KR101470918B1 - The manufacturing method for wheat-based feedstuff using bio-reaction - Google Patents
The manufacturing method for wheat-based feedstuff using bio-reaction Download PDFInfo
- Publication number
- KR101470918B1 KR101470918B1 KR1020120120824A KR20120120824A KR101470918B1 KR 101470918 B1 KR101470918 B1 KR 101470918B1 KR 1020120120824 A KR1020120120824 A KR 1020120120824A KR 20120120824 A KR20120120824 A KR 20120120824A KR 101470918 B1 KR101470918 B1 KR 101470918B1
- Authority
- KR
- South Korea
- Prior art keywords
- wheat
- feed
- fermentation
- enzyme
- processing
- Prior art date
Links
- 241000209140 Triticum Species 0.000 title claims abstract description 219
- 235000021307 Triticum Nutrition 0.000 title claims abstract description 219
- 238000004519 manufacturing process Methods 0.000 title abstract description 21
- 238000006243 chemical reaction Methods 0.000 title description 3
- 238000000034 method Methods 0.000 claims abstract description 106
- 238000000855 fermentation Methods 0.000 claims abstract description 95
- 230000004151 fermentation Effects 0.000 claims abstract description 95
- 102000004190 Enzymes Human genes 0.000 claims abstract description 63
- 108090000790 Enzymes Proteins 0.000 claims abstract description 63
- 235000013339 cereals Nutrition 0.000 claims abstract description 59
- 238000012545 processing Methods 0.000 claims abstract description 58
- 238000011282 treatment Methods 0.000 claims abstract description 57
- 235000000346 sugar Nutrition 0.000 claims abstract description 31
- 235000019621 digestibility Nutrition 0.000 claims abstract description 22
- 230000002255 enzymatic effect Effects 0.000 claims abstract description 6
- 244000144972 livestock Species 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 5
- 229940088598 enzyme Drugs 0.000 claims description 62
- 239000002994 raw material Substances 0.000 claims description 37
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 claims description 31
- 241000228245 Aspergillus niger Species 0.000 claims description 22
- 108010059892 Cellulase Proteins 0.000 claims description 17
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 15
- 229940106157 cellulase Drugs 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 10
- 240000006439 Aspergillus oryzae Species 0.000 claims description 6
- 235000002247 Aspergillus oryzae Nutrition 0.000 claims description 6
- 101710130006 Beta-glucanase Proteins 0.000 claims description 5
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 claims description 5
- 102100022624 Glucoamylase Human genes 0.000 claims description 5
- 102000004139 alpha-Amylases Human genes 0.000 claims description 4
- 108090000637 alpha-Amylases Proteins 0.000 claims description 4
- 229940024171 alpha-amylase Drugs 0.000 claims description 4
- -1 cristin arylamidase Proteins 0.000 claims description 4
- 229940059442 hemicellulase Drugs 0.000 claims description 4
- 108010002430 hemicellulase Proteins 0.000 claims description 4
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 claims description 3
- 108010051457 Acid Phosphatase Proteins 0.000 claims description 3
- 102000013563 Acid Phosphatase Human genes 0.000 claims description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 claims description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 claims description 3
- 102000004142 Trypsin Human genes 0.000 claims description 3
- 108090000631 Trypsin Proteins 0.000 claims description 3
- 239000012588 trypsin Substances 0.000 claims description 3
- 101710088194 Dehydrogenase Proteins 0.000 claims 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 claims 1
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 11
- 230000007062 hydrolysis Effects 0.000 abstract description 10
- 230000001965 increasing effect Effects 0.000 abstract description 9
- 150000008163 sugars Chemical class 0.000 abstract description 9
- 235000015097 nutrients Nutrition 0.000 description 57
- 230000008569 process Effects 0.000 description 49
- 235000005911 diet Nutrition 0.000 description 46
- 230000000694 effects Effects 0.000 description 46
- 230000037213 diet Effects 0.000 description 44
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 21
- 238000012360 testing method Methods 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 16
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 16
- 238000003672 processing method Methods 0.000 description 15
- 102000009027 Albumins Human genes 0.000 description 14
- 108010088751 Albumins Proteins 0.000 description 14
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 14
- 239000008103 glucose Substances 0.000 description 14
- 238000007654 immersion Methods 0.000 description 14
- 244000005700 microbiome Species 0.000 description 14
- 240000008042 Zea mays Species 0.000 description 13
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 13
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 13
- 235000005822 corn Nutrition 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 235000007319 Avena orientalis Nutrition 0.000 description 11
- 244000075850 Avena orientalis Species 0.000 description 11
- 241000282887 Suidae Species 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 235000019764 Soybean Meal Nutrition 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 229920001282 polysaccharide Polymers 0.000 description 10
- 239000005017 polysaccharide Substances 0.000 description 10
- 239000004455 soybean meal Substances 0.000 description 10
- 238000006911 enzymatic reaction Methods 0.000 description 9
- 150000004676 glycans Chemical class 0.000 description 9
- 235000013372 meat Nutrition 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000004382 Amylase Substances 0.000 description 8
- 108010065511 Amylases Proteins 0.000 description 8
- 102000013142 Amylases Human genes 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 8
- 235000019418 amylase Nutrition 0.000 description 8
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 8
- 235000021050 feed intake Nutrition 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 8
- 235000019750 Crude protein Nutrition 0.000 description 7
- 108091005804 Peptidases Proteins 0.000 description 7
- 239000004365 Protease Substances 0.000 description 7
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229920002472 Starch Polymers 0.000 description 6
- 241000282898 Sus scrofa Species 0.000 description 6
- 235000013312 flour Nutrition 0.000 description 6
- 239000002054 inoculum Substances 0.000 description 6
- 239000001814 pectin Substances 0.000 description 6
- 229920001277 pectin Polymers 0.000 description 6
- 235000010987 pectin Nutrition 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 230000008719 thickening Effects 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 238000009395 breeding Methods 0.000 description 5
- 230000001488 breeding effect Effects 0.000 description 5
- 235000019784 crude fat Nutrition 0.000 description 5
- 230000001953 sensory effect Effects 0.000 description 5
- 241000193830 Bacillus <bacterium> Species 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 230000000593 degrading effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 235000007558 Avena sp Nutrition 0.000 description 3
- 241000186660 Lactobacillus Species 0.000 description 3
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 3
- 241000607142 Salmonella Species 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000004825 constant-volume calorimetry Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000013505 freshwater Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000011081 inoculation Methods 0.000 description 3
- 229940039696 lactobacillus Drugs 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 235000019786 weight gain Nutrition 0.000 description 3
- 235000015099 wheat brans Nutrition 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- 235000019737 Animal fat Nutrition 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 2
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- BVHLGVCQOALMSV-JEDNCBNOSA-N L-lysine hydrochloride Chemical compound Cl.NCCCC[C@H](N)C(O)=O BVHLGVCQOALMSV-JEDNCBNOSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 235000019779 Rapeseed Meal Nutrition 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- 244000098345 Triticum durum Species 0.000 description 2
- 235000007264 Triticum durum Nutrition 0.000 description 2
- 235000019742 Vitamins premix Nutrition 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 108010047754 beta-Glucosidase Proteins 0.000 description 2
- 102000006995 beta-Glucosidase Human genes 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 2
- 229940038472 dicalcium phosphate Drugs 0.000 description 2
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 235000018823 dietary intake Nutrition 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 229960003646 lysine Drugs 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 2
- 150000002972 pentoses Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 2
- 239000004456 rapeseed meal Substances 0.000 description 2
- 229960002477 riboflavin Drugs 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000003307 slaughter Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- HFJUQSUBZOKELZ-UHFFFAOYSA-N 2-methyl-6-naphthalen-2-yloxyoxane-3,4,5-triol Chemical compound OC1C(O)C(O)C(C)OC1OC1=CC=C(C=CC=C2)C2=C1 HFJUQSUBZOKELZ-UHFFFAOYSA-N 0.000 description 1
- KCWQXDQUKLJUEU-UHFFFAOYSA-N 2-naphthyl butyrate Chemical compound C1=CC=CC2=CC(OC(=O)CCC)=CC=C21 KCWQXDQUKLJUEU-UHFFFAOYSA-N 0.000 description 1
- CQTZJAKSNDFPOB-UHFFFAOYSA-N 2-naphthyl dihydrogen phosphate Chemical compound C1=CC=CC2=CC(OP(O)(=O)O)=CC=C21 CQTZJAKSNDFPOB-UHFFFAOYSA-N 0.000 description 1
- CXVZBUOSDMLXNK-UHFFFAOYSA-N 2-naphthyl octanoate Chemical compound C1=CC=CC2=CC(OC(=O)CCCCCCC)=CC=C21 CXVZBUOSDMLXNK-UHFFFAOYSA-N 0.000 description 1
- SKRXBZIJSNMVFA-UHFFFAOYSA-N 2-naphthyl tetradecanoate Chemical compound C1=CC=CC2=CC(OC(=O)CCCCCCCCCCCCC)=CC=C21 SKRXBZIJSNMVFA-UHFFFAOYSA-N 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- 208000021959 Abnormal metabolism Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 101710180684 Beta-hexosaminidase Proteins 0.000 description 1
- 101710124976 Beta-hexosaminidase A Proteins 0.000 description 1
- 102100031478 C-type natriuretic peptide Human genes 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 150000008156 D-glucuronides Chemical class 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 101000796277 Homo sapiens C-type natriuretic peptide Proteins 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- JWHURRLUBVMKOT-HNNXBMFYSA-N L-leucine 2-naphthylamide Chemical compound C1=CC=CC2=CC(NC(=O)[C@@H](N)CC(C)C)=CC=C21 JWHURRLUBVMKOT-HNNXBMFYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- OBGGZBHESVNMSA-AWEZNQCLSA-N L-valine 2-naphthylamide Chemical compound C1=CC=CC2=CC(NC(=O)[C@@H](N)C(C)C)=CC=C21 OBGGZBHESVNMSA-AWEZNQCLSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 239000006154 MacConkey agar Substances 0.000 description 1
- 102100024295 Maltase-glucoamylase Human genes 0.000 description 1
- 241000757120 Mecolaesthus longissimus Species 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 102100030122 Protein O-GlcNAcase Human genes 0.000 description 1
- 101710081801 Protein O-GlcNAcase Proteins 0.000 description 1
- 101710199095 Putative beta-hexosaminidase Proteins 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 102100022647 Reticulon-1 Human genes 0.000 description 1
- 208000007107 Stomach Ulcer Diseases 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- 229930003471 Vitamin B2 Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 229930003448 Vitamin K Natural products 0.000 description 1
- HUXIAXQSTATULQ-UHFFFAOYSA-N [6-bromo-3-[(2-methoxyphenyl)carbamoyl]naphthalen-2-yl] dihydrogen phosphate Chemical compound COC1=CC=CC=C1NC(=O)C1=CC2=CC(Br)=CC=C2C=C1OP(O)(O)=O HUXIAXQSTATULQ-UHFFFAOYSA-N 0.000 description 1
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000010564 aerobic fermentation Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- 108010030291 alpha-Galactosidase Proteins 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- 108010061314 alpha-L-Fucosidase Proteins 0.000 description 1
- 102000012086 alpha-L-Fucosidase Human genes 0.000 description 1
- 102000019199 alpha-Mannosidase Human genes 0.000 description 1
- 108010012864 alpha-Mannosidase Proteins 0.000 description 1
- 108010027597 alpha-chymotrypsin Proteins 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 210000000436 anus Anatomy 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000004464 cereal grain Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000015140 cultured milk Nutrition 0.000 description 1
- 235000021051 daily weight gain Nutrition 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 235000019620 fat digestibility Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000003031 feeding effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000003736 gastrointestinal content Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 235000021474 generally recognized As safe (food) Nutrition 0.000 description 1
- 235000021473 generally recognized as safe (food ingredients) Nutrition 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- 230000003780 keratinization Effects 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 235000015263 low fat diet Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000006371 metabolic abnormality Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 238000004848 nephelometry Methods 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000021232 nutrient availability Nutrition 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 239000002420 orchard Substances 0.000 description 1
- NAIXASFEPQPICN-UHFFFAOYSA-O p-nitrophenylphosphocholine Chemical compound C[N+](C)(C)CCOP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 NAIXASFEPQPICN-UHFFFAOYSA-O 0.000 description 1
- 229940055726 pantothenic acid Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 239000006041 probiotic Substances 0.000 description 1
- 235000018291 probiotics Nutrition 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- RADKZDMFGJYCBB-UHFFFAOYSA-N pyridoxal hydrochloride Natural products CC1=NC=C(CO)C(C=O)=C1O RADKZDMFGJYCBB-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 235000019164 vitamin B2 Nutrition 0.000 description 1
- 239000011716 vitamin B2 Substances 0.000 description 1
- 235000019158 vitamin B6 Nutrition 0.000 description 1
- 239000011726 vitamin B6 Substances 0.000 description 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 1
- 235000005282 vitamin D3 Nutrition 0.000 description 1
- 239000011647 vitamin D3 Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 235000019168 vitamin K Nutrition 0.000 description 1
- 239000011712 vitamin K Substances 0.000 description 1
- 150000003721 vitamin K derivatives Chemical class 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 229940021056 vitamin d3 Drugs 0.000 description 1
- 229940046010 vitamin k Drugs 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/10—Animal feeding-stuffs obtained by microbiological or biochemical processes
- A23K10/12—Animal feeding-stuffs obtained by microbiological or biochemical processes by fermentation of natural products, e.g. of vegetable material, animal waste material or biomass
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/10—Animal feeding-stuffs obtained by microbiological or biochemical processes
- A23K10/16—Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
- A23K10/18—Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/30—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/163—Sugars; Polysaccharides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/189—Enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Animal Husbandry (AREA)
- Microbiology (AREA)
- Physiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Mycology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Development (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Botany (AREA)
- Fodder In General (AREA)
Abstract
소맥을 원료사료로 하여 곡물 사료를 가공하는 방법으로서, (a) 원료사료로서 소맥을 제공하는 단계; (b) 소맥을 침지하는 단계; (c) 증자하는 단계; (d) 균주를 접종하여 발효하는 단계; (e) 효소처리를 행하는 단계; 및 (f) 건조하는 단계를 포함하는 것을 특징으로 하는 소맥 곡물 사료의 가공방법이 개시된다. 본 발명은 소맥을 사료원료로 하는 단미사료를 제조함에 있어서 최적의 효소처리 및 발효처리 조건을 밝힌 것으로서, 호화도 및 유리당의 함량이 증가되고, 가축에서의 소화율 및 성장을 개선하는 것을 특징으로 하는 소맥 곡물사료에 관한 것이며, 이를 배합사료에 혼합하여 급이할 수 있다.CLAIMS What is claimed is: 1. A method of processing cereal feed using wheat as a feedstock, comprising: (a) providing wheat as a feedstock; (b) immersing the wheat; (c) a step of capitalizing; (d) inoculating and fermenting the strain; (e) performing an enzyme treatment; And (f) a step of drying the wheat grain feed. The present invention discloses optimum enzymatic treatment and fermentation treatment conditions in the production of a feedstuff of wheat as a feedstuff, characterized in that the degree of hydrolysis and free sugars is increased and the digestibility and growth of livestock are improved It is about wheat grain feed, which can be mixed with feed to feed.
