technology attachment), PCIe(peripheral component interconnect express), 또는 USB(universal serial bus)일 수 있다. 그러나, 일반적으로, 물리적 호스트 인터페이스(106)는 메모리 시스템(104)과, 물리적 호스트 인터페이스(106)에 대한 호환가능한 리셉터를 구비하는 호스트 시스템(102) 사이에 제어, 어드레스, 데이터, 및 다른 신호를 전달하는 인터페이스를 제공할 수 있다.
제어기(108)는 다른 동작 중에서 데이터를 판독, 기록, 및 소거하기 위해 고체 상태 메모리 디바이스(110-1, ... , 110-N)와 통신할 수 있다. 제어기(108)는 하나 이상의 집적 회로 및/또는 이산 성분일 수 있는 회로를 구비할 수 있다. 하나 이상의 실시예에서, 제어기(108) 내 회로는 고체 상태 메모리 디바이스(110-1, ... , 110-N)에 액세스를 제어하는 제어 회로와, 호스트 시스템(102)과 메모리 시스템(104) 사이에 변환 층(translation layer)을 제공하는 회로를 포함할 수 있다. 따라서, 메모리 제어기는 고체 상태 메모리 디바이스(110-1, ... , 110-N)의 I/O 커넥션(도 1에 미도시)을 선택적으로 연결하여 적절한 시간에 적절한 I/O 커넥션에서 적절한 신호를 수신할 수 있다. 유사하게, 호스트 시스템(102)과 메모리 시스템(104) 사이에 통신 프로토콜은 고체 상태 메모리 디바이스(110-1, ... , 110-N)에 액세스하는데 필요한 것과는 상이할 수 있다. 제어기(108)는 고체 상태 메모리 디바이스(110-1, ... , 110-N)에 원하는 액세스를 달성하기 위해 호스트로부터 수신된 명령을 적절한 명령으로 변환할 수 있다.
고체 상태 메모리 디바이스(110-1, ... , 110-N)는 하나 이상의 메모리 셀의 어레이, 예를 들어, 비휘발성 메모리 셀을 포함할 수 있다. 어레이는 예를 들어, NAND 아키텍처를 가지는 플래시 어레이일 수 있다. NAND 아키텍처에서, "행(row)"의 메모리 셀의 제어 게이트는 액세스 라인, 예를 들어, 워드 라인과 연결될 수 있는 반면, 메모리 셀은 선택 게이트 소스 트랜지스터와 선택 게이트 드레인 트랜지스터 사이에 "스트링(string)"으로 직렬로 소스에서 드레인으로 연결될 수 있다. 이 스트링은, 선택 게이트 드레인 트랜지스터에 의해 데이터 라인, 예를 들어, 비트 라인에 연결될 수 있다. "행"과 "스트링"이라는 용어의 사용은 메모리 셀의 선형 배열이나 직교 배열을 의미하는 것이 전혀 아니다. 이 기술 분야에 통상의 지식을 가진 자라면 이해할 수 있는 바와 같이, 비트 라인과 소스 라인에 메모리 셀을 연결하는 방식은 어레이가 NAND 아키텍처인지, NOR 아키텍처인지, 또는 일부 다른 메모리 어레이 아키텍처인지에 따라 좌우된다.
고체 상태 메모리 디바이스(110-1, ... , 110-N)는 그룹화될 수 있는 다수의 메모리 셀을 포함할 수 있다. 본 명세서에 사용된 바와 같이, 그룹은 메모리 셀의 페이지, 블록, 플랜(plane), 다이, 전체 어레이, 또는 다른 그룹과 같은 하나 이상의 메모리 셀을 포함할 수 있다. 예르르 들어, 일부 메모리 어레이는 메모리 셀의 블록을 구성하는 메모리 셀의 다수의 페이지를 포함할 수 있다. 다수의 블록은 메모리 셀의 플랜에 포함될 수 있다. 메모리 셀의 다수의 플랜은 하나의 다이에 포함될 수 있다. 일례로써, 128GB 메모리 디바이스는 페이지당 4314 데이터 바이트, 블록당 128페이지, 플랜당 2048 블록, 및 디바이스당 16 플랜을 포함할 수 있다.
고체 상태 메모리 디바이스(110-1, ... , 110-N)는 다수의 채널을 포함할 수 있고, 각 채널은 다수의 다이를 포함할 수 있다. 각 채널은 논리적 유닛 수(LUN: logical unit number)를 사용하여 구성될 수 있다. 데이터를 고체 상태 메모리 디바이스(110-1, ... , 110-N)에 기록할 때, 데이터는 다수의 채널과 LUN에 걸쳐 스트라이프(striped)될 수 있다. 데이터는 채널과 연관된 메모리 셀 중에서 예측 패턴으로 데이터를 스트라이프하는 기록 패턴 알고리즘을 사용하여 고체 상태 메모리 디바이스(110-1, ... , 110-N)에 기록될 수 있다. 데이터를 기록하는 것은 호스트에 의해 채널에 송신되는 데이터 트래픽을 처리하는 채널의 능력에 의하여 제한될 수 있으므로, 더 많은 데이터를 다수의 채널에 기록하고 판독하기 위해 메모리 시스템에 의해 다수의 채널을 사용할 수 있다.
메모리 디바이스에서, 물리적 페이지는 기록 및/또는 판독하는 유닛, 예를 들어, 메모리 셀의 기능 그룹으로 또는 함께 기록 및/또는 판독되는 다수의 셀을 말할 수 있다. 짝수 페이지와 홀수 페이지는 별개의 기록 동작 및/또는 판독 동작에서 기록 및/또는 판독될 수 있다. 다수 레벨 셀(MLC: multilevel cell)을 포함하는 실시예에서, 물리적 페이지는 데이터의 상부 페이지(upper page)와 하부 페이지(lower page)로 논리적으로 분할될 수 있다. 예를 들어, 하나의 메모리 셀은 하나 이상의 비트를 데이터의 상부 페이지에 제공하고 하나 이상의 비트를 데이터의 하부 페이지에 제공할 수 있다. 따라서, 데이터의 상부 페이지와 하부 페이지는 논리적 상부 페이지와 논리적 하부 페이지가 동일한 물리적 페이지의 일부일 때 하나의 기록 동작 및/또는 판독 동작의 일부로 기록 및/또는 판독될 수 있다.
