KR101487753B1 - Material of construction with superior tensile strength produced by waste rubber and waste plastic - Google Patents

Material of construction with superior tensile strength produced by waste rubber and waste plastic Download PDF

Info

Publication number
KR101487753B1
KR101487753B1 KR20120045884A KR20120045884A KR101487753B1 KR 101487753 B1 KR101487753 B1 KR 101487753B1 KR 20120045884 A KR20120045884 A KR 20120045884A KR 20120045884 A KR20120045884 A KR 20120045884A KR 101487753 B1 KR101487753 B1 KR 101487753B1
Authority
KR
South Korea
Prior art keywords
waste
civil engineering
synthetic resin
mixed
construction materials
Prior art date
Application number
KR20120045884A
Other languages
Korean (ko)
Other versions
KR20130122814A (en
Inventor
문우철
장상무
Original Assignee
문우철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문우철 filed Critical 문우철
Priority to KR20120045884A priority Critical patent/KR101487753B1/en
Publication of KR20130122814A publication Critical patent/KR20130122814A/en
Application granted granted Critical
Publication of KR101487753B1 publication Critical patent/KR101487753B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic

Abstract

본 발명은 폐고무와 폐합성수지를 이용하여 제조된 인장강도가 우수한 토목·건축건자재에 관한 것으로서, 더욱 상세하게는 폐고무와 폐합성수지는 일정온도, 일정속도 및 일정시간의 조건에서 혼합하여 조성된 제1혼합물;과, PP(PolyPropylene)의 유기첨가제;와, 유리섬유의 무기첨가제를 일정온도, 일정시간의 조건에서 교반하여 조성된 혼합재질을 이용하여 토목·건축건자재가 제조됨을 특징으로 하는 폐고무와 폐합성수지를 이용하여 제조된 인장강도가 우수한 토목·건축건자재에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to civil engineering and building construction materials having excellent tensile strength and produced by using waste rubber and waste synthetic resin. More particularly, the waste rubber and waste synthetic resin are mixed and mixed at a constant temperature, Characterized in that civil engineering and building construction materials are produced by using a mixed material prepared by stirring a first mixture, an organic additive of polypropylene (PP), and an inorganic additive of glass fiber at a predetermined temperature for a predetermined time, The present invention relates to civil engineering and building construction materials excellent in tensile strength and manufactured using rubber and waste synthetic resin.

Description

폐고무와 폐합성수지를 이용하여 제조된 인장강도가 우수한 토목·건축건자재{MATERIAL OF CONSTRUCTION WITH SUPERIOR TENSILE STRENGTH PRODUCED BY WASTE RUBBER AND WASTE PLASTIC}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a construction material having excellent tensile strength using waste rubber and waste synthetic resin,

본 발명은 대부분 매립 또는 소각되어 많은 문제를 일으키는 산업폐기물의 폐고무, 폐합성수지의 혼합물질에 폐고무의 입자크기, 상용화제 구성, 무기물의 혼합을 고려하여 인장강도, 굴곡강도, 내충격강도 등의 물리적 특성을 향상시켜 이를 상하수도관, 흄관, 파이프, 팔레트, 플라스틱 포대, 차광판, 충격흡수대의 제조에 적용하는 폐고무와 폐합성수지를 이용하여 제조된 인장강도가 우수한 토목·건축건자재에 관한 것이다.The present invention relates to a method for producing a waste rubber composition which comprises a mixture of a waste rubber and a waste synthetic resin in industrial wastes which are mostly buried or incinerated and cause a lot of troubles and which have tensile strength, The present invention relates to civil engineering and building construction materials having excellent tensile strength and made of waste rubber and waste synthetic resin which are improved in physical properties and applied to the manufacture of water supply and sewage pipes, hume pipes, pipes, pallets, plastic bags, shading plates and shock absorbers.

산업의 급성장 및 산업구조가 고도화됨에 따라 산업폐기물의 배출 양은 물론 그 종류가 다양화됨으로써, 그 처리에 많은 어려움을 겪고 있다.As the rapid growth of the industry and the industrial structure are advanced, the amount of industrial wastes to be discharged is diversified as well as being subjected to many difficulties.

종래 대표적인 산업폐기물의 처리에 대해 간단히 살펴보면, 매립의 경우 매립지확보의 어려움, 매립지 선정에 따른 지역주민 간의 갈등 야기, 2차적으로 발생하는 지하수 오염 및 그에 따른 질병발생의 우려가 커 점차 매립에 의한 산업폐기물의 처리를 규제하고 있으며, 소각의 경우 다양한 물질을 일괄적으로 처리할 수 있어 편리한 방법이기는 하나, 입자상태의 분진과 gas상태의 SOx, NOx, CO, HCl, Dioxin 등의 배출가스 문제와 특히 폐합성수지, 고무, 신발, 피혁류 등의 제조공정에서 발생하는 폐 고무와 고분자 폐기물의 경우 많은 유해 gas, 분진, 매연이 발생하여 그 처리에 어려움이 있었다.
In the case of landfill, it is difficult to secure a landfill site, conflicts among local residents due to the selection of landfill, groundwater pollution that occurs secondarily, and a concern about the occurrence of diseases, Although it is a convenient method to treat various materials collectively in the case of incineration, it is a convenient method, but it does not solve the problem of exhaust gas such as SOx, NOx, CO, HCl and Dioxin in particulate dust and gas state In the case of waste rubber and polymer wastes generated in the manufacturing process of waste synthetic resin, rubber, shoes, leather, etc., many harmful gas, dust, and soot were generated, and the treatment was difficult.

