KR101488202B1 - Manufacturing method of buffer layer for thin-film solar cell using electromagnetic wave - Google Patents

Manufacturing method of buffer layer for thin-film solar cell using electromagnetic wave Download PDF

Info

Publication number
KR101488202B1
KR101488202B1 KR20140139016A KR20140139016A KR101488202B1 KR 101488202 B1 KR101488202 B1 KR 101488202B1 KR 20140139016 A KR20140139016 A KR 20140139016A KR 20140139016 A KR20140139016 A KR 20140139016A KR 101488202 B1 KR101488202 B1 KR 101488202B1
Authority
KR
South Korea
Prior art keywords
buffer layer
solar cell
film solar
electromagnetic wave
deposited
Prior art date
Application number
KR20140139016A
Other languages
Korean (ko)
Other versions
KR20140139445A (en
Inventor
전동환
황대규
성시준
김대환
이동하
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR20140139016A priority Critical patent/KR101488202B1/en
Publication of KR20140139445A publication Critical patent/KR20140139445A/en
Application granted granted Critical
Publication of KR101488202B1 publication Critical patent/KR101488202B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 전자파를 사용하여 화합물 박막 태양전지용 버퍼층을 제조하는 방법에 관한 것으로, 종래의 화학조 침착법의 열원 공급 방법인 항온조를 통한 전달 방식 대신에 전자파의 유전 가열방식을 사용하여 버퍼층을 증착한다. 이를 통해 빠르고 균일하게 화학조 내부 용액 온도를 상승시켜 공정 시간을 단축하고, 증착하고자 하는 기판에 열원을 균일하게 공급함으로서 양질의 박막을 빠르게 증착할 수 있다. The present invention relates to a method of manufacturing a buffer layer for a compound thin-film solar cell using electromagnetic waves, and a buffer layer is deposited using a dielectric heating method of electromagnetic waves in place of a transfer method through a thermostatic chamber, which is a conventional heat source method of chemical vapor deposition . By this, it is possible to quickly and uniformly raise the solution temperature in the chemical bath to shorten the processing time and uniformly supply the heat source to the substrate to be deposited, so that a high-quality thin film can be rapidly deposited.

Description

전자파를 이용한 화합물 박막 태양전지용 버퍼층 제조 방법{MANUFACTURING METHOD OF BUFFER LAYER FOR THIN-FILM SOLAR CELL USING ELECTROMAGNETIC WAVE}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of manufacturing a buffer layer for a compound thin film solar cell using an electromagnetic wave,

본 발명은 전자파를 이용하여 화합물 반도체 박막 태양전지의 버퍼층을 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a buffer layer of a compound semiconductor thin film solar cell using electromagnetic waves.

최근 환경 문제와 화석 에너지 고갈에 대한 관심이 높아지면서, 에너지 자원이 풍부하고 환경 오염에 대한 문제점이 없으며, 에너지 효율이 높은 대체 에너지로서 태양전지에 대한 관심이 높아지고 있다. 태양전지의 연구 초기에는 결정질 실리콘을 이용하여 태양전지를 제조하였다. 하지만 결정질 실리콘 태양전지의 두께는 수 백 μm 정도로, 효율이 떨어지고 원재료가 낭비된다는 등의 문제가 제기되었다. 또한, 결정질 실리콘은 기판 소재 비용이 전체 가격 대비 차지하는 비중이 높고, 잉곳-웨이퍼-전지-모듈 등의 단속적이고 복잡한 공정을 거쳐야 하기 때문에 가격 저감에 있어서 한계가 있다. 또한 최근의 실리콘 원소재 가격 급등은 전체적인 태양광 발전 시스템의 발전 단가에 부담이 되고 있다.Recently, as interest in environmental problems and depletion of fossil energy has increased, there is no problem about enviromental resources, environmental pollution, and attention is increasing to solar cells as an alternative energy with high energy efficiency. In the early days of solar cell research, crystalline silicon was used to manufacture solar cells. However, the thickness of the crystalline silicon solar cell is several hundreds of μm, which causes problems such as low efficiency and wasted raw materials. In addition, since the cost of the substrate material is high in the total cost of the crystalline silicon and the intermittent and complicated processes such as ingot-wafer-battery-module are required, the price of the crystalline silicon is limited. In addition, the recent surge in the price of silicon raw materials is burdensome for the overall unit price of solar power generation systems.