Description
본 발명은 소맥을 원료로 하는 곡물사료의 가공방법에 관한 것이다. 보다 구체적으로는, 소맥을 원료로 하는 곡물사료의 가공방법으로서, 증자공정, 발효공정 및 효소공정을 포함하는 것을 특징으로 하는 곡물사료의 가공방법에 관한 것이다. 더 나아가서는, 소맥을 원료로 하는 곡물사료의 가공방법으로서, 최적의 발효조건 및 효소처리조건을 갖는 것을 특징으로 한 곡물사료의 가공방법에 관한 것이다. 또한, 이와 같은 가공방법에 의하여 제조된 소맥 곡물사료로서 호화도 및 유리당의 함량이 증가되고, 가축에서의 소화율 및 성장을 개선하는 것을 특징으로 하는 소맥 곡물사료에 관한 것이다.The present invention relates to a method of processing cereal feeds made from wheat. More specifically, the present invention relates to a method for processing a cereal grain feed containing wheat as a raw material, which comprises a growing step, a fermentation step and an enzyme step. Further, the present invention relates to a method for processing a grain feed using wheat as a raw material, and a method for processing a grain feed characterized by having an optimum fermentation condition and an enzyme treatment condition. The present invention also relates to wheat grain feeds characterized in that the content of starch and free sugars is increased as a wheat grain feed prepared by such a processing method, and digestibility and growth in livestock are improved.
최근 곡물의 재배환경 및 기후 온난화에 의한 식량 수급 불안정 등으로 인한 곡물가의 상승으로 과거에 비해 생산성의 개선을 위한 보다 효율적 기능을 갖는 원료의 요구가 늘어나고 있다. 국내에서 생산되는 원료 중 에너지 공급원으로 사용되고 있는 곡류의 경우 수입의존도가 80%이상에 달하고 있으며, 특히 양돈 사료에 있어 가장 이상적인 에너지 원료라 할 수 있는 옥수수, 귀리, 소맥은 배합 사료 원료의 50~70%를 차지하는 곡물로서 원료의 이용성을 높일 수 있는 사료의 가공방법이 필요하다.In recent years, there has been an increase in the demand for raw materials having more efficient functions for improving productivity compared to the past due to the increase in grain prices due to the grain growing environment and the unstable supply and demand of food due to the warming of the climate. Grains that are used as an energy source among domestic raw materials have more than 80% dependence on imports. In particular, corn, oats, and wheat, which are ideal energy sources for pig feed, It is necessary to process feeds that can increase the availability of raw materials as grains that account for%.
이 중, 소맥은 알곡의 단단한 정도에 따라 Hard type과 Soft type으로 나뉘며, 색상에 따라 Red와 White, 재배기간에 따라 Winter와 Spring으로 각각 나뉘게 된다. 조단백질의 함량은 Hard wheat이 Soft wheat 보다 높으며 전분함량은 Soft wheat이 Hard wheat보다 높다. 소맥의 원료 특성상 적정한 분쇄 입자도를 유지해야 하고 사료 가공 여부도 신중한 검토가 필요하다. 소맥을 너무 곱게 분쇄하면 위장의 각질화와 위궤양 발생 반도가 높아지게 된다. 소맥을 사료 가공하면 위장 내용물의 점도가 크게 떨어지므로 유의해야 한다. 소맥을 펠렛팅 하였을 경우 위장 내 내용물의 점도는 1.4로 펠렛팅을 하지 않았을 경우 위장내 내용물의 점도 3.8보다 낮게 보고되었다 (Nielsen 등, 2000).Among them, wheat is divided into Hard type and Soft type according to the degree of hardness of wheat, and it is divided into Red and White according to the color, and Winter and Spring according to cultivation period. Crude protein content was higher than soft wheat in Hard wheat and soft wheat was higher than Hard wheat in starch content. Due to the characteristics of the raw material of wheat, proper crushing particle size should be maintained and careful examination of whether the feed is processed or not is necessary. If the wheat is crushed too well, the keratinization of the stomach and the incidence of gastric ulcers will increase. It is important to keep in mind that wheat is processed for food, the viscosity of the camouflage content will be greatly reduced. When the wheat was pelleted, the viscosity of the contents in the stomach was 1.4, and when the pellet was not pelleted, the viscosity of the intestinal contents was reported to be lower than 3.8 (Nielsen et al., 2000).
한편, 사료를 제조하는 종래 기술과 관련하여서는, 사료원료에 특정 미생물을 접종해서 발효시키는 방법 또는 사료원료에 효소를 혼합하여 효소처리를 행하거나 특정 효소가 추가된 사료를 제조하는 방법등이 알려져 있었으나, 이들은 특정한 사료원료에 초점을 맞추었다고 하기보다는, 각종 곡물원료의 혼합물 또는 식품 찌꺼기등을 사료원료로 하는 것이었다. On the other hand, in connection with the prior art for producing feeds, there has been known a method of inoculating a feedstock with a specific microorganism by inoculation and fermenting the feedstock, or a method of mixing an enzyme into a feedstock to perform an enzyme treatment or producing a feed supplemented with a specific enzyme , Rather than focusing on specific feedstuffs, they used a mixture of various cereal raw materials or food debris as feedstuffs.
그런데, 원료사료의 가공방법과 관련하여서는, 각 원료사료에 존재하는 특성이 모두 다르기 때문에, 이를 정확히 파악하여 그에 적합한 가공방법을 개발하는 것이 중요한데, 위에서 설명한 바와 같이, 종래 기술은 원료사료의 특성을 고려한 가공방법이라고 하기 보다는, 구체적인 원료사료를 특정하지 아니한 채, 다양한 종류의 원료들을 혼합한 상태에서 발효 또는 효소처리를 행하고 있었고, 따라서, 특정 원료사료, 보다 구체적으로는, 소맥을 원료사료로 하여 곡물단미사료를 제조할 때에 있어서의 최적의 가공조건을 밝히는 문헌은 보고된 바 없다.However, in relation to the method of processing the raw feed, it is important to accurately grasp the characteristics of each raw feed as it exists, and to develop a suitable processing method. As described above, according to the prior art, The fermentation or the enzymatic treatment is carried out in a state in which various kinds of raw materials are mixed without specifying the specific raw material feed rather than the considered processing method and therefore a specific raw feed, more specifically, wheat is used as the raw feed No literature has been reported to identify the optimum processing conditions in the production of grain-feed diets.
이에, 본 발명에서는, 소맥을 사료원료로 하는 곡물사료의 가공방법으로서, 사료원료의 특성을 반영하여 이에 최적화된 곡물사료의 가공방법을 제공하는 것을 해결하고자 하는 과제로 한다. 세부적으로는, 소맥에 포함되어 있는 난소화성 탄수화물을 분해할 수 있는 효과적인 수단 및 조건이 확립된 곡물사료의 가공방법이 제공되며; 효소처리공정과 고체발효공정을 활용하여 최적의 가공조건을 갖는 곡물사료의 가공방법이 제공되고; 대량생산 공정에 적합한 곡물사료의 가공방법이 제공된다. Accordingly, in the present invention, as a processing method of a grain feed using wheat as a feedstuff, it is an object of the present invention to provide a method of processing a grain feed optimized for the feedstock by reflecting characteristics of the feedstuff. Specifically, there is provided a method of processing grain feed in which effective means and conditions for decomposing indigestible carbohydrates contained in wheat are established; There is provided a method of processing a grain feed having optimal processing conditions utilizing an enzyme treatment process and a solid fermentation process; A method of processing grain feed suitable for mass production processes is provided.
나아가, 상기 방법에 의하여 제조된 곡물사료로서 원료사료의 영양소의 구성 및 생리적 기능물질을 최적화되어 포함된 것을 특징으로 하는 곡물사료를 제공하는 것을 또 다른 과제로 한다. Further, it is a further object to provide a grain feed comprising the nutrient composition and the physiologically functional substance of the feed as optimized as the grain feed produced by the above method.
이와 같은 과제를 해결하기 위해서, 본 발명에서는 하기와 같은 해결 수단을 제공한다. In order to solve such a problem, the present invention provides the following solution means.
즉, 본 발명에서는, 소맥을 원료사료로 하여 곡물 사료를 가공하는 방법으로서, That is, in the present invention, as a method for processing a grain feed using wheat as a raw material feed,
(a) 원료사료로서 소맥을 제공하는 단계;(a) providing wheat as a feedstock;
(b) 소맥을 침지하는 단계;(b) immersing the wheat;
(c) 증자하는 단계; (c) a step of capitalizing;
(d) 균주를 접종하여 발효하는 단계;(d) inoculating and fermenting the strain;
(e) 효소처리를 행하는 단계; 및(e) performing an enzyme treatment; And
(f) 건조하는 단계(f) drying step
를 포함하는 것을 특징으로 하는 소맥 곡물 사료의 가공방법을 제공한다.And a method of processing the wheat grain feed.
또한, 상기 소맥 곡물사료의 가공방법에 있어서, (c) 소맥을 증자하는 단계는 80~150℃에서 20~60분간 증자하는 것을 특징으로 하는 소맥 곡물사료의 가공방법을 제공한다.In addition, in the method for processing the wheat grain feed, (c) growing the wheat is carried out at 80 to 150 ° C for 20 to 60 minutes.
또한, 상기 소맥 곡물사료의 가공방법에 있어서, (d) 발효하는 단계는, B. subtilis 2-19CX, B. subtilis P11, Aspergillus oryzae GB-641, A. niger GB-124, A. niger GB-X2으로 이루어지는 군으로부터 선택되는 균주를 접종하는 것을 특징으로 하는 소맥 곡물사료의 가공방법을 제공한다. Also, the method comprising: according to the processing method of the wheat grain feed, (d) the fermentation, B. subtilis 2-19CX, B. subtilis P11, Aspergillus oryzae GB-641, A. niger GB-124, A. niger GB-X2. ≪ / RTI > In another aspect, the present invention provides a method for processing wheat grain feeds, which comprises inoculating a strain selected from the group consisting of GB-X2.
또한, 상기 소맥 곡물사료의 가공방법에 있어서, (d) 발효하는 단계는, 20~40℃에서 24~48시간 발효하는 것을 특징으로 하는 소맥 곡물사료의 가공방법을 제공한다.Also, in the method for processing the wheat grain feed, (d) the step of fermenting fermented at 20 to 40 ° C for 24 to 48 hours.
또한, 상기 소맥 곡물사료의 가공방법에 있어서, (e) 효소처리를 행하는 단계는 Arabanase, Cellulase, Beta-glucanase, Hemicellulase, Xylanase, Endo-glucanase, Alpha-amylase 및 glucoamylase로 이루어지는 군으로부터 선택되는 효소를 사용하는 것을 특징으로 하는 소맥 곡물사료의 가공방법을 제공한다.In addition, in the method for processing the wheat grain feed, (e) the step of performing the enzyme treatment may include an enzyme selected from the group consisting of Arabanase, Cellulase, Beta-glucanase, Hemicellulase, Xylanase, Endo-glucanase, Alpha-amylase and glucoamylase A method for processing a wheat grain feed is provided.
또한, 상기 소맥 곡물사료의 가공방법에 의해서 제조한 소맥 곡물사료로서, 유리당의 함량이 35.0mg/g 이상인 것을 특징으로 하는 소맥 곡물사료가 제공된다.Also, a wheat grain feed prepared by the method of processing the wheat grain feed is characterized by having a free sugar content of 35.0 mg / g or more.
또한, 상기 소맥 곡물사료의 가공방법에 의해서 제조한 소맥 곡물사료로서, 상기 소맥 곡물사료는 알칼린 포스파타아제, 크리스틴아릴아미다아제, 트립신, 산성포스파타제, α-갈락토시다제, β-글루코시다제, 나프톨-AS-BI-포스포하이드롤라아제, N-아세틸-β-글루코사민다아제로 이루어지는 군으로부터 선택되는 효소를 포함하는 것을 특징으로 하는 소맥 곡물사료를 제공한다.Also, as the wheat grain feed prepared by the method of processing the wheat grain feed, the wheat grain feed is selected from the group consisting of alkaline phosphatase, cristin arylamidase, trypsin, acid phosphatase,? -Galactosidase, An enzyme selected from the group consisting of albumin, albumin, albumin, albumin, albumin, albumin, albumin, albumin, albumin, albumin, albumin, albumin, albumin, albumin,
또한, 상기 소맥 곡물사료의 가공방법에 의해서 제조한 소맥 곡물사료로서, 상기 소맥 곡물사료는 Bacilluse subtilis 1-6CX, B. subtilis 1-12CX, B. subtilis 2-19CX, B. subtilis P11, Aspergillus oryzae GB-641, A. niger GB-124 및 A. niger GB-X2으로 이루어지는 군으로부터 선택되는 균주가 원료표면에 존재하는 것을 특징으로 하는 소맥 곡물사료를 제공한다.As the wheat grain feed prepared by the method of processing the wheat grain feed, the wheat grain feed is Bacilluse subtilis 1-6CX, B. subtilis 1-12CX, B. subtilis 2-19CX, B. subtilis P11, Aspergillus oryzae GB-641, A. niger GB-124 and A. niger And a strain selected from the group consisting of GB-X2 is present on the surface of the raw material.
본 발명에 의하여, 가축의 에너지 이용성 증대를 위한 친환경 사료자원 개발을 위해 소맥을 사료원료로 하는 고체발효 공정이 개시된다. 소맥의 난분해성 다당류의 분해정도를 알 수 있는 간접지표로서 고체발효시 유리당을 최대한 생성할 수 있는 균주들이 선별되어 최적의 발효 조건이 확립된다. 본 발명의 가공방법으로 가공된 소맥 곡물사료는 가공전의 사료원료에 비해 호화도 및 유리당의 함량이 증가하였으며 유용 미생물균수와 효소활성이 관찰 되어 생리적 기능이 개선된 원료로 전환되고, 가축의 이용성이 증대된 사료 자원으로 이용 될 수 있다. 또한 본 발명에 의한 소맥 곡물사료는 원료의 표면에 존재하는 GRAS 균주들이 높은 개체수로 존재하기 때문에 probiotics로서의 기능도 기대할 수 있다. 또한, 배합사료에 있어서, 본 발명에 의한 소맥 곡물사료로 소맥을 대체하는 경우, 가수분해된 탄수화물, 단백질 등의 영양소를 가장 효율적으로 흡수할 수 있는 기회를 제공함과 동시에 발효과정에서 생성된 대사물질의 공급을 통해 돼지의 소화생리적 활성을 원활하게 함으로써 궁극적으로 성장을 개선하는 효과를 가져온다. 또한, 본 발명의 소맥 곡물사료는 영양소의 소화율을 개선해주고, 장내 미생물 서식환경을 정상적으로 유지함으로써 이상 대사를 유도하지 않고 정상적인 균총을 유지함으로써 원활한 대사 과정을 유도할 수 있다. 또한, 배합사료에 있어서, 본 발명의 소맥 곡물사료로 소맥 첨가량의 일부 또는 전부를 대체하는 경우, 생산성이 향상되므로 대체가 가능하며, 이에 의하여 이유자돈 및 육성돈의 생산성이 향상되는 효과가 있다. According to the present invention, a solid fermentation process using wheat as a feedstuff is disclosed for the development of eco-friendly feed resources for enhancing energy utilization of livestock. As an indirect indicator for determining the degree of degradation of refractory polysaccharides in wheat, strains capable of producing the maximum free sugar upon solid fermentation are selected to establish optimal fermentation conditions. The wheat grain feed processed by the processing method of the present invention has a higher degree of hydrolysis and free sugar content than the feed raw materials before processing and is converted into a raw material having improved physiological functions by observing the number of useful microorganisms and enzyme activity, Can be used as an increased feed resource. Also, the wheat grain feed according to the present invention can be expected to function as probiotics because the GRAS strains present on the surface of the raw material are present in high numbers. In addition, when wheat is substituted for wheat grain feed according to the present invention in the formulated feed, it is possible to provide the opportunity to absorb nutrients such as hydrolyzed carbohydrates and proteins most efficiently, And thus the digestive physiological activity of the pig is smoothly provided, thereby ultimately improving the growth of the pig. In addition, the wheat grain feed of the present invention improves the digestibility of nutrients and maintains the intestinal microbial habitat environment normally, thereby inducing a smooth metabolic process by maintaining normal microflora without inducing abnormal metabolism. In the case of replacing some or all of the wheat grain added amount with the wheat grain feed of the present invention, productivity can be improved and the substitution is possible, thereby improving the productivity of the weaning pigs and the breeding pigs.