메모리 시스템(104)은 고체 상태 메모리 디바이스(110-1, ... , 110-N)에서 마모 율(wear rate)을 제어하는 마모 레벨링(wear leveling)을 구현할 수 있다. 고체 상태 메모리 어레이는 일정 수의 프로그램 및/또는 소거 사이클 후에 고장을 나타낼 수 있다. 마모 레벨링은 특정 그룹에 수행된 일정 수의 프로그램 및/또는 소거 사이클을 감소시킬 수 있다. 마모 레벨링은 블록을 재사용(reclaim)하도록 이동된 유효 블록의 양을 최소화시키도록 동적 마모 레벨링을 포함할 수 있다. 동적 마모 레벨링은 임계 양을 초과하는 무효 페이지를 가지는 블록이 블록을 소거하는 것에 의해 재사용되는 가비지 콜렉션(garbage collection)이라고 불리는 기술을 포함할 수 있다. 예를 들어, 무효 페이지는 여러 페이지에 업데이트되고 저장된 데이터의 페이지일 수 있다. 정적 마모 레벨링은 블록의 수명을 연장시키기 위해 높은 소거 카운트를 가지는 블록에 정적 데이터를 기록하는 것을 포함할 수 있다.
도 1의 실시예는 본 발명의 실시예를 불명확하게 하지 않게 하기 위하여 도시되지 않은 추가적인 회로를 포함할 수 있다. 예를 들어, 메모리 시스템(104)은 I/O 회로를 통해 I/O 커넥션을 통해 제공된 어드레스 신호를 래칭(latch)하는 어드레스 회로를 포함할 수 있다. 어드레스 신호는 고체 상태 메모리 디바이스((110-1, ... , 110-N))에 액세스하는데 행 디코더와 열 디코더에 의해 수신되고 디코딩될 수 있다. 이 기술 분야에 통상의 지식을 가진 자라면 어드레스 입력 연결의 수는 고체 상태 메모리 디바이스(110-1, ... , 110-N)의 밀도와 아키텍처에 좌우된다는 것을 이해할 수 있을 것이다.
도 2는 본 발명의 하나 이상의 실시예에 따른 메모리 시스템(204)의 기능 블록도이다. 메모리 시스템(204)은 제어기(208)를 포함할 수 있다. 제어기(208)는 하나 이상의 고체 상태 메모리 디바이스, 예를 들어, 비휘발성 메모리(210) 및/또는 휘발성 메모리(212)에 연결될 수 있다. 메모리 시스템(204)과 제어기(208)는 도 1에 각각 도시된 메모리 시스템(104)과 제어기(108)와 유사할 수 있다.
제어기(208)는 호스트 인터페이스 회로(214), 호스트-메모리 변환 회로(216), 메모리 관리 회로(218), 스위치(220), 비휘발성 메모리 제어 회로(222), 및/또는 휘발성 메모리 제어 회로(224)를 포함할 수 있다. 본 명세서에 기술된 바와 같이, 제어기(208)는 ASIC 형태로 제공될 수 있으나, 실시예는 이로 제한되지 않는다.
호스트 인터페이스 회로(214)는 호스트-메모리 변환 회로(216)에 연결될 수 있다. 호스트 인터페이스 회로(214)는 도 1에 도시된 물리적 인터페이스(106)와 같은 호스트 시스템에 연결되거나 및/또는 이 호스트 시스템에 물리적 인터페이스를 통해 연결될 수 있다.
일반적으로, 호스트 인터페이스 회로(214)는 호스트 시스템으로부터, 예를 들어, PCIe 버스로부터 수신된 명령 패킷을 호스트-메모리 변환 회로(216)를 위한 명령 인스트럭션(command instruction)으로 변환하고, 메모리 응답을 요청 호스트로 전달하기 위한 호스트 시스템 명령으로 변환하는 일을 담당한다. 예를 들어, 호스트 인터페이스 회로(214)는 PCIe 기반 트랜잭션 층 패킷으로부터 SATA 명령 패킷을 구성할 수 있다.
호스트-메모리 변환 회로(216)는 호스트 인터페이스 회로(214)에, 메모리 관리 회로(218)에 및/또는 스위치(220)에 연결될 수 있다. 호스트-메모리 변환 회로(216)는 (예를 들어, 수신된 명령과 연관된) 논리적(예를 들어, 호스트) 어드레스를 물리적 메모리 어드레스로 변환하도록 구성될 수 있다. 예를 들어, 호스트-메모리 변환 회로(216)는 호스트 섹터 판독 및 기록 명령을 비휘발성 메모리(210)의 특정 부분을 향하는 명령으로 변환할 수 있다. 각 호스트 동작은 단일 또는 다수 섹터의 비휘발성 메모리(210) 동작으로 변환될 수 있다.
메모리 관리 회로(218)는 호스트-메모리 변환 회로(216) 및/또는 스위치(220)에 연결될 수 있다. 메모리 관리 회로(218)는 예를 들어, 프로세서(228)의 동작을 통해 기록, 판독, 초기화, 마모 레벨링(예를 들어, 가비지 콜렉션 및/또는 블록 재사용), 및 에러 정정을 포함하나 이로 제한되지 않는 다수의 처리를 제어할 수 있다. 트랜잭션 로그 복구 처리에서, 메모리 관리 회로(218)는 데이터가 어디에 기록되었는지 및 데이터를 그 다음에 어디에 기록해야 할지를 결정하기 위해 기록 패턴 알고리즘(230)에 의해 생성된 기록 패턴을 사용할 수 있다. 기록 패턴 알고리즘은 제어기(208)로 하여금 예측 패턴으로 다수의 채널에 위치된 메모리 셀에 데이터를 기록하게 할 수 있다. 호스트 기록을 위한 기록 패턴은 기록 패턴 알고리즘(230)에 따라 수립될 수 있고, 재사용 기록을 위한 기록 패턴은 기록 패턴 알고리즘(230)에 따라 수립될 수 있다. 