이러한 문제를 극복하기 위하여 실리콘 웨이퍼의 두께를 줄이는 기술과 함께 박막형 태양전지가 대안으로 제시되고 있다. 박막 태양전지는 수 μm 두께의 박막을 태양전지 광흡수층으로 이용함으로써 원소재 소모가 극히 적으며, 반도체 공정을 사용하기 때문에 연속공정이 가능하다. 또한 유리, 금속 등의 기판을 사용하게 되면 저가의 건물일체형 태양전지 모듈도 제조할 수 있다.In order to overcome these problems, a thin film solar cell is proposed as an alternative to the technique of reducing the thickness of a silicon wafer. Thin film solar cells use a thin film of several micrometer thickness as a solar cell light absorbing layer, so that the raw material consumption is very small and the continuous process is possible because of the semiconductor process. In addition, if a substrate such as glass or metal is used, a low cost building integrated solar cell module can be manufactured.

박막 태양전지는 광흡수층 소재에 따라 실리콘 박막, 화합물 박막 태양전지로 구분되며, I-III-VI2 족 화합물인 Cu(In,Ga)Se2(CIGS) 박막 태양전지와 II-VI 족 화합물인 CdTe 태양전지가 화합물 박막 태양전지에 포함된다.The thin film solar cell according to the light absorbing material are separated by a silicon thin film, a compound thin film solar cell, I-III-VI 2 compound is Cu (In, Ga) Se 2 (CIGS) thin film solar cell and a II-VI group compound CdTe solar cells are included in compound thin film solar cells.

화합물 박막 태양전지 중에서 가장 높은 효율을 달성한 Cu(In,Ga)Se2 화합물 박막 태양전지는 단위 셀 기준 20.3%의 광변환 효율을 달성하였다. CIGS 화합물 박막 태양전지의 구조에서는 p-타입(p-type) 흡수층과 n-타입(n-type) 윈도우층 사이에서 완충 역할을 하는 버퍼층이 반드시 필요하다. 보다 구체적으로, p-타입 흡수층과 n-타입 윈도우층의 두 물질은 격자 상수와 에너지 밴드갭(band gap)의 차이가 크기 때문에 양호한 접합을 형성하기 위해서는 밴드갭이 두 물질의 중간에 위치하는 버퍼층이 필요한 것이다. 버퍼층은 소자의 션트 패스(shunt path)가 생성되는 것을 방지하고 흡수층과 윈도우층 사이에서 광학적 밴드갭을 완충시켜주며, 스퍼터링법으로 윈도우층을 증착할 때 흡수층이 받는 플라즈마에 의한 데미지를 막아주는 역할을 한다.The Cu (In, Ga) Se 2 thin film solar cell, which achieved the highest efficiency among the compound thin film solar cells, achieved a light conversion efficiency of 20.3% based on the unit cell. In the structure of the CIGS compound thin-film solar cell, a buffer layer, which serves as a buffer between the p-type absorption layer and the n-type window layer, is necessarily required. More specifically, since the two materials of the p-type absorption layer and the n-type window layer have a large difference between the lattice constant and the energy band gap, in order to form a good junction, . The buffer layer prevents the generation of a shunt path of the device and buffers the optical bandgap between the absorption layer and the window layer and prevents the plasma layer from damaging the absorption layer when depositing the window layer by the sputtering method .

CIGS 화합물 박막 태양전지의 버퍼층으로 사용되는 물질 중에서 가장 널리 쓰이는 물질은 황화카드뮴(cadmium sulfide; CdS)이다. 버퍼층을 증착하는 방법으로는 화학조 침착법(chemical bath deposition)과 원자층 증착법, 스퍼터링법, 전착법 등이 사용되며, 가장 양호한 박막 물성과 소자의 광변환 효율을 보여주는 방법은 화학조 침착법이다. 화학조 침착법은 용액 내에 적정량의 Cd++와 S--이온을 만들고 용액의 온도를 조절하여 각 이온 농도의 곱이 용액의 용해도적보다 큰 경우에 CdS의 형태로 석출되는 공정이다.CIGS compound The most widely used substance used as a buffer layer of thin film solar cells is cadmium sulfide (CdS). As a method of depositing the buffer layer, chemical bath deposition, atomic layer deposition, sputtering, electrodeposition, and the like are used, and the method showing the best physical properties of the thin film and the light conversion efficiency of the device is chemical deposition . Chemical bath deposition method is appropriate amount of Cd ++ in the solution S and - a step that is created and ions control the temperature of the solution was precipitated in the form of CdS if ever is greater than the solubility of the multiplication of each solution ion concentration.