도 1은 소맥의 최적 발효를 위한 균주 선발실험을 나타내는 도이다.
도 2는 초기 수분 함량에 따른 A. niger GB-124에 의한 소맥의 발효 영향을 나타낸 도이다.
도 3은 초기 접종 균수에 따른 A. niger GB-124에 의한 소맥의 발효 영향을 나타낸 도이다.
도 4는 소맥에 대한 최적의 가공 조건 조사를 나타내는 도이다.
도 5는 대량 생산 공정을 나타내는 도이다.
도 6은 소맥의 대량 가공 생산 공정중의 변화(발효후 효소 처리공정)를 나타내는 도이다. 1 is a diagram showing a strain selection experiment for optimal fermentation of wheat.
Figure 2 shows the effect of wheat fermentation by A. niger GB-124 on initial moisture content.
Fig. 3 is a graph showing the influence of wheat fermentation by A. niger GB-124 according to the initial number of inoculated bacteria.
Fig. 4 is a diagram showing the optimum processing conditions for wheat; Fig.
5 is a diagram showing a mass production process.
Fig. 6 is a diagram showing a change in the mass-production process of wheat (an enzyme treatment process after fermentation).
본 발명은 소맥을 사료원료로 한 곡물사료의 가공방법에 관한 것이다. 소맥은 양돈에 있어서 사료원료로 널리 사용되고 있는 곡물이지만, 펜토산, 셀룰로오스, 펙틴등의 비전분성 다당류(Non Starch Polysaccharide)가 포함되어 있고, 이들 비전분성 다당류는 돼지 체내에서 거의 소화되지 않는 특성을 보인다. 또한, 전분, 단백질 및 지방의 소화율을 저하시키고, 증체량 감소 및 건강상태 악화등의 영향을 줄 수 있으므로, 항영양인자로서 작용하며, 소화기내의 점성을 증가시킬 수 있고, 이로 인하여 가축의 소화기관에서 생산된 효소들의 작용을 저해하고 영향소의 흡수를 감소시킨다. 따라서, 상기 NSP를 분해할 수 있는 단일 효소제 또는 복합제의 사용이 제안되어 오기는 왔지만, NSP는 다양한 사료원료, 즉, 옥수수, 소맥, 귀리, 대두박등의 식물성 사료원료에 따라서 그 종류와 함량이 각기 상이하므로, 특정한 원료사료에 따라서 보다 세밀하게 조절된 가공방법이 절실하게 요구되고 있는 실정이다. 이에, 본 발명자들은, 소맥에 함유되어 있는 NSP의 종류 및 그 함량을 비롯하여 호화도 및 유리당의 함량등을 규명한 후, 이에 적합한 최적의 가공방법을 개발함으로서, 사료원료에 물리적, 화학적, 기능적 변화가 발생한다는 지견을 얻어 본 발명에 이르게 되었다.The present invention relates to a method for processing a grain feed made from wheat as a feed material. Wheat is a widely used grain feed for swine, but it contains non starch polysaccharides such as pentose, cellulose and pectin. These non-oligosaccharide polysaccharides are almost non-digestible in the pig body . In addition, it can reduce starch, protein and fat digestibility, reduce weight gain and deteriorate health condition, so that it acts as an anti-inflammatory agent and can increase the viscosity in the digestive tract, Inhibits the action of enzymes and reduces the absorption of influenza. Therefore, although the use of a single enzyme or a complex capable of decomposing the NSP has been proposed, the NSP can be classified into various types of feed materials such as corn, wheat, oats, soybean meal, Therefore, a more finely controlled processing method is desperately required according to a specific raw material feed. Accordingly, the inventors of the present invention have studied the kind and content of NSP contained in wheat, the degree of hydrolysis and the content of free sugars, and then developed an optimal processing method suitable for the NSP, so that the physical, chemical and functional changes And thus the present invention has been achieved.
즉, 본 발명자들은, 사료원료로 사용되는 때의 소맥의 각종 특성을 규명한 후, 소맥을 사료원료로 하여 곡물사료로 가공할 때에 미치는 여러 가지 요소들, 예를 들면, 입자도, 가수량, 침지시간 및 증자조건을 비롯하여, 최적의 효소처리공정, 최적의 발효처리공정을 개발함으로서, 호화도 및 유리당(released glucose)의 함량의 변화 및 유용 미생물 증가 및 효소활성의 보유등에서 뛰어난 곡물사료를 개시한다. 즉, 본 발명은, 다양한 사료원료들을 혼합하거나 또는 식품찌꺼기등을 대상으로 하여 범용적인 효소처리 또는 발효처리를 행하는 일반적인 사료의 제조방법이 아닌, 소맥이라는 특정의 사료원료를 대상으로 한 특정한 가공방법임에 유의하여야 한다. That is, the inventors of the present invention have found various characteristics of wheat when used as a feedstuff, and have found that various factors affecting the processing of wheat into a grain feed as a feedstuff, such as grain size, By developing the optimal enzymatic treatment process and optimal fermentation process including immersion time and growth conditions, it is possible to develop excellent grain feeds in terms of the degree of hydrolysis and the content of released glucose, the increase of useful microorganisms, do. That is, the present invention can be applied not only to a general method of producing general feeds that perform various general enzymatic treatments or fermentation processes for mixing various feed materials, or for food waste, but also to a specific processing method .
본 발명의 가공방법은 소맥을 원료사료로 하여 곡물 사료를 가공하는 방법으로서, (a) 원료사료로서 소맥을 제공하는 단계; (b) 소맥을 침지하는 단계; (c) 증자하는 단계; (d) 소맥 발효에 적합한 균주를 접종하여 발효하는 단계; (e) 효소처리를 행하는 단계; 및 (f) 건조하는 단계를 포함한다. 이하, 각각의 단계에 대해서 설명한다. A processing method of the present invention is a method of processing a cereal feed using wheat as a raw feed, comprising the steps of: (a) providing wheat as a raw feed; (b) immersing the wheat; (c) a step of capitalizing; (d) inoculating and fermenting a strain suitable for wheat fermentation; (e) performing an enzyme treatment; And (f) drying. Hereinafter, each step will be described.
원료사료로서 소맥을 제공하는 단계에 대해서 설명한다. The steps of providing wheat as a raw material feed will be described.
본 발명에서는, 소맥을 원료사료로 한 곡물사료의 가공방법을 세밀하게 조정하기 위해서, 소맥의 일반성분, 생리적 항영양인자(Non starch polysaccharide, NSP), 총에너지(Gross energy, GE), 아미노산을 분석하였다. 특히 사료영양소의 이용률을 저해하는 세포막 구성을 성분별로 집중 분석함으로서 가축의 이용성이 높은 사료자원 가공기술 개발을 위한 기본 자료로 활용하고 사료자원내의 NSP 분석을 위한 재현성이 우수한 분석방법을 정립하였다. 또한, 소맥 이외에도, 국내 배합사료에 주로 사용되는 원료로 귀리, 소맥피, 대두박, 옥수수에 대해서도 분석을 행하였는데, 이는 각 사료원료에 따라 가공조건이 달라져야 함을 밝히기 위한 것이다. 그 결과는 후술하는 실시예 1의 표 1 및 표2에 나타내었는데, 이에 의하면, 곡물사료의 종류에 따라서, 존재하는 NSP의 종류 및 그 함량이 각각 다르며 또한 총 에너지도 각기 상이함을 알 수 있다. 따라서, 단일 사료원료로 제조하는 단미사료의 경우, 원료사료의 종류에 따라서 그 특성을 반영한 최적의 가공조건이 필요하게 됨을 이해할 수 있다. 본 발명은, 이와 같은 지견에 따라서, 소맥을 사료원료로 할 때의 최적의 가공조건을 밝힌 것에 유의할 필요가 있다. In the present invention, in order to finely adjust the processing method of cereal feed made from wheat as a raw material feed, general components of wheat, nonstarch polysaccharide (NSP), total energy (Gross energy, GE) Respectively. Especially, by analyzing the composition of cell membranes that inhibit the utilization of feed nutrients, the analysis method was applied to the development of high - availability animal feed processing technology and the reproducible analysis method for NSP analysis in feed resources. In addition to wheat, the analysis of oats, wheat bran, soybean meal, and corn as raw materials mainly used in domestic feedstuffs was conducted to clarify that processing conditions should be changed according to each feedstuff. The results are shown in Tables 1 and 2 of Example 1, which will be described later. According to this, it can be seen that the kind and content of NSPs present are different from one another and the total energy is also different depending on the type of grain feed . Therefore, it can be understood that, in the case of a short-term feed made from a single feed, the optimum processing conditions are required depending on the kind of the feed. It should be noted that, in accordance with such findings, the present invention clarifies the optimum processing conditions when wheat is used as a feed material.
다음으로 침지공정 및 증자공정에 대해서 설명한다.Next, the immersion process and the thickening process will be described.
침지공정은 사료원료로 제공된 소맥에 실온에서 물을 가하여 소맥의 호화도를 증가시키는 공정이며, 증자공정은 침지공정 후 일정시간 열을 가하는 공정이다. 본 발명에서는, 침지공정과 증자공정을 동시에 채택하고 있으며, 실제의 대량생산공정에 있어서 상업적으로 이용가능한 최적의 조건을 제공한다. 침지공정에서의 물의 양 및 침지시간에 따라서 소맥의 호화도가 변화하게 되는데, 이와 같은 침지시간이 길어질수록 호화도는 증가하지만 침지시간이 너무 길어지는 경우 공정이 지연되는 단점이 있다는 점을 고려하여 최적의 침지조건을 밝혀내었다. 또한, 침지공정은 주로 실온에서 행해지지만, 그 온도를 상승시키는 경우 침지시간을 단축할 수 있다. The immersion process is a process for increasing the degree of aging of wheat by adding water at room temperature to the wheat provided as a feedstock, and the thickening process is a process for heating for a certain period of time after the immersion process. In the present invention, the immersion step and the thickening step are adopted at the same time, and they provide an optimum condition commercially available in an actual mass production process. The degree of aging of the wheat varies depending on the amount of water and the immersion time in the immersion process. Considering that there is a disadvantage in that the process is delayed when the immersion time is too long, And the optimum immersion condition was revealed. In addition, although the immersion process is mainly performed at room temperature, the immersion time can be shortened when the temperature is raised.
본 발명에서는 소맥 가공을 위해 가수량이 원료대비 45~60%%이며, 증자온도가 100~121℃가 바람직하다. In the present invention, the amount of hydrolyzate is 45 to 60% by mass relative to the raw material for the wheat processing, and the temperature for the thickening is preferably 100 to 121 ° C.
다음으로 발효공정에 대해서 설명한다.Next, the fermentation process will be described.
사료원료의 발효를 위해 사용된 균주들은 xylanase, cellulase 활성이 우수하며 amylase와 protease를 발현하는 균주들로 Bacilluse subtilis 1-6CX[기탁번호 : KCCM 11091P ], B. subtilis 1-12CX[기탁번호 KCCM 11090P ], B. subtilis 2-19CX[기탁번호 KCCM 11089P ], B. subtilis P11[기탁번호 ], Aspergillus oryzae GB-641[기탁번호 KCCM 11190P ], A. niger GB-124[기탁번호 KCCM 11189P], A. niger GB-X2[기탁번호 KCCM 11127P]로 이루어지는 군으로부터 선택되는 균주일 수 있다. 이들 균주는 부숙된 호두과육, 과수원 토양, 낙엽토, 식당가 폐수, 염소 분변등에서 채취한 3000여개의 균주중 균주의 효소활성에 대한 기준으로 기질의 분해도에 기초하여 평가하여 최종적으로 선발한 것이다. 발효공정은 사료원료에 대한 침지공정 및 증자공정이 완료된 후, 35℃이하로 냉각시킨 후, 선발된 균주를 접종 후 초기 균수가 1.0X 103~1.2×106 cfu/g이 되도록 접종한다. 발효시간을 24~48시간으로 설정하고 배양온도 20~40℃, 습도 50~80%의 조건으로 원료 두께를 1~1.5cm가 되게 하여 호기발효를 진행할 수 있다. 사료원료로서의 가치를 증가시키기 위해서는 우선적으로 난소화성 물질인 NSP의 함량이 감소되어야 하는데 이를 위해서는 선별한 균주의 NSP를 분해하는 효소의 발현을 최대한 유도하여야 한다. 따라서 발효 공정 후의 NSP 분해 지수로서 유리된 당의 함량을 기준으로 위 발효조건을 확립한 것이다. The strains used for the fermentation of feedstuffs were xylanase, cellulase activity, and strains expressing amylase and protease. Bacilluse subtilis 1-6CX [Accession No .: KCCM 11091P], B. subtilis 1-12CX [Accession No. KCCM 11090P], B. subtilis 2-19CX [Accession No. KCCM 11089P], B. subtilis P11 [Accession No.], Aspergillus oryzae GB-641 [Deposit No. KCCM 11190P], A. niger GB-124 [Deposit No. KCCM 11189P], A. niger GB-X2 (Accession No. KCCM 11127P). These strains were finally selected based on the degree of degradation of the substrate as a criterion for the enzyme activity of more than 3,000 strains collected from composted walnut pulp, orchard soil, litter soil, restaurant wastewater and chlorine feces. After fermentation process is completed, the fermentation process is cooled to 35 ℃ or less after the immersion process and the thickening process are completed, and the selected strain is inoculated so that the initial number of bacteria is 1.0 × 10 3 to 1.2 × 10 6 cfu / g after inoculation. The fermentation time can be set to 24 to 48 hours, the fermentation can be carried out with the raw material thickness being 1 to 1.5 cm under the conditions of the culture temperature of 20 to 40 ° C and the humidity of 50 to 80%. In order to increase the value as a feedstock, the content of NSP, which is an indigestible substance, should be decreased. To this end, the expression of the enzyme that degrades NSP of the selected strain should be maximally induced. Therefore, the fermentation conditions were established based on the content of the saccharide liberated as the NSP degradation index after the fermentation process.