상기와 같은 종래 산업폐기물 처리의 문제를 해결하기 위해, 재활용 측면에서 많은 연구가 이루어지고 있으며, 폐고무의 경우 재활용을 위한 분쇄기술에 집중되고 있으며, 폐합성수지의 경우에는 열분해 등을 통한 오일, 차르, 가스 등의 재생산 기술에 집중되고 있는 실정이다.In order to solve the problems of conventional industrial waste treatment as described above, much research has been conducted in terms of recycling. In the case of waste rubber, the waste rubber is concentrated on the crushing technology for recycling. In the case of waste synthetic resin, , Gas, and so on.

그러나 이와 같은 재활용 기술은 초기 투자비용이 높기 때문에 사업화가 용이하지 않기 때문에 산업폐기물의 재활용도가 떨어지는 것이 사실이다.However, such recycling technology is not easy to commercialize because of the high initial investment cost, and thus the recycling rate of industrial waste is low.

따라서, 기존의 설비를 통해서도 재생산이 가능하여 산업폐기물의 재활용도를 높일 수 있는 기술이 필요한 실정이며, 이와 같은 재활용도를 높임으로써 자원의 절약은 물론 더 나아가 환경오염을 개선할 수 있는 방안의 제시가 필요하다.Therefore, it is necessary to develop a technology that can increase the recycling rate of industrial wastes by making it possible to reproduce through existing facilities. By increasing the recycling rate, it is possible to save resources and further improve the environmental pollution .

또한, 종래 폐플라스틱 등의 폐기물을 이용한 흄관(등록실용신안 20-0211173), 파이프(등록특허 10-0292274)에 대한 기술을 제시하고 있으나, 이와 같은 종래 기술들은 인장강도 등의 물성이 떨어져 실무에서는 그 사용을 꺼리고 있어 실질적으로 실무에서 적용할 수 있는 물성을 갖는 토목·건축건자재가 필요한 실정이다.In addition, although the prior art discloses a technology for a humidifier pipe (a registered trademark 20-0211173) and a pipe (Patent Registration No. 10-0292274) using waste such as waste plastics in the past, physical properties such as tensile strength have been reduced, It is necessary to use civil engineering and construction materials that have physical properties that can be applied practically.

대한민국 등록실용신안 20-0211173(등록일자 2000년11월10일)Korea Registered Utility Model 20-0211173 (Registered on November 10, 2000) 대한민국 등록특허 10-0292274(등록일자 2001년03월21일)Korean Registered Patent No. 10-0292274 (Registered Date: March 21, 2001)

상기의 문제를 해결하고자, 본 발명에서는 산업폐기물인 폐고무와 폐합성수지를 이용하여 인장강도, 굴곡강도, 내충격강도의 물성을 향상시켜 재활용도를 높일 수 있는 인장강도가 뛰어난 폐고무와 폐합성수지의 혼합재질을 이용한 토목·건축건자재의 제공을 발명의 목적으로 한다.
In order to solve the above-mentioned problems, the present invention relates to a method of manufacturing a waste rubber and a waste synthetic resin, which are excellent in tensile strength, which can increase the recyclability by improving the tensile strength, flexural strength, The purpose of the invention is to provide civil engineering and building construction materials using mixed materials.

상기의 목적을 달성하고자,In order to achieve the above object,

본 발명은 폐고무와 폐합성수지의 혼합재질로 제조된 토목·건축건자재에 관한 것으로서,BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to civil engineering and building construction materials made of a mixed material of waste rubber and waste synthetic resin,

상기 혼합재질은 폐고무 10 ~ 30wt%와 폐합성수지 70 ~ 90wt%를 140 ~ 170℃에서 40 ~ 50rpm의 교반 속도로 5 ~ 10분간 혼합하여 조성된 제1혼합물 80 ~ 90wt%;와,80 to 90 wt% of a first mixture formed by mixing 10 to 30 wt% of waste rubber and 70 to 90 wt% of waste synthetic rubber with stirring speed of 40 to 50 rpm at a temperature of 140 to 170 DEG C for 5 to 10 minutes,

PP(PolyPropylene)의 유기첨가제 5 ~ 10wt%;와,5 to 10 wt% of an organic additive of PP (polypropylene)

유리섬유의 무기첨가제 5 ~ 10wt%;를 150 ~ 200℃에서 2 ~ 5분간 교반하여 조성된 것임을 특징으로 하는 폐고무와 폐합성수지를 이용하여 제조된 인장강도가 우수한 토목·건축건자재를 주요 기술적 구성으로 한다.
And 5 to 10 wt% of an inorganic additive of glass fiber is stirred at 150 to 200 DEG C for 2 to 5 minutes. The main technical components of civil engineering and construction materials having excellent tensile strength and manufactured using waste rubber and waste synthetic resin .