일부 실시예에서, 기록 패턴은 예측 패턴으로 기록된 메모리 셀을 포함할 수 있다. 기록 패턴은 최저 어드레스로부터 최고 어드레스로 각 채널에 블록을 채우는 것에 의해 채널에 걸쳐 데이터를 기록하는 것을 포함할 수 있다. 예를 들어, 제어기는 기록 패턴을 생성하는 기록 패턴 알고리즘에 따라 제1 채널에 있는 페이지에 데이터를 기록한 다음, 제2 채널에 있는 페이지에 데이터를 기록하고, 이후 제3 채널에 있는 페이지에 데이터를 기록하며, 다시 제1 채널에 있는 다른 페이지에 데이터를 기록할 수 있다. 데이터를 기록할 때, 데이터는 기록 패턴 알고리즘을 사용하여 블록이 가득 찰 때까지 채널에 있는 블록에 한번에 하나의 페이지씩 기록된 후에, 데이터는 기록 패턴 알고리즘에 따라 다시 채널에 기록될 때 채널에 있는 새로운 블록에서 시작하여 기록될 수 있다. 메모리 관리 회로(218)는 (예를 들어, 데이터에 대한 마모 레벨링 또는 업데이트의 일부로서) 논리적 어드레스와 연관된 데이터가 새로운 물리적 어드레스에 기록될 때 논리적 어드레스에 대응하는 새로운 물리적 어드레스로 LBA 테이블, 예를 들어, LBA 테이블(234)을 업데이트할 수 있다.
메모리 관리 회로(218)는 마모 레벨링을 위한 후보를 결정하기 위해 테이블, 예를 들어, 블록 테이블(236)에 액세스할 수 있다. 메모리 관리 회로(218)는 예를 들어, 정적 마모 레벨링 동작의 일부로써 블록 테이블(236)에서 높은 소거 카운트를 가지는 블록을 검색할 수 있다. 메모리 관리 회로는 임계 카운트와 특정 블록의 소거 카운트를 비교할 수 있다. 예를 들어, 최저 소거 카운트를 가지는 블록의 소거 카운트는 특정 블록으로부터 감산될 수 있다. 차이가 임계 카운트보다 더 큰 경우, 특정 블록은 블록 재사용을 위한 후보로써 지시될 수 있다.
메모리 관리 회로(218)는 예를 들어 동적 마모 레벨링 동작의 일부로써 무효 부분, 예를 들어 미사용된 부분, 예를 들어, 페이지의 가비지 콜렉션 임계량을 가지는 블록을 검색할 수 있다. 재사용은 가비지 콜렉션 및/또는 마모 레벨링의 결과로써 메모리 관리 회로(218)에 의해 호출될 수 있는 공정(process)이다. 재사용은 블록이 소거되기 전에 소거될 블록에 있는 위치로부터 다른 블록에 있는 위치로 모든 유효 데이터를 이동시키는 것을 수반할 수 있다.
스위치(220)는 호스트-메모리 변환 회로(216), 메모리 관리 회로(218), 비휘발성 제어 회로(222), 및/또는 휘발성 메모리 제어 회로(224)에 연결될 수 있다. 스위치(220)는 크로스바 스위치(crossbar switch)일 수 있고, 하나 이상의 버퍼, 예를 들어, 정적 랜덤 액세스 메모리(SRAM: static random access memory) 버퍼를 포함하거나 및/또는 이에 연결될 수 있다. 스위치(220)는 제어기(208)의 여러 성분들 사이에 인터페이스를 제공할 수 있다. 스위치(220)는 성분들 사이에 일관된 액세스와 구현을 제공하기 위하여 제어기(208)의 여러 성분과 연관될 수 있는 한정된 신호 프로토콜에서의 변화를 고려할 수 있다. 하나 이상의 실시예에서, 스위치(220)는 직접 메모리 액세스(DMA: direct memory access) 모듈일 수 있다.
제어기, 예를 들어, 비휘발성 메모리 제어 회로(222)는 스위치(220)에 그리고 하나 이상의 비휘발성 메모리 디바이스(210)에 연결될 수 있다. 다른 정보 중에서, 특히 하나 이상의 비휘발성 메모리 디바이스(210)는 본 명세서에 설명된 바와 같이 트랜잭션 로그(238), 논리적 블록 어드레스(LBA) 테이블(234-C)과 같은 논리적 어드레스(LA) 테이블의 사본, 및/또는 블록 테이블(236-C)과 같은 그룹 테이블을 저장할 수 있다. 일부 실시예에서, 제어기(208)는 모든 메모리 채널에 대해 하나의 비휘발성 메모리 제어기를 포함할 수 있다. 다른 실시예에서, 각 메모리 채널은 이산 비휘발성 메모리 제어기에 연결된다.
휘발성 메모리 제어 회로(224)는 스위치(220)에 및 하나 이상의 휘발성 메모리 디바이스(212)에 연결될 수 있다. 다른 정보 중에서, 특히 하나 이상의 휘발성 메모리 디바이스는 LBA 테이블(234) 및/또는 블록 테이블(236)을 저장할 수 있다. LBA 테이블(234)은 하나 이상의 비휘발성 메모리 디바이스(210)에 페이지의 물리적 어드레스를 저장하고 대응하는 논리적 어드레스를 포함할 수 있다. LBA 테이블(234)은 연관된 SATA 명령에 포함된 LBA에 의해 색인될 수 있다. LBA 테이블(234)은 예를 들어 논리적 블록 어드레스에 대응하는 물리적 페이지 어드레스를 룩업(look-up)하기 위해 호스트-메모리 변환 회로(216)에 의해 사용될 수 있다. 블록 테이블(236)은 하나 이상의 비휘발성 메모리 디바이스(210)에 소거가능한 블록에 대한 정보를 저장할 수 있다. 블록 테이블(236)에 저장된 정보는 유효 페이지 정보, 소거 카운트, 및 다른 상태 정보를 포함할 수 있다. 블록 테이블(236)로부터 액세스되는 정보는 물리적 블록 어드레스에 의해 색인될 수 있다.