한편, 원료의 호화정도에 따라서도 가축에 급이 시 소화 및 영양소 이용성에 영향을 미치므로 증자 후 발효공정 중 원료의 수분함량에 따라 발효 과정 중 호화도 변화도 참작하여 위 발효조건을 확립하였다. 따라서 소맥 발효공정 확립을 위해서는 초기 수분함량 역시 매우 중요하며, 이와 같은 초기 수분함량은 발효조건 뿐 아니라 곡류의 이용성의 지표가 되는 호화도에도 영향을 주는 요소로서 발효 및 건조공정에 따른 영향을 최소화 할 수 있는 최적 수분함량을 추가로 찾아야 한다. 이를 위해 발효 배지인 소맥의 초기 수분함량을 30~70%로 달리하여 수분함량에 따른 호화도, 유리 당, xylanase 활성 및 미생물 균수를 분석한 바, 초기 수분함량이 높을수록 호화도는 증가하는 경향을 나타내었으며, 반면 xylanase 활성은 60% 이상부터 감소하였다. On the other hand, depending on the degree of liquefaction of raw materials, the feeding effect on the livestock affects the digestion and nutrient availability. Therefore, the fermentation condition was established by considering the degree of hydrolysis during fermentation depending on the moisture content of the raw material during the fermentation process. Therefore, the initial moisture content is also very important for the establishment of the wheat fermentation process, and this initial moisture content influences not only the fermentation condition but also the degree of hydrolysis, which is an index of the utilization of the cereal, The optimum moisture content should be found. For this purpose, the degree of gelatinization, free sugar, xylanase activity and microbial counts according to moisture content was analyzed by varying the initial moisture content of wheat, which is a fermentation medium, from 30 to 70%. The higher the initial moisture content, , Whereas xylanase activity decreased from over 60%.
또한, 고체발효에서 초기 균주 접종량 역시 발효에 있어서 중요한 요소이다. 초기 균수가 너무 낮을 때에는 원하지 않는 다른 균에 의한 오염의 빈도가 증가할 수 있으며 반대로 단일 면적당 너무 높은 개체수로 존재 시에는 경쟁관계로 되어 증식 및 효소발현 보다는 개체를 유지하는 대사활동으로 energy flux가 진행되며 또한 대량생산시 종균 수급문제가 발생한다. 따라서 최적 종균 접종량을 결정하기 위해 초기 균주 접종량의 범위를 다른 균의 성장 및 대량 생산시의 종균 공급량 등을 고려하여 최소 1.0 × 103 cfu/g에서 최대 1.0 × 106 cfu/g으로 종균 접종량을 달리할 수 있으며, 가장 바람직하게는 1.0 × 104 cfu/g일 때 가장 높은 유리당 함량이 된다. In addition, the initial strain inoculum in solid fermentation is also an important factor in fermentation. When the initial number of bacteria is too low, the frequency of contamination by other undesirable bacteria may increase. On the other hand, when the population is too high per single area, the energy flux becomes competitive due to competition and metabolism activity In addition, the problem of supply and demand of seeds occurs in mass production. Therefore, in order to determine the optimum inoculum size, the range of inoculum size of the initial strain should be set at 1.0 × 10 3 cfu / g at the maximum and 1.0 × 10 6 cfu / g at the maximum, And most preferably 1.0 x 10 < 4 > cfu / g, the highest free sugar content.
발효시간에 있어서는, 즉, 유리당의 함량과 xylanase의 활성을 고려하여 평가하였을 때, 24 시간 내지 48시간이 바람직하다. When the fermentation time is evaluated in consideration of the content of free sugar and the activity of xylanase, it is preferably from 24 hours to 48 hours.
이하, 효소처리공정에 대해서 설명한다.Hereinafter, the enzyme treatment process will be described.
본 발명의 효소처리공정에는, Arabanase, Cellulase, Beta-glucanase, Hemicellulase, Xylanase, Endo-glucanase, Alpha-amylase 및 glucoamylase로 이루어지는 군으로부터 선택되는 효소를 사용할 수 있다.. 본 효소처리공정에서는, 이들 효소를 단독으로 사용할 수 있고, 또한, 조합하여 복합효소로 사용할 수 있다. 예를 들면, 예를 들면, Arabanase, Cellulase, Beta-glucanase, Hemicellulase, Xylanase등으로 포함하는 복합효소(이하 NSP-VS라 한다), Endo-glucanase를 포함하는 단일효소(이하 NSP-CE라 한다), Beta-glucanase, Cellulase, Alpha-amylase, Xylanase를 포함하는 복합효소(이하 NSP-VF라 한다) 및 Glucoamylase를 포함하는 단일효소(이하 NSP-SP라한다)로서 사용할 수 있다. An enzyme selected from the group consisting of Arabanase, Cellulase, Beta-glucanase, Hemicellulase, Xylanase, Endo-glucanase, Alpha-amylase and glucoamylase can be used in the enzyme treatment process of the present invention. Can be used alone or in combination as a complex enzyme. For example, a single enzyme (hereinafter referred to as NSP-CE) containing a complex enzyme (hereinafter referred to as NSP-VS) and Endo-glucanase, which includes, for example, Arabanase, Cellulase, Beta-glucanase, Hemicellulase, Xylanase, (Hereinafter, referred to as NSP-SP) containing a complex enzyme (hereinafter referred to as NSP-VF) and Glucoamylase, which comprises Beta-glucanase, Cellulase, Alpha-amylase and Xylanase.
효소제의 사용을 위한 최적 온도로서는, 최적 온도범위는 NSP-CE가 50~60℃, NSP-VS 및 NSP-VF가 40~50℃, NSP-SP가 65~75℃이다. 효소처리 공정은 가수 후 침지공정을 효소반응공정으로 대체하고 효소반응 공정 이후 열처리 공정을 통해 소맥 원료 가공조건을 설정하는 것도 가능하다. 즉, 소맥의 침지공정을 효소처리 공정으로 대체하고, 효소반응공정 이후 열처리 공정을 행할 수 있다. 이 경우, 효소처리 조건은 초기 가수량을 조절한 후 효소반응을 위해 온도를 상기 효소반응에 최적한 온도까지 올린 후 효소제를 첨가수준별로 단독 혹은 복합으로 첨가하여 반응시킬 수 있으며, 효소반응의 종료후 증자를 실시할 수 있다. The optimal temperature range for the use of the enzyme is 50 to 60 ° C for NSP-CE, 40 to 50 ° C for NSP-VS and NSP-VF, and 65 to 75 ° C for NSP-SP. In the enzyme treatment process, it is also possible to replace the post-hydrolysis immersion process with the enzyme reaction process, and set the processing conditions of the wheat raw material through the heat treatment process after the enzyme reaction process. That is, the soaking process of wheat can be replaced with an enzyme treatment process, and a heat treatment process can be performed after the enzyme reaction process. In this case, the enzyme treatment may be performed by adjusting the initial amount of the enzyme, raising the temperature to an optimal temperature for the enzyme reaction, adding the enzyme to the reaction mixture individually or in combination, and terminating the enzyme reaction It is possible to carry out a capital increase.
이하 발효공정 및 효소처리 공정의 조합에 대해서 설명한다.Hereinafter, the combination of the fermentation process and the enzyme treatment process will be described.
본 발명의 또 다른 일태는, 소맥을 원료사료로 하여 곡물사료를 가공하는 방법에 있어서, 대량 생산에 적합한 최적의 가공방법을 제공한다는 점이다. 즉, 위에서 설명한 침지조건, 증자조건, 발효조건 및 효소조건에 있어서, 각각의 최적한 조건들이 있으나, 이를 실제의 생산환경에서 비용적인 면 및 설비를 포함하는 기술적인 면까지 고려하였을 때 이들을 서로 유기적으로 연관시킨 보다 최적화된 가공방법을 제공한다. 즉, 본 발명의 특징은, 증자공정과 발효공정과 효소공정의 상관관계를 고려하여 이를 조합함으로서, 유리당의 함량이나 Xylanase의 활성 및 최종 제품에서의 미생물 균수등에 있어서 가장 우수한 제품을 제조할 수 있는 가공방법을 제공하는 것이다.Another aspect of the present invention is to provide an optimum processing method suitable for mass production in a method of processing cereal feed using wheat as a raw material feed. That is, when there are optimum conditions for the immersion condition, the fermentation condition, the fermentation condition and the enzyme condition described above, but considering the technical aspects including the cost and the facility in the actual production environment, To provide a more optimized machining method. That is, it is a feature of the present invention that it is possible to produce the best product in terms of the content of free sugars, the activity of Xylanase, and the number of microorganisms in the final product by considering the correlation between the fermentation process and the enzyme process And to provide a processing method.
본 발명자들의 연구에 의하면, 이와 같은 최적의 가공방법은 ‘증자공정, 발효공정 및 효소처리공정’(이하 ‘공정 1’이라 한다), ‘증자공정, 발효공정 및 효소처리공정’(이하 ‘공정 2’라 한다) 또는 ‘효소처리공정, 증자공정 및 발효공정’(이하 공정 3이라 한다)으로 이루어지는 군으로부터 선택되는 가공방법이다. 즉, 종래 기술에 있어서는, 원료사료에 대해서 효소처리를 하거나 발효시키는 방법이 알려져 있었는데, 본 발명에서는, 이 양자를 특정의 사료원료에 초점을 맞추어 조합한 후, 그 최적의 가공공정을 찾아 내었다는 점에서 특징이 있다. 예를 들면, 소맥의 경우 옥수수나 귀리와는 달리 처리공정의 순서에 따른 유리당 함량의 차이는 나타내지 않았으며 다만 xylanase의 활성에 대해서는 공정순서와 발효 시간에 따라 차이를 나타내었다. 소맥을 가공하는데 있어 우수한 공정은 공정 1과 공정 2로 발효 48시간 공정으로 확인하였다. 소맥에서는 공정 1과 공정 2의 유리당 함량과 xylanase 활성이 유사하므로 대량생산시의 공정의 편의성을 고려하였을 때 공정 1 방식으로 가공하는 것이 바람직하다. 공정 1-48시간 발효 공정의 결과는 유리 당 함량 35.17 ± 0.9 mg/g, xylanase 활성 134.93 ± 4.8 U/g으로 확인되었다. 이와 같이 가공된 최종 소맥 단미사료는 소맥 원료와 비교하였을 때, 호화도가 350%이상 증가하며, 유리당이 440%이상, 유용미생물이 증가하며 효소활성을 보유한 특성을 갖는다. According to the studies of the inventors of the present invention, such an optimum processing method can be applied to a variety of processing methods such as a process for growing, a fermentation process and an enzyme process (hereinafter referred to as "
이하, 본 발명의 실시예를 설명한다. 다만, 이하의 실시예는 본 발명의 구체적인 한 태양을 보이는 것으로, 본 발명의 기술사상을 제한하는 것은 아니다. Hereinafter, embodiments of the present invention will be described. However, the following examples illustrate specific embodiments of the present invention and are not intended to limit the scope of the present invention.
실시예 1 : 사료원료의 제공Example 1: Supply of feed ingredients
AOAC 및 Weende 방법을 이용하여 옥수수, 귀리, 소맥피, 대두박, 소맥을 대상으로 일반성분 및 사료자원에 대한 total pentosan, Pectin, Total NSP 함량을 분석하였다. Total pentosan은 Orcinol-iron 방법, Pectin은 Sadasivan 과 Manickam 방법, 그리고 Total NSP는 Englyst와 Cummings 방법들을 일부 수정하여 분석을 실시하였다.Total pentosan, pectin and total NSP contents of corn, oats, wheat bran, soybean meal and wheat were analyzed by AOAC and Weende method. Total pentosan was analyzed by Orcinol-iron method, Pectin by Sadasivan and Manickam method, and Total NSP by Englyst and Cummings methods.
사료자원인 귀리, 옥수수, 소맥, 대두박, 소맥피의 gross energy는 Mclean과 Tobin의 방법에 따라 bomb calorimetry로 분석하였으며, 아미노산 함량은 6 N HCl로 사료 샘플을 산 가수분해 후 ninhydrin 반응을 이용하여 측정하고, 황 함유 아미노산은 별도로 performic acid로 산 가수분해 후 ninhydrin반응을 이용하여 아미노산 자동분석기 (Hitachi L-8500)로 분석을 실시하였다. 그 결과는 하기 표 1과 같다.The gross energy of oat, corn, wheat, soybean, soybean meal, and wheat bran was analyzed by bomb calorimetry according to the method of Mclean and Tobin. The amino acid content was measured by ninhydrin reaction after acid hydrolysis of the feed sample with 6 N HCl , Sulfur-containing amino acids were separated by acid hydrolysis using performic acid, and analyzed by an amino acid automatic analyzer (Hitachi L-8500) using ninhydrin reaction. The results are shown in Table 1 below.
(USA)corn
(USA)
(EU)Wheat
(EU)
(Australia)oat
(Australia)
(Domestic)Soybean meal
(Domestic)
(Domestic)Wheat flour
(Domestic)
* NFE : (Nitrogen Free Extract)* NFE: (Nitrogen Free Extract)
이어서, 사료원료의 세포막 구성 물질을 이루고 있는 NSP 함량을 알아보기 위해 세포막 구성물질에 대한 분석은 Van Soest 방법과 Updegroff 방법을 이용하였으며, total pentosan, pentose 분석은 Frazer 등 (1956)의 분석방법을 이용하여 분석을 실시하였다. Pectin의 분석에는 Sadasivan 과 Annison (1996)의 분석방법(중량측정법)을 사용하였으며, total NSP함량은 Englyst와 Cummings 방법을 기초로 비색법을 이용하여 사료원료별 total NSP함량을 분석하였다. 그 결과를 표 2에 나타내었다.Then, Van Soest method and Updegroff method were used to analyze the cell membrane constituents, and total pentosan and pentose analyzes were performed using the analytical method of Frazer et al. (1956) Respectively. Pectin was analyzed by Sadasivan and Annison (1996), and total NSP contents were analyzed by using colorimetric method based on Englyst and Cummings method. The results are shown in Table 2.
이상의 결과로부터, 세포막의 총 NSP 함량은 소맥피에서 36%로 가장 함유량이 높았으며, 소맥에서는 15%를 나타냄을 알 수 있었다. 세포막 구성성분 중 cellulose 함량은 소맥피에서 높게 나타났으며, pentosan 및 pectin 함량도 다른 사료자원에 비해 높은 함량을 나타내었다. From the above results, it was found that the total NSP content of the cell membrane was the highest at 36% in the wheat flour and 15% in the wheat flour. The cellulosic content of the cell membranes was higher in the wheat flour than in the other feeds. The content of pentosan and pectin was higher than that of other feed sources.
또한, 이상 사료자원의 총 에너지 분석결과를 하기 표 3에 나타냈다.The results of the total energy analysis of abnormal feed resources are shown in Table 3 below.
이상으로부터, 곡물사료라고 하여도, 각각의 곡물사료에 존재하는 NSP의 종류 및 총 NSP의 양이 동일하지 않다는 사실을 확인할 수 있다.
From the above, it can be confirmed that the kind of NSP present in each grain feed and the total amount of NSP are not the same even if it is a grain feed.