이상에서 살펴본 바와 같이, 본 발명에 따른 인장강도가 뛰어난 폐고무와 폐합성수지의 혼합재질을 이용한 토목·건축건자재는 폐고무의 미분말화와, 상용화제의 구성 및 무기물의 적절한 사용으로 인해 인장강도, 굴곡강도, 내충격강도 등의 물성이 뛰어나며, 특히 산업폐기물을 재활용함으로써 자원 절약은 물론 환경문제를 개선하는 효과를 갖는다.
As described above, the civil engineering and building construction materials using the mixed material of the waste rubber and the waste synthetic resin having excellent tensile strength according to the present invention are excellent in tensile strength, tensile strength and tensile strength due to the fine powdering of the waste rubber, the composition of the compatibilizer, Bending strength and impact strength, and has an effect of saving resources and environmental problems, in particular, by recycling industrial wastes.

이하, 상기의 기술적 구성에 대한 구체적인 내용을 살펴보고자 한다.
Hereinafter, the technical details of the above-described technical configuration will be described in detail.

본 발명의 폐고무와 폐합성수지의 혼합재질의 적용되는 토목·건축건자재는 다양하나, 구체적으로 언급하자면 상하수도관, 흄관, 파이프, 팔레트, 플라스틱 포대, 차광판, 충격흡수대가 있다.
The civil engineering and building construction materials of the mixed material of the waste rubber and the waste synthetic resin of the present invention are various, but there are concrete water and sewage pipe, hume pipe, pipe, pallet, plastic bag, shading plate and shock absorber.

먼저 상기 제1혼합물의 구성에 대해 살펴보고자 한다.First, the structure of the first mixture will be described.

제1혼합물은 폐고무 10 ~ 30wt%와 폐합성수지 70 ~ 90wt%를 140 ~ 170℃에서 5 ~ 10분간 40 ~ 50rpm의 교반 속도로 혼합하여 조성되는 것이다.
The first mixture is formed by mixing 10 to 30 wt% of waste rubber and 70 to 90 wt% of waste synthetic resin at 140 to 170 DEG C for 5 to 10 minutes at a stirring speed of 40 to 50 rpm.

상기 폐고무는 고무(rubber) 40%, 카본블랙(carbon black) 19%, 연화오일 10%, 섬유 10%, 철심 10%, 가황보조제 5%, 산화아연 5%, 황 1%의 조성을 갖는 폐타이어에서 철심, 섬유를 제거한 25 ~ 50mesh 크기의 폐타이어 조각을 분쇄기에 5kg/hr로 투입하면서 11,000rpm의 고속회전으로 분쇄하여 200 ~ 450㎛의 미분말인 것을 사용한다.
The waste rubber is a waste having a composition of 40% of rubber, 19% of carbon black, 10% of softening oil, 10% of fiber, 10% of iron core, 5% of vulcanization auxiliary agent, 5% of zinc oxide, A piece of waste tire having a size of 25 to 50 mesh, from which iron core and fibers are removed from a tire, is pulverized at 5 kg / hr in a pulverizer and pulverized at a high speed rotation of 11,000 rpm to be a fine powder having a particle size of 200 to 450 μm.

상기 폐고무의 입자 크기는 토목·건축건자재의 물성에 큰 영향을 미치게 되는 것으로서, 폐타이어의 철심, 섬유부분 등을 제거한 후 상온 파쇄 또는 냉동 파쇄의 방법으로 폐고무 분말로 가공된다.The particle size of the waste rubber greatly influences the physical properties of civil engineering and construction materials. After the iron core, fiber portion, etc. of the waste tire are removed, the waste rubber is processed into waste rubber powder by a method of crushing at room temperature or freezing.

상기 폐고무의 입자 크기가 200㎛ 미만인 경우에는 분쇄 작업이 용이하지 않은 문제가 있고, 450㎛를 초과하게 되는 경우에는 제조된 토목·건축건자재의 인장강도가 떨어질 수 있으므로, 폐타이어 미분말은 200 ~ 450㎛의 입경을 유지하는 것이 바람직하다.
When the particle size of the waste rubber is less than 200 mu m, there is a problem that the crushing operation is not easy. When the waste rubber exceeds 450 mu m, the tensile strength of the manufactured civil engineering and building materials may be lowered. It is preferable to maintain the particle size of 450 mu m.

상기 폐고무는 제1혼합물 전체 중량의 10 ~ 30wt%로 사용되는 것으로, 10wt% 미만인 경우에는 인장강도가 떨어질 수 있고, 30wt%를 초과하게 되는 경우에는 상대적으로 폐합성수지의 사용량이 줄어들어 내충격강도가 떨어질 수 있으므로 상기 폐고무는 제1혼합물 전체 중량에 대해 10 ~ 30wt%의 범위에서 사용되는 것이 바람직하다.
The waste rubber is used in an amount of 10 to 30 wt% of the total weight of the first mixture. When the waste rubber is less than 10 wt%, the tensile strength may be lowered. When the waste rubber is more than 30 wt%, the amount of waste synthetic resin is decreased, The waste rubber is preferably used in a range of 10 to 30 wt% with respect to the total weight of the first mixture.