도 3은 본 발명의 하나 이상의 실시예에 따라 비휘발성 메모리(310)에 트랜잭션 로그(338), 블록 테이블(334), 및 논리적 블록 어드레스(LBA) 테이블(336)의 블록도를 도시한다. 다른 정보 중에서, 특히 비휘발성 메모리(310)는 LBA 테이블(336), 블록 테이블(334), 및/또는 트랜잭션 로그(338)에 다른 정보 중에서 위치, 상태 정보에 대한 논리적 어드레스, 물리적 어드레스, 데이터 유형, 소거 카운트를 포함할 수 있는 기록 동작 정보를 저장할 수 있다.
휘발성 메모리에 저장된 LBA 테이블의 사본은 비휘발성 메모리(310)에 LBA 테이블(336)로 주기적으로, 예를 들어 다른 주기적인 간격 중에서 적어도 매 300초마다 저장될 수 있다. 예를 들어, LBA 테이블(336)은 매 120초마다 비휘발성 메모리(310)에 저장될 수 있다. 휘발성 메모리에 있는 LBA 테이블은 고체 상태 드라이브에 각 기록 후에 업데이트될 수 있다. 비휘발성 메모리 디바이스에서 LBA 테이블을 업데이트하는 빈도에 대한 시간 주기는 다른 요인 중에서 특히 메모리 시스템이 수행하는 기록 빈도 및/또는 데이터가 기록되는 속도에 좌우될 수 있다.
트랜잭션 로그(338)는 비휘발성 메모리에 저장되어, 메모리 디바이스에서 발생하는 기록에 대한 정보를 레코드하는데 사용될 수 있다. 다수의 메모리 디바이스를 구비하는 메모리 시스템은 메모리 디바이스에서 발생하는 기록에 대한 정보를 포함하는 트랜잭션 로그를 포함할 수 있다. 트랜잭션 로그는 호스트 기록 및/또는 재사용 기록에 대한 정보를 포함할 수 있다. 호스트 기록 및/또는 재사용 기록에 대한 정보는 기록이 메모리에서 발생할 때 트랜잭션 로그에 포함된다. 트랜잭션 로그는 메모리 시스템에서 다수의 메모리 디바이스에 걸쳐 스트라이프될 수 있다. 이 기술 분야에 통상의 지식을 가진 자라면 이해할 수 있는 바와 같이, 스트라이핑은 이 하나를 초과하는 디바이스에 저장되도록 데이터를 분할하는 것을 포함한다. 스트라이핑은 트랜잭션 로그 정보와 같은 기록 데이터를 단편(fragment)으로 분할하고, 적어도 하나의 단편을 다수의 메모리 디바이스 각각에 저장하는 것을 포함할 수 있다. 하나 이상의 실시예에서, 제어기는 각 기록이 메모리 디바이스에서 실행될 때 각 기록에 대한 트랜잭션 로그 정보로 트랜잭션 로그를 업데이트할 수 있다. 트랜잭션 로그는 시간 기간 동안 메모리 디바이스에서 발생하는 모든 기록에 대한 트랜잭션 로그 정보를 포함할 수 있다. 트랜잭션 로그는 LBA 테이블(336)이 비휘발성 메모리(310)에 저장된 마지막 시간 이후 발생한 메모리 디바이스에의 모든 기록에 대한 트랜잭션 로그 정보를 포함할 수 있다.
하나 이상의 실시예에서, 트랜잭션 로그(338)로부터 정보는 예를 들어 마지막 저장과 전력 인터럽트 사이에 비휘발성 메모리에 LBA 테이블(336)이 마지막으로 저장된 이후 시간으로부터 메모리 디바이스(들)에 발생한 기록에 대한 정보로 LBA 테이블(336)의 사본을 업데이트하는데 사용될 수 있다. 그렇지 않은 경우 비휘발성 메모리(310)에 있는 LBA 테이블(336)의 사본은 비휘발성 메모리(310)에 있는 LBA 사본(336)만이 비휘발성 메모리에 복사(copy)된 시간에 휘발성 메모리에 있는 LBA 테이블에 있었던 정보를 구비하므로 손실된 정보일 수 있다. 또한 휘발성 메모리에서 LBA 테이블은 전력 인터럽트 동안 소거되므로, 그렇지 않은 경우 비휘발성 메모리에서 LBA 사본은 비휘발성 메모리(310)에 복사된 마지막 시간과 소거된 때 사이에 휘발성 메모리에 있는 LBA 테이블에 저장되었을 수 있는 정보로 업데이트되지 않을 수 있다. 그러므로, 비휘발성 메모리(310)에 있는 트랜잭션 로그(338)는 비휘발성 메모리에 있는 LBA 테이블에 있는 정보를 업데이트하는데 사용될 수 있다. 트랜잭션 로그(338)는 메모리 디바이스에 데이터를 기록한 시간과 데이터의 위치에 대한 정보를 포함할 수 있다. 트랜잭션 로그(338)에서 데이터의 페이지는 예를 들어 128 기록 동작과 연관된 정보를 포함할 수 있다. 이 정보는 메모리 디바이스에 의해 확인될 수 있고, 이후 LBA 테이블에 입력되어 LBA 테이블(336)을 업데이트할 수 있다. 하나 이상의 실시예에서, 트랜잭션 로그의 마지막 페이지는 전력 인터럽트 동안 손상될 수 있어서 트랜잭션 로그에서 정보의 마지막 페이지는 메모리 어레이에 기록된 가장 최근의 데이터 중 일부에 대한 정보를 포함하지 않을 수 있다.
일부 경우에, 트랜잭션 로그 복구 방법은 저장된 트랜잭션 로그에서 다수의 엔트리를 조사하여 기록 패턴을 결정하고 트랜잭션 로그에서 마지막으로 저장된 기록의 메모리의 위치를 결정하는 것을 포함할 수 있다. 마지막으로 저장된 기록으로부터 정보와 함께 기록 패턴은 기록 패턴, 예를 들어, 트랜잭션 로그에 저장된 연관된 정보 없이 기록 패턴에 있는 제1 기록에서 그 다음 기록의 메모리에서 그 다음 위치를 결정하는데 사용될 수 있다. 메모리에서 페이지는 기록 패턴에 기초하여 순차로 판독될 수 있다. 기록 패턴에 따라 트랜잭션 로그에서 데이터 페이지와 연관된 정보를 가졌어야 하는 그 다음 데이터 페이지가 판독되고, 여기에 데이터 페이지에 기록된 데이터가 존재하는 경우, 이 데이터 페이지와 연관된 메타데이터는 예를 들어 데이터 페이지의 LBA와 같은 이 데이터 페이지와 연관된 정보로 트랜잭션 로그를 업데이트하는데 사용된다. 이후 기록 패턴에 따라 트랜잭션 로그에 있었어야 하는 그 다음 데이터 페이지가 판독되고, 여기에 데이터 페이지에 기록된 데이터가 존재하는 경우, 트랜잭션 로그는 이 페이지와 연관된 정보로 다시 업데이트된다. 이 방법은 전력 인터럽션으로 인해 마지막 기록이 일어난 곳을 나타낸는 소거된 페이지가 발견될 때까지 트랜잭션 로그를 업데이트하는데 사용된다. 하나 이상의 실시예에서, 업데이트된 트랜잭션 로그는 LBA 테이블을 업데이트하는데 사용될 수 있다.