실시예 2 : 발효조건의 설정Example 2: Setting of fermentation conditions
소맥에 적합한 발효 균주를 선별하고자 발효실험을 진행하였다. 사료원료의 영양소 이용성을 저해하는 성분으로 알려져 있는 NSP(Non starch polysaccharide)를 분해하는 지표로서 발효 후 유리되는 glucose 함량을 분석하여 상대적으로 높은 유리된 glucose 함량을 나타내는 균주를 최종 선발하였다. 선발된 균주들은 사료원료의 초기 수분함량, 초기 균주 접종량 별로 최적 조건을 확립하였다.Fermentation experiments were conducted to select fermentation strains suitable for wheat. As an index for decomposing NSP (Non Starch polysaccharide), which is known to inhibit the nutrient utilization of feed materials, a strain showing relatively high liberated glucose content was selected by analyzing glucose content liberated after fermentation. The selected strains were optimized for the initial moisture content and initial inoculum amount of feedstuff.
사료원료의 발효를 위해 사용된 균주들은 xylanase, cellulase 활성이 우수하며 amylase와 protease를 발현하는 균주들로서, B. subtilis 2-19CX, B. subtilis P11, Aspergillus oryzae GB-641, A. niger GB-124, A. niger GB-X2이다. 소맥에서 NSP를 분해하는 효소 발현을 최적화하기 위한 고체발효 조건 설정은 초기 수분함량을 40%, 배양온도를 32℃, 배양시간을 48시간으로 하여 발효 전후의 유리된 glucose 함량을 비교 평가하였다(도 1). 발효 결과 곰팡이류가 바실러스류에 비해 균수는 상대적으로 낮았지만 효소 활성의 지표인 유리 당은 높은 수준으로 나타났는데 이는 세균인 바실러스에 비해 곰팡이류가 다당류 분해 효소를 더 많이 발현하기 때문인 것으로 생각된다. 발효실험결과 xylanase 활성 및 유리당 생성량에서 A. niger GB-124가 19.37 mg/g의 유리당 함량 및 210U/g의 xylanase활성을 나타내어 소맥발효를 위한 최적 균주로 선발하고 발효조건 확립을 위한 추가 실험을 진행하였다. 선발된 균주인 A. niger GB-124 균주를 대상으로 소맥의 최적 발효 조건을 탐색하기 위해 초기 수분함량 및 종균 접종 수준별로 조건을 달리하여 발효실험을 진행하였다. The strains used for the fermentation of feedstuffs were xylanase, cellulase activity, strains expressing amylase and protease, and B. subtilis 2-19CX, B. subtilis P11, Aspergillus oryzae GB-641, A. niger GB-124, A. niger GB-X2. In order to optimize the expression of NSP degrading enzymes in wheat, the solid fermentation conditions were evaluated by comparing the liberated glucose content before and after fermentation with initial moisture content of 40%, incubation temperature of 32 ° C, and incubation time of 48 hours One). As a result of the fermentation, the fungi were relatively lower than the bacillus strains but the free sugars, which is an indicator of the enzyme activity, were high. This is because the fungi express more polysaccharide degrading enzyme than the bacillus bacteria. As a result of the fermentation experiment, A. niger GB-124 showed the free sugar content of 19.37 mg / g and xylanase activity of 210 U / g in xylanase activity and free sugar production, and was selected as the optimal strain for wheat fermentation and further experiments were conducted to establish the fermentation conditions Respectively. In order to investigate the optimal fermentation conditions of A. niger GB-124 strains, fermentation experiments were conducted under different conditions depending on the initial moisture content and seeding level.
소맥에서 A. niger GB-124의 발효에 적합하면서 높은 유리 당을 나타내는 수분함량은 45%와 60%로 확인 할 수 있었다 (도 2). 하지만 60%의 초기 수분함량에서는 상대적으로 낮은 xylanase 활성을 나타내었으며 무엇보다도 대량 생산으로 발효 규모를 scale up할 경우에 배지 이송중의 이송관의 막힘 문제, 건조시간 지연으로 인한 생산 수율 감소 문제 등이 발생할 것으로 판단되어 초기수분 함량을 45%로 조절하는 것이 바람직할 것으로 판단하였다. 소맥의 경우 수분함량이 높을수록 호화도는 증가하였으나 수분이 60%이상부터 xylanase 활성은 급격하게 감소하였다. A. niger GB-124 균주를 이용한 소맥 발효결과에서 유리당과 xylanase의 활성 경향이 일치하지는 않았는데 이는 A. niger GB-124균주가 분비하는 복합효소 (amylase, cellulase 등)에 의해 다른 종류의 다당류가 분해되어 나타난 결과로 생각된다. 선발균주를 이용한 소맥의 최적발효를 위해 초기 접종 균수를 103~106 CFU/g으로 달리하여 발효실험을 실시한 결과 초기 접종균수가 1.0E×104 CFU/g일 때 유리 당 생성이 최대를 나타내었다 (도 3). 따라서 A. niger GB-124균주를 이용한 소맥발효는 초기 수분함량이 45%인 소맥배지에 초기 접종 균수를 1.0E×104 CFU/g로 접종하였을 때 발효 소맥의 호화도와 NSP 분해 지표인 xylanase 활성 및 유리당 생성이 가장 우수한 것으로 확인되어 최적 발효조건으로 설정하였다. The moisture content of A. niger GB-124 fermented in wheat was higher than that of fermented milk (45% and 60%) (Fig. 2). However, the initial water content of 60% showed relatively low xylanase activity. In particular, when the fermentation scale is scaled up by mass production, the problem of clogging of the feed pipe during transport of the medium and the reduction of the yield of production due to the delay of drying time It was considered that it would be desirable to adjust the initial moisture content to 45%. In the case of wheat, the higher the water content, the higher the degree of hydrolysis. However, the xylanase activity decreased rapidly from 60% moisture. In the wheat fermentation with A. niger GB-124, the activity of free sugars and xylanase did not coincide with those of A. niger GB-124 because of the complex enzyme (amylase, cellulase, etc.) . For the optimum fermentation of wheat using the selected strains, fermentation experiments were carried out by varying the initial number of inoculated bacteria at 10 3 to 10 6 CFU / g. As a result, when the initial inoculum number was 1.0 × 10 4 CFU / g, (Fig. 3). Therefore, wheat fermentation using A. niger GB-124 strain showed inoculation of 1.0E × 10 4 CFU / g of initial inoculum in a wheat medium with an initial moisture content of 45%, indicating that fermented wheat germination and xylanase activity And free sugar production were found to be the best.
또한, 위에서 얻은 결과를 기초로 하여, pilot scale (200 ~ 500kg) 에서의 최적 고체발효조건을 확립하기 위해 적정 발효 시간을 조사하고 제조된 고상 발효제품은 사양시험용 사료원료로 사용하여 개발품의 생리적 기능성을 조사하였다. Based on the results obtained above, the optimum fermentation time was investigated in order to establish the optimal solid fermentation condition on the pilot scale (200 ~ 500kg) and the solid fermented product was used as the feedstock for the specification test, Respectively.
소맥발효에 사용된 A. niger GB-124는 높은 xylanase 활성과 유리 당 함량을 나타내었으나, xylanase 활성 증가율 대비 유리 당 함량의 증가 비율은 크지 않은 것으로 확인되었다. 이는 다당류 분해 효소의 발현을 유도하는 inducer이자 기질인 다당류의 함량이 원료별로 큰 차이를 나타나지 않았기 때문이며 또한, 다당류 분해 효소의 발현능력에 대한 균주의 차이로 생각된다 (표 4). 소맥 원료는 발효공정을 통해 기능성이 개선된 원료로 전환되었으며 최종 시제품은 옥수수 및 귀리발효 결과와 동일하게 호화도의 향상, 유리 당의 함량 증가, 유용 미생물 증식, protease, amylase, xylanase, cellulase 활성을 가지는 특성을 가지므로 가축의 이용성이 증대된 사료 자원으로 생각한다 (표 5). A. niger GB-124 used in fermentation of wheat showed high xylanase activity and free sugar content, but the increase ratio of free sugar content to xylanase activity was not large. This is because the content of polysaccharide, an inducer and substrate, inducing the expression of polysaccharide degrading enzyme did not show a large difference according to the raw materials, and it is also considered to be a difference in the expression ability of the polysaccharide degrading enzyme (Table 4). The wheat raw materials were converted into raw materials with improved function through the fermentation process. The final prototypes were the same as the corn and oat fermentation results, with the improvement of the degree of gelatinization, the increase of free sugar content, the beneficial microorganism growth, protease, amylase, xylanase and cellulase activity (See Table 5).
Amylase 978.8
Cellulase 2013.1
Xylanase 398.0Protease 7,010.7
Amylase 978.8
Cellulase 2013.1
Xylanase 398.0
추가적으로, 발효가공전후의 화학적특성의 변화를 AOAC 및 Weende 방법을 이용하여 일반성분을 분석하였으며, 총에너지를 Mclean과 Tobin의 방법에 따라 bomb calorimetry로 분석하였다. 그 결과를 하기 표 6및 7에 나타냈다.In addition, the changes of chemical properties before and after the fermentation process were analyzed by AOAC and Weende method, and total energy was analyzed by bomb calorimetry according to Mclean and Tobin method. The results are shown in Tables 6 and 7 below.
(11.24)11.44
(11.24)
(12.39)12.50
(12.39)
(1.52)1.55
(1.52)
(1.22)1.23
(1.22)
(0.84)0.85
(0.84)
(1.16)1.17
(1.16)
실시예Example 3 최적의 가공조건의 설정 3 Setting of optimum machining conditions
소맥을 가공하기 위한 최적의 가공조건을 설정하였다. 효소제로서 glucoamylase을 사용하였고, A. niger GB-124를 발효균으로 이용하였다. 상기 효소 및 발효에 의한 가공조건의 최적 기준은 다음과 같이 확립하였다. 일반적으로 사료원료의 영양소 이용성을 저해하는 성분으로 알려져 있는 NSP(Non starch polysaccharide)를 분해하는 지표로서 발효 후 유리되는 glucose 함량을 분석하여 상대적으로 높은 유리된 glucose 함량을 나타내는 공정을 조사하였다. 각각의 원료별로 효소처리와 발효처리 공정 순서를 달리하여 사료원료의 최적 가공조건을 확립하였다. The optimal processing conditions for processing the wheat were set. Glucoamylase was used as an enzyme, and A. niger GB-124 was used as the fermenting bacteria. The optimum standards for the enzymes and processing conditions by fermentation were established as follows. As a measure to decompose NSP (Non Starch polysaccharide), which is known to inhibit the nutrient utilization of feed materials, we analyzed glucose content liberated after fermentation and investigated the relatively high glucose content. Optimal processing conditions of feed materials were established by varying the order of enzyme treatment and fermentation treatment for each raw material.
최적의 가공조건을 확인하기 위해서 표 8의 공정 순서대로 가공하였다.In order to confirm the optimum processing conditions, the processing was carried out in the order of Table 8.
표 8에 있어서, 증자조건은 110℃에서 30분간, 효소반응조건은 0.2% 첨가 후 40℃에서 30분 반응 및 발효조건은 35℃에서 24 시간 또는 48시간으로 하였다. 수분을 40%로 보정한 사료원료를 30분간 침지한 후 110℃, 30분간 증자하여 35℃이하로 냉각된 사료 원료에 균주를 접종 후 초기 균수가 1.2 X 106 cfu/g이 되도록 접종하였다. 총 발효시간을 48시간으로 설정하고 배양온도 33~35℃, 습도 55%의 조건으로 원료 두께를 1~1.5cm가 되게 하여 호기발효를 진행하였다. Xylanase 활성 및 유리당의 함량을 측정하였으며, 그 결과를 도 4에 나타냈다. 도 4에 나타낸 바와 같이 소맥을 가공하는데 있어 우수한 공정은 공정 1과 공정 2로 발효 48시간 공정으로 확인하였다. 소맥에서는 공정 1과 공정 2의 유리 당 함량과 xylanase 활성이 유사하므로 대량생산시의 공정의 편의성을 고려하였을 때 공정 1 방식으로 가공하는 것이 바람직하다. 공정 1-48시간 발효 공정의 결과는 유리 당 함량 35.17 ± 0.9 mg/g, xylanase 활성 134.93 ± 4.8 U/g으로 확인하였다.In Table 8, the conditions of the fermentation were 30 minutes at 110 ° C, 30 minutes at 40 ° C after addition of 0.2% of enzyme reaction conditions, and fermentation conditions at 35 ° C for 24 hours or 48 hours. The feedstuffs adjusted to 40% moisture were immersed for 30 minutes and then inoculated at a temperature of 110 ° C for 30 minutes to inoculate the feedstuffs cooled to below 35 ° C so that the initial number of bacteria was 1.2 × 10 6 cfu / g. The total fermentation time was set to 48 hours, and the raw material was allowed to have a thickness of 1 to 1.5 cm under the condition of a temperature of 33 to 35 DEG C and a humidity of 55%, and the aerobic fermentation was carried out. Xylanase activity and free sugar content were measured, and the results are shown in FIG. As shown in Fig. 4, the excellent process for processing the wheat was confirmed by the fermentation for 48 hours in the
실시예 4 : 대량생산에 있어서의 최적의 가공조건 설정
Example 4: Setting of optimal processing conditions in mass production
대량생산에서의(10ton) 최적 가공조건들을 확립하고자 하였다. 도 5와 같은 공정으로 대량 생산을 진행하였다. 소맥 고체 발효는 수분을 45%로 보정한 원료 10 ton을 30분간 침지한 후 110℃, 30분간 증자하여 35℃이하로 냉각하여 초기 균수가 1.0 X 104 cfu/g이 되게 접종하였다. 배양조건은 온도 30~35℃, 습도 75%, 60시간까지 호기조건으로 발효하였다. 이어서, xylanase 활성, cellulase활성, Amylase 활성, Protease 활성, 호화도 분석, 유리당 함량등을 측정하였다. 도 6에 그 결과를 나타냈다. 소맥은 발효공정을 통해 생리적 기능성이 개선된 원료로 전환되었으며 최종 시제품은 호화도의 향상, 유리 당 함량 증가, 유용 미생물 증식, protease, amylase, xylanase, cellulase 효소활성을 보유한 특성을 가지므로 가축의 이용성이 증대된 사료 자원으로 활용 될 수 있을 것으로 판단된다. (표 9)(10 ton) in mass production. Mass production was carried out by the same process as shown in FIG. Wheat solid fermentation was carried out by immersing 10 tons of raw material with 45% moisture content for 30 minutes and then boiled at 110 ℃ for 30 minutes and cooled to below 35 ℃ to be inoculated at an initial count of 1.0 × 10 4 cfu / g. The cultivation conditions were fermentation under aerobic conditions at a temperature of 30 to 35 ° C and a humidity of 75% for 60 hours. Then, xylanase activity, cellulase activity, amylase activity, protease activity, degree of hydrolysis, and free sugar content were measured. The results are shown in Fig. Wheat was transformed into a raw material with improved physiological function through fermentation process. The final product has the characteristics of improving the degree of gelatinization, free sugar content, useful microorganism growth, protease, amylase, xylanase and cellulase enzyme activity, Could be utilized as an increased feed resource. (Table 9)
Cellulase: 2010.1
Amylase: 1358.7
Protease: 7100Xylanase: 336.0
Cellulase: 2010.1
Amylase: 1358.7
Protease: 7100
또한, 최종 제품내에 발현되는 효소의 종류를 확인하였다. 효소의 종류를 apiZYM(Biomerieux, France)으로 조사하였는데, 이는 정제되지 않은 혼합시료에서의 효소의 활성을 검사할 수 있도록 제작되어 고체발효시 발현되는 여러 종류의 효소 활성을 조사하는데 적합하다. 실험방법은 제조사에서 제공되는 manual에 따라 진행하였다. 그 결과를 하기 표 10에 나타냈다.In addition, the kinds of enzymes expressed in the final product were confirmed. The type of enzyme was investigated with apiZYM (Biomerieux, France), which is designed to examine the activity of enzymes in untreated mixed samples and is suitable for investigating various enzyme activities expressed in solid fermentation. The experimental procedure was carried out according to the manual provided by the manufacturer. The results are shown in Table 10 below.
naphthylamideN-benzoyl-DL-arginine-2-
나프thylamide
naphthylamideN-glutaryl-phenylalanine-2-
나프thylamide
또한, 가공전후의 화학적특성의 변화를 AOAC 및 Weende 방법을 이용하여 일반성분을 분석하였다. 사료원료에 대한 gross energy는 Mclean과 Tobin의 방법에 따라 bomb calorimetry로 분석하였다. 그 결과를 하기 표 11에 나타냈다. The changes of chemical properties before and after processing were analyzed by AOAC and Weende method. The gross energy of feed materials was analyzed by bomb calorimetry according to Mclean and Tobin 's method. The results are shown in Table 11 below.