상기 폐합성수지는 PP(polypropylene), HDPE(high density polyethylene), LDPE(low density polyethylene), PVC(polyvinyl, choloride), PS(polystyrene), ABS(acrylonitrile butadiene styrene) 중 선택되는 어느 2종 이상의 혼합으로 조성된 혼합 폐합성수지 80 ~ 90wt%에 EPR과 SBS가 1:1 중량비율로 혼합된 상용화제 5 ~ 10wt%와 적니(red mud) 5 ~ 10wt%를 첨가하여 200℃에서 550rpm으로 블랜드한 것이다.
The waste synthetic resin may be a mixture of two or more selected from polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE), polyvinyl chloride, polystyrene (PS), and acrylonitrile butadiene styrene 5 to 10 wt% of a compatibilizer mixed with EPR and SBS in a weight ratio of 1: 1 and 5 to 10 wt% of red mud were added to 80 to 90 wt% of the mixed waste synthetic resin, and the mixture was blended at 200 DEG C and 550 rpm.

상기 폐합성수지는 상용화제와 무기물을 함께 사용하여 제조된 토목·건축건자재의 내충격강도, 인장강도의 기계적 물성 향상을 가져오는 것으로서, 상기 혼합 폐합성수지의 구체적인 배합비율은 PP(polypropylene) 10 ~ 50wt%, HDPE(high density polyethylene) 10 ~ 50wt%, LDPE(low density polyethylene) 10 ~ 50wt%, PVC(polyvinyl, choloride) 10 ~ 50wt%, PS(polystyrene) 10 ~ 50wt%, ABS(acrylonitrile butadiene styrene) 10 ~ 50wt%이다.
The waste synthetic resin may improve the mechanical properties of the impact resistance and the tensile strength of civil engineering and building construction materials produced by using a compatibilizing agent and an inorganic material together. The specific blending ratio of the mixed waste synthetic resin is 10 to 50 wt% of polypropylene (PP) 10 to 50 wt% of high density polyethylene (HDPE), 10 to 50 wt% of LDPE, 10 to 50 wt% of polyvinyl choloride, 10 to 50 wt% of PS (polystyrene), 10 to 50 wt% of acrylonitrile butadiene styrene To 50 wt%.

상기 제1혼합물을 이루기 위한 폐합성수지의 사용량은 70 ~ 90wt%로서, 70wt% 미만인 경우에는 토목·건축건자재의 내 충격강도가 떨어질 수 있고, 90wt%를 초과하게 되는 경우에는 상대적으로 폐고무의 사용량이 줄어들어 인장 강도가 떨어질 수 있으므로, 상기 폐합성수지는 제1혼합물 전체 중량의 70 ~ 90wt%의 범위에서 사용하는 것이 바람직하다.
The amount of waste synthetic resin used for forming the first mixture is 70 to 90 wt%. When the amount of waste synthetic resin is less than 70 wt%, the impact strength of civil engineering and building construction materials may be lowered. When the amount exceeds 90 wt% The tensile strength may be lowered. Therefore, the waste synthetic resin is preferably used in a range of 70 to 90 wt% of the total weight of the first mixture.

또한, 상기 폐고무와 폐합성수지는 140 ~ 170℃에서 40 ~ 50rpm의 교반 속도로 5 ~ 10분간 혼합하여 제1혼합물을 이루게 되며, 140℃, 40rpm, 5분 미만에서의 조건에서는 폐고무와 폐합성수지의 교반이 잘 이루어지지 않고, 170℃, 50rpm, 10분을 초과하는 조건에서는 교반이 잘 이루어져 있는 상태이기 때문에 무의미하다.
The waste rubber and the waste synthetic resin are mixed at a stirring speed of 40 to 50 rpm at a temperature of 140 to 170 DEG C for 5 to 10 minutes to form a first mixture. Under the conditions of 140 DEG C, 40 rpm and less than 5 minutes, The synthetic resin is not agitated well, and it is meaningless because the agitation is well performed under conditions of 170 DEG C and 50 rpm for more than 10 minutes.

그리고, 상기 폐합성수지는 혼합 폐합성수지 80 ~ 90wt%에 EPR과 SBS가 1:1 중량비율로 혼합된 상용화제 5 ~ 10wt%와 적니(red mud) 5 ~ 10wt%를 첨가하여 200℃에서 550rpm으로 블랜드한 것으로서, 상기 상용화제는 EPR 또는 SBS를 단독으로 사용하는 경우보다는 EPR과 SBS를 1:1 중량비율로 혼합하는 경우에 물성향상을 기대할 수 있고, 상기 적니는 인장강도를 증가시키는 역할을 하는 것으로, 5 ~ 10wt%의 범위에서의 사용이 바람직하다.
5 to 10 wt% of a compatibilizer in which EPR and SBS are mixed in a weight ratio of 1: 1 and 5 to 10 wt% of red mud is added to 80 to 90 wt% of the waste synthetic resin, The compatibilizing agent can be expected to improve physical properties when mixing EPR and SBS in a weight ratio of 1: 1, rather than using EPR or SBS alone, and the red mud serves to increase the tensile strength And it is preferably used in the range of 5 to 10 wt%.

다음으로, 상기 제1혼합물과 PP(polypropylene)의 유기첨가제, 유리섬유의 무기첨가제의 혼합으로 이루어지는 토목·건축건자재 재질에 대해 살펴보고자 한다.
Next, a description will be given of materials for civil engineering and building construction which are formed by mixing the first mixture and an organic additive of PP (polypropylene) and an inorganic additive of glass fiber.