하나 이상의 실시예에서, 트랜잭션 로그 복구 방법이 예를 들어 블록 경계에서 가득찬 블록에 도달할 때, 데이터가 페이지에 기록되었는지 여부를 결정하기 위해 페이지를 판독하는 동안, 기록 패턴은 그 다음 기록이 발생한 블록을 나타내지 않을 수 있다. 트랜잭션 로그 복구 방법은 부분적으로 기록된 블록을 검색할 수 있다. 부분적으로 기록된 블록은, 블록이 가득 찰 때까지 기록 패턴 알고리즘에 따라 한번에 하나씩 주어진 채널에 블록이 기록되므로 전력 인터럽션이 발생할 때 기록 패턴 알고리즘에 따라 기록되고 있었던 블록이다.
부분적으로 기록된 블록은 다수의 블록의 첫 페이지와 마지막 페이지를 판독하고, 기록 패턴에 기초한 순서로 메모리에서 판독된 페이지가 소거된 페이지를 포함하지 않는 블록에 있을 때 부분적으로 기록된 블록에 포함된 데이터의 유형을 결정하는 것에 의해 발견될 수 있다. 첫 페이지가 데이터를 포함하고 마지막 페이지가 소거된 경우 블록은 부분적으로 기록되고 이 부분적으로 기록된 블록은 전력 인터럽션이 발생할 때 데이터가 기록되고 있었던 블록으로 식별된다. 부분적으로 기록된 블록이 발견되면, 호스트 데이터로 또는 재사용 데이터로 기록되는지 여부에 대한 결정이 트랜잭션 로그에서 호스트 기록 식별자 및/또는 재사용 기록 식별자를 사용하여 이루어질 수 있다. 재사용 데이터는 마모 레벨링 및/또는 가비지 콜렉션 공정의 일부로 기록된 데이터이다. 재사용 데이터를 가지는 부분적으로 기록된 블록은 재사용 데이터에 대한 기록 확인이 수신될 때까지 마모 레벨링 및/또는 가비지 콜렉션 동안 데이터가 소거되지 않으므로 블록이 부분적으로 기록된 경우 부분적으로 기록된 블록에서 재사용 데이터가 원래의 위치로부터 소거되지 않았으므로 트랜잭션 로그 복구 공정 동안 무시될 수 있다. 그러므로, 부분적으로 기록된 블록에서 재사용 데이터는 트랜잭션 로그에 저장될 필요가 없다. 호스트 데이터를 가지는 부분적으로 기록된 블록이 발견된 경우, 페이지를 판독하여 이 페이지가 데이터를 포함하는지 결정하고 만약 그런 경우 트랜잭션 로그는 데이터를 포함하는 페이지와 연관된 정보로 업데이트되고, 이 페이지와 연관된 정보는 메타데이터에 포함된 논리적 어드레스일 수 있다. 트랜잭션 로그 복구 공정은 전력 인터럽션으로 인해 기록 패턴이 종료된 위치를 나타내는 소거된 페이지가 발견될 때까지 계속될 수 있다.
하나 이상의 실시예에서, 트랜잭션 로그 복구 공정은 트랜잭션 로그에 있는 정보의 손상된 마지막 페이지를 재생성하도록 기록 패턴을 사용할 수 있다. 비휘발성 메모리에서 LBA 테이블은 이제 완전한 트랜잭션 로그를 가지게 업데이트될 수 있다. 전력 인터럽트 전에 데이터의 위치로 업데이트된 트랜잭션 로그를 사용하여 비휘발성 메모리에서 LBA 테이블의 마지막 저장과 전력 인터럽트의 시간 사이의 기록에 대한 정보를 포함하도록 LBA 테이블을 업데이트할 수 있다.
도 4는 본 발명의 하나 이상의 실시예에 따라 트랜잭션 로그(438)를 예시하는 테이블이다. 도 4에서, 트랜잭션 로그(438)는 메모리 디바이스에 있는 데이터에 대해 물리적 어드레스(452)와 논리적 어드레스(454)를 포함하는 트랜잭션 로그 정보를 포함할 수 있다. 트랜잭션 로그(438)는 메모리 디바이스에서 발생하는 매 기록 위치를 레코드할 수 있고 트랜잭션 로그(438)는 메모리 디바이스에 저장될 수 있다. 트랜잭션 로그는 메모리 시스템에서 다수의 메모리 디바이스에 걸쳐 스트라이프될 수 있다. 하나 이상의 실시예에서, 트랜잭션 로그는 메모리 디바이스에서 발생하는 각 호스트 기록 및 각 재사용 기록을 포함하는 각 트랜잭션을 로그할 수 있고, 메모리 디바이스에서 수행되는 트랜잭션의 제어기 및/또는 메모리 디바이스에 대한 레퍼런스(reference)일 수 있다. 트랜잭션 로그는 휘발성 메모리로부터 LBA 테이블의 사본이 비휘발성 메모리에서 만들어진 후에 소거될 수 있다. 트랜잭션 로그는 트랜잭션 로그를 소거한 후에 발생하는 트랜잭션에 대응하는 새로운 엔트리로 업데이트될 수 있다.
도 4에서, 트랜잭션 로그(438)는 메모리 디바이스에서 발생한 각 트랜잭션을 나타내는 다수의 엔트리(entry)(456-1, 456-2, 456-3, ..., 456-N)를 포함할 수 있다. 트랜잭션 로그(438)에서 엔트리(456-1, 456-2, 456-3, ..., 456-N)는 기록, 판독, 또는 소거와 같은 트랜잭션에 대한 명령(450), 트랜잭션의 물리적 어드레스(452), 트랜잭션의 논리적 어드레스(454), 호스트 기록 식별자(457), 및 재사용 기록 식별자(458)를 포함할 수 있다. 호스트 기록 식별자(457)는 트랜잭션이 호스트에 의해 발신되었다는 것을 나타낼 수 있고, 예를 들어, 데이터 유형이 호스트 데이터라는 것을 나타낼 수 있고, 재사용 기록 식별자(458)는 트랜잭션이 재사용 공정의 일부로서 발신되었다는 것을 나타낼 수 있고, 예를 들어 데이터 유형은 재사용 데이터라는 것을 나타낼 수 있다.