(%)
(12.12)10.83
(12.12)
(13.98)12.85
(13.98)
(1.22)1.09
(1.22)
(1.37)1.26
(1.37)
(1.41)1.26
(1.41)
(1.41)1.30
(1.41)
(1.05)0.94
(1.05)
(1.24)1.14
(1.24)
표 11에서 알 수 있는 바와 같이, 발효 처리한 사료자원의 일반성분은 기존 사료업계에서 사용하고 있는 원료들의 일반성분 범위(Feedstuffs, 2009)에 들어가 정상적인 일반성분 수준을 나타내고 있다. 특히 발효공정을 거친 사료원료들은 일반 사료원료에 비해 조지방 함량이 높고, 조섬유소는 낮아져 어린 일령에 사용 시 효과적일 것으로 생각된다. 그리고 높은 조섬유소의 함량 때문에 사용량이 제한되는 원료들은 발효공정을 통해 조섬유소의 함량을 감소시키게 되면 사용량을 늘릴 수 있을 것으로 판단된다. 또한 소맥에서는 발효 공정을 통해 조단백질 함량과 조지방의 함량이 높아져 가용무질소물(NFE)이 감소함을 확인하였다. 이는 미생물에 의해 조섬유소가 일부 단당류로 분해되고 미생물의 대사활동에 사용되어 사료 자원의 carbon flow가 이산화탄소로 소모됨으로서 조단백질의 함량이 증가한 것과 미생물의 지방 생산(polyunsaturated fatty acid)에 의한 것으로 생각된다.
As can be seen in Table 11, the general composition of fermented feed stocks is within the normal composition range of the feedstuffs used in the existing feed industry (Feedstuffs, 2009), indicating normal levels of normal ingredients. Especially, fermented feedstuffs have higher crude fat content and lower crude fiber content than conventional feedstuffs, which may be effective for use in younger ages. And because of the high crude fiber content, the raw materials whose usage is limited can be increased if the content of crude fiber is reduced through the fermentation process. In addition, fermentation process of wheat increased the crude protein content and crude fat content, and it was confirmed that NFE (free nitrogen) decreased. It is thought that the crude fiber content is increased and the polyunsaturated fatty acid is used because carbon fiber is decomposed into some monosaccharides by microorganisms and used for metabolism of microorganisms.
실험예 1 : 발효처리된 소맥 사료가 육성돈의 생산성에 미치는 영향
Experimental Example 1: Effect of fermented wheat feed on productivity of breeding pigs
실시예 2에서 발효처리된 소맥 사료가 육성돈의 생산성에 미치는 영향을 알아보기 위해서 하기와 같은 실험하였다.
In order to investigate the effect of the fermented wheat feed on the productivity of breeding pigs in Example 2, the following experiment was conducted.
가. 재료 및 방법
end. Materials and methods
① 시험동물 및 시험설계① Test animals and test design
3원 교잡종([Landrace×Yorkshire]×Duroc) 80두를 공시하였으며 시험 개시시의 체중은 24.37±1.06kg이었고, 6주간 사양시험을 실시하였다. 처리구는 1) F0 (natural wheat 100%), 2) F25 (natural wheat 75%+ fermented wheat 25%), 3) F50 (natural wheat 50%+fermented wheat 50%), 4) F75 (natural wheat 25%+fermented wheat 75%) 및 5) F100 (F100, fermented wheat 100%) 5개 처리를 하여 처리 당 4반복, 반복 당 4두씩 완전임의 배치하였다.
A total of 80 triplicate ([Landrace × Yorkshire] × Duroc) specimens were weighed and weighed 24.37 ± 1.06 kg at the start of the study. F50 (
② 시험사료 및 사양관리
② Test feed and specification management
사양시험은 단국대학교 시험농장에서 실시하였고, 시험에 사용된 사료배합비는 표 12에 나타내었다. 사료는 자유 채식토록 하였으며, 물은 자동급수기를 이용하여 자유로이 마실 수 있게 하였다.The specimens were tested at Dankook University test farms and the feed ratios used in the tests are shown in Table 12. The feed was free vegetarian, and the water was freely drinkable using an automatic water dispenser.
③ 조사항목 및 방법
③ Survey items and methods
a. 생산성a. productivity
체중 및 사료 섭취량은 시험 개시시 및 종료 시(6주)에 각각 측정하여 일당증체량, 일당사료섭취량 및 사료효율을 계산하였다.
Body weight and feed intake were measured at the beginning and at the end of the test (6 weeks), and daily gain, daily feed intake and feed efficiency were calculated.
b. 영양소 소화율b. Nutrient digestibility
영양소 소화율을 측정하기 위하여 종료시 7일전에 표시물로서 산화크롬(Cr2O3)을 사료내 0.2% 첨가하였다. 크롬사료 급여 4일 후 분을 채취하였고, 채취한 분은 60℃ 열풍건조기에서 72시간 건조 시킨 후 Wiley mill로 분쇄하여 분석에 이용하였다. 사료의 일반성분과 표시물로 혼합된 Cr은 AOAC(1995)에 제시된 방법에 의해 분석하였다.
In order to measure the digestibility of nutrients, chromium oxide (Cr 2 O 3) was added as a labeling substance in the feed at a rate of 0.2% 7 days before the end. After 4 days of chrome feeding, the samples were collected for 72 hours in a 60 ° C hot air drier and then pulverized using a Wiley mill. Cr mixed with the general components of the feed and labeling was analyzed by the method described in AOAC (1995).
c. 분내 미생물 균수c. Number of microorganisms in the mouth
돈분의 채취는 종료시 처리구별 8마리를 선발하여 항문 마시지법으로 분을 채취한 뒤, 실험실까지 -20℃에서 냉동보관 하였으며, 이후 멸균된 생리식염수에 현탁하여 균질화 시킨 다음 103에서 107까지 계단 희석하여 생균 수 측정용 시료로 사용하였다. 실험처리에 의한 돈분 내의 미생물 균수를 측정하기 위해 Lactobacillus에는 MRS agar, Coliforms에는 MacConkey agar (Difco, USA), Salmonella, Bacillis 에는 Nutrient broth를 사용하였고, 37℃에서 38시간 배양 후 균수를 측정하였다.
Recovery of pig manure is stairs then the selection process at the end of the 8 minutes distinction collected by law drink anus, were frozen at -20 until laboratory ℃, homogenized and suspended in a sterilized physiological saline after the next 10 3 to 10 7 And used as a sample for measuring viable cell count. MRS agar was used for Lactobacillus, MacConkey agar (Difco, USA) for Coliforms, Nutrient broth for Salmonella and Bacillis, and the number of bacteria was measured after incubation at 37 ℃ for 38 hours.
d.분내 악취물질d.
분내 발생하는 유해가스물질 측정은 시험 종료시 각 처리구에서 동일한 시간 동안 배설된 분을 처리당 5마리로부터 채취한 후, 신선한 분 100g을 취하여 1000 mL의 밀봉된 플라스틱 용기에 넣고 실온에서 24시간 동안 발효 시킨 후, 1일, 3일 및 5일 동안 실온에 보관하면서 Gastec(Model GV-100, GASTEC, Japan)을 사용하여 발생하는 ammonia, mercaptan 및 hydrogen sulfide을 측정하였다.
At the end of the test, the excreted materials were collected from 5 animals per treatment at the end of the experiment, and 100 g of fresh water was taken into a 1000 mL sealed plastic container and fermented at room temperature for 24 hours Ammonia, mercaptan and hydrogen sulfide were measured using Gastec (Model GV-100, GASTEC, Japan) while keeping at room temperature for 1 day, 3 days and 5 days.
e. 분내 휘발성 지방산e. Volatile fatty acids
분내 발생하는 유해가스물질 측정은 시험 종료시 각 처리구에서 동일한 시간 동안 배설된 분을 처리당 5마리로부터 채취한 후, 신선한 분 100g을 취하여 1000 mL의 밀봉된 플라스틱 용기에 넣고 실온에서 24시간 동안 발효 시킨 후, 1일, 3일, 5일 및 7일동안 실온에 보관하면서 Gastec (Model GV-100, GASTEC, Japan)을 사용하여 발생하는 acetic acid, propionic acid 및 butyric acid을 측정하였다.
At the end of the test, the excreted materials were collected from 5 animals per treatment at the end of the experiment, and 100 g of fresh water was taken into a 1000 mL sealed plastic container and fermented at room temperature for 24 hours Acetic acid, propionic acid and butyric acid were measured using Gastec (Model GV-100, GASTEC, Japan) while keeping at room temperature for 1 day, 3 days, 5 days and 7 days.
④ 통계처리④ Statistical processing
모든 자료는 SAS (1996)의 General Linear Model procedure를 이용하여 Duncan’s multiple range test (Duncan, 1955)로 처리하여 평균간의 유의성을 검정하였다.
All data were analyzed by Duncan's multiple range test (Duncan, 1955) using the General Linear Model procedure of SAS (1996).
나. 사양시험 결과
I. Specification Test Result
① 생산성① Productivity
발효한 소맥을 사용하여 사료 내 소맥을 0, 25, 50, 75, 100% 대체했을 때 생산성에 미치는 영향은 표 13에서 보는 바와 같다. 일당증체량 항목에 있어 F50 및 F100 처리구가 F0 및 F25 처리구에 비해 유의적으로 높게 나타났다 (P<0.05). 일당사료섭취량 및 사료효율에 있어 처리구간 차이를 보이지 않았다 (P>0.05).The effects of fermented wheat on 0, 25, 50, 75, 100% replacement of in-feed wheat are shown in Table 13. F50 and F100 treatments were significantly higher (P <0.05) than F0 and F25 treatments. There was no difference in the dietary intake and feed efficiency between dietary treatments (P> 0.05).
2Standard error.
a, bMeans in the same row with different superscripts differ (P<0.05). 1 Abbreviation: F0,
2 Standard error.
a, b Means in the same row with different superscripts differ (P <0.05).
② 영양소 소화율② Nutrient digestibility
발효 소맥을 사용함에 따라 영양소의 소화율에 미치는 영향을 조사한 결과 (표 14) 유의적인 개선효과는 없었으나 발효 소맥을 50% 이상 대체한 처리구 (F50, F75, F100)에서 건물 소화율이 개선되는 경향을 나타냈다. 더욱이 단백질과 에너지의 소화율은 발효 소맥을 사용만 모든 처리구 (F25, F50, F75, F100)에서 유의적이진 않아도 소화율이 개선되는 결과를 볼 수 있다.The effect of nutrient digestibility on the digestibility of nutrients by using fermented wheat was not significantly improved (Table 14), but the digestibility of dry digestion was improved in the treatments (F50, F75, F100) in which fermented wheat was replaced by 50% or more . Furthermore, the digestibility of protein and energy can be improved by using fermented wheat, but not by all treatments (F25, F50, F75, F100).
2Standard error. 1 Abbreviation: F0,
2 Standard error.
③ 분내 미생물 균수③ Number of microorganisms per minute
발효 소맥을 공급함에 따라 분내 미생물 균총에 미치는 영향을 조사한 결과 (표 15), 4 종류의 미생물 (Lactobacillus, Bacillus, Coliforms 및 Salmonella) 모두 유의적인 변화를 가져오지는 않았다 (P>0.05).No significant changes were observed in all four microorganisms (Lactobacillus, Bacillus, Coliforms, and Salmonella) (P> 0.05) as a result of feeding the fermented wheat to the microorganisms in the intestine (Table 15).
2Standard error. 1 Abbreviation: F0,
2 Standard error.
④ 분내 가스 생성량④ Gas production rate
분내 암모니아, 황화수소 및 멜캅탄 등의 가스 및 acetic acid 생성량을 조사한 결과 (표 16), 처리구간 차이를 나타내지는 않았다 (P>0.05).(P <0.05). In addition, the amount of ammonia, hydrogen sulfide, and mercaptans, and acetic acid were not significantly different (Table 16).
2Standard error.1Abbreviation: F0,
2Standard error.
실험예 2 : 효소처리 및 발효처리된 소맥 사료가 육성돈의 생산성에 미치는 영향Experimental Example 2: Effect of enzyme treatment and fermented wheat feed on productivity of breeding pigs
실시예 4에서 제조한 효소처리 및 발효처리에 의해 가공된 소맥 사료가 육성돈의 생산성에 미치는 영향을 하기와 같은 방법으로 실험하였다.
The effect of the wheat feed processed by the enzyme treatment and the fermentation treatment prepared in Example 4 on the productivity of breeding pigs was examined by the following method.
가. 시험동물 및 시험설계end. Test animals and test design
3원교잡종 [(Landrace × Yorkshire) × Duroc] 비육돈 144두를 공시하였고, 시험 개시시 체중은 57.99 ± 1.92 kg이었으며, 사양시험은 12주간 실시하였다. 시험설계는 1) HCW (고영양소사료), 2) HCFW (고영양소사료 + 20% 발효/효소처리소맥 대체), 3) LCW (저영양소사료), 4) LCFW (저양양소사료 + 20% 발효/효소처리소맥 대체)로 4처리, 처리당 6반복, 반복당 6두씩 완전 임의 배치하였다. 원료함량분량을 표 17에 나타냈다.Three triplicate hybrids [(Landrace × Yorkshire) × Duroc] 144 breeders were declared. The body weight at the start of the test was 57.99 ± 1.92 kg, and the specimens were tested for 12 weeks. 2) HCFW (high nutrient feed + 20% fermentation / enzyme treated wheat substitute); 3) LCW (low nutrient feed); 4) LCFW (low fat diet + 20% Fermentation / enzyme treated wheat substitution), 6 replicates per treatment, and 6 replicates per replicate. The amount of raw material content is shown in Table 17.