화학조 침착법에서 물질의 반응을 위해 사용하는 열원과 관련해서는 항온조(circulator)를 통하여 용액의 온도를 상승시키는 방법을 사용한다. 하지만 항온조를 통한 열원 공급법은 대규모 모듈 생산 단계에서 반응 수조의 온도를 상승시키는 경우 많은 시간을 소비할 뿐 아니라 반응에 필요한 열원을 기판에 공급하는 속도가 비효율적이기 때문에 새로운 형태의 열원 공급 방법이 필요하다. As to the heat source used for the reaction of substances in the chemical precipitation method, a method of raising the temperature of the solution through a circulator is used. However, the method of supplying the heat source through the constant-temperature tank requires a long time for increasing the temperature of the reaction tank in the production stage of the large-scale module, and the speed of supplying the heat source required for the reaction to the substrate is inefficient. Do.

이에 본 발명자는 상기 과제를 해결하기 위해 예의 검토를 거듭한 결과, 전자파의 유전 가열방식을 이용하는 경우, 반응 수조 내부의 용액 온도를 빠르고 균일하게 상승시켜 증착 속도를 증가시키고, 분자운동을 통해 기판에 열원을 고르게 전달하여 균일한 두께의 버퍼층 증착이 가능하다는 점을 발견하여 본 발명을 완성하였다.The present inventors have conducted intensive studies to solve the above problems. As a result, the present inventors have found that, when the dielectric heating method of electromagnetic waves is used, the solution temperature in the reaction tank is rapidly and uniformly raised to increase the deposition rate, It is possible to uniformly deposit a buffer layer by uniformly transferring a heat source, thereby completing the present invention.

따라서 본 발명은 II 내지 VI 족 화합물 반도체 물질의 전구체를 포함하는 용액이 담긴 화학조에 기판을 디핑(dipping)하고 화학조에 전자파를 가하여 기판 위에 버퍼층을 형성시키는 단계를 포함하는 박막 태양전지용 버퍼층의 제조방법을 제공한다. 상기 용액 내에 II 내지 VI 족 화합물 반도체 물질의 전구체가 물에 용액화되어 사용될 수 있다. 상기 II 내지 VI 족 화합물 반도체 물질이 CdS, ZnS, InS, CdSe, ZnSe, Zn(O,S), InSe, Zn(Se,OH), Zn(OH,S), Zn(O,OH), In(OH,S), In(OH)3 및 In2S3로 이루어진 군으로부터 선택될 수 있다. 상기 전자파가 200 MHz 내지 30 GHz의 주파수를 갖을 수 있다. 상기 버퍼층 증착시 사용되는 물질의 밴드갭 또는 격자 상수가 p-타입 흡수층 및 n-타입 윈도우층의 밴드갭 또는 격자 상수의 범위 내일 수 있다.Accordingly, the present invention provides a method for manufacturing a thin film solar cell buffer layer comprising a step of dipping a substrate in a chemical tank containing a solution containing a precursor of a Group II to VI compound semiconductor material and applying an electromagnetic wave to the chemical tank to form a buffer layer on the substrate . Precursors of the Group II to Group VI compound semiconductor materials in the solution can be used by being dissolved in water. (II) to (VI) group compound semiconductors are selected from the group consisting of CdS, ZnS, InS, CdSe, ZnSe, ZnSe, InSe, (OH, S), In (OH) 3 and In 2 S 3 . The electromagnetic wave may have a frequency of 200 MHz to 30 GHz. The band gap or lattice constant of the material used in the buffer layer deposition may be within the band gap or lattice constant of the p-type absorption layer and the n-type window layer.