상기 토목·건축건자재 재질은 제1혼합물 80 ~ 90wt%와, PP(polypropylene)의 유기첨가제 5 ~ 10wt%와, 유리섬유의 무기첨가제 5 ~ 10wt%를 150 ~ 200℃로 2 ~ 5분간 교반하여 조성된다.The civil engineering building material is prepared by mixing 80 to 90 wt% of the first mixture, 5 to 10 wt% of the organic additive of PP (polypropylene) and 5 to 10 wt% of the inorganic additive of the glass fiber at 150 to 200 DEG C for 2 to 5 minutes .

상기 제1혼합물의 사용량이 80wt% 미만인 경우에는 토목·건축건자재의 인장강도가 떨어질 우려가 있고, 90wt%를 초과하게 되는 경우에는 상대적으로 유기첨가제의 양이 줄어들어 굴곡강도가 떨어지는 문제가 있으므로, 상기 제1혼합물은 토목·건축건자재 재질의 전체중량에 대해 80 ~ 90wt%의 범위에서 사용하는 것이 바람직하다.
When the amount of the first mixture is less than 80 wt%, the tensile strength of civil engineering and building materials may decrease. When the amount of the first mixture exceeds 90 wt%, the amount of the organic additive is decreased, It is preferable that the first mixture is used in a range of 80 to 90 wt% with respect to the total weight of the civil engineering and building construction material.

상기 PP(polypropylene)의 유기첨가제의 사용량이 5wt% 미만인 경우에는 굴곡강도가 떨어지고, 10wt%를 초과하여 사용하게 되면 어느 일정범위 이상이 되어 오히려 인장강도 등의 물성이 떨어지게 되므로, 상기 PP(polypropylene)의 유기첨가제의 사용량은 5 ~ 10wt%의 범위에서 사용하는 것이 바람직하다.
When the amount of the organic additive of PP is less than 5 wt%, the bending strength is lowered. If the amount of the organic additive is more than 10 wt%, the PP is more than a certain range and the properties such as tensile strength are lowered. Of the organic additive is preferably used in an amount of 5 to 10 wt%.

상기 유리섬유의 무기첨가제의 사용은 강도의 증가와 증량효과에 따른 원가절감효과를 갖게 되는 것으로, 그 사용량이 5wt% 미만인 경우에는 강도의 증가와 증량효과를 기대하기 어렵고, 10wt%를 초과하게 되는 경우에는 제1혼합물 또는 유기첨가제의 사용량이 줄어들어 토목·건축건자재의 물성이 떨어질 수 있으므로, 상기 유리섬유의 무기첨가제는 5 ~ 10wt%의 범위에서 사용하는 것이 바람직하다.
When the amount of the inorganic additive is less than 5 wt%, it is difficult to expect an increase in the strength and an increase in the amount of the additive. When the amount of the inorganic additive exceeds 10 wt% The use amount of the first mixture or the organic additive may be reduced to deteriorate the physical properties of civil engineering and building construction materials. Therefore, the inorganic additive of the glass fiber is preferably used in a range of 5 to 10 wt%.

이하, 상기의 기술 구성에 대한 구체적인 실시예를 살펴보고자 한다.
Hereinafter, a specific embodiment of the above-described technical configuration will be described.

< 폐고무 ><Waste rubber>

철심, 섬유부분이 제거된 30mesh의 폐타이어를 분쇄기에 5kg/hr로 투입하면서 11,000rpm의 고속회전으로 분쇄하여 400㎛의 미분말로 제조한다.
30 meshes of waste tires from which iron core and fiber portions have been removed are put into a pulverizer at a rate of 5 kg / hr, and pulverized at a high speed rotation of 11,000 rpm to prepare 400 μm fine powder.

< 폐합성수지 ><Waste synthetic resin>

폐합성수지의 PP(polypropylene) 20wt%, HDPE(high density polyethylene) 20wt%, LDPE(low density polyethylene) 20wt%, PVC(polyvinyl, choloride) 20wt%, PS(polystyrene) 10wt%, ABS(acrylonitrile butadiene styrene) 10wt%의 비율로 혼합된 혼합 폐합성수지 85wt%;에 EPR 50wt%와 SBS 50wt%가 혼합된 상용화제 5wt%;와 적니(red mud) 10wt%;를 첨가하여 200℃에서 550rpm으로 블랜드한다.
20 wt% of HDPE (high density polyethylene), 20 wt% of LDPE (low density polyethylene), 20 wt% of PVC (polyvinyl chloride), 10 wt% of PS (polystyrene), acrylonitrile butadiene styrene (ABS) 5 wt% of a mixture of EPR 50 wt% and SBS 50 wt% and 10 wt% of red mud are added to 85 wt% of mixed waste synthetic resin mixed at a mixing ratio of 10 wt%, and blended at 200 rpm and 550 rpm.

< 제1혼합물 >&Lt; First Mixture >

상기 실시예 1의 폐고무 30wt%와 상기 실시예 2의 폐합성수지 70wt%를 100rpm으로 5 ~ 10분간 혼합한다.30 wt% of the waste rubber of Example 1 and 70 wt% of the waste synthetic resin of Example 2 were mixed at 100 rpm for 5 to 10 minutes.

< 토목·건축건자재 재질 ><Material of civil engineering and building construction materials>

상기 실시예 3의 제1혼합물 80wt%에 PP(polypropylene) 10wt%와 유리섬유 10wt%를 첨가한 후에 150℃에서 5분간 교반한다.
10 wt% of PP (polypropylene) and 10 wt% of glass fiber were added to 80 wt% of the first mixture of Example 3, followed by stirring at 150 캜 for 5 minutes.