2 Provided per kilogram of complete diet: vitamin A, 10,000 IU; vitamin D3, 2,000 IU; vitamin E, 42 IU; vitamin K, 5 mg; riboflavin, 2,400 mg; vitamin B2, 9.6 mg; vitamin B6, 2.45 mg; vitamin B12, 40 μg; niacin, 49 mg; pantothenic acid, 27 mg; biotin, 0.05 mg.
1 Provided per kilogram of complete diet: Cu, 140 mg; Fe, 145 mg; Zn, 179 mg; Mn, 12.5 mg; I, 0.5 mg; Co, 0.25 mg, Se, 0.4 mg.
2 Provided per kilogram of complete diet: vitamin A, 10,000 IU; vitamin D3, 2,000 IU; vitamin E, 42 IU; vitamin K, 5 mg; riboflavin, 2,400 mg; vitamin B2, 9.6 mg; vitamin B6, 2.45 mg; vitamin B12, 40 μg; niacin, 49 mg; pantothenic acid, 27 mg; biotin, 0.05 mg.
나. 시험사료와 사양관리I. Test feed and specification management
사양시험은 단국대학교 시험농장에서 실시하였다. 시험사료는 NRC (1998) 요구량에 따라 배합한 옥숫수-대두박 위주의 가루형태 사료를 자유 채식토록 하였으며, 물은 자동급수기를 이용하여 자유로이 먹을 수 있도록 조절하였다.
The test was conducted at Dankook University test farm. The experimental diets were fed free from vegetable diets based on the requirements of NRC (1998), and the water was freely fed using an automatic water dispenser.
다. 조사항목 및 방법All. Survey items and methods
(1) 일당증체량, 일당사료섭취량 및 사료효율증체량은 개시시, 6주 및 종료시 (12주)에 처리구 별로 체중을 측정하였다. 사료섭취량은 체중측정시 사료급여량에서 잔량을 제하여 계산하였고, 사료효율은 증체량을 사료섭취량으로 나누어 산출하였다.
(1) Body weight gain, daily feed intake and feed efficiency gain were measured by treatment at the start, at 6 weeks and at the end (12 weeks). The feed intake was calculated by subtracting the remaining amount from the feed intake during body weight measurement. The feed efficiency was calculated by dividing the body weight gain by the feed intake.
(2) 영양소 소화율은 6주 및 종료시 (12주)에 산화크롬 (Cr2O3)을 표시물로서 0.2% 첨가하여 7일간 급여 후 항문 마사지법으로 분을 채취하였다. 채취한 분은 60℃의 건조기에서 72시간건조시킨후 Willey mill로 분쇄하여 분석에 이용하였다. 사료의 일반성분과 표시물로 혼합 된 Cr은 AOAC (2000)의 방법에 준하여 분석하였다
(2) Nutrient digestibility was obtained by adding 0.2% of chromium oxide (Cr 2 O 3 ) as a labeling substance at 6 weeks and at the end (12 weeks). The samples were dried in a dryer at 60 ° C for 72 hours, and then pulverized with a Willey mill. Cr mixed with the general components of the feed and labeling was analyzed according to the method of AOAC (2000)
(3) 혈액 채취는 개시시, 6주 및 종료시 (12주)에 처리구별로 6두씩 선별하여 각각 경정맥 (Jugular vein)에서 Vacuum tube (Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ)를 이용하여 혈액 5mL 채취 후 4℃에서 3,000 rpm으로 15분간 원심분리하여 얻은 혈청을 자동 생화학 분석기 (HITACHI 747, Japan)를 이용하여 혈액내 glucose 및 BUN (blood urea nitrogen)을 측정하였고 IgG의 함량은 nephelometry방법으로 nephelometer (Behring, Germany) 분석기계를 이용하여 분석하였다.
(3) Blood samples were collected at 6, 12, and 12 weeks of treatment at 6, 6, and 12 hours by using a vacuum tube (Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ) in Jugular vein. The blood glucose and BUN (blood urea nitrogen) were measured using an automatic biochemical analyzer (HITACHI 747, Japan) and the IgG content was determined by nephelometry using a nephelometer Behring, Germany) analysis machine.
(4) 육질 분석에 사용된 돈육은 처리구별 6두씩 선별하여 도축 후 4℃ 냉장고에 24시간 저장 후 반도체 등심 부위 (M.longissimusdorsi)를 분할 정형하여 분석에 이용하였다. 육색은 Chromameter (Model CR-210, Minolta Co., Japan)를 사용하여 각 sample 당 5회 반복하여 측정하였다. 이때 표준색판은 L* (lightness)=89.2, a* (redness)=0.921, b* (yellowness)=0.783으로 하였다. 관능검사는 관능검사요원이 수행하였으며 NPPC (2000) 기준안에 의해 신선육의 육색 (color: 1-5), 근내지방도 (marbling: 1-5), 경도 (firmness: 1-5)를 조사하였다. 보수력은 Hofmann 등 (1982)의 방법으로 측정하여 planimeter (X-plan, Ushikata 360d∏, Japan)로 면적을 구하고 육의 표면적을 수분의 면적으로 나눈 값으로 표시하였다. 육의 pH 값은 도살 후 모든 시료를 pH meter (Istek, Model 77p)를 사용하여 측정하였다. 등심단면적은 등심의 단면적을 OHP 필름을 이용하여 등심의 둘레를 측정하였고, 구적기 (MT-10S, MT precision, Japan)를 이용하여 면적을 측정하였다. 가열감량은 시료를 일정한 모양으로 정형하여 무게를 측정한 후, polyethylene bag에 넣고 항온수조 (75℃)에서 30 분간 가열하고 상온에서 30분간 방냉시킨 후 시료의 무게를 측정하였다. 저장 감량 (drop loss)은 시료를 2cm 두께의 일정한 모양으로 정형한 후 polyethylene bag에 넣어 4℃ 냉장실에서 7일간 보관하면서 1일, 3일, 5일 및 7일 후 발생되는 감량을 측정하였다.
(4) The pork used in the meat quality analysis was sorted by 6 treatments. After slaughtering, the meat was stored in a refrigerator at 4 ° C for 24 hours, and then the semiconductor lumber portion (M. longissimus dorsi) was divided and shaped for analysis. Meat color was measured five times per each sample using Chromameter (Model CR-210, Minolta Co., Japan). At this time, the standard color plates were L * (lightness) = 89.2, a * (redness) = 0.921, and b * (yellowness) = 0.783. The sensory evaluation was carried out by sensory test personnel and the meat color (1-5), marbling (1-5) and firmness (1-5) of fresh meat were investigated according to the NPPC (2000) standard. The water holding capacity was measured by the method of Hofmann et al. (1982) and the area was determined by planimeter (X-plan, Ushikata 360dΠ, Japan) and the surface area of the meat was divided by the area of water. The meat pH values were measured after slaughter using a pH meter (Istek, Model 77p). The area of the suture cross-section was measured using the OHP film and the area of the suture was measured using the retractor (MT-10S, MT precision, Japan). The weight loss was measured by weighing the sample in a uniform shape and then heating it in a constant temperature water bath (75 ℃) for 30 minutes. After cooling for 30 minutes at room temperature, the weight of the sample was measured. The drop loss was measured after 1 day, 3 days, 5 days, and 7 days after the sample was formed into a uniform shape of 2cm thickness and stored in a polyethylene bag for 7 days in a refrigerator at 4 ℃.
(5) 분내 악취물질 분석을 위해 6주 및 종료시 (12주)에 각 처리구에서 동일한 시간 동안 배설 된 분을 채취한 후, 신선한 분 100g을 취하여 1,000mL의 밀봉된 플라스틱용기에 넣고 실온에서 24시간 동안 발효시킨 후 1, 3, 5 및 7일동안 실온에 보관하면서 Gastec (Model GV-100, GASTEC, Japan)을 사용하여 분으로부터 발생하는 암모니아 (ammonia, NH3),황화수소 (hydrogen sulfide, H2S),총 메캅탄 (Total mercaptan, RSH) 및 아세트산(acetic acid, CH3COOH)을 측정하였다.
(5) For the analysis of odorous substances in the mouth, the excreted materials for the same time were collected at 6 weeks and at the end (12 weeks) at each treatment, 100 g of fresh water was taken, placed in a 1,000 mL sealed plastic container, during it was stored after fermentation for 1, 3, 5 and 7 days at room temperature ammonia using Gastec (Model GV-100, GASTEC , Japan) generated from the minute (ammonia, NH 3), hydrogen sulfide (hydrogen sulfide, H 2 Total mercaptan (RSH) and acetic acid (CH 3 COOH) were measured.
라. 통계처리la. Statistical processing
모든 자료는 SAS (1999)의 General Linear Model procedure를 이용하여 Duncan’s multiple range test (Duncan, 1955)로 처리하여 평균간의 유의성을 검정하였다. 또한, 처리간의 평균을 orthogonal contrast를 이용하여 1) 고저 영양소 차이 및 2) 미처리원료와 가공원료 차이의 요인분석을 검정하였다.
All data were analyzed using the Duncan's multiple range test (Duncan, 1955) using the General Linear Model procedure of SAS (1999). Also, using the orthogonal contrast between the mean values of the treatments, 1) the difference of high and low nutrients and 2) the factor analysis of the difference between raw and raw materials.
실험결과는 다음과 같다. The experimental results are as follows.
사료내 발효/효소처리소맥의 대체가 비육돈의 생산성에 미치는 영향은 표 18에 나타내었다. 시험 0-6주에 있어 일당증체량은 HCFW 처리구가 LCW 처리구에 비해 유의적으로 높게 나타났지만 (P<0.05), 일당사료섭취량 및 사료효율에 있어 처리구간 유의적인 차이를 나타내지 않았다 (P>0.05). 시험 6-12주에 있어 일당증체량, 일당사료섭취량 및 사료효율에 있어 처리구간 유의적인 차이를 나타내지 않았다 (P>0.05). 하지만 고영양소 사료 급여시 사료효율이 높게 나타났다 (P<0.05).The effect of the replacement of fermented / enzyme-treated wheat in feed on the productivity of finishing pigs is shown in Table 18. In the 0-6 week, the daily gain of HCFW was significantly higher than that of LCW (P <0.05), but there was no statistically significant difference in daily feed intake and feed efficiency between treatments (P> 0.05) . There was no statistically significant difference in the daily gain, daily feed intake and feed efficiency between treatments at 6-12 weeks (P> 0.05). However, feed efficiency of high nutrient feed was higher (P <0.05).
전체 시험기간에 있어 일당증체량 및 사료효율은 HCFW 처리구가 LCW 처리구에 비해 유의적으로 높게 나타났고 (P<0.05), 고영양소 사료 급여시 저영양소 사료 급여보다 증가하여 나타났다 (P<0.05). 일당사료섭취량에 있어서 처리구간 유의적인 차이를 나타내지 않았다 (P>0.05). The daily weight gain and feed efficiency of HCFW were significantly higher (P <0.05) than those of LCW (P <0.05) and higher than that of low nutrient feed (P <0.05). There was no statistically significant difference in dietary intakes between the treatments (P> 0.05).
Items
HCW
HCFW
LCW
LCFW
SE 2
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat vs. fermented wheat.
a, b Means in the same row with different superscript differ significantly (p<0.05). 1 .
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat etc. fermented wheat.
a, b Means in the same row with different superscript differ significantly (p <0.05).
사료내 발효/효소처리소맥의 대체가 비육돈의 영양소 소화율에 미치는 영향은 표 19에 나타내었다. 6주차에 있어 건물 소화율은 HCFW 처리구가 LCW 처리구보다 유의적으로 높게 나타났고 (P<0.05), 질소 소화율은 HCFW 처리구가 LCW 및 LCFW 처리구보다 유의적으로 높게 나타났다 (P<0.05). 에너지 소화율은 HCFW 처리구가 LCW 처리구보다 유의적으로 높게 나타났다 (P<0.05). 12주차에 있어 건물소화율은 처리구간 유의적인 차이를 나타내지 않았지만 (P>0.05). 질소 소화율은 HCFW 처리구가 LCW 및 LCFW 처리구보다 유의적으로 높게 나타났고 (P<-.05), 에너지 소화율은 HCFW 처리구가 LCW 처리구보다 유의적으로 높게 나타났다 (P<0.05). 영양소 차이에 따라 질소 및 에너지 소화율은 고영양소 사료 급여시 6주 및 12주차에 유의적으로 높게 나타났고 (P<0.05), 발효/효소처리소맥 급여시 6주차에 건물 및 에너지 소화율이 높게 나타났다 (P<0.05).The effects of dietary fermentation / enzyme treated wheat substitution on nutrient digestibility of finishing pigs are shown in Table 19. The digestibility of HCFW was significantly higher (P <0.05) than that of LCW (P <0.05). Nitrogen digestibility of HCFW was significantly higher than that of LCW and LCFW at 6th week. The digestibility of HCFW was significantly higher than that of LCW (P <0.05). Dry digestibility was not significantly different between treatments at 12th week (P> 0.05). Nitrogen digestibility of HCFW was significantly higher than that of LCW and LCFW (P <- 05), and the digestibility of HCFW was significantly higher than that of LCW (P <0.05). Nitrogen and energy digestibility were significantly higher at 6 and 12 weeks of feeding of high nutrients (P <0.05), and the digestibility of building and energy was higher at 6th week of fermentation / P < 0.05).
Items,%
HCW
HCFW
LCW
LCFW
SE 2
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat vs. fermented wheat. 1 HCW = high nutrient diet (wheat); HCFW = high nutrient diet (20% replaced by fermented wheat); LCW = low nutrient diet (wheat); LCFW = low nutrient diet (20% replaced by fermented wheat).
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat etc. fermented wheat.
사료내 발효/효소처리소맥의 대체가 비육돈의 혈액특성에 미치는 영향은 표 20에 나타내었다. 시험 6주 혈액내 glucose 함량에 있어서 HCFW 처리구가 HCW, LCW 및 LCFW 처리구에 비해 유의적으로 높게 나타났으며 (P<0.05), BUN 함량에 있어서 HCFW, LCW 및 LCFW 처리구가 HCW 처리구에 비해 유의적으로 낮게 나타났다 (P<0.01). 영양소 차이에 따라 glucose 및 BUN 함량은 고영양소 사료 급여시 유의적으로 증가하였고 (P<0.05), 발효소맥 급여시에도 일반소맥 급여보다 높게 나타났다 (P<0.01).The effects of in-feed fermentation / enzyme-treated wheat substitution on the blood characteristics of finishing pigs are shown in Table 20. The concentration of glucose in the blood was significantly higher (p <0.05) than that of HCW, LCW and LCFW, and HCWW, LCW and LCFW were significantly higher than those of HCW (P <0.01), respectively. Glucose and BUN contents were significantly (P <0.05) higher in high nutrient diets than in general wheat diets (P <0.01).
시험 종료시 (12주) 혈액내 IgG 함량에 있어서 HCW, HCFW 및 LCFW 처리구가 LCW 처리구에 비해 유의적으로 높게 나타났으며 (P<0.05), glucose 함량에 있어서 HCW 처리구가 LCW 및 LCFW 처리구에 비하여 유의적으로 높게 나타났지만 (P<0.05), BUN 함량에 있어서 LCW 및 LCFW 처리구가 HCW 및 HCFW 처리구에 비하여 유의적으로 낮게 나타났다 (P<0.05). 영양소 차이에 따라 IgG, glucose 및 BUN 함량은 고영양소 사료 급여시 유의적으로 증가하였고 (P<0.05), 발효/효소처리소맥 급여에는 IgG함량이 일반소맥 급여보다 높게 나타났다 (P<0.01).The HCW, HCFW and LCFW treatments were significantly higher (p <0.05) than the LCW treatments at the end of the test (12 weeks) (P <0.05), but LCW and LCFW treatments were significantly lower in BUN than HCW and HCFW treatments (P <0.05). IgG, glucose and BUN contents were significantly (P <0.05) higher in high nutrient diets than in normal wheat diets (P <0.01).
Items
HCW
HCFW
LCW
LCFW
SE 2
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat vs. fermented wheat.
a, b, c Means in the same row with different superscript differ significantly (p<0.05). 1 HCW = high nutrient diet (wheat); HCFW = high nutrient diet (20% replaced by fermented wheat); LCW = low nutrient diet (wheat); LCFW = low nutrient diet (20% replaced by fermented wheat).
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat etc. fermented wheat.
a, b, c Means in the same row with different superscript differ significantly (p <0.05).
사료내 발효/효소처리소맥의 대체가 비육돈의 분내악취물질에 미치는 영향은 표 21 및 표 22에 나타내었다. 시험 6주차에 있어 분내 암모니아 농도에 있어서 3일에서 LCW 처리구가 HCW 및 HCFW 처리구에 비하여 유의적으로 낮게 나타났고 (P<0.05), 5일에서 LCW 및 LCFW 처리구가 HCW 처리구에 비해 유의적으로 낮게 나타났다 (P<0.05). 영양소 차이에 따라 고영양소 사료 급여시 3일 및 5일차에 유의적으로 암모니아 농도가 감소하였다 (P<0.01). 분내 Total mercaptans 농도에 있어서 7일에서 LCFW 처리구가 HCW 및 HCFW 처리구에 비해 유의적으로 낮게 나타났고 (P<0.05), 영양소 차이에 따라 고영양소 사료 급여시 유의적으로 Total mercaptans 농도가 감소하였다 (P<0.01). 분내 hydrogen sulfide의 농도에 있어서 5일 및 7일에서 LCFW 처리구가 HCW 및 HCFW 처리구에 비해 유의적으로 낮게 나타났고 (P<0.05), 영양소 차이에 따라 고영양소 사료 급여시 유의적으로 hydrogen sulfide 농도가 감소하였다 (P<0.01).The effects of in-feed fermentation / enzyme-treated wheat substitution on intramuscular odor substances in finishing pigs are shown in Tables 21 and 22. In the sixth week of the test, LCW and LCFW treatments were significantly lower (P <0.05) than those of HCW and HCFW treatments at 3 days (P <0.05). Ammonia concentration decreased significantly (P <0.01) at 3 days and 5 days when high nutrient diets were fed. The total mercaptans concentration was significantly lower (p <0.05) than that of HCW and HCFW treatments at 7 days and the total mercaptans concentration decreased significantly ≪ 0.01). The concentrations of hydrogen sulfide were significantly lower at 5 and 7 days than those of HCW and HCFW treatments (P <0.05), and the hydrogen sulfide concentration (P < 0.01).
시험 종료시 (12주)에 있어 분내 암모니아 농도는 3일차에 LCW 및 LCFW 처리구가 HCW 및 HCFW 처리구에 비하여 유의적으로 낮게 나타났으며 (P<0.05), 7일에 LCFW 처리구가 HCW 처리구에 비해 유의적으로 낮게 나타났다 (P<0.05). 또한 영양소 차이에 따라 고영양소 사료 급여시 3일과 5일차에 유의적으로 암모니아 농도가 감소하였다 (P<0.05). 분내 Total mercaptans 함량에서는 5일에 LCW 처리구가 HCW, HCFW 및 LCFW 처리구에 비하여 유의적으로 낮게 나타났고 (P<0.05), 영양소 차이에 따라 고영양소 사료 급여시 유의적으로 Total mercaptans 농도가 감소하였다 (P<0.05). 분내 hydrogen sulfide 함량에 있어서 5일에 LCFW 처리구가 HCW 및 HCFW 처리구에 비하여 유의적으로 낮게 나타났고 (P<0.05), 영양소 차이에 따라 고영양소 사료 급여시 유의적으로 감소하였다 (P<0.05). acetic acid 함량에 있어서 5일에 LCW 처리구가 HCFW 처리구에 비하여 유의적으로 낮게 나타났고 (P<0.05), 영양소 차이에 따라 고영양소 사료 급여시 유의적으로 감소하였다 (P<0.05). At the end of the experiment (12 weeks), the concentration of ammonia was significantly lower in LCW and LCFW treatments than in HCW and HCFW treatments at 3 days (P <0.05) (P <0.05), respectively. In addition, ammonia concentration decreased significantly (P <0.05) at the 3rd and 5th day of feeding of high nutrient diet due to differences in nutrients. The total mercaptans content in the feed was significantly lower than that of HCW, HCFW and LCFW treatments at 5 days (P <0.05). P < 0.05). The amount of hydrogen sulfide was significantly lower (P <0.05) than that of HCW and HCFW (P <0.05). acetic acid was significantly lower (P <0.05) than that of HCFW (P <0.05) and decreased significantly (P <0.05).
Items, ppm
HCW
HCFW
LCW
LCFW
SE 2
Total mercaptans
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat vs. fermented wheat.
a, b, c Means in the same row with different superscript differ significantly (p<0.05). 1 HCW = high nutrient diet (wheat); HCFW = high nutrient diet (20% replaced by fermented wheat); LCW = low nutrient diet (wheat); LCFW = low nutrient diet (20% replaced by fermented wheat).
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat etc. fermented wheat.
a, b, c Means in the same row with different superscript differ significantly (p <0.05).
Items, ppm
HCW
HCFW
LCW
LCFW
SE 2
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat vs. fermented wheat.
a, b Means in the same row with different superscript differ significantly (p<0.05). 1 HCW = high nutrient diet (wheat); HCFW = high nutrient diet (20% replaced by fermented wheat); LCW = low nutrient diet (wheat); LCFW = low nutrient diet (20% replaced by fermented wheat).
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat etc. fermented wheat.
a, b Means in the same row with different superscript differ significantly (p <0.05).
사료내 발효/효소처리소맥의 대체가 비육돈의 육질특성에 미치는 영향은 표 23에 나타내었다. 육색, 관능적 평가, 가열감량, 저장감량, pH, 등심단면적 및 보수력에 있어서 처리구간 유의적인 차이가 나타나지 않았다 (P>0.05). 하지만 발효소맥 급여시 관능검사의 근내지방도 및 저장감량 1일차에서 일반소맥 급여보다 높게 나타났다 (P<0.05).The effects of in-feed fermentation / enzyme-treated wheat substitution on meat quality of finishing pigs are shown in Table 23. There were no significant differences in color, sensory evaluation, heat loss, storage loss, pH, beef cross section and water holding capacity (P> 0.05). However, in the fermented soybean meal, the sensory test showed a higher degree of intramuscular fatness and storage loss than the general wheat diet at the 1st day (P <0.05).
Items
HCW
HCFW
LCW
LCFW
SE 2
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat vs. fermented wheat.
5 LMA : Longissimusmusclearea.
6 WHC : Water holding capacity. 1 HCW = high nutrient diet (wheat); HCFW = high nutrient diet (20% replaced by fermented wheat); LCW = low nutrient diet (wheat); LCFW = low nutrient diet (20% replaced by fermented wheat).
2 Standard error.
3 High nutrient density diet vs. low nutrient density diet.
4 Raw wheat etc. fermented wheat.
5 LMA: Longissimus musclearea.
6 WHC: Water holding capacity.
본 발명은 소맥을 사료원료로 하는 단미사료를 제조함에 있어서 최적의 효소처리 및 발효처리 조건을 밝힌 것으로서, 호화도 및 유리당의 함량이 증가되고, 가축에서의 소화율 및 성장을 개선하는 것을 특징으로 하는 소맥 곡물사료에 관한 것이며, 이를 배합사료에 혼합하여 급이할 수 있으므로, 사료분야에 있어서의 산업상 이용가능성이 있다.The present invention discloses optimum enzymatic treatment and fermentation treatment conditions in the production of a feedstuff of wheat as a feedstuff, characterized in that the degree of hydrolysis and free sugars is increased and the digestibility and growth of livestock are improved The present invention relates to a wheat grain feed, which can be mixed with a feed to feed it, and thus, there is a possibility of industrial application in the feed field.
Claims (8)
(a) 원료사료로서 수분함량 40~50%의 소맥을 제공하는 단계;
(b) 소맥을 침지하는 단계;
(c) 증자하는 단계;
(d) B. subtilis 2-19CX, B. subtilis P11, Aspergillus oryzae GB-641, A. niger GB-124, A. niger GB-X2로 이루어지는 군으로부터 선택되는 균주를 접종하여 발효하는 단계;
(e) Arabanase, Cellulase, Beta-glucanase, Hemicellulase, Xylanase, Endo-glucanase, Alpha-amylase 및 glucoamylase로 이루어지는 군으로부터 선택되는 효소를 사용하여 효소처리를 행하는 단계; 및
(f) 건조하는 단계A method of processing wheat grain feed to improve digestibility and growth in livestock, the method comprising using solid fermentation and comprising the following steps (a) to (f): .
(a) providing wheat with a moisture content of 40-50% as a feedstock;
(b) immersing the wheat;
(c) a step of capitalizing;
(d) inoculating and fermenting a strain selected from the group consisting of B. subtilis 2-19CX, B. subtilis P11, Aspergillus oryzae GB-641, A. niger GB-124, and A. niger GB-X2;
(e) enzymatic treatment using an enzyme selected from the group consisting of Arabanase, Cellulase, Beta-glucanase, Hemicellulase, Xylanase, Endo-glucanase, Alpha-amylase and glucoamylase; And
(f) drying step
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120120824A KR101470918B1 (en) | 2012-10-29 | 2012-10-29 | The manufacturing method for wheat-based feedstuff using bio-reaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120120824A KR101470918B1 (en) | 2012-10-29 | 2012-10-29 | The manufacturing method for wheat-based feedstuff using bio-reaction |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140056584A KR20140056584A (en) | 2014-05-12 |
KR101470918B1 true KR101470918B1 (en) | 2014-12-10 |
Family
ID=50887688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120120824A KR101470918B1 (en) | 2012-10-29 | 2012-10-29 | The manufacturing method for wheat-based feedstuff using bio-reaction |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101470918B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102182129B1 (en) | 2014-05-12 | 2020-11-24 | 엘지디스플레이 주식회사 | Organic light emitting diode display and drving method thereof |
CN105265769B (en) * | 2015-10-22 | 2019-12-10 | 李德舜 | Multifunctional bacterium fermented compound enzyme feed and preparation method thereof |
CN117882801B (en) * | 2024-03-18 | 2024-05-24 | 山东润德生物科技有限公司 | Composite starter and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000013983A (en) * | 1998-08-17 | 2000-03-06 | 김인수 | Manufacturing method for alpha type fermenting feed for improving value of low quality feed |
KR20090046767A (en) * | 2009-04-13 | 2009-05-11 | 김웅섭 | Manufacturing method of feed rice wine using rice bran and feed makgeolli |
-
2012
- 2012-10-29 KR KR1020120120824A patent/KR101470918B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000013983A (en) * | 1998-08-17 | 2000-03-06 | 김인수 | Manufacturing method for alpha type fermenting feed for improving value of low quality feed |
KR20090046767A (en) * | 2009-04-13 | 2009-05-11 | 김웅섭 | Manufacturing method of feed rice wine using rice bran and feed makgeolli |
Also Published As
Publication number | Publication date |
---|---|
KR20140056584A (en) | 2014-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gang et al. | The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage | |
Aro | Improvement in the nutritive quality of cassava and its by-products through microbial fermentation | |
Zhao et al. | Evaluation of Lactobacillus plantarum MTD1 and waste molasses as fermentation modifier to increase silage quality and reduce ruminal greenhouse gas emissions of rice straw | |
CN113774003B (en) | Lactobacillus buchneri and application thereof in preparation of low-moisture fermented feed | |
Sugiharto | A review on fungal fermented cassava pulp as a cheap alternative feedstuff in poultry ration | |
KR101532471B1 (en) | The manufacturing method for corn-based feedstuff using bio-reaction | |
Olugosi et al. | Nutritional enhancement of cocoa pod husk meal through fermentation using Rhizopus stolonifer | |
KR101470918B1 (en) | The manufacturing method for wheat-based feedstuff using bio-reaction | |
CN116478867A (en) | A fermented feed with high soluble protein content and its preparation method and application | |
CN114698726B (en) | Low-toxin high-nutrition rapeseed meal, method for degrading toxins of rapeseed meal through segmented fermentation and application | |
Noersidiq et al. | The effect of urea levels on in-vitro digestibility and rumen fermentation characteristic of ammoniated oil palm trunk | |
CN115812844A (en) | Fermented feed based on whole spent grains and preparation method thereof | |
Elihasridas et al. | Ammonia and fermentation treatment of Cymbopogon nardus L. waste as a substitution of grass: Effect on nutritional profile and ruminal in vitro digestibility | |
KR101470919B1 (en) | The manufacturing method for oat-based feedstuff using bio-reaction | |
Getabalew et al. | The application of biotechnology on livestock feed improvement | |
CN106811429A (en) | The application of one bacillus subtilis strain and its feed addictive and feed | |
CN115715563A (en) | Fermented bean dregs, preparation method thereof and application thereof in reducing pig raising cost | |
Putri et al. | Optimizing ruminant feed efficiency: The synergistic effects of BMR sorghum and Tithonia diversifolia on nutrient digestibility, rumen function, and methane mitigation | |
Gunun et al. | Investigation of the effect of different additives on the qualities, in vitro degradation, and rumen fermentation profile of indigo waste silage. | |
Suriyapha et al. | Nutrients Quality Improvement of Agro-industrial Citric Acid Residues by Fermentation with Yeast Waste from Bioethanol Processing to be Used as Ruminant Feed | |
CN112868886A (en) | Fermentation composition for improving quality of pleurotus eryngii mushroom residues and quality improving method thereof | |
Rodríguez-Salgado et al. | Compositional quality of food obtained with solid state fermentation: potato and carrot | |
Fahmy et al. | In vitro evaluation of ensiling and/or exogenous fibrolytic enzyme supplementation of date press cake | |
Xiong et al. | Effects of adding different concentrations of Aspergillus Niger inoculant on the quality of mixed rice straw silage. | |
Chang et al. | Response of growth performance, cecal fermentation traits and in vitro gas production to substitution of soyhulls for lignified fiber in rabbit diets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20121029 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20131211 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20141125 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20141203 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20141203 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20181126 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20181126 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190924 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20190924 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20201124 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20211026 Start annual number: 8 End annual number: 8 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20230914 |