도 5는 본 발명의 하나 이상의 실시예에 따라 블록 테이블(534)을 예시하는 테이블이다. 블록 테이블(534)은 메모리 디바이스에서 블록에 대한 정보를 저장할 수 있다. 블록 테이블(534)에 저장된 정보는 데이터 유효 정보(560), 소거 카운트(562), 및 상태 정보(564)를 포함할 수 있다. 블록 테이블(534)은 다수의 엔트리(566-1, 566-2, 566-3, ..., 566-M)를 포함할 수 있다. 블록 테이블(534)에서 각 엔트리는 물리적 어드레스(552), 데이터 유효 정보(560), 소거 카운트(562), 및 데이터 블록 및/또는 페이지와 같은 데이터에 대한 상태 정보(564)를 포함할 수 있다. 블록 테이블(534)에서 데이터 유효 정보(560)는 블록에서 각 페이지의 유효성, 예를 들어 데이터가 유효한지 또는 유효하지 않은지에 대한 정보를 포함할 수 있다. 블록 테이블(534)에서 소거 카운트(562)는 블록이 소거된 횟수를 나타낼 수 있다. 블록 테이블(534)에서 상태 정보(564)는 블록에 대한 다른 상태 지시자 중에서 특히 블록이 소거되었는지 및/또는 데이터를 포함하는지 여부를 나타낼 수 있다.
도 6은 본 발명의 하나 이상의 실시예에 따라 논리적 블록 어드레스(LBA) 테이블(636)을 예시하는 테이블이다. LBA 테이블(636)은 메모리 디바이스에서 각 데이터 엔트리에 대한 논리적 어드레스(654)와 물리적 어드레스(652)를 저장할 수 있고, 메모리 디바이스에서 각 데이터 엔트리에 대해 논리적 어드레스(654)를 물리적 어드레스(652)로의 변환을 제공할 수 있다. LBA 테이블(636)은 메모리 디바이스에 각 기록을 위해 LBA에 의해 색인될 수 있고, LBA 테이블(636)에서 각 데이터 엔트리에 대해 논리적 어드레스(654)와 물리적 어드레스(652)를 포함하는 다수의 엔트리(670-1, 670-2, 670-3, ..., 670-R)를 포함할 수 있다. LBA는 각 엔트리에서 데이터가 저장되는 대응하는 물리적 어드레스를 룩업하는데 사용될 수 있다. LBA 테이블은 메모리 시스템의 휘발성 메모리에 저장될 수 있고, 휘발성 메모리에서 LBA 테이블의 사본은 주기적으로 비휘발성 메모리에 만들어질 수 있다. LBA 테이블의 사본이 비휘발성 메모리에서 만들어지면, 휘발성 메모리에서 LBA 테이블은 소거될 수 있고 휘발성 메모리에서 LBA 테이블은 휘발성 메모리에서 LBA 테이블을 소거한 후에 발생하는 트랜잭션에 대응하는 새로운 엔트리로 업데이트될 수 있다.
도 7은 본 발명의 하나 이상의 실시예에 따라 트랜잭션 로그 복구를 예시하는 방법 흐름도이다. 하나 이상의 실시예에서 트랜잭션 로그 복구는 트랜잭션 로그(780)에 저장된 다수의 엔트리를 조사하는 단계를 포함할 수 있다. 트랜잭션 로그에 있는 엔트리를 조사하는 것은 호스트 기록 패턴(782)을 결정하고 재사용 기록 패턴(784)을 결정하는데 사용될 수 있다. 호스트 기록 패턴은 호스트 기록 패턴(786)에 따라 트랜잭션 로그에 있는 데이터 페이지와 연관된 정보를 가졌어야 하는 그 다음 데이터 페이지를 찾고 판독하는데 사용될 수 있다. 트랜잭션 로그 복구는 호스트 기록 패턴(788)에 따라 판독된 데이터 페이지와 연관된 정보로 트랜잭션 로그를 업데이트하는 것을 포함할 수 있다.
본 발명은 메모리에 있는 트랜잭션 로그를 복구하는 방법을 포함한다. 하나의 이러한 방법은 기록 패턴을 결정하기 위해 트랜잭션 로그에 저장된 다수의 엔트리를 조사하는 단계, 기록 패턴에 기초하여 메모리를 판독하는 단계, 기록 패턴에 기초하여 메모리로부터 판독된 데이터와 연관된 정보로 트랜잭션 로그를 업데이트하는 단계, 및 트랜잭션 로그를 사용하여 논리적 어드레스(LA) 테이블을 업데이트하는 단계를 포함한다.
특정 실시예들이 본 명세서에 도시되고 설명되었으나, 이 기술 분야에 통상의 지식을 가진 자라면 동일한 결과를 달성하도록 계산된 배열이 도시된 특정 실시예 대신에 사용될 수 있다는 것을 이해할 수 있을 것이다. 본 명세서는 본 발명의 하나 이상의 실시예의 적응 또는 변형을 커버하도록 의도된다. 상기 상세한 설명은 예시적인 방식으로 이루어진 것일 뿐, 발명을 제한하는 것이 아닌 것으로 이해된다. 상기 실시예의 조합 및 본 명세서에 구체적으로 설명되지 않은 다른 실시예는 상기 상세한 설명을 검토할 때 이 기술 분야에 통상의 지식을 가진 자에게는 명백할 것이다. 본 발명의 하나 이상의 실시예의 범위는 상기 구조와 방법이 사용되는 다른 응용을 포함한다. 그러므로, 본 발명의 하나 이상의 실시예의 범위는 첨부된 청구범위와 이 청구범위에 주어진 것과 균등한 범위를 참조하여 결정되어야 한다.
상기 상세한 설명에서, 일부 특징은 본 명세서를 간결하게 하기 위하여 단일 실시예로 서로 그룹화되어 있다. 본 발명의 방법은 본 발명의 개시된 실시예가 각 청구범위에 명시적으로 언급된 것보다 더 많은 특징을 사용하여야 하는 의도를 반영하는 것으로 해석되어서는 안 된다. 오히려, 이하 청구범위에서 나타나듯이, 본 발명의 주제는 단일 개시된 실시예의 모든 특징보다 더 적다. 따라서, 이하의 특허청구범위는 본 상세한 설명에 포함되며, 각 청구범위는 별도의 실시예로서 각자 존재한다.