하기의 실시예 5 내지 실시예 10은 토목·건축건자재의 제조에 대한 실시예로서, 상기 실시예 4의 재질을 이용하여 실시예 5 내지 실시예 10에서 제시된 조건에서 제조가 이루어진다면 종래 사용되던 다양한 방법으로 제조가 가능하다.
The following Examples 5 to 10 are examples of the production of civil engineering and building materials. If the materials of Example 4 are used to manufacture them under the conditions shown in Examples 5 to 10, Can be manufactured by a method.

< 팔레트 ><Palette>

상기 실시예 4의 재질을 이용하는 것으로, 220kg/㎠의 압력, 150℃의 열을 이용하여 압축 성형하여 이송용 컨베이어 팔레트를 제조한다.
By using the material of Example 4, a conveying conveyor pallet is manufactured by compression molding using a pressure of 220 kg / cm 2 and a heat of 150 ° C.

< 상하수도관 ><Waterworks and Sewerage Administration>

상기 실시예 4의 재질을 이용하여 150℃에서, 용융 냉각수 온도 25℃ 조건으로 용융 압출하고, 파이프 성형장치를 통해 튜브 형태의 도관으로 제조한다.
Extruded at a temperature of 150 DEG C and a molten cooling water temperature of 25 DEG C using the material of Example 4 and made into a tubular conduit through a pipe forming device.

< 흄관 ><Hump tube>

흄관의 제조는 먼저 흄관 틀을 제조한 후에 상기 실시예 4의 재질을 150℃의 온도에서 교반 혼합된 상태로 흄관 틀에 채운다. 그리고, 상온에서 자연냉각시켜 흄관을 제조한다.
The Hume tube is manufactured by first preparing a Hume tube frame, then filling the Hume tube frame with the material of Example 4 at a temperature of 150 ° C while being stirred and mixed. Then, natural cooling is performed at room temperature to produce a humidifier tube.

< 파이프 ><Pipe>

상기 실시예 4의 재질을 압출기를 통해 압출하여 성형한 후에, 성형 된 파이프를 냉각수로 냉각한 후에 소정 길이로 절단하여 파이프를 제조한다.
After extruding and molding the material of Example 4 through an extruder, the formed pipe is cooled with cooling water and then cut to a predetermined length to manufacture a pipe.

< 플라스틱 포대 ><Plastic bag>

상기 실시예 4의 재질을 일축 압출기를 구비한 인플레이션 성형기를 사용하여 두께가 30㎛으로 필름을 제조하고, 그 필름을 열 밀봉하여 포대를 제조한다.Using the inflation molding machine equipped with the uniaxial extruder as the material of Example 4, a film was produced to a thickness of 30 占 퐉 and the film was heat-sealed to manufacture a turret.

< 차광판 ><Shading plate>

상기 실시예 4의 재질을 200℃를 유지하는 단일 금형(single mould) 사출성형하여 제조한다.
The material of Example 4 is manufactured by single mold injection molding at 200 占 폚.

< 충격흡수대 ><Shock absorber>

상기 실시예 4의 재질을 220℃를 유지하는 단일 금형(single mould) 사출성형하여 제조한다.
The material of Example 4 is manufactured by single mold injection molding at 220 占 폚.

[시험예 1]
[ Test Example 1 ]

상기 실시예 5 내지 10의 토목/건자재의 인장강도를 측정하였으며, 그 측정은 시편을 제작하여 상온에서 1,000N load cell을 장착한 후 grip으로 일정속도로 인장 시켜 UTM으로 측정하였으며, 그 결과는 표 1에 나타내었다.
The tensile strengths of the civil engineering and construction materials of Examples 5 to 10 were measured. The specimens were prepared, and the specimens were mounted at 1,000 N load cell at room temperature. The tensile strength was measured by UTM at a constant speed using a grip. Respectively.

인장강도의 계산식은 아래의 식(1)과 같다.The formula for calculating the tensile strength is shown in the following equation (1).

Tb = Pb / t×b ----------------------------------------------- (1)Tb = Pb / t x b ------------------------------------------- ---- (One)

여기에서,From here,

Tb : 인장강도(Kgf/㎟)Tb: tensile strength (Kg f / ㎟)

Pb : 최대하중(Kgf)Pb: Maximum load (Kg f )

t : 시험편의 두께(mm)         t: thickness of specimen (mm)

b : 시험편의 나비(mm)
b: Width of test specimen (mm)

실시 예 5 내지 11의 In Examples 5 to 11 인장강도The tensile strength 측정 결과 Measurement result 대상object 인장강도(Kgf/㎟)Tensile strength (Kg f / ㎟) 실시 예 5Example 5 2.262.26 실시 예 6Example 6 2.232.23 실시 예 7Example 7 2.252.25 실시 예 8Example 8 2.262.26 실시 예 9Example 9 1.951.95 실시 예 10Example 10 2.262.26 실시 예 11Example 11 2.262.26

상기 표 1에서 보는 바와 같이, 실시 예 5 내지 11의 인장강도(Kgf/㎟)는 동일 재질을 이용하여 제조된 토목·건축건자재의 시편을 이용하여 측정한 결과, 팔레트 2.26, 상하수도관 2.23, 흄관 2.25, 파이프 2.26, 플라스틱 포대 1.95, 차광판 2.26, 충격흡수대 2.26으로서 제조과정에서의 물성변화에 따른 다소의 차이는 있으나 대부분 2.23 내지 2.26 범위에서의 우수한 인장강도를 보이고 있다.
As shown in Table 1, tensile strengths (Kg f / mm 2) of Examples 5 to 11 were measured using specimens of civil engineering and building materials manufactured using the same material. As a result, it was found that pallet 2.26, water supply and drainage pipes 2.23, Hume pipe 2.25, Pipe 2.26, Plastic bag 1.95, Shield plate 2.26, Shock absorber 2.26, which show some excellent tensile strength in the range of 2.23 to 2.26 though there are some differences depending on the physical properties in the manufacturing process.