종래의 화학조 침착법의 열원 공급 방법인 항온조를 통한 전달 방식 대신에 전자파의 유전 가열방식를 사용하여 버퍼층을 증착함으로써, 빠르고 고르게 화학조 내부 용액 온도를 증가시켜 공정 시간을 단축시키고, 증착하고자 하는 기판에 열원을 고르고 균일하게 공급함으로써 양질의 박막을 신속하게 증착할 수 있다. The buffer layer is deposited by using the dielectric heating method of the electromagnetic wave instead of the transferring method through the thermostatic chamber which is a conventional method of supplying the heat of the chemical deposition method, thereby shortening the processing time by increasing the solution temperature in the chemical bath quickly and uniformly, A thin film of high quality can be rapidly deposited by supplying the heat source evenly and uniformly.

도 1은 항온조 및 전자파 발생 장치를 이용한 경우 각각의 온도 상승폭의 일례를 나타낸다.
도 2는 전자파 발생 장치를 통하여 버퍼층을 증착하는 모습을 예시적인 단면도로 나타낸다.
도 3은 전자파를 이용하여 Cu(In,Ga)Se2 흡수층 위에 증착된 황화카드뮴 버퍼층의 절단면 SEM 사진을 나타낸다.
도 4는 전자파를 이용하여 Cu(In,Ga)Se2 흡수층 위에 증착된 황화카드뮴 버퍼층의 증착 전후 비교사진을 나타낸다.
도 5는 Cu(In,Ga)Se2 화합물 박막 태양전지 구조의 예시적인 단면도를 나타낸다.
도 6은 전자파를 이용하여 증착한 버퍼층을 적용한 Cu(In,Ga)Se2 화합물 박막 태양전지의 효율특성 곡선을 나타낸다.
Fig. 1 shows an example of the temperature rise width when the thermostatic chamber and the electromagnetic wave generator are used.
Fig. 2 shows an exemplary cross-sectional view of depositing a buffer layer through an electromagnetic wave generator.
3 is a SEM photograph of a cross section of a cadmium sulfide buffer layer deposited on a Cu (In, Ga) Se 2 absorption layer using electromagnetic waves.
FIG. 4 is a photograph before and after deposition of a cadmium sulfide buffer layer deposited on a Cu (In, Ga) Se 2 absorption layer using electromagnetic waves.
5 shows an exemplary cross-sectional view of a Cu (In, Ga) Se 2 compound thin film solar cell structure.
FIG. 6 shows an efficiency characteristic curve of a Cu (In, Ga) Se 2 compound thin film solar cell to which a buffer layer deposited by using electromagnetic waves is applied.

이하, 본 발명을 상세히 설명하기로 한다. 다만, 본 발명은 다양한 형태로 변경되어 구현될 수 있으며 여기에서 설명하는 구현예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail. However, it should be understood that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention.

본 발명은 화합물 반도체 박막 태양전지의 버퍼층을 제조하는 방법을 제공한다.The present invention provides a method for producing a buffer layer of a compound semiconductor thin film solar cell.

종래에는 화합물 박막 태양전지용 버퍼층은 항온조를 사용하여 버퍼층 증착 반응에 필요한 열원을 제공하였다. 기존의 항온조를 통해 온도를 상승시키는 방법은 화학조 내부 용액 총량에 따라 온도의 상승폭이 크게 감소하여 대규모 모듈생산 라인에 커다란 장애요인이 될 수 있다. 이에 반해, 전자파의 유전가열 방식을 사용하면 용액 전체의 분자 운동을 통해 수조 내부의 온도를 목표 온도까지 짧은 시간 내에 증가시켜 각 반응물이 결합할 수 있는 필요에너지량에 단 시간내에 도달할 수 있다. 양 장치별 온도 상승폭의 일례를 도 1에 나타내었다.Conventionally, a buffer layer for a compound thin film solar cell provided a heat source necessary for a buffer layer deposition reaction using a thermostatic chamber. The method of raising the temperature through the existing thermostat can greatly increase the temperature rise according to the total amount of the solution in the chemical tank, which can be a great obstacle to the large-scale module production line. On the contrary, when the dielectric heating method of electromagnetic wave is used, the temperature inside the water tank can be increased to the target temperature within a short time through the molecular motion of the whole solution, and the required energy amount of each reactant can reach within a short time. An example of the temperature rise width for both devices is shown in Fig.