Claims (34)

  1. 트랜잭션 로그 복구(transaction log recovery) 방법으로서,
    트랜잭션 로그에 저장된 다수의 엔트리를 조사하여 기록 패턴을 결정하는 단계;
    상기 기록 패턴에 기초하여 메모리의 복수의 위치를 판독하는 단계;
    상기 기록 패턴에 기초하여 상기 메모리의 복수의 위치로부터 판독된 데이터와 연관된 정보로 상기 트랜잭션 로그를 업데이트하는 단계; 및
    상기 트랜잭션 로그를 사용하여 논리적 어드레스(LA: logical address) 테이블을 업데이트하는 단계를 포함하는 방법.
  2. 제1항에 있어서, 상기 기록 패턴에 기초하여 상기 메모리를 판독하는 단계는 메모리에 있는 페이지를 판독하는 단계를 포함하는 것인 방법.
  3. 제1항 또는 제2항에 있어서, 상기 트랜잭션 로그는 상기 메모리에 가장 최근에 기록된 데이터가 있었던 위치에 대한 정보를 포함하는 것인 방법.
  4. 제2항에 있어서, 상기 트랜잭션 로그는 업데이트되기 전에 판독된 페이지와 연관된 정보를 포함하지 않은 것인 방법.
  5. 제2항에 있어서, 상기 트랜잭션 로그를 업데이트하는 단계는 데이터를 포함하는 메모리에서 판독된 페이지와 연관된 정보로 상기 트랜잭션 로그를 업데이트하는 단계를 포함하는 것인 방법.
  6. 제1항 또는 제2항에 있어서, 상기 메모리를 판독하는 단계는 소거된 페이지가 발견될 때까지 기록된 패턴에 기초한 순서로 상기 메모리에 있는 페이지를 판독하는 단계를 포함하는 것인 방법.
  7. 제2항에 있어서, 다수의 블록의 첫 페이지와 마지막 페이지를 판독하고, 기록 패턴에 기초한 순서로 상기 메모리에서 판독된 페이지가 소거된 페이지를 포함하지 않는 블록에 있을 때 부분적으로 기록된 블록에 포함된 데이터의 유형을 결정하는 것에 의해 부분적으로 기록된 블록을 찾는 단계를 더 포함하는 방법.
  8. 제7항에 있어서, 호스트 데이터를 포함하는 부분적으로 기록된 블록의 페이지를 판독하는 단계를 더 포함하는 방법.
  9. 제8항에 있어서, 데이터를 포함하는 부분적으로 기록된 블록에서 판독된 페이지와 연관된 정보로 트랜잭션 로그를 업데이트하는 단계를 더 포함하는 방법.
  10. 메모리 시스템을 동작시키는 방법으로서,
    트랜잭션 로그의 다수의 엔트리에 기반하여 기록 패턴을 결정하는 단계;
    상기 기록 패턴에 기초한 순서로 상기 트랜잭션 로그에 연관된 데이터를 포함하지 않는 메모리 시스템에 있는 페이지를 판독하는 단계;
    상기 기록 패턴에 기초하여 판독된 페이지와 연관된 정보로 상기 트랜잭션 로그를 업데이트하는 단계; 및
    상기 업데이트된 트랜잭션 로그를 사용하여 비휘발성 메모리에서 논리적 어드레스(LA) 테이블을 업데이트하는 단계를 포함하는 방법.
  11. 제10항에 있어서, 전력 인터럽트 전에, 상기 비휘발성 메모리에 있는 LA 테이블을 주기적으로 저장하는 단계를 더 포함하며, 상기 저장된 LA 테이블은 휘발성 메모리에 있는 LA 테이블의 사본인 것인 방법.
  12. 제11항에 있어서, 상기 휘발성 메모리에 있는 LA 테이블은 상기 메모리 시스템에서 각 기록 동작 후에 업데이트된 것인 방법.
  13. 제11항에 있어서, 상기 LA 테이블을 업데이트하기 전에, 비휘발성 메모리에 있는 상기 LA 테이블은 해당 LA 테이블이 비휘발성 메모리에 저장된 마지막 시간과 전력 인터럽션 사이에 발생한 기록 동작에 대한 정보를 포함하지 않는 것인 방법.
  14. 제10항 또는 제11항에 있어서, 전력 인터럽션 후에 상기 메모리 시스템의 전력 투입 시 상기 업데이트된 LA 테이블을 휘발성 메모리로 복사하는 단계를 더 포함하는 방법.
  15. 제10항 또는 제11항에 있어서, 상기 기록 패턴은 상기 메모리 시스템에 데이터를 기록하는 곳을 결정하는 기록 패턴 알고리즘에 기초하는 것인 방법.
  16. 제15항에 있어서, 상기 기록 패턴은 데이터가 상기 메모리 시스템에서 그 다음에 기록되었어야 할 위치에 대한 정보를 포함하는 것인 방법.
  17. 제16항에 있어서, 상기 기록 패턴에 기초하여 판독된 페이지에서 발생한 유효 기록을 검증하는 단계를 포함하는 방법.
  18. 메모리 시스템에서 트랜잭션 로그를 복구하는 방법으로서,
    기록 패턴에 기초한 순서로 페이지를 판독하여, 비휘발성 메모리에서 트랜잭션 로그 또는 논리적 어드레스(LA) 테이블에 있지 않은 기록 동작 정보를 찾는 단계;
    찾은 상기 기록 동작 정보를 사용하여 상기 트랜잭션 로그를 업데이트하는 단계;
    상기 업데이트된 트랜잭션 로그를 사용하여 비휘발성 메모리에 있는 상기 LA 테이블을 업데이트하는 단계; 및
    휘발성 메모리에 상기 LA 테이블을 저장하는 단계를 포함하는 방법.
  19. 제18항에 있어서, 상기 기록 동작에 대한 정보를 찾는 단계는 데이터가 상기 기록 패턴으로부터 상기 메모리 시스템에서 그 다음에 기록되었어야 할 위치를 결정하는 단계를 포함하는 것인 방법.
  20. 제19항에 있어서, 상기 데이터가 그 다음에 기록되었어야 할 위치를 결정하는 단계는 기록 패턴 알고리즘을 사용하는 단계를 포함하는 것인 방법.
  21. 제18항 또는 제19항에 있어서, 상기 트랜잭션 로그를 업데이트하는 단계는 전력 인터럽트 후에 손상된 트랜잭션 로그의 마지막 페이지를 업데이트하는 단계를 포함하는 것인 방법.
  22. 제18항 또는 제19항에 있어서, 상기 방법은 주기적으로 상기 휘발성 메모리에 상기 LA 테이블의 사본을 저장하는 단계를 포함하는 것인 방법.
  23. 제18항 또는 제19항에 있어서, 상기 방법은 상기 비휘발성 메모리에 상기 LA 테이블의 사본을 저장한 후에 발생하는 동작에 대해 상기 트랜잭션 로그에 판독 동작과 기록 동작에 대한 정보를 기록하는 단계를 포함하는 방법.
  24. 제18항 또는 제19항에 있어서, 상기 업데이트된 트랜잭션 로그를 사용하여 상기 비휘발성 메모리에 상기 LA 테이블을 업데이트하는 단계는 상기 LA 테이블이 상기 비휘발성 메모리에 복사된 마지막 시간과 전력 인터럽트 사이에 발생한 기록에 대한 정보를 추가하는 단계를 포함하는 것인 방법.
  25. 메모리 시스템으로서,
    논리적 어드레스(LA) 테이블과 트랜잭션 로그를 저장하도록 구성된 비휘발성 메모리; 및
    제어기를 포함하되,
    상기 제어기는,
    데이터가 메모리에 기록된 곳을 나타내는 트랜잭션 로그에 있는 정보를 조사함으로써 기록 패턴을 결정하고;
    상기 기록 패턴에 기초한 순서로 상기 트랜잭션 로그에 연관된 데이터를 포함하지 않는 상기 메모리에 있는 페이지를 판독하고;
    상기 메모리에서 판독된 페이지와 연관된 정보로 상기 트랜잭션 로그를 업데이트하고;
    상기 트랜잭션 로그를 사용하여 상기 논리적 어드레스(LA) 테이블을 업데이트하도록
    구성된 것인 메모리 시스템.
  26. 제25항에 있어서, 상기 트랜잭션 로그는 비휘발성 메모리에 상기 LA 테이블을 저장한 후에 상기 메모리 시스템에서 발생하는 기록에 대한 정보를 레코드하도록 구성된 것인 메모리 시스템.
  27. 제25항에 있어서, 상기 제어기는 상기 기록 패턴에 기초한 순서로 메모리에 있는 페이지를 판독함으로써 트랜잭션 로그에서 트랜잭션 로그 정보의 마지막 페이지를 재생성하도록 구성된 것인 메모리 시스템.
  28. 제25항 내지 제27항 중 어느 한 항에 있어서, 상기 제어기는 기록 패턴 알고리즘에 기초한 기록 패턴을 생성하도록 구성된 것인 메모리 시스템.
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
KR1020137015563A 2010-12-03 2011-11-30 트랜잭션 로그 복구 KR101491943B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/960,204 2010-12-03
US12/960,204 US8495338B2 (en) 2010-12-03 2010-12-03 Transaction log recovery
PCT/US2011/001944 WO2012074554A2 (en) 2010-12-03 2011-11-30 Transaction log recovery

Publications (2)

Publication Number Publication Date
KR20130088173A KR20130088173A (ko) 2013-08-07
KR101491943B1 true KR101491943B1 (ko) 2015-02-10

Family

ID=46163361

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137015563A KR101491943B1 (ko) 2010-12-03 2011-11-30 트랜잭션 로그 복구

Country Status (8)

Country Link
US (2) US8495338B2 (ko)
EP (1) EP2646919B1 (ko)
JP (1) JP5649742B2 (ko)
KR (1) KR101491943B1 (ko)
CN (1) CN103270500B (ko)
SG (1) SG190955A1 (ko)
TW (1) TWI463312B (ko)
WO (1) WO2012074554A2 (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8990476B2 (en) 2009-10-01 2015-03-24 Micron Technology, Inc. Power interrupt management
US9141526B2 (en) * 2010-09-16 2015-09-22 International Business Machines Corporation Reclaiming units by searching units for a predetermined criterion and storing data from a valid subunit
US9176670B2 (en) * 2011-04-26 2015-11-03 Taejin Info Tech Co., Ltd. System architecture based on asymmetric raid storage
US9146855B2 (en) * 2012-01-09 2015-09-29 Dell Products Lp Systems and methods for tracking and managing non-volatile memory wear
CN103378986A (zh) * 2012-04-28 2013-10-30 鸿富锦精密工业(深圳)有限公司 系统事件日志记录系统及方法
US8966205B1 (en) * 2012-05-10 2015-02-24 Western Digital Technologies, Inc. System data management using garbage collection and hybrid self mapping
WO2014079028A1 (zh) * 2012-11-23 2014-05-30 华为技术有限公司 数据处理方法和存储设备
US20140372710A1 (en) * 2013-06-18 2014-12-18 Samsung Electronics Co., Ltd. System and method for recovering from an unexpected shutdown in a write-back caching environment
US9430503B1 (en) 2013-06-28 2016-08-30 Emc Corporation Coalescing transactional same-block writes for virtual block maps
US9110809B2 (en) * 2013-07-03 2015-08-18 Nvidia Corporation Reducing memory traffic in DRAM ECC mode
EP3039553A1 (en) * 2013-08-29 2016-07-06 Hewlett Packard Enterprise Development LP Separating storage transaction logs
JP5950286B2 (ja) 2014-05-29 2016-07-13 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation アドレス変換テーブルを書き込む装置及び方法
KR102501751B1 (ko) * 2015-09-22 2023-02-20 삼성전자주식회사 메모리 콘트롤러, 불휘발성 메모리 시스템 및 그 동작방법
US10387275B2 (en) * 2016-07-26 2019-08-20 Hewlett Packard Enterprise Development Lp Resume host access based on transaction logs
CN107678679B (zh) * 2016-08-02 2020-09-08 建兴储存科技(广州)有限公司 运用于固态储存装置的超级区块的扫描方法
CN106874068B (zh) * 2017-02-09 2020-02-21 联想(北京)有限公司 主机装置的容器运行加速方法及系统
US10635613B2 (en) * 2017-04-11 2020-04-28 Micron Technology, Inc. Transaction identification
US10983876B2 (en) 2018-03-29 2021-04-20 Seagate Technology Llc Node management of pending and unstable operations
KR20200089547A (ko) 2019-01-17 2020-07-27 에스케이하이닉스 주식회사 저장 장치 및 그 동작 방법
US11726991B2 (en) 2019-04-30 2023-08-15 EMC IP Holding Company LLC Bulk updating of mapping pointers with metadata transaction log
US11294807B2 (en) * 2019-06-25 2022-04-05 Western Digital Technologies, Inc. Delayed write failure logging
CN112988880B (zh) * 2019-12-12 2024-03-29 阿里巴巴集团控股有限公司 数据同步方法、装置、电子设备及计算机存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517131A (ja) 2007-01-18 2010-05-20 サンディスク アイエル リミテッド フラッシュメモリシステムの高速起動を容易にする方法およびシステム
JP2010157139A (ja) 2008-12-27 2010-07-15 Toshiba Corp メモリシステム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017A (en) * 1851-04-01 Splint-machine
US6185663B1 (en) 1998-06-15 2001-02-06 Compaq Computer Corporation Computer method and apparatus for file system block allocation with multiple redo
US6553509B1 (en) * 1999-07-28 2003-04-22 Hewlett Packard Development Company, L.P. Log record parsing for a distributed log on a disk array data storage system
JP2005222202A (ja) * 2004-02-04 2005-08-18 Matsushita Electric Ind Co Ltd 不揮発性記憶装置のデータ保護方法
US8452929B2 (en) 2005-04-21 2013-05-28 Violin Memory Inc. Method and system for storage of data in non-volatile media
JP2007122221A (ja) 2005-10-26 2007-05-17 Sony Corp 情報処理装置、および情報処理方法、並びにコンピュータ・プログラム
TWI317899B (en) * 2006-11-17 2009-12-01 Hon Hai Prec Ind Co Ltd Storage apparatus with data protection function and method therefor
US7752180B1 (en) 2006-12-12 2010-07-06 Network Appliance, Inc. File system group consistency point
US8140483B2 (en) 2007-09-28 2012-03-20 International Business Machines Corporation Transaction log management
US7979626B2 (en) * 2008-05-13 2011-07-12 Microsoft Corporation Flash recovery employing transaction log
US7917803B2 (en) 2008-06-17 2011-03-29 Seagate Technology Llc Data conflict resolution for solid-state memory devices
US8843691B2 (en) 2008-06-25 2014-09-23 Stec, Inc. Prioritized erasure of data blocks in a flash storage device
TW201011755A (en) * 2008-09-10 2010-03-16 Skymedi Corp Flash memory system and its data recovery method
US7925925B2 (en) 2008-12-30 2011-04-12 Intel Corporation Delta checkpoints for a non-volatile memory indirection table
US8239614B2 (en) * 2009-03-04 2012-08-07 Micron Technology, Inc. Memory super block allocation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517131A (ja) 2007-01-18 2010-05-20 サンディスク アイエル リミテッド フラッシュメモリシステムの高速起動を容易にする方法およびシステム
JP2010157139A (ja) 2008-12-27 2010-07-15 Toshiba Corp メモリシステム

Also Published As

Publication number Publication date
CN103270500A (zh) 2013-08-28
KR20130088173A (ko) 2013-08-07
CN103270500B (zh) 2016-08-10
US20130311750A1 (en) 2013-11-21
SG190955A1 (en) 2013-07-31
US8495338B2 (en) 2013-07-23
TW201232256A (en) 2012-08-01
EP2646919B1 (en) 2016-05-04
WO2012074554A2 (en) 2012-06-07
TWI463312B (zh) 2014-12-01
US20120144152A1 (en) 2012-06-07
JP2013544414A (ja) 2013-12-12
EP2646919A2 (en) 2013-10-09
JP5649742B2 (ja) 2015-01-07
US8984253B2 (en) 2015-03-17
EP2646919A4 (en) 2015-03-18
WO2012074554A3 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
KR101491943B1 (ko) 트랜잭션 로그 복구
US10564690B2 (en) Power interrupt management
US8788876B2 (en) Stripe-based memory operation
KR101528714B1 (ko) 메모리 유닛 동작 방법 및 메모리 제어기
US9223391B2 (en) Apparatus power control
US9274883B2 (en) Apparatuses and methods for storing validity masks and operating apparatuses
US11662940B2 (en) Data storage device and data processing method for restoring MLC/TLC memory to avoid degradation of access performance of a memory device caused by word line short

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180119

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190117

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200121

Year of fee payment: 6