본 발명에 따른 토목·건축건자재는 산업폐기물을 재활용하여 제조되는 것으로서, 산업폐기물의 재활용에 따른 환경개선 효과와 높은 물성에 의한 자재로서의 품질이 높아 산업상 이용가능성이 크다.The civil engineering and building construction materials according to the present invention are manufactured by recycling industrial wastes, and are highly likely to be industrially applicable because of their high quality as materials due to the environmental improvement effect and recycling of industrial wastes and high physical properties.

Claims (5)

폐고무와 폐합성수지의 혼합재질로 제조된 토목·건축건자재에 있어서,
상기 혼합재질은 성분조성비가 고무(rubber) 40wt%, 카본블랙(carbon black) 19wt%, 연화오일 10wt%, 섬유 10wt%, 철심 10wt%, 가황보조제 5wt%, 산화아연 5wt%, 황 1wt%인 폐타이어에서 철심, 섬유를 제거한 25 ~ 50mesh 크기의 폐타이어 조각을 분쇄기에 5kg/hr로 투입하면서 11,000rpm의 고속회전으로 분쇄하여 200~450㎛의 미분말로 제조된 100wt%의 폐고무 중 10~30wt%와,
PP(polypropylene), HDPE(high density polyethylene), LDPE(low density polyethylene), PVC(polyvinyl, choloride), PS(polystyrene), ABS(acrylonitrile butadiene styrene) 중 선택되는 어느 2종 이상의 혼합으로 조성된 혼합 폐합성수지 80~90wt%에 EPR과 SBS가 1:1 중량비율로 혼합된 상용화제 5~10wt%와 적니(red mud) 5~10wt%를 첨가하여 200℃에서 550rpm으로 블랜드한 100wt%의 폐합성수지 중 70~90wt%를
140~170℃에서 40~50rpm의 교반 속도로 5~10분간 혼합하여 조성된 100wt%의 제1혼합물 중 80~90wt%;와,
PP(PolyPropylene)의 유기첨가제 5~10wt%;와,
유리섬유의 무기첨가제 5~10wt%;를 150~200℃에서 2~5분간 교반하여 조성된 것으로, 상기 혼합재질을 이용하여 토목·건축건자재가 제조됨을 특징으로 하는 폐고무와 폐합성수지를 이용하여 제조된 토목·건축건자재.
In civil engineering and building construction materials made of mixed material of waste rubber and waste synthetic resin,
The mixed material has a compositional composition of 40 wt% of rubber, 19 wt% of carbon black, 10 wt% of softening oil, 10 wt% of fiber, 10 wt% of iron core, 5 wt% of vulcanization auxiliary agent, 5 wt% of zinc oxide, A waste tire piece of 25 to 50 mesh size, from which iron cores and fibers were removed from the waste tire, was pulverized at a high speed rotation of 11,000 rpm while being fed into a pulverizer at a rate of 5 kg / hr. 30 wt%
Mixed lungs composed of a mixture of two or more selected from polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE), polyvinyl choloride (PVC), polystyrene (PS), and acrylonitrile butadiene styrene % Of waste synthetic resin blended with 80 ~ 90wt% of synthetic resin and 5 ~ 10wt% of compatibilizing agent mixed with EPR and SBS at a weight ratio of 5 ~ 10wt% and red mud 5 ~ 10wt% at 200 ° C and 550rpm 70 ~ 90wt%
80 to 90 wt% of the first mixture of 100 wt% prepared by mixing at 140 to 170 DEG C at a stirring speed of 40 to 50 rpm for 5 to 10 minutes,
5 to 10 wt% of an organic additive of PP (polypropylene)
And 5 to 10 wt% of an inorganic additive of glass fiber is stirred at 150 to 200 DEG C for 2 to 5 minutes and manufactured by using the mixed material to produce civil engineering and building construction materials. Manufactured civil engineering and building construction materials.
청구항 1에 있어서,
혼합재질을 이용하여 제조되는 토목·건축건자재는
상하수도관, 흄관, 파이프, 팔레트, 플라스틱 포대, 차광판, 충격흡수대 중 선택되는 어느 1종 이상인 것임을 특징으로 하는 폐고무와 폐합성수지를 이용하여 제조된 토목·건축건자재.
The method according to claim 1,
Civil engineering and construction materials manufactured using mixed materials
Wherein said at least one selected from the group consisting of water pipes, water pipes, pipes, pallets, plastic bags, shield plates, and shock absorbers.
삭제delete 삭제delete 청구항 1에 있어서,
혼합 폐합성수지는 PP(polypropylene) 10 ~ 50wt%, HDPE(high density polyethylene) 10 ~ 50wt%, LDPE(low density polyethylene) 10 ~ 50wt%, PVC(polyvinyl, choloride) 10 ~ 50wt%, PS(polystyrene) 10 ~ 50wt%, ABS(acrylonitrile butadiene styrene) 10 ~ 50wt%의 혼합으로 조성된 것임을 특징으로 하는 폐고무와 폐합성수지를 이용하여 제조된 토목·건축건자재.
The method according to claim 1,
10 to 50 wt% of polypropylene (PP), 10 to 50 wt% of HDPE (high density polyethylene), 10 to 50 wt% of LDPE (low density polyethylene), 10 to 50 wt% of PVC (polyvinyl choloride) 10 to 50 wt%, and ABS (acrylonitrile butadiene styrene) 10 to 50 wt%, based on the total weight of the composition.
KR20120045884A 2012-05-01 2012-05-01 Material of construction with superior tensile strength produced by waste rubber and waste plastic KR101487753B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20120045884A KR101487753B1 (en) 2012-05-01 2012-05-01 Material of construction with superior tensile strength produced by waste rubber and waste plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20120045884A KR101487753B1 (en) 2012-05-01 2012-05-01 Material of construction with superior tensile strength produced by waste rubber and waste plastic