고주파, 마이크로파 등 1 MHz부터 300 GHz에 이르는 넓은 대역의 주파수를 가진 전자파를 이용하여 수조의 용액을 가열할 수 있다. 200 MHz 내지 30 GHz 주파수 범위의 전자파가 특히 바람직하다.The solution of the water tank can be heated by electromagnetic waves having a wide frequency range from 1 MHz to 300 GHz, such as high frequency, microwave, and the like. Electromagnetic waves in the frequency range of 200 MHz to 30 GHz are particularly preferred.

전자파를 통한 유전가열은 종래의 가열법에 비해 에너지를 절약할 수 있고, 복잡한 형상의 물체도 가열할 수 있으며, 가열 효과 및 제어가 용이하다는 장점을 가지고 있다.The dielectric heating through electromagnetic waves has the advantage that it can save energy compared to the conventional heating method, can also heat an object having a complicated shape, and is easily heated and controlled.

버퍼층 증착시 사용되는 물질은 비제한적으로 II - VI 족 반도체 물질로부터 선택되고, CdS, ZnS, InS, CdSe, ZnSe, Zn(O,S), InSe, Zn(Se,OH), Zn(OH,S), Zn(O,OH), In(OH,S), In(OH)3 또는 In2S3가 바람직하다. 바람직하게는 증착을 위한 각 전구체는 용액화하여 증착된다.The materials used in the buffer layer deposition are selected from II-VI semiconductor materials and are not limited to CdS, ZnS, InS, CdSe, ZnSe, ZnS, InSe, Zn, S), Zn (O, OH), In (OH, S), In (OH) 3 or In 2 S 3 . Preferably, each precursor for deposition is deposited by solution deposition.

하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 실시예에 의해 본 발명이 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, the following examples are for the purpose of illustrating the present invention and are not intended to limit the scope of the present invention.

[실시예][Example]

광흡수층으로는 Cu, In, Ga, Se 원소를 사용한 Cu(In,Ga)Se2 4원계 화합물 박막 태양전지 흡수층을 사용하여 증착하였다. Cu(In,Ga)Se2 흡수층 증착은 동시증발 증착기를 사용하였으며, 3-단계(stage) 공법을 적용하여 성장시켰다. 각 염의 전구체가 될 CdSO4, 티오우레아(thiourea)와 암모니아수를 사용하여 버퍼층을 증착한다. 준비된 비이커에 각 물질을 일정한 농도로 희석한 후, 화학조에 모두 담고 5분간 교반하였다. 교반 후, 흡수층이 증착된 기판을 화학조에 담구고, 화학조를 전자파 장치에 설치하고 전자파를 가하였다. 전자파 발생 장치를 통하여 버퍼층을 증착하는 모습을 나타낸 단면도의 예시를 도 2에 나타내었다. 본 실험에 사용된 전자파 장치는 출력 700 W, 주파수는 2.45 GHz를 사용하였다. 전자파를 화학조에 280초 동안 가하여 황화카드뮴 버퍼층을 증착하였다. 증착된 버퍼층의 두께는 약 50 nm이었으며(도 3), 기존의 항온조를 통해 증착된 황화카드뮴 버퍼층 보다 고르고 균일하게 증착되었음을 확인하였다(도 4). 버퍼층 위에 스퍼터링 방법을 사용하여 진성(intrinsic)-ZnO 50 nm와 ZnO:Al 300 nm를 증착하고 그 상부 층에 알루미늄 전극을 증착하여 화합물 박막 태양전지 구조를 구성하였으며, 구성한 Cu(In,Ga)Se2 화합물 박막 태양전지 구조의 단면도의 예시를 도 5에 나타내었다. 제작된 Cu(In,Ga)Se2 화합물 박막 태양전지의 효율 특성을 측정하여 도 6의 그래프로 나타내었다.The light absorption layer was deposited by using Cu (In, Ga) Se 2 element compound thin film solar cell absorption layer using Cu, In, Ga, Se element. The Cu (In, Ga) Se 2 absorption layer was deposited using a simultaneous evaporation evaporator and a 3 - step process. The buffer layer is deposited using CdSO 4 , thiourea and ammonia water, which will be precursors of each salt. Each substance was diluted to a constant concentration in a prepared beaker, and the mixture was stirred in a chemical bath for 5 minutes. After stirring, the substrate on which the absorber layer was deposited was immersed in a chemical bath, and a chemical bath was installed in an electromagnetic wave device, and electromagnetic waves were applied. An example of a cross-sectional view showing a state in which a buffer layer is deposited through an electromagnetic wave generator is shown in Fig. The electromagnetic wave device used in this experiment used an output of 700 W and a frequency of 2.45 GHz. An electromagnetic wave was applied to the chemical bath for 280 seconds to deposit a cadmium sulfide buffer layer. The thickness of the deposited buffer layer was about 50 nm (Fig. 3), and it was confirmed that the cadmium sulfide buffer layer deposited through the conventional thermostat was uniformly deposited (Fig. 4). The thin film solar cell structure was fabricated by depositing intrinsic ZnO 50 nm and ZnO: Al 300 nm on the buffer layer by sputtering method and depositing aluminum electrodes on the upper layer. The Cu (In, Ga) Se An example of a cross-sectional view of a two- compound thin film solar cell structure is shown in FIG. The efficiency characteristics of the fabricated Cu (In, Ga) Se 2 compound thin film solar cell were measured and shown in the graph of FIG.

Claims (5)

II 내지 VI 족 화합물 반도체 물질의 전구체를 포함하는 용액이 담긴 화학조에 기판을 디핑(dipping)하고 화학조에 전자파를 가하여 기판 위에 버퍼층을 형성시키는 단계를 포함하는 박막 태양전지용 버퍼층의 제조방법. And dipping the substrate in a chemical bath containing a solution containing a precursor of the Group II to VI compound semiconductor material and applying an electromagnetic wave to the chemical bath to form a buffer layer on the substrate. 제 1항에 있어서,
상기 용액 내에 II 내지 VI 족 화합물 반도체 물질의 전구체가 물에 용액화되어 사용되는 박막 태양전지용 버퍼층의 제조방법.
The method according to claim 1,
Wherein a precursor of the II-VI group compound semiconductor material is dissolved in water and used in the solution.
제 1항 또는 제 2항에 있어서,
상기 II 내지 VI 족 화합물 반도체 물질이 CdS, ZnS, InS, CdSe, ZnSe, Zn(O,S), InSe, Zn(Se,OH), Zn(OH,S), Zn(O,OH), In(OH,S), In(OH)3 및 In2S3로 이루어진 군으로부터 선택된 것인 박막 태양전지용 버퍼층의 제조방법.
3. The method according to claim 1 or 2,
(II) to (VI) group compound semiconductors are selected from the group consisting of CdS, ZnS, InS, CdSe, ZnSe, ZnSe, InSe, (OH, S), In (OH) 3 and In 2 S 3 .
제 1항 또는 제 2항에 있어서,
상기 전자파가 200 MHz 내지 30 GHz의 주파수를 갖는 박막 태양전지용 버퍼층의 제조방법.
3. The method according to claim 1 or 2,
Wherein the electromagnetic wave has a frequency of 200 MHz to 30 GHz.
제 1항 또는 제 2항에 있어서,
상기 버퍼층 증착시 사용되는 물질의 밴드갭 또는 격자 상수가 p-타입 흡수층 및 n-타입 윈도우층의 밴드갭 또는 격자 상수의 범위 내인 박막 태양전지용 버퍼층의 제조방법.
3. The method according to claim 1 or 2,
Wherein a bandgap or a lattice constant of a material used in the buffer layer deposition is within a bandgap or lattice constant of the p-type absorption layer and the n-type window layer.
KR20140139016A 2014-10-15 2014-10-15 Manufacturing method of buffer layer for thin-film solar cell using electromagnetic wave KR101488202B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20140139016A KR101488202B1 (en) 2014-10-15 2014-10-15 Manufacturing method of buffer layer for thin-film solar cell using electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20140139016A KR101488202B1 (en) 2014-10-15 2014-10-15 Manufacturing method of buffer layer for thin-film solar cell using electromagnetic wave

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120128288A Division KR20140061618A (en) 2012-11-13 2012-11-13 Manufacturing method of buffer layer for thin-film solar cell using electromagnetic wave

Publications (2)

Publication Number Publication Date
KR20140139445A KR20140139445A (en) 2014-12-05
KR101488202B1 true KR101488202B1 (en) 2015-02-06

Family

ID=52459439

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20140139016A KR101488202B1 (en) 2014-10-15 2014-10-15 Manufacturing method of buffer layer for thin-film solar cell using electromagnetic wave

Country Status (1)

Country Link
KR (1) KR101488202B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0175411B1 (en) * 1995-11-22 1999-02-01 김광호 Method of manufacturing amorphous silicon using buffer layer
JP2002359072A (en) 2001-05-31 2002-12-13 Auto Network Gijutsu Kenkyusho:Kk Thin film forming device and organic el element formed by this thin film forming device
JP4745450B2 (en) * 2009-10-06 2011-08-10 富士フイルム株式会社 Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0175411B1 (en) * 1995-11-22 1999-02-01 김광호 Method of manufacturing amorphous silicon using buffer layer
JP2002359072A (en) 2001-05-31 2002-12-13 Auto Network Gijutsu Kenkyusho:Kk Thin film forming device and organic el element formed by this thin film forming device
JP4745450B2 (en) * 2009-10-06 2011-08-10 富士フイルム株式会社 Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell

Also Published As

Publication number Publication date
KR20140139445A (en) 2014-12-05

Similar Documents

Publication Publication Date Title
Song et al. A review on development prospect of CZTS based thin film solar cells
Vinayakumar et al. CuSbS2 thin films by rapid thermal processing of Sb2S3-Cu stack layers for photovoltaic application
Huang et al. Phase-separation-induced crystal growth for large-grained Cu2ZnSn (S, Se) 4 thin film
KR101503043B1 (en) A manufacturing method of absorption layer of thin film solar cell and thin film solar cell thereof
Abdullah et al. Effect of deposition time on ZnS thin films properties by chemical bath deposition (CBD) techinique
Wang et al. Interface etching leads to the inversion of the conduction band offset between the CdS/Sb2Se3 heterojunction and high-efficient Sb2Se3 solar cells
WO2011028269A1 (en) Cadmium-free thin film for use in solar cells
US20180315878A1 (en) Photovoltaic Device Based on Ag2ZnSn(S,Se)4 Absorber
KR101371859B1 (en) Solar cell and method of fabricating the same
KR20110012550A (en) Method of fabricating thin film solar cell and appatatus for fabricating thin film solar cell
Regmi et al. Impact of target power on the properties of sputtered intrinsic zinc oxide (i-ZnO) thin films and its thickness dependence performance on CISe solar cells
CN102618853A (en) Preparation method of copper-zinc-tin-selenium film
JP6143737B2 (en) Compound solar cell and method for forming a thin film having sulfide single crystal nanoparticles
EP2702615B1 (en) Method of preparing a solar cell
TWI402996B (en) A simple manufacture process to obtain near stoichiometric cuxzn snsy(czts) thin films used for solar cells
KR20100058751A (en) Method of fabricating absorption layer of solar cell
KR101488202B1 (en) Manufacturing method of buffer layer for thin-film solar cell using electromagnetic wave
Ezike et al. Deposition temperature effects on CuAlSe2 compound thin films prepared by chemical bath deposition technique
CN112071941B (en) Functional module and preparation method and application thereof
Tafti et al. Thermal annealing influence over optical properties of thermally evaporated SnS/CdS bilayer thin films
KR20140061618A (en) Manufacturing method of buffer layer for thin-film solar cell using electromagnetic wave
KR101835580B1 (en) Prepration method of CZTS or CZTSe thin film solar cell using co-evaporation and solar cell prepared by the same
EP2860281A1 (en) Method of recycling solution, solar cell including buffer layer formed by the method, and deposition apparatus
Oluyamo et al. Tunability and Graded Energy Band Gap of Chemical Bath Deposited Cadmium Sulfide (CdS) Thin Film for Optoelectronic Applications
Abdullah et al. Optical and structural properties of ZnS thin films grown by CBD technique

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20171212

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181212

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191203

Year of fee payment: 6