Publications (2)

Publication Number Publication Date
KR20130122814A KR20130122814A (en) 2013-11-11
KR101487753B1 true KR101487753B1 (en) 2015-01-29

Family

ID=49852344

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20120045884A KR101487753B1 (en) 2012-05-01 2012-05-01 Material of construction with superior tensile strength produced by waste rubber and waste plastic

Country Status (1)

Country Link
KR (1) KR101487753B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432008B1 (en) * 2014-01-29 2014-08-20 한국컨테이너풀 주식회사 Composition comprising at least two kinds of resin, glass fiber, LDPE and rubber-resin
CN104774386B (en) * 2015-04-10 2017-10-27 芜湖中源赛特管业有限公司 Regeneration pipe material and its preparation method and application
CN108948583A (en) * 2018-07-10 2018-12-07 中喜(宁夏)新材料有限公司 A kind of method of flyash graphene reinforced plastics
CN109081973A (en) * 2018-07-30 2018-12-25 界首市成龙塑业有限公司 A method of plastic grain is prepared using waste old

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030093546A (en) * 2002-06-03 2003-12-11 한춘 Waste plastic/ground rubber tire composite and forms using the same
JP2008184534A (en) 2007-01-30 2008-08-14 Yashima Kensetsu Kk Method for modifying waste composite resin composition
KR20100028682A (en) * 2008-09-05 2010-03-15 장상무 A noctilucent buoy of mixing materials of waste rubber and plastic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030093546A (en) * 2002-06-03 2003-12-11 한춘 Waste plastic/ground rubber tire composite and forms using the same
JP2008184534A (en) 2007-01-30 2008-08-14 Yashima Kensetsu Kk Method for modifying waste composite resin composition
KR20100028682A (en) * 2008-09-05 2010-03-15 장상무 A noctilucent buoy of mixing materials of waste rubber and plastic

Also Published As

Publication number Publication date
KR20130122814A (en) 2013-11-11

Similar Documents

Publication Publication Date Title
CN103183856B (en) Tire rubber powder modified recycled plastic and preparation method thereof
CN101851363B (en) Regeneration method of waste polyethylene
CN102924939B (en) Waste tire rubber powder-filled plastic wood profile and preparation method thereof
US9919452B2 (en) Building bricks including plastics
US8568645B2 (en) Method of making structural members using waste and recycled plastics
CN101899178B (en) Special material for drainage pipeline by modifying waste plastic and preparation method thereof
KR101487753B1 (en) Material of construction with superior tensile strength produced by waste rubber and waste plastic
CN103922686B (en) A kind of ardealite waste plastics slag materials for wall and preparation method
CN101831101B (en) Preparation method for producing automobile awning special material by using waste plastics
Maneeth et al. Utilization of waste plastic in manufacturing of plastic-soil bricks
CN110845193A (en) High-strength steel slag pervious concrete and indoor forming process thereof
CN105777022A (en) Ardealite concrete extrusion partition board and preparation method thereof
CN102765909A (en) Method for manufacturing aerated hollow bricks by abandoned construction waste
Zare 3Recycled Polymers: Properties and Applications
Wakchaure et al. Waste tyre crumb rubber particle as a partial replacement to fine aggregate in concrete
CN114316614A (en) Multifunctional asphalt mixture modifier prepared from renewable resources and preparation method thereof
Wang et al. Value-added utilization of coal fly ash in polymeric composite decking boards
CN102557539A (en) High-performance rubber concrete
Bhavi et al. Effect of different percentages of waste high density polyethylene (HDPE) fibres on the properties of fibre reinforced concrete
KR101538492B1 (en) Using plastic waste timber construction and a method of manufacturing the composition
CN105153523A (en) Special mater batch for double-wall corrugated pipe prepared by utilizing talcum powder to modify waste HDPE and preparation method thereof
CN101338077A (en) Silicon plastic composite template and production method
CN105776984B (en) A kind of recycling processing method of Industrial Solid Waste
KR100519092B1 (en) Waste plastic/ground rubber tire composite and forms using the same
CN112805307A (en) Novel composition for producing plastic composites